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ABSTRACT: Adaptive surrogate models are of practical use for reliability analysis based on
costly-to-evaluate limit-state functions. The quality of the approximation made depends on both the
selected type of surrogate model (and its related assumptions) and the adaptive scheme applied for the
construction of the approximate model. Most of surrogate models assume some degree of smoothness,
which allows them to be learned with a not so large set of input-output data pairs. This paper
investigates the use of Matérn kernels in the context of support vector regression, with tuned regularity
parameters. This kernel is used in an adaptive scheme based on MCMC sampling, whose objective is to
progressively sample the failure domain. The proposed approach is applied to both a smooth and a non
smooth limit-state functions, showing the benefits of using such a highly flexible kernel.

1. INTRODUCTION
The focus of this paper is on reliability estima-

tion in problems involving costly-to-evaluate mod-
els (referred to as true models) such as those en-
countered e.g. in the numerical solving of PDEs.
In this context we may try to learn the true model
from a set of selected input-output data pairs and
use the trained approximate model as a surrogate
to the costly-to-evaluate model. Let us assume
that the true model is defined by a scalar function
y : X → Y ,x 7→ y = y(x) where X ⊆Rn denotes
the input space and Y ⊆ R the output space. The
surrogate of y will be denoted ỹ : x 7→ ỹ = ỹ(x). ỹ
should be viewed as conditional on the N data pairs
T = {(xi,yi)∈X ×Y ,1≤ i≤N} it is trained on.

Learning the true function y from data is condi-
tional on a set of predefined hypotheses on ỹ, e.g.
polynomial basis for a polynomial response surface
or a polynomial chaos expansion, type of kernel for
kriging or support vector regression, etc. If this set
of predefined hypotheses is not wide enough w.r.t.
the complexity of the true function y, the trained ap-
proximate model ỹ is expected to have a poor pre-
dictive capacity (e.g. approximation of true func-

tion y of a degree strictly greater than one by a lin-
ear approximate model ỹ). If this set is too wide
(high complexity of ỹ), the learning process is prone
to overfitting, which is also an unwanted situation.
The contruction of surrogate models is therefore to
find a good tradeoff between the choice of hypothe-
ses selected for ỹ and the unknown complexity of
y. This choice of hypotheses for ỹ also has con-
sequences on the training process. A complex ap-
proximate model has numerous parameters, which
are harder to tune in the context of training on small
datasets. In this paper, we investigate the use of a
kernel of complexity greater than that used in most
common kernel-based approaches.

Training on an initial set of N datapairs T is
known to not be the most efficient technique for the
purpose of optimization or reliability assessment.
Sequentially updated surrogate models are often
preferred and the reader may refer to (Bourinet,
2018, section II–3.1) for a short review of such
works in the context of reliability assessment. Se-
quential techniques were applied with several types
of surrogate models, e.g. polynomial response sur-
faces, kriging (Bichon et al., 2008; Echard et al.,
2011; Bect et al., 2012; Hu and Mahadevan, 2016),
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support vector classification (Most, 2007; Basudhar
and Missoum, 2010; Bourinet et al., 2011), support
vector regression (Dai et al., 2012; Bourinet, 2016,
2017), polynomial chaos expansion (Marelli and
Sudret, 2018), generalized ANOVA (Chakraborty
and Chowdhury, 2016). In the following, s will
denote the iteration number of such a sequential
scheme, ỹs the approximate model trained on a set
of data pairs Ts at iteration s. This sequential con-
struction is carried out until some accuracy criteria
are met.

In this work, the reliability problem to solve is
supposed expressed in the so-called standard nor-
mal space and the unknown failure probability pf is
given by the followwing n-fold integral:

pf = P(G(U)≤ 0) =
∫

G(u)≤0
ϕn(u)du (1)

where G : Rn → R is the costly-to-evaluate limit-
state function (LSF), ϕn is the n-dimensional stan-
dard normal PDF and du = du1 . . .dun.

Section 2 introduces the type of surrogate model
used in the present work with its main assumptions
and details about its tuning. The proposed sequen-
tial training close to that proposed in previous pa-
pers of the author (Bourinet, 2016, 2017) is pre-
sented in Section 3. Two application examples are
addressed in Section 4, which points out the ben-
efits of using the selected kernel. Concluding re-
marks and perspectives are given in Section 5.

