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ABSTRACT: The analysis of structures with uncertain properties modeled as random variables with 

imprecise Probability Density Function (PDF) characterized by interval basic parameters (mean-value, 

variance, etc.) is addressed. A novel procedure able to provide approximate explicit expressions of the 

bounds of the interval mean-value and variance of the random stresses is proposed. The procedure 

stems from the joint application of the Improved Interval Analysis via Extra Unitary Interval and the 

Rational Series Expansion, introduced in the literature by the last two authors. The influence of 

imprecision of the PDF of the input parameters on structural performance is also investigated. For 

validation purposes, a 3D truss structure with uncertain Young’s moduli is analyzed. 

 

1. INTRODUCTION 

It is now widely recognized that the results 

provided by the classical probabilistic structural 

analysis may be highly sensitive to the basic 

parameters (e.g., mean-value, variance, etc.) of 

the Probability Density Function (PDF) 

characterizing the uncertain properties. Indeed, a 

small change in the mean and variance values of 

the uncertain parameters may cause a large 

variation in the outcome of structural reliability 

assessment (Ben-Haim 1994, Elishakoff 1995). 

To take into account the imprecise character 

of available information, over the last decades 

the theory of imprecise probability has been 

developed as a generalization of the classical 

probabilistic analysis. An imprecise probability 

arises when the probability for an event is 

bounded by a lower value and an upper value of 

the probability for the same event (see e.g., 

Walley 1991, Weichselberger 2000, Utkin and 

Kozine 2010, Beer et al. 2013). 

The interval analysis (Moore et al. 2009) 

has proved to be an effective tool to evaluate the 

bounds of response statistical moments as well as 

to perform reliability assessment under uncertain 

parameters described by imprecise information 

(Jiang et al. 2011, Muscolino and Sofi 2017). 

Furthermore, it has been proved that, if the basic 

parameters of the PDF are modelled as intervals, 

the reliability belongs to an interval and the 

reliability index is also an interval quantity 

(Elishakoff 1995, Qiu et al. 2008). 

The present study addresses the static 

analysis of discretized structures with uncertain 

parameters modeled as random variables 

characterized by imprecise PDFs. Recently, 

Muscolino and Sofi (2017) proposed an efficient 

procedure for estimating the bounds of interval 

statistics of the displacements of structures with 

imprecise random axial stiffness. This method is 

herein extended to evaluate the bounds of 

interval statistics of the stresses and the 

associated range of the failure probability. The 
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main challenge is to reduce the overestimation 

which may significantly affect interval 

computations involving stress quantities due to 

the dependency phenomenon (Moore et al. 2009). 

To reduce conservatism, the proposed method 

relies on the joint application of the Improved 

Interval Analysis via Extra Unitary Interval (IIA 

via EUI) (Muscolino and Sofi 2012) and the so-

called Rational Series Expansion (RSE) 

(Muscolino and Sofi 2013). 

The developed procedure is applied to a 3D 

truss structure with random imprecise Young’s 

moduli.  

2. LINEAR STRUCTURES WITH 

UNCERTAIN AXIAL STIFFNESS 

Let us consider a n -DOF discretized structural 

system subjected to deterministic static loads. 

Let 
j j j jE A L   be the axial stiffness of the j-

th element, where 
jE , 

jA  and 
jL  are the 

Young’s modulus, cross-sectional area and 

length of the element, respectively. Assume that 

r  structural elements are characterized by 

uncertain axial stiffness,  0, 1i i iX   , 

( 1,2, , )i r , with dimensionless fluctuations 

iX  around the nominal value 
0,i  modelled as 

zero-mean random variables. To ensure always 

positive values of the uncertain properties, the 

random fluctuations satisfy the conditions 

1iX  , ( 1,2, , )i r , with the symbol   

meaning absolute value. 

The equilibrium equations of the structure 

with uncertain axial stiffness can be written as 

follows: 

 ( ) ( ) K X U X f  (1) 

where  
T

1 2 rX X X X  is the vector 

collecting the random fluctuations iX , with T 

denoting the transpose operator; ( )K X  is the 

n n  stiffness matrix, which depends on the 

random fluctuations iX ; ( )U X  is the n  vector 

of random displacements; f  is the n  vector 

collecting the external nodal forces. 

