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ABSTRACT: Considering an uncertain correlation length of the input random fields described by a
Karhunen-Loève expansion leads to a probability-box approach for the stochastic finite element
computation. But, these computations are highly costly. Then, a stochastic collocation method using
sparse grids within a Smolyak algorithm is proposed to reduce the computational cost, particularly in
the context of non-linear computations. The interest and the development of the Smolyak algorithm for
stochastic model with non-linear finite element methods regarding mixed, aleatory and epistemic,
uncertain inputs are here introduced. The limitations of Smolyak algorithm are critically discussed and
suggestions for improvement are made.

1. INTRODUCTION

Finite element method (FEM) is a powerful tool to
solve partial differential equations, which is widely
used in engineering application, particularly in the
context of solid mechanics problems. In order to
consider uncertain input parameters, several tech-
niques have been developed to extend FEM to
stochastic finite element method (SFEM). More-
over, the quantification of uncertainties may be dis-

tinguished into two kinds: aleatory uncertainties,
due to the intrinsic randomness of the phenomena,
and epistemic uncertainties, which are caused by
lack of knowledge (der Kiureghian and Ditlevsen,
2009). In practice, however, engineers often face a
mixture of both (Beer et al., 2013). For this reason,
advanced approaches are required to handle deep
uncertainties.
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This distinction allows risk-informed decision-
making even in the presence of epistemic uncer-
tainty (Dubois and Guyonnet, 2010). Indeed epis-
temic uncertainties are not describable within the
classical probability framework, but require dedi-
cated tools such as interval analysis (Moens and
Vandepitte, 2005), fuzzy description (Möller and
Beer, 2004) or imprecise probabilities (Beer et al.,
2013). In the context of finite element analysis,
these approaches face two main challenges. The
firs it to include the spatial variability as here, for
example, the material properties are described as
random fields. The second challenge is to reduce
the computational cost of stochastic computations
(Moens and Vandepitte, 2005).

In this contribution, random fields containing
both kinds of uncertainties are considered as in-
put material parameters. The input random fields
are discretised using Karhunen-Loève expansion
(KLE), where the random field is approximated by
a series expansion around the mean field (Sudret
and der Kiureghian, 2000). The variation within
the random field is characterised by the correlation
length. However, while the stochastic parameters,
mean value and variance, can usually be found ex-
perimentally, the correlation length is difficult to
determine. Therefore, this lack of knowledge is
modelled by assuming the correlation length to be
interval-valued.

Here, the mechanical applications of interest are
non-linear computations to evaluate the risk relia-
bility. Monte Carlo (MC) approaches, which would
require a large number of sampling points to de-
scribe the mixed uncertainty, would be too time
costly. In order to avoid high computational effort,
sophisticated numerical approaches are required to
evaluate the probability-box in reasonable compu-
tational cost. Among these methods, the Stochas-
tic Collocation (SC) method (Xiu and Hesthaven,
2005) is investigated in this work as a more effi-
cient alternative to MC computations of non-linear
problems in solid mechanics, particularly.

The paper is structured as follows. The proba-
bility box approach is reviewed in Section 3. To
increase efficiency, the probability box approach is
combined with stochastic collocation method in-

troduced in Section 4. The resulting algorithm is
tested and analysed for non-linear material prob-
lems in Section 5.

2. RANDOM FIELD DISCRETISATION
Input parameters are described as random fields if
their values vary with the position in the physical
domain. Furthermore, for any couple of two points
in the domain, their covariance gives a measure of
their variance inter-dependency in the random field.
For isotropic field, the covariance kernel describes
the dependency of the correlation on the distance
between two points. In this work, a Gaussian kernel
is assumed, such that the covariance of the random
field is given by

Cov(x1,x2) = σ
2 exp

[(
|x1− x2|

lc

)2
]
, (1)

where lc is the correlation length of the random field
and should be identified from experiments. How-
ever this is often a difficult task and, here, the cor-
relation length is treated as an epistemic uncertainty
and modelled through an interval.