2. SURROGATE MODEL
The proposed surrogate-based reliability assess-

ment method makes use of support vector re-
gression (Vapnik, 1995; Drucker et al., 1997).
This technique shares some similarities with Gaus-
sian process emulators a.k.a. kriging (see, e.g.,
Bourinet, 2018, section II–4). From a given set of
training data pairs T = {(xi,yi),1≤ i≤ N} where
yi = y(xi) for i= 1, . . . ,N, the objective is to predict
a scalar output y ∈R at any new point x ∈Rn. The
univariate regression problem is solved by means of
an approximation ỹ of y in the form:

ỹ(x) = h(x)+b where h(x) =
N

∑
i=1

cik(xi,x) (2)

and where c= (c1, . . . ,cN)
T ∈RN is a vector of un-

known expansion coefficients, b∈R is an unknown
unregularized bias term and k : Rn×Rn → R is a
selected positive definite kernel. Such a representa-
tion is the solution of the minimization problem:

min
c,b

C
N

∑
i=1

`(yi,(Kc)i +b)+
1
2

cTKc (3)

where K = [k(xi,x j)]1≤i, j≤N is the so-called Gram
matrix, where (Kc)i = ∑

N
j=1 c jk(x j,xi), where

`(y,u) is taken here as the ε-insensitive loss func-
tion such that `(y,u) = 0 if |y−u| < ε , |y−u|− ε

otherwise (specific case of L1-SVR), and where C
is a regularization parameter. This parameter C
controls the tradeoff between finding a function h
(and therefore ỹ) of low complexity and fitting well
the training data, which thus avoids overfitting.

Several types of kernels k can be selected for the
analysis. It is important to point out that the choice
made for k is part of the hypotheses which con-
trol the accuracy of the approximation ỹ to be con-
structed. The practice may differ according to the
problems of interest. In the SVM community, the
objective is to learn a model from a large number
of data pairs and kernels with a very few parameters
to tune are often preferred. In the context of small
datasets such as encountered in surrogate-based ap-
proximation of costly-to-evaluate models, kernels
with more parameters to tune may be considered. A
common practice with kriging model is to consider
e.g. anisotropic Gaussian or Matérn kernels, which
are more complex therefore more flexible than their
isotropic counterparts (see, e.g., Moustapha et al.,
2018, for a comparison of kriging and SVR with
isotropic/anisotropic kernels).

In the following, we investigate the use an
anisotropic form of the Matérn kernel (Stein, 1999)
as a tentative to approximate non smooth functions.
The common practice with such a kernel is to con-
sider a single scale parameter γ (isotropic form) or
one scale parameter γi per input dimension of x
(anisotropic form), along with an apriori selected
regularity parameter ν which controls the smooth-
ness of the approximation, most often ν = 5/2.
It is reminded that the Matérn kernel includes the
Gaussian RBF kernel as the limiting case ν → ∞.
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The idea here is to use a Matérn kernel which is
anisotropic both in terms of the scale parameter γ

and the smoothness parameter ν . The following
kernel k is considered, for x,x′ ∈Rn:

k(x,x′;θ) =
n

∏
i=1

kMatérn-1D(xi,x′i;νi,γi) (4)

where θ = {(νi,γi), i = 1, . . . ,n} is a set of param-
eters to tune and kMatérn-1D is the 1D Matérn kernel:

kMatérn-1D(x,x′;ν ,γ) = . . .(
γ
√

2ν |x− x′|
)ν

2ν−1Γ(ν)
Kν

(
γ
√

2ν
∣∣x− x′

∣∣) (5)

where x,x′ ∈ R, ν ≥ 1
2 is a smoothness parameter,

γ > 0 is a scale parameter, Kν is the modified Bessel
function of 2nd kind of order ν and Γ is the Gamma
function.

Training an approximate SVR model ỹ requires
a proper tuning of its hyperparameters, here the
2n kernel parameters gathered in θ , additionally
to the regularization parameter C and the width ε

of the so-called ε tube specific to the ε-insensitive
loss function. The hyperparameter selection prob-
lem is solved by minimizing an approximation of
the leave-one-out (LOO) error proposed by Chang
and Lin (2005), as a good proxy to the general-
ization error. The optimization problem to solve
is non smooth and has 2n+ 2 parameters to find.
For these reasons, we favor a stochastic search with
the covariance matrix adaptation evolution strategy
(CMA-ES) algorithm (Hansen, 2016), such as de-
scribed by Moustapha et al. (2018). The search
for the smoothness parameters (νi,1 ≤ i ≤ n) is
bounded to the range [1,4]. We select each νi as the
closest values to 3/2,5/2 or 7/2 for which the ker-
nel has a simple expression (Abramowitz and Ste-
gun, 1965, Eq. 10.2.15).

