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ABSTRACT: Identification of structural damage requires reliable assessments of damage-sensitive 

quantities, including natural frequencies, mode shapes, and damping ratios. Lack of knowledge about 

the correct value of these parameters introduces a particular sort of uncertainty often referred to as 

epistemic uncertainty. This class of uncertainty is reducible in a sense that it can be decreased by 

enhancing the modeling accuracy and collecting new information. On the contrary, such damage-

sensitive parameters might also have intrinsic randomness arising from unknown phenomena and 

effects, which gives rise to an irreducible category of uncertainty often referred to as aleatory 

uncertainty. The present Bayesian modal updating methodologies can produce reasonable 

quantification of the epistemic uncertainties, while they often fail to account for the aleatory 

uncertainties. In this paper, a new multilevel (hierarchical) probabilistic modeling framework is 

proposed to bridge this significant gap in uncertainty quantification and propagation of structural 

dynamics inverse problems. Since multilevel model calibration schemes establish a complicated model 

structure associated with additional parameters and variables, their computational costs are often 

considerable, if not prohibitive. To reduce the computational costs, the modal updating procedure is 

simplified using a second-order Taylor expansion approximation. This approximation is combined with 

a Markov chain Monte-Carlo (MCMC) sampling method to compute marginal posterior distributions of 

quantities of interest. The proposed framework is illustrated using one simple experimental example. 

As a result, it is demonstrated that the proposed framework surpasses the present Bayesian modal 

updating methods as it accounts for both the aleatory and epistemic uncertainties. 

1. INTRODUCTION 

Bayesian operational modal analysis (BOMA) is 

originally developed by Katafygiotis and Yuen 

(2001 and 2003). Despite great novelty in the 

original formulations proposed to identify modal 

parameters, they are computationally demanding. 

Among different variants of the BOMA, fast 

Fourier transform (FFT) methodologies have 

gained greater publicity and attention. Au (2011) 

developed a new FFT method to dramatically 

reduce the computational costs involved with this 

approach, while theoretical, computational, and 

practical issues involved with applying this 
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method to ambient vibration tests are discussed 

in Au et al. (2013). Yan and Katafygiotis (2015b) 

have continued this line of research to develop a 

method to separate the identification of mode 

frequencies and damping ratios from the 

estimation of mode shapes. 

In general, the main advantage of using the 

BOMA over deterministic methods is its 

capability to estimate the involved uncertainties. 

The uncertainty considered by the present 

BOMA methods is solely due to the lack of 

knowledge about the modal parameters. This 

category of uncertainty is often referred to as 

epistemic uncertainty, which can be reduced 

when additional observations are obtained 

(Kiureghian and Ditlevsen 2009). However, 

there is a prospect that the unknown parameters 

can also be subjected to inherent randomness 

when different data sets are used for the 

Bayesian inference. This category of uncertainty 

is irreducible, often originates from modeling 

errors, and cannot be accounted for by the 

present Bayesian methods. In this paper, a new 

multilevel probabilistic framework is proposed to 

bridge this significant gap in modal identification 

problems. Subsequently, a basic experimental 

example is used to demonstrate the proposed 

framework. 

2. PROPOSED BAYESIAN FRAMEWORK 

2.1. Vibration data 

Let  1ˆ , 0,..., 1n

jD j N   y  denote a data set 

comprising discrete-time response of a 

dynamical system measured at n  degrees-of-

freedom (DOF), where the index j  corresponds 

to the discrete-time jt j t   and t  is the 

sampling interval. The scaled FFT of the 

response can be computed as (Yuen and 

Katafygiotis 2003): 
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where 
1ˆ

k

nF  is the Fourier transform of the 

response at the frequency / ( )kf k N t  . 

2.2. Frequency-domain model 

To construct a parametric model in frequency-

domain, the Fourier transform of the theoretical 

response can be used. When the resonance bands 

are well-separated, the modal inference can be 

performed over each individual band. 

Considering the system to be linear having clear 

resonance peaks, the Scaled FFT of the response 

over a frequency band containing only one 

dynamical mode can be expressed as (Au 2017): 

 
k i ik ikh pF φ  (2) 

where 
1

i

nφ  is the i
th

 mode shape, ikp  is the 

scaled FFT of the i
th

 modal force corresponding 

to kf , and ikh  is the transfer function at kf  given 

by (Au 2017): 
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Here, q  takes on 0, 1, and 2 for acceleration, 

velocity, and displacement response 

measurements, respectively; ik  is the frequency 

ratio, /k if f ; if  and i  are the modal frequency 

and damping ratio corresponding to the i
th

 

dynamical mode. Therefore, the free parameters 

can be collected into { , , }i i if  φ , which 

should be calibrated based on the vibration data 

described in the next section. 