The first step for an improved efficiency in the
computation of non-linear structural problems with
finite element method is to discretise the random
field by series expansion methods, such as the KLE,
in order to reduce the number of random variables
in the system. Using KLE, the random field is ap-
proximated as

Cov(x1,x2)'
T

∑
n=1

λnφn(x1)φn(x2), (2)

where T is the order of truncation of the series
expansion, and λi and φi are the eigenvalues and
eigenfunctions of the Fredholm integral equation∫

Ω

Cov(x1,x2)φn(x1)dx1 = λnφn(x2). (3)

The solution of eq. (3) was done by Galerkin pro-
jection (Sudret and der Kiureghian, 2000; Ghanen
and Spanos, 1991). The random field represented
by the KLE may then be approximated as

H̃(x,θ) = E(x)+
T

∑
n=1

√
λnφn(x)ξ (θ), (4)
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where ξ (θ) are standard normal random variables.
A system with nRV random fields is therefore re-
duced to nRV × T random variables, which are
treated as aleatory uncertainty. The normal random
variables, ξi, may be sampled using MC or chosen
by SC methods.

3. PROBABILITY BOX APPROACH

In this work, it is proposed to capture the lack
of knowledge of the correlation length by assign-
ing it an interval-value. Then, the model is de-
composed into aleatory uncertainty, in terms of the
random distribution, e.g. mean, standard deviation,
and epistemic uncertainty in terms of the correla-
tion length. By modelling these deep uncertain-
ties, the description of the randomness turns into
a probability-box approach (Beer et al., 2013). In-
stead of assigning one cumulative distribution func-
tion FX(x) to the probability P(X ≤ x) of a random
variable X , a probability family P is enveloped by
a left bound FX(x) and a right bound FX(x):

P = {P |∀x ∈ R, FX(x)≤ FX(x)≤ FX(x)}. (5)

This so-called probability box (p-box), depicted in
Figure 1, [FX(x), FX(x)] is minimally described
by these two bounds but can be fed with addi-
tional information on the confidence intervals of
the mean value mX and the variance vX or the
distribution family F defining a quintuple p-box
〈FX(x), FX(x), mX , vX , F 〉 (Beer et al., 2013).

1

FX

x

FX

FX(x)

Figure 1: Probability box (p-box) defined by a left
bound FX and a right bound FX .

Numerically, p-boxes can be handled by sam-
pling or discretisation (Zhang et al., 2010). The nu-
merical complexity is higher than for usual stochas-
tic models. Thus, basic sampling methods such as

crude MC method can be not affordable and face
the curse of dimensionality. This problem becomes
more important for non-linear problems, which are
already associated with a larger computational ef-
fort in deterministic analyses, or for reliability anal-
ysis in which unlikely events are of importance.

In order to reduce the number of realisations at
a fixed number of random input variables, sophisti-
cated sampling methods are required. Among sev-
eral advanced Monte Carlo techniques (Stefanou,
2009), SC method has turned out to be a promising
approach to improve the stochastic model. One ap-
proach based on Smolyak algorithm is introduced
and discussed in the following.

4. STOCHASTIC COLLOCATION METHOD

Regard within a probability space (Ω,F ,P) the
stochastic partial differential equation (SPDE)

L (ω,x;u) = f (ω,x), x ∈D (6)
B(ω,x;u) = g(ω,x), x ∈ ∂D ,

where ω ∈ Ω. The differential operator L and the
boundary operator B as well as the functions f and
g may be random. Then, the primary variable u
becomes a stochastic function u(ω,x) : Ω×D→R
(Xiu and Hesthaven, 2005).