3. ADAPTATIVE METHOD
The proposed adapative method consists in con-

structing a sequence of SVR models in the stan-
dard normal space { G̃s : u 7→ G̃s(u) , 1≤ s≤ smax },
whose last elements are used to define an estimate
of the failure probability pf, see Eq. (1). The main
steps of the proposed algorithm are given in Table 1.
This algorithm is close to that proposed by Bourinet

(2016), with some of the modifications brought in
(Bourinet, 2017). The whole algorithm has three
main phases: phase 1 until the intermediate LSF
level ys gets lower than zero, phases 2 and 3 where
ys is set to zero. Phase 2 ends when the convergence
criteria described later in this section become lower
than some prescribed limit values. Phases 3 is run
over a given maximal number of iterations s.

1 Define initial dataset D = { (ui,G(ui)) , 1≤ i≤ N }
1 and initial LSF level y1

2 Iterate on s until convergence
3 Define training set Ts =

{
(ui,G(ui)) , i ∈Itrain,s

}
4 Train LSF surrogate G̃s on Ts

5 Compute p̂s estimate of ps = P(G̃s(U)≤ ys)

1 where G̃s is a weighted averaged surrogate, see Eq. (6)
6 Select Na new training points, add Na associated
6 data pairs to D and update ys
7 Compute convergence criteria

8 Compute failure probability estimate p̂f

Table 1: Flowchart of the proposed algorithm.

(a) Training set. The initial training set T1 is com-
posed of N = 50 standard Gaussian samples.
Na = 5 new points are defined at each itera-
tion, see (e), and the associated data pairs be-
come part of the set D of available data pairs.
A key idea of the proposed method is to set the
size of Ts to Nmin ≤ #D , where # denotes the
cardinal of a set, i.e. to construct a local ap-
proximation by regression. Nmin is initially set
to 100 and increased if rD1D2;0.5(s) defined in
(f) exceeds a threshold value of 0.3. The train-
ing set Ts is composed of the data pairs of D
with the lowest LSF evaluations.

(b) Intermediate LSF level ys. The method con-
sists in sampling the standard normal space
until the failure domain is reached. This is
achieved by decreasing an intermediate LSF
level ys with iteration s. We select ys = y(25)

where {y(i),1≤ i≤ #D} are the LSF values of
the data pairs in D sorted in ascending order.

(c) Weighted averaged SVR models. At each it-
eration s, a SVR model G̃s is trained on Ts.
We also consider the weighted averaged SVR
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model over the last 5 iterations:

G̃s(u) =
s

∑
k=s−4

ωkG̃k(u) , (6)

for any u ∈Rn, where ωk = (5+ k− s)/15 for
k = (s− 4), . . . ,s. The deviation between the
two hypersurfaces {u ∈ Rn : G̃s(u) = ys} and
{u∈Rn : G̃s(u) = ys} is used as a convergence
criterion, see ratio rD1D2;0.5(s) defined in (f).
The weighted averaged SVR model is more-
over used for the approximation of the proba-
bility P(Gs(U)≤ ys) at each iteration s, as it is
found of greater accuracy than G̃s.

(d) Subset simulation, sample sets USS;s and
U SS;s. Subset simulation (SS) (Au and Beck,
2001) is applied at each iteration s with the fol-
lowing LSFs:

G̃s(u)− ys and G̃s(u)− ys (7)

The settings are the same as those of Bourinet
(2017): sample set per level of size 100,000
and target probability level of 0.5. The prob-
ability estimated by SS based on G̃s(u)− ys is
denoted p̂s. The samples of the last SS level
satisfying G̃s(u) < ys, resp. G̃s(u) < ys, are
denoted Us, resp. U s. These samples are used
to define the convergence criteria of the algo-
rithm, see (f). New training points at iteration
s+1 are samples of the set USS;s, see (e).

(e) Enrichment strategy. The number Na of new
points added to the set of available data pairs
D is set to 5 at each iteration s. In phase 1,
these Na points are uniformly drawn from the
subsets B0 and B1 represented in Figure 1.
The number of samples drawn from each sub-
set is respectively proportional to #B0/#Us
and #B1/#Us. In phase 2 and 3, we restrict
the selection to samples in B1 and B2.