2.3. Modal identification 

Over a particular frequency band, which contains 

only the resonance peak corresponding to the i
th

 

dynamical mode, the scaled FFT of the response 

can be predicted as: 

  ˆ
k k k F F ε  (4) 

where 
1

k

nε  is prediction errors assumed to 

have constant power spectral density (PSD) over 

the frequency band of interest. Considering the 

prediction errors to be statistically independent 

and identically distributed (i.i.d.) and describing 

them by using a Gaussian distribution leads to: 

 
. . .
~ (0, )k e n

i d d
N Sε I  (5) 
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Here, eS  is prediction error variance assumed to 

be constant over the entire frequency band of 

interest and across all DOF. Given this 

assumption, the FFT response can be described 

by a complex Gaussian distribution expressed as 

(Au 2017): 
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and 

 *( ) | T

k k k k i i e nE SD S    E θ F F θ φ φ I  (7) 

where ( )kE θ  is the theoretical PSD, S  is the 

PSD of the modal force ikp , and θ  denotes the 

parameters of this probabilistic model given by: 

 { , , , , }i i i ef S Sθ φ  (8) 

Considering ˆ
kF ’s to be statistically 

independent over the entire frequency band 

allows constructing the likelihood function as 

follows: 

    ˆ ˆ| |k k

k

p pF θ F θ  (9) 

By using the Bayes’ rule the posterior 

distribution of the parameters can be computed 

readily. Given a uniform prior distribution for the 

modal parameters, the negative log-likelihood 

function should be minimized to yield the MAP 

estimations: 
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where 
fN  is the number of data points over the 

frequency band of interest. This optimization 

problem yields the most probable values (MPV) 

of the parameters. An asymptotic approximation 

can simplify the posterior distribution giving 

(Papadimitriou et al. 1997): 

    ˆ ˆ|  |  ,   p D N θθ θ θ Σ  (11) 

and 
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In the latest equations, θ̂  and ˆ
θ

Σ  denotes 

the MPV and covariance matrix of θ , 

respectively, where ˆ
θ

Σ  is approximated as the 

inverse of the Hessian matrix of  L θ  evaluated 

at θ̂ . The Hessian can be computed both 

analytically and numerically as addressed in Au 

(2017). 

2.4. Hierarchical Bayesian Approach 

The posterior distribution computed earlier only 

accounts for the epistemic sources of uncertainty. 

To account for the aleatory uncertainty involved 

with the modal parameters, multiple sets of 

vibration data should be combined under a 

hierarchical probabilistic modeling. 

Let  , 1,...,r DD r N D  be the full data set 

comprising DN  independent sets of vibration 

data. Corresponding to each data set, the 

foregoing Bayesian inference can be applied, and 

DN  independent realizations for the modal 

parameters are thus obtained. Based on Eq. (11), 

one can write: 

    ,
ˆ ˆ|  |  ,   r r r r rp D N θθ θ θ Σ  (13) 

where rθ  denotes the modal parameters inferred 

from the data set rD . To account for the aleatory 

uncertainties, we assume that the dataset-specific 

parameters, rθ ’s, follow a Gaussian distribution 

with the unknown mean θμ  and covariance 

matrix θΣ . These parameters are often referred 

to as hyper-parameters, and this probabilistic 

model is called the hierarchical modeling 

technique (Nagel and Sudret 2016). Given these 

assumptions, Sedehi et al. (2019) have recently 

shown that the marginal distribution of the 

hyper-parameters updated based on multiple data 

sets can be computed from: 
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Moreover, the posterior predictive 

distribution of the modal parameters can be 

computed using a Markov chain Monte-carlo 

(MCMC) sampling method giving (Sedehi et al. 

2019): 

   ( ) ( )
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1
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p N
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where ( )m

θμ  and ( )m

θΣ  denote samples of the 

hyper-parameters drawn from  , |p
θ θ
μ Σ D  

given by Eq. (14). The latest equation provides a 

new formulation to combine multiple data sets 

accounting for the inherent randomness of the 

modal parameters observed over different data 

sets. Sedehi et al. (2018) have proven that the 

second-moment statistics of  |newp θ D  can 

easily be computed from: 
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where  newE θ  and  CoV newθ  denote the 

expected value and covariance matrix of 
newθ , 

respectively. In the next section, the proposed 

hierarchical Bayesian approach is demonstrated 

using an experimental example. 

3. EXPERIMENTAL EXAMPLE 

Figure 1 shows a three-story shear building 

prototype structure tested on a Shaking table at 

the Hong Kong University of Science and 

Technology (HKUST). The acceleration 

responses of the three stories were measured 

when the prototype was subjected to 20DN   

independent Gaussian White noise (GWN) input 

excitations. Each set of time-history response 

measurements is 120s long, sampled at 0.005s 

time intervals. 

 

 
Figure 1: Structure prototype tested subjected to 

white Gaussian noise base excitations.  

 

The FFT of discrete-time acceleration 

responses corresponding to a particular data set 

is shown in Figure 2. The three well-separated 

peaks appearing on this plot correspond to the 

three dynamical modes of the structure. Thus, the 

presented BOMA approach can simply be 

applied to compute the posterior distribution of 

dynamical properties from each individual data 

set. The proposed hierarchical Bayesian 

approach should next be applied to combine 

multiple data sets. For the sake of simplicity, we 

neglect the correlation between the modal 

parameters and assign only one pair of hyper-

parameters to each quantity of interest, the mean 

and standard deviation. By using Eq. (14), we 

computed the marginal posterior distribution of 

the hyper-parameters. Figure 3 shows the 

marginal posterior distribution of the modal 

frequencies. As can be seen, the MPV of the 

mean and standard deviation of the three mode 

frequencies are estimated as (4.21Hz, 0.022Hz), 

(13.04Hz, 0.045Hz), and (18.82Hz, 0.018Hz). 

Figure 4 shows the marginal posterior 

distribution of the modal damping ratios. The 

MPV of the mean and standard deviations of the 
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damping ratios are obtained as (0.038, 0.01), 

(0.013, 0.002), and (0.0036, 0.0075). The 

validity of this results can be confirmed when 

compared with the past studies (Zhouquan 2013).  

 

 
Figure 2: Frequency response function of 

measured output accelerations.  

 

 
Figure 3: Posterior distributions of the hyper-

distributions chosen to represent mode frequencies. 

 

 

 
Figure 4: Posterior distributions of the hyper-

distributions chosen to represent damping ratios. 

 

Transitional MCMC method (Ching and 

Chen 2007) is next used to draw the samples 

from the marginal posterior distribution of the 

hyper-parameters. Eqs. (16) and (17) are used to 

compute the mean and standard deviation of the 

modal parameters according to multiple data 

sets. Figures 5 and 6 compare the data set 

specific posterior distributions, shown by the 

blue error bars, with the mean and standard 

deviations computed by the hierarchical method 

indicated by the shaded areas plotted along with 

the red line. As shown, the uncertainty bounds 

computed by the hierarchical Bayesian approach 

are in good agreement with the dataset-specific 

uncertainties shown by the blue error bars. In 

other words, the uncertainty computed by using 

one single data set is fairly consistent with the 

uncertainty estimated by using one single data 

set. Thus, the hierarchical Bayesian approach is 

not only a tool to combine different data sets 

reliably, but also it can be used test the 

robustness of estimated uncertainties obtained 

from the classical BOMA approaches. 
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The example demonstrated herein was 

rather simple, the modeling assumptions were 

flawless, and the full acceleration response 

measurements were fed into the algorithm. 

However, these results confirm the robustness of 

the present BOMA methods to quantify the 

involved uncertainty with reasonable accuracy 

when there are not considerable modeling errors. 

Nevertheless, the prospect that this nice accuracy 

cannot be maintained in the presence of drastic 

modeling errors still remains open. 

 

 

 

 

 
Figure 5: Posterior distribution of mode frequencies 

and damping ratios (The shaded area and the red 

lines show the results of hierarchical Bayesian 

approach and the blue error bars show posterior 

distributions estimated using a particular data set)   

 

 

 

 
Figure 6: Posterior distribution of mode shapes (The 

shaded area and the red lines show the results of 

hierarchical Bayesian approach and the blue error 

bars show posterior distributions estimated using a 

particular data set) 

4. CONCLUSIONS 

A hierarchical Bayesian formulation is presented 

to account for both aleatory and epistemic 

uncertainties involved with the operational 

modal analysis problems. An experimental 

example is adopted to demonstrate the efficacy 

of the present BOMA methods, when the models 

are sufficiently accurate. Although the 

hierarchical method is used herein to combine 

different data sets, it is powerful to test and 

verify the robustness of estimations obtained 

from the classical BOMA methods. 
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