The basic idea of SC is the same as MC, to solve
the FE problem in repetitive deterministic simu-
lations. However, the input is not sampled ran-
domly but chosen specifically as so-called colloca-
tion points (Xiu and Hesthaven, 2005). The set of
N-dimensional collocation points ΘN = {Y N

i }
nCP
i=1 ∈

Γ in the random space Γ ⊂ RN , is defined by a
grid, here a sparse grid, as illustrated in Figure 2 for
the specific cases of Gauss-Hermite and Clenshaw-
Curtis grids.

Inserting the collocation points into eq. (6), the
SPDE reads

L (Y N
i ,x;u) = f (Y N

i ,x), x ∈D (7)

B(Y N
i ,x;u) = g(Y N

i ,x), x ∈ ∂D ,

and can be solved deterministically for each i. Note
that Smolyak provides a fast convergence only for
problems which are sufficiently smooth within the
random space (Xiu and Hesthaven, 2005).
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(a) Non-bounded Gauss-
Hermite grid

(b) Nested Clenshaw-
Curtis grid

Figure 2: Two-dimensional sparse grids for levels k =
3, k = 4 and k = 5

4.1. Sparse grid construction
Smolyak algorithm defines the set ΘN by combin-
ing the one-dimensional sets Θi following

ΘN =
⋃

q−N+1≤|i|≤q

(
Θ

i1×·· ·×Θ
iN
)
, (8)

where i = (i1, ..., iN) ∈NN is a multi-index contain-
ing the order of interpolation i j for each stochastic
dimension j = 1, ...,N such that |i| = i1 + ...+ iN .
Furthermore, q is a parameter defining the bounds
and is usually chosen to be q = N + k, where k ∈ N
is called Smolyak level. For a multi-dimensional
problem, the number of points in the dimension j
described by an interpolation of level i j equals to

m j
i j
=

{
1, if i j = 1,
2i j−1 +1, if i j > 1.

(9)

The points can be chosen following various rules
which lead to different kind of grids characterised
by their own properties. Most common is the nested
Clenshaw-Curtis grid defined on [−1,1]N , where
the points are chosen as the extrema of the Cheby-
chev polynomials. Alternatively, Gauss-Hermite
grids are defined on ]−∞,∞[N , but they are not
nested.

After solving the FE problem for every colloca-
tion point, the stochastic outcome is obtained as an
interpolation following Smolyak algorithm includ-
ing the input probability distribution.

4.2. Polynomial interpolation of the stochastic
moments

Smolyak algorithm defines the N-dimensional in-
terpolant I (u) as a combination of the one-
dimensional interpolants U i(u):

I (u) = ∑
q−N+1≤|i|≤q

η(|i|) ·
(
U i1⊗·· ·⊗U iN

)
,

(10)

U i(u) =
mi

∑
k=1

u(Y i
k) ·H

i
k, (11)

where the factor η(|i|) is defined as

η(|i|) = (−1)q−|i| ·
(

N−1
q−|i|

)
. (12)

For the polynomial basis function H i
k, usually La-

grange polynomials are chosen.
The stochastic moments of the outcome can be

estimated by the polynomial interpolation. For in-
stance, the expected value E(u) is estimated as

E(u) = ∑
q−N+1≤|i|≤q

η(|i|)·

mi1

∑
k1=1
· · ·

miN

∑
kN=1

u(Y i1
k1
, . . . ,Y iN

kN
) ·Sk(Y ), (13)

where the integral

Sk(Y ) =
∫
Γ

(
H i1

k1
⊗·· ·⊗H iN

kN

)
fY (Y )dY (14)

incorporates the probability density function fY (Y )
of the input random variables evaluated at the col-
location points. Analogously, the variance is deter-
mined by

Var(u) = ∑
q−N+1≤|i|≤q

η(|i|)·

mi1

∑
k1=1
· · ·

miN

∑
kN=1

[
u(Y i1

k1
, . . . ,Y iN

kN
)−E(u)

]2
·Sk(Y ).

(15)

The numerical integration of Sk(Y ) can become
computationally costly for high stochastic dimen-
sions.