(f) Convergence criteria. The algorithm iterates
over s first until ys decreases down to zero
(phase1). ys is set to zero for subsequent itera-
tions (phase 2 and 3). The objective of phases
2 and 3 is to decrease the following ratios (see

Bourinet, 2017, Figure 1):

rB1B2(s)=(#B1/#Us +#B2/#Us−1)/2 ,

rB1B2
(s)=

(
#B1/#U s +#B2/#U s−1

)
/2 ,

rD1D2
(s)=

(
#D1/#U s +#D2/#Us−1

)
/2 ,

(8)
which quantify the closeness between:
• G̃s(u) = ys and G̃s−1(u) = ys for rB1B2(s),

• G̃s(u) = ys and G̃s−1(u) = ys for rB1B2
(s),

• G̃s(u) = ys and G̃s(u) = ys for rD1D2
(s).

Phase 2 iterates until:

rB1B2;0.5 < 0.2
and rB1B2;0.5 < 0.03
and rD1D2;0.5 < 0.2

(9)

where the subscript 0.5 indicates a median
value of these ratios over 5 iterations. A max-
imal number of 20 iterations is carried out in
phase 3, unless rB1B2;0.5 < 0.01 which ends
the algorithm.

(g) Failure probability estimate p̂f. The estimation
of pf is obtained as an average of the last 5 es-
timates p̂s, which are themselves based on the
associated weighted averaged surrogates G̃s.

G̃s(u) = ys G̃s−1(u) = ys

B0

B1

B2

B0 =
{

u ∈Us : G̃s(u)< ys & G̃s−1(u)< ys

}
B1 =

{
u ∈Us : G̃s(u)< ys & G̃s−1(u)> ys

}
B2 =

{
u ∈Us−1 : G̃s−1(u)< ys & G̃s(u)> ys

}
Figure 1: Sample sets B0, B1 and B2.

An efficient computer implementation is needed
to keep acceptable the training time needed by the
proposed algorithm. In the work we use both paral-
lel and GPU-accelerated computations. The whole
training time can be reduced at the following two
levels:
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• The λ quadratic programming problems to solve
at each iteration of the CMA-ES algorithm for
minimizing the LOO error estimate are sent in
parallel on a multicore CPU.
• The several SVR evaluations on new u-samples

are run on a GPU. This drastically reduce the
testing time resulting from the choice of model
averaging over 5 iterations and a large sample
size at each SS level (here 100,000).

4. APPLICATION EXAMPLES

4.1. Example 1: a smooth limit-state surface

The first example is the two-degree-of-freedom
primary-secondary system under white noise base
acceleration initially proposed by De Stefano and
Der Kiureghian (1990). We focus here on the reli-
ability problem initially studied by Bourinet et al.
(2011) with a mean force capacity Fs of the sec-
ondary spring set to 27.5, which results in a fail-
ure probability equal to 3.78×10−7. This problem
has 8 independent lognormally-distributed random
variables and has an analytically-defined LSF (see
Bourinet, 2018, Section I–3.4.2). It is character-
ized by a strongly curved limit-state surface (LSS)
at a single most probable failure point (MPFP).
The LSS albeit highly nonlinear is smooth, which
makes it easy to approximate with a Gaussian
kernel, either in its isotropic or anisotropic form
(Bourinet, 2017). This example is selected to
investigate how the selected Matérn kernel with
anisotropic regularity parameters fits this problem
in comparison with the Gaussian kernel.

The result obtained with the proposed approach
is given in Table 2, along with those obtained in
previous works. The evolution of p̂s with the num-
ber of LSF evaluations Ns is plotted in Figure 2.
The failure probability approximation obtained as
the average of the last 5 p̂s-estimates is represented
in Figure 3. The proposed method has an efficiency
comparable with that of previous instances of the
method based on a Gaussian kernel. The cost in
terms of LSF evaluations is found lower that based
on the anisotropic Gaussian kernel (575 vs. 690),
but still greater than that based on the isotropic
Gaussian kernel (540 LSF evaluations).