The random stiffness matrix of the structure 

can be expressed as follows (Muscolino and Sofi 

2017): 

 T( ) ( )K X C E X C  (2) 

where T
C  is the n m  equilibrium matrix, m 

being the number of constituent unimodal 

components; ( )E X  is the m m  random 

diagonal internal stiffness matrix. 

The random stiffness matrix can be 

rewritten as sum of its nominal value, 0K , plus 

r  rank-one random modifications, i.e.: 

 
T

0

1

( )
r

j j j

j

X


 K X K w  w  (3) 

where  

 
T T

0 0 ,; j E j K C E C w C l  (4a,b) 

and 
T

j j jK w  w  is a rank-one matrix. In the 

previous equations, 0E  is a diagonal matrix 

listing the nominal axial stiffnesses 
0, j  

( 1,2, , )j m ; 
,E jl  is a m vector having zero 

entries except the j-th which is equal to 
0, j

. 

Recently, Muscolino and Sofi (2013) 

derived the so-called Rational Series Expansion 

(RSE) which provides an approximate explicit 

expression of the inverse of an invertible matrix 

with rank- r  modifications. For small degrees of 

uncertainties, i.e. 1iX , ( 1,2, , )i r , the 

RSE can be truncated to first-order terms, 

yielding: 

  1 1

0

1

( )
1+

r
i

i

i i i

X

X d

 



  U X K X f K f D f  (5) 

where: 

T 1 1 T 1

0 0 00;   .i i i i i id     w K w  D K w  w K  (6a,b) 

Equation (5) represents an approximate 

explicit relationship between the displacement 

vector  U X  and the random variables 
jX
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which allows a straightforward evaluation of 

response statistics, as will be outlined in the next 

sections. 

3. AXIAL STIFFNESS DESCRIBED BY 

IMPRECISE PROBABILITY DENSITY 

FUNCTION 

Let us assume now that only imprecise 

information on the uncertain axial stiffness is 

available. Under this assumption, the random 

variables iX  are more appropriately described by 

a family of joint imprecise Probability Density 

Function (PDFs). Such a family is represented 

by the function ( ; )Ip
X X

x a , depending on the 

vector 
I

X
a  ( 1,2, , )i r  of basic parameters 

with the apex I characterizing interval variables. 

From an engineering point of view, the r  

random variables 
iX  ( 1,2, ,i r ) can be 

assumed to be independent so that the joint 

imprecise PDF, ( ; )Ip
X X

x a , can be written as: 

 
1

( ; ) ( ; )
i i

r
I I

X i X
i

p p x


 X Xx a a  (7) 

where ( ; )
i i

I

X i Xp x a  is the marginal imprecise 

PDF of the random variable iX  which depends 

on the interval vector i

i

sI

X a  where  is the 

set of all closed real interval numbers. The j-th 

element of the interval vector 
i

I

Xa  can be defined 

as 
, , ,,

i i i

I

X j X j X ja a a 
  , where ,  

i

I

X ja  , 
,iX ja  

and 
,iX ja  are the Lower Bound (LB) and Upper 

Bound (UB) of the interval basic parameter ,i

I

X ja , 

respectively. 

The statistics of the random variables 
iX  

with imprecise PDF as well as those of the 

structural response are described by intervals. 

Such statistics can be defined by introducing the 

interval stochastic average operator EI
 

(Muscolino and Sofi 2017). 

By applying the RSE (Eq.(5)) in conjunction 

with the Improved Interval Analysis via Extra 

Unitary Interval (IIA via EUI), Muscolino and 

Sofi (2017) derived the bounds of the interval 

mean-value vector and covariance matrix of the 

nodal displacements  U X  in approximate 

explicit form. The aim of the present study is to 

extend this approach to evaluate the bounds of 

the normal stresses in the structural elements and 

then perform reliability assessment in the 

presence of imprecise random parameters. 

3.1. Interval mean-value of the normal stress 

The random normal stress in the j  th structural 

element can be evaluated in terms of the random 

displacement vector  U X  as follows: 

 
 0, T

0,

1
( ) ( )

j j

j j

j

X
S

A

 
X c U X  (8) 

where 
T

jc  is the j  th row of the m n

compatibility matrix C ; 
0, jA  is the cross-

sectional area of the j  th structural element set 

equal to the nominal value. 