4



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Here, describing the input random fields using
KLE as described in Section 2, the stochastic di-
mension is given by

N =
nRF

∑
i=1

Ti +nRV , (16)

where nRF is the number of input random fields i
truncated at order Ti and nRV is the number of ran-
dom variables. It can be noted that the problem be-
comes easily high-dimensional when random fields
are involved.

5. AN ELASTO-PLASTIC TEST PROBLEM

Early work using SFEM considered mainly linear
materials (Sudret and der Kiureghian, 2000). How-
ever, most of the mechanical failure involve some
non-linear behaviour, which requires sophisticated
numerical tools as the computational cost is largely
increased. Here, a non-linear test problem with an
elasto-plastic material behaviour is investigated.

The p-box approach is combined with the
stochastic collocation method as follows. First, in
an outer loop, the interval-valued correlation length
is considered. Then, within an inner loop, the cor-
responding random field X(x,ω) is discretised by
KLE and instead of sampling the standard normal
variable, ξi, the coordinates of a Gauss-Hermite
sparse grind are used (Jablonski, 2014).

5.1. Model description
The algorithm is tested on a two-dimensional test
problem depicted in Figure 3. The 1 m× 1 m-
square is discretised by 10×10 elements and com-
pressed on its right side by a constant line load
q0 = 300 kN

mm .
An elasto-plastic material model including lin-

ear kinematic hardening is considered. The yield
stress σy is defined as a Gaussian random field dis-
cretised by KLE. The expected value is E(σy) =
240 MPa, the standard deviation Std(σy) is cho-
sen to be 5%E(σy). The interval-valued correlation
length is lc ∈ [0.5, 5.0] m . The series expansion of
the random field is truncated at order T . For each
term of the series expansion one dimension of ran-
dom space is added. Hence, the stochastic dimen-
sion of the sparse grid (here Gauss-Hermite) needs

lx

ly

q0

77
y

x

Figure 3: Plate compressed on its right side by a con-
stant line load

to be equal to the order of truncation T . The out-
come of interest is the equivalent plastic strain de-
fined by

ε̄p =
∫ t

0

√
2
3

ε̇p : ε̇pdt. (17)

where ε̇p is the rate of plastic strain, assuming in-
finitesimal deformation.

5.2. Results
The simulation is performed using a Smolyak level
k = 4 and a truncation order of T = 5, which means
nSC = 1471 realisations. The expected value E(ε̄p)
is interpolated by eq. (13) from the set of all real-
isations. The expected value of the output random
field is depicted in Figure 4a for the left and right
bounds of the interval-valued correlation length.
It seems apparent that the results of the expected
value do not differ significantly, so the correlation
length does not influence the expected value for the
random field of interest.

However, the correlation length highly influences
the standard deviation Std(ε̄p) defined as the square
root of eq. (15), which is depicted in Figure 4b for
the left and right bounds of the correlation length
interval. The effect on the standard deviation is sig-
nificant in the context of engineering applications
as it affects the tails of the distribution function,
which is the key information for reliability analy-
sis.

The number nSC of collocation points depends on
the Smolyak level k and the stochastic dimension N
which here is equal to the truncation order T . To
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(a) Expected value E(ε̄p) (b) Standard deviation Std(ε̄p)

Figure 4: Stochastic moments of the equivalent plastic strain for the bounds of the correlation length interval (left
bound in grey, right bound in brown, k = 4, T = 5)

judge on the accuracy of the stochastic collocation
results, a parameter study on k and T is performed
and compared to the results of a converged Monte
Carlo simulation using nMC = 105 samples. The
results are analysed regarding element 77, which is
marked in Figure 3.

(a) Left bound lc/l = 0.5

(b) Right bound lc/l = 5

Figure 5: Expected value E(ε̄p) of the equivalent plas-
tic strain ε̄p for different Smolyak levels k and orders
of truncation T (stochastic dimension N = T ) as well
as MC reference solution (red line) with nMC = 105

samples at element 77.