Table 2: Example 1. Results

Method pf estimate (# LSF calls)
SS (reference) 3.78×10−7

2SMART (a) 3.66×10−7 (4011)
Meta-IS (b) 3.76×10−7 (680)
ASVR(-iso) (c) 3.81×10−7 (648)
iASVR-iso (d) 3.72×10−7 (540)
iASVR-ani (d) 3.73×10−7 (690)
Proposed method 3.78×10−7 (575)

(a): (Bourinet et al., 2011)
(b): (Dubourg et al., 2013)
(c): (Bourinet, 2016)
(d): (Bourinet, 2017)

0 200 400 600
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10−6

10−5
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10−1

100

Ns
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Figure 2: p̂s vs. number of LSF evaluations Ns (solid
circle: end of phase 1, solid triangle: end of phase 2,
solid square: end of phase 3).
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Figure 3: Last iterations of the algorithm and failure
probability approximation p̂f (solid line).

5



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

4.2. Example 2: a non smooth limit-state surface
This second example is an electromagnetic com-

patibility reliability problem studied by Kouassi
et al. (2016). It investigates a lossy transmission
line of length L, diameter d and attenuation coef-
ficient α . The line is placed at a uniform height h
(considered as random in the present study) above
a perfectly conducting ground plane and loaded at
both ends by two impedances Z0 and ZL. This line
is illuminated at a frequency f by a linearly polar-
ized plane wave with incidence angles φp (azimut
angle) and θp (elevation angle). The polarization
angle and the magnitude of the electric field E are
denoted θe and ae, respectively.

Figure 4: Transmission line under study.

The LSF is given by:

g(x) = Icr− I (x) , (10)

where Icr = 1.5× 10−4 A is a given current mag-
nitude level to be not exceeded, where I (x) is the
magnitude of the electric current in the output load
impedance ZL (see Bourinet, 2018, appendix A,
for its analytically-defined expression), and where
x = (L,h,d,ZL,Z0,ae,θe,θp,φp, f ,α) is the vector
of input parameters. The 11 input parameters are
modeled as mutually independent random variables
(see Bourinet, 2018, appendix A, for the distribu-
tion parameters selected in the analysis).

This example is characterized by a non smooth
LSS, which can be explained by an electric current
highly sensitive to the azimuth angle φp. Failures

are lileky to occur for values of φp close to zero
and π , which results in a failure domain with very
sharp peaks pointing towards the origin, see bottom
plots of Figure 5. As a consequence such a LSS is
extremely hard to approximate with usual types of
surrogate models, which in general are based on the
assumption of smooth solutions.
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−4 −2 0 2 4
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−2

0

2

4

(ZL ,φp)

−4 −2 0 2 4

−4

−2

0

2

4

(θe,φp)

Figure 5: (ui,u j)-pairwise cross-cuts passing through
the unique MPFP in standard normal space. Black
square: MPFP, black cross: projection of standard
normal space origin onto (ui,u j) cross-cut plane, black
line: true LSS, green area: safe domain, pink area:
failure domain, blue line: approximate LSS {u ∈ Rn :
G̃s(u) = 0} at end of phase 3, red line: approximate

LSS {u ∈Rn : G̃s(u) = 0} at end of phase 3.

The failure probability approximation obtained
by the proposed method is p̂f = 2.16× 10−4 with
a total number of 730 LSF evaluations. The rela-
tive error on pf is less than 4%, compared with the
reference solution of 2.24×10−4 obtained by crude
Monte Carlo with 109 samples. As represented in
Figure 5, the Matérn kernel with tuned regularity
parameters is able to fit the peaks of the LSS at
MPFP in the standard normal space. It is noticed
that the smoothness parameter νi of the input φp is
almost always tuned to 3/2, compared to those of
other inputs which are most often found to be equal
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to 5/2 or 7/2. This is consistent with a lack of reg-
ularity of the LSS w.r.t. the input φp.

0 200 400 600 800

1.5

2.5

3.5

Ns

νi

Figure 6: Smoothness parameter νi vs. number of LSF
evaluations Ns. νi of φp plotted in red, νi of all other
inputs plotted in grey.

5. CONCLUSION
This paper investigates the use of an anisotropic

Matérn kernel with both a scale and a smoothness
parameter per input dimension. This kernel has
been used in the adaptive enrichment strategy al-
ready proposed in previous works of the author.
The proposed kernel is able to handle smooth LSS,
without loosing efficiency w.r.t. a Gaussian ker-
nel. We also show the benefits of using such a
kernel with controlled regularity, making it possi-
ble to approximate a non smooth LSS which can-
not be handled by other types of surrogate models
so far from the author’s knowledge. Using such
an approximation with high flexibility has a price
to pay: the approximate model has many parame-
ters to tune, which requires efficient computer im-
plementations to keep training times to acceptable
limits. As about perspectives