Substituting Eq. (5) into Eq. (8), the 

following approximate explicit expression of the 

j  th random normal stress is obtained 

 0, 0, ,

1

( ) (1 )
r

j j j j i i j

i

S X b b 


 
   

 
X  (9) 

where 

 ( )
1+

i
i i

i i

X
X

X d
   (10) 

is an auxiliary random variable (Muscolino and 

Sofi 2017) and  

T 1 T

0, 0 ,

0, 0,

1 1
;     .j j i j j i

j j

b b
A A

 = c K f c D f  (11a,b) 

By applying the interval stochastic average 

operator EI
 to Eq. (9) and taking into 

account that the random variables iX  are 

independent, the interval mean-value of the 

thj   random normal stress, ( )jS X , can be 

evaluated as: 
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0, 0,   , ,

1

E ( )

     E

j

i

I I

S j

r
I I

j j i j j j j j

i

S X

b b X b



  




 
   

 


 (12) 

where   E
i

I I

i   is the interval mean-value 

of the thi   auxiliary random variable. 

Following the IIA via EUI, the previous 

equation can be rewritten as sum of the midpoint 

value plus an interval deviation as follows: 

    mid dev
j j j

I I I

S S S   +  (13) 

where  

   

 

 

0, 0,   ,

1

,

0, ,

1

,

mid mid

              mid E ;

ˆdev =

ˆ              E .

j i

j i

r
I I

S j j i j

i

I

j j j j

r
I I

S j i i j

i

I

j j j j j

b b

X b

e b

X e b





  



  








 







 


 






(14a,b) 

In the previous equations,  mid  and  dev  

denote the midpoint and interval deviation of the 

quantity between curly brackets; 
i

  and 

E j jX   are the deviation amplitudes of   i

I

  

and EI

j jX  , respectively; ˆ I

ie  is the thi   

EUI (Muscolino and Sofi 2017).  

Based on Eq. (13) and following the 

philosophy of the IIA via EUI, the LB and UB of 

the interval mean-value of the thj   random 

normal stress can be evaluated as: 

 

 

 

mid ;   

mid

j j j

j j j

I

S S S

I

S S S

  

  

  

  

 (15a,b) 

where 
jS  is the deviation amplitude, defined 

as follows 

 

0, ,

1

, ,

=

        E .

j i

j

r

S j i j

i
i j

j j j j j j

b

b X b





  

 





 



   



 (16) 

3.2. Interval variance of the normal stress 

Taking into account Eqs. (9) and (12), and 

neglecting terms involving powers of the random 

variables iX  of order higher than two, the 

following approximate explicit expression of the 

variance of the thj   random normal stress is 

obtained: 

 
2

2 2 2 2 2

0, 0,

2 2

0, , ,

1

E ( ) E

      2 E

j j

i

I I I I

S j S j j j

r
I I

j j j j j i j

i

S b X

b b X b

  

 


  



  




X

 

  (17) 

where 2

i

I

  is the interval variance of the 

auxiliary random variable i . 

Following the IIA via EUI, Eq. (17) can be 

rewritten as sum of the midpoint value plus an 

interval deviation as follows: 

    2 2 2mid dev
j j j

I I I

S S S     (18) 

where

   

 

 

 

2 2 2 2

0, 0,

0, ,

2 2

,

1

2 2 2 2

0, 0,

2 2

0, , ,

1

mid mid E

                 2 mid E

                 mid ;

ˆdev E

ˆ ˆ               2 E .

j

i

j

i

I I

S j j j

I

j j j j j

r
I

i j

i

I I

S j j j j

r
I I

j j j j j j i i j

i

b X

b b X

b

b X e

b b X e e b





 





 

 











 



 



    







 

  (19a,b) 

Based on Eq. (17) and following the 

philosophy of the IIA via EUI, the LB and UB of 



13
th

 International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 5 

the interval variance of the thj   random 

normal stress can be evaluated as: 

 

 

 

2 2 2

2 2 2

mid ;

mid

j j j

j j j

I

S S S

I

S S S

  

  

  

  

 (20a,b) 

where 

2 2 2 2

0, 0, 0, ,

2 2 2 2

, ,

1

E 2 E

        

j

j i

S j j j j j j j j

r

j j i j

i
i j

b X b b X

b b 

  

 



    



  





      (21) 

with 2E jX  and 
2

i
  denoting the deviation 

amplitudes of 2EI

jX  and 
2

i

I

 , respectively. 

4. INTERVAL FAILURE PROBABILITY 

AND INTERVAL RELIABILITY INDEX 

Once the bounds of the interval mean-value and 

variance of the most relevant stress are known, 

performance assessment of the structural system 

with imprecise random axial stiffness can be 

carried out by extending the classical 

probabilistic concept of reliability to the interval 

framework. As known, in reliability analysis, a 

measure of the risk is the probability of failure, 

, while a measure of the success is the 

probability of success or survival probability, 

1  , which can be defined in the 

following alternative ways: 

 

Pr Pr 1

Pr ln ln 0 ;

Pr Pr 1

Pr ln ln 0

R S R S

R S

S R R S

R S

       

    

       

    

 (22a,b) 

where S is the most relevant structural response, 

caused by external loads and R is the 

corresponding resistance of materials. 

The response and the resistance of materials 

are herein modelled as statistically independent 

random variables having lognormal distributions. 

In particular, the resistance of materials, R, is 

assumed to be characterized by a precise 

lognormal PDF with mean-value R  and 

standard deviation R . On account of the 

imprecise character of the random axial stiffness 

of the structure, the response, S, is supposed to 

have an imprecise lognormal PDF with interval 

mean-value and standard deviation I

S  and I

S . 

Under these assumptions, the probability of 

failure turns out to be defined by an interval 

quantity. By using the well-known relationships 

for lognormal distributions (Haldar and 

Mahadevan 2000) and applying interval 

extension, the interval probability of failure reads 

as follows: 

  , 1I I      (23) 

where  

 

 

2

2

2 2

1
, ln

1

1

ln (1 ) 1

I
I R S

I

S R

I

R S

 
  

 

 

 
        


  
 

 (24) 

is the interval reliability index. In the previous 

equation, 
R  and I

S  are the coefficients of 

variation of resistance and response, 

respectively: 

 ; .
I

IR S
R S I

R S

 
 

 
   (25a,b) 

The IIA via EUI (Muscolino and Sofi 2012) 

yields the following expressions of the LB and 

UB of the interval reliability index: 

, 

, 

min { ( , )} ( , );

max { ( , )} ( , )

I I
S S S S

I I
S S S S

S S S S

S S S S

   

   

      

      

 

 

 

 
 (26a,b) 

where the bounds of the interval mean-value 

[ , ]I

S S S   and standard deviation 
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[ , ]I

S S S    of the response can be evaluated 

by the proposed procedure. 

Then, according to Eq.(23), the best possible 

value (or LB) and the worst possible value (or 

UB) of the probability of failure can be 

evaluated, respectively, as: 

 
 

 

1 ;

1 .





 

 
 (27a,b) 

Obviously, the LB and UB of the interval 

survival probability are given, respectively, by: 

 
 

 

1 ;

1 .





   

   
 (28a,b) 

The previous bounds allow us to compute 

the highest expected failure probability, , (see 

Eq. (27b)) which corresponds to the LB of the 

survival probability (see Eq. (28a)). 

5. NUMERICAL APPLICATION 

The 3D 26-bar truss structure under deterministic 

static loads shown in Figure 1 is selected as case 

study (Muscolino and Sofi 2017).  

The following geometrical and mechanical 

properties are assumed:
4 2

0, 4.27 10  miA   , 

8 2

0, 2.1 10  kN/miE   , 1,2, ,26i  , and 

200 kNf  . Young’s moduli of 12r   bars are 

modeled as independent random variables, 

0(1 )i iE E X  , 1,2, ,12i  , (see bar 

numbering in Figure 1) with fluctuations, iX , 

around the nominal value modeled as zero-mean 

independent random variables with uniform 

imprecise PDF: 

 

1
,   for 

2( ; )

0,         otherwise
i

I I

i i iII
iX i i

a x a
ap x a


  

 



 (29) 

where   0
ˆ, (1 )I I

i i i ia a a a e    with 0 0a  , 

1   and ˆ [ 1, 1]I

ie    , 1,2, , 12i r  . 

 
Figure 1: 3D truss structure with uncertain Young’s 

moduli.  

 

The proposed bounds of the statistics of 

normal stresses are compared with those 

provided by a procedure resulting from the joint 

application of classical Monte Carlo Simulation 

(MCS) with a combinatorial procedure known as 

Vertex Method (VM), herein referred to as MCS-

VM (Muscolino and Sofi 2017). Both the 

proposed method and the MCS-VM have been 

implemented in MATLAB. 

Figure 2 displays the UB and LB of the 

interval mean-value of the normal stress of the 

26 bars for 0 0.2a   and 0.1  . An excellent 

agreement between the proposed estimates and 

those provided by the MCS-VM is observed. The 

proposed procedure yields also very accurate 

estimates of the bounds of the interval standard 

deviation of the normal stresses, as shown in 

Figure 3.  

To assess the performance of the truss 

structure, attention is focused on bar 8 where the 

maximum normal stress 8S  is attained. The 

resistance of the material, R , is modeled as a 

lognormally distributed random variable with 

mean-value 530 MPaR   and standard 

deviation 0.05R R  , while the normal stress 

of bar 8, 8S , is assumed to be characterized by a 

lognormal imprecise PDF with interval mean-

value and standard deviation 
8

I

S  and 
8

I

S  (see 

Figures 2 and 3). 
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Figure 2: a) Upper bound and a) lower bound of the 

interval mean-value of the normal stresses of bars. 

 

   
Figure 3: Bounds of the interval standard deviation 

of the normal stresses of bars. 
 

Figure 4 shows the PDF of the resistance R  

along with three realizations of the imprecise 

PDF of the normal stress 8S  obtained setting the 

mean-value and standard deviation equal to 

8 8
( , )S S  , 

8 8
( , )S S  , and to the values 

8 80, 0,( , )S S   pertaining to the uniform PDF (29) 

of the random variables iX  with nominal basic 

parameter 0a . Notice that the largest area of 

overlap between the PDFs of R  and 8S , which 

gives a qualitative measure of the probability of 

failure, is obtained when the interval mean-value 

and standard deviation of 8S  are set to their UB, 

8S  and 
8S . Indeed, in this case the LB of the 

interval reliability index and the UB of the 

interval failure probability, plotted in Figures 5 

and 6, respectively, are achieved.  

 

 
Figure 4: Probability density function of the normal 

stress of bar 8 and of the resistance of material.  

 

In Figures 5 and 6, the LB of the interval 

reliability index, 
8S , and the corresponding UB 

of the failure probability, 
8,S , for the normal 

stress 8S  versus the nominal basic parameter 0a  

of the PDF of the uncertain Young’s moduli are 

plotted. The proposed estimates are very close to 

those provided by the MCS-VM. Indeed, the 

maximum absolute percentage errors affecting 

8S  and 
8,S , which are achieved for 0 0.2a  , 

are equal to 0.077% and 1.083%, respectively. 

Though the LB of the interval reliability index, 

8S , and the UB of the failure probability, 
8,S , 

are slightly overestimated and underestimated, 

respectively, the percentage errors are very small. 

The nominal values pertaining to a uniform 

precise PDF of the uncertain Young’s moduli 

with basic parameter 0a  are also reported. Notice 

that the performance of the structure is 

significantly affected by the imprecision of the 

PDF of the random Young’s moduli. This 

implies that classical probabilistic reliability 

analysis, based on the nominal value 0a  of the 

basic parameters, may lead to serious 

underestimation of the failure probability. 
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Figure 5: Lower bound and nominal value of the 

reliability index for the normal stress of bar 8. 

 

 
Figure 6: Upper bound and nominal value of the 

probability of failure for the normal stress of bar 8. 

 

6. CONCLUSIONS 

The analysis of discretized structures with 

uncertainties described by imprecise Probability 

Density Functions (PDFs) with interval basic 

parameters has been addressed. By extending a 

procedure recently proposed by Muscolino and 

Sofi (2017), approximate explicit expressions of 

the bounds of the interval mean-value and 

variance of stresses have been derived. 

Furthermore, analytical expressions of the 

bounds of the interval reliability index and the 

associated interval failure probability have been 

obtained. A notable feature of the developed 

method is the capability to limit the 

overestimation affecting interval computations 

involving stress quantities. Numerical results 

have demonstrated the accuracy of the proposed 

method as well as the remarkable influence of 

imprecision of the PDF of the uncertain 

parameters on the performance of structural 

systems. 
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