The convergence of the expected value E(ε̄p) to-
wards the Monte Carlo reference solution (red line)
is depicted in Figure 5 for the left and right bounds
of the interval-valued correlation length. Here, the
quality of the results is mainly depending on the
Smolyak level k and to a lesser extent on the trun-
cation order. However, the influence of T is still
not negligible as it causes an error in the input ran-
dom field affecting mainly its standard deviation.
From the convergence plots it can be concluded that
the chosen Smolyak level k = 4 is sufficient for the
problem of interest.

In Figure 6, the convergence of the standard de-
viation at element 77 is shown. In the case of the
left bound, the influence of the truncation order
is noticeable, while the right bound also shows a
good convergence for increasing k even for small
T . This is due to the fact that for decreasing corre-
lation lengths the truncation error increases when T
is fixed. Still, an acceptable convergence is reached
by Smolyak level k = 4.

The p-box [Fε ,Fε ]
el.77 of the equivalent plastic

strain ε p at element 77 is depicted in Figure 7. It
can be highlighted that here just a rough approxi-
mation of the distributions are given, as the sam-
pling for post-processing has been avoided for this
representation. However, this approximation al-
lows one to observe that there is a significant differ-
ence between the two bounds of the p-box, which
is in agreement with the difference in terms of stan-
dard deviation.
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(a) Left bound lc/l = 0.5

(b) Right bound lc/l = 5

Figure 6: Standard deviation Std(ε̄p) of the equivalent
plastic strain ε̄p for different Smolyak levels k and or-
ders of truncation T (stochastic dimension N = T ) as
well as MC reference solution (red line) with nMC = 105

samples at element 77.

It is to be noted that negative stochastic mo-
ments can occur for increased Smolyak level k.
This is due to negative weights that are defined by
the Smolyak algorithm (ven den Bos et al., 2017).
For instance, in case of non-linear problems which
are non-smooth enough, such as damage simula-
tions, initial studies have shown that this problem
may occur for some test cases. The convergence
of the stochastic collocation method requires high
Smolyak level, which leads to negative stochastic
moments. However, this requires further investiga-
tion.

6. CONCLUSIONS

This paper dealt with stochastic finite element
method considering random field input parameters,
which are mixed, i.e. epistemic and aleatory, un-
certain. To capture such deep uncertainty, a prob-
ability box approach has been suggested. For an
efficient stochastic analysis, the approach has been

 

Figure 7: P-box of the equivalent plastic strain ε̄p at
element 77

combined with stochastic collocation method using
sparse grids within a Smolyak algorithm.

The algorithm has been tested for non-linear ma-
terial problems and compared to the results gained
by a Monte Carlo simulation. Using an elasto-
plastic material, sufficient convergence of expected
value and standard deviation is reached using a
Smolyak level k = 4 and a KLE truncation order of
T = 5. Regarding the number of collocation points
nSC = 1471 the time saved compared to the Monte
Carlo simulation using nMC = 105 samples is sig-
nificant. Higher stochastic moments will probably
demand for more truncation terms. For this pur-
pose, fast integration methods for high dimensions
are required.

It has been found that an interval-valued corre-
lation length mainly affects the standard deviation.
This emphasizes the need for considering epistemic
correlation lengths as long as there is no reliable in-
formation on its exact value.

The developed approach for including deep un-
certainty in the FEM computation of non-linear
problems in solid mechanics, may still lead to large
computational cost for larger problems. One pos-
sibility to improve the efficiency of the algorithm
is to use a hierarchical approach with nested sparse
grids, e.g. by using Leja points. This would reduce
the number of deterministic computations needed
for higher levels of collocation points. In the case of
three-dimensional models, the deterministic com-
putation cost may also be reduced by combining the
approach with model order reduction techniques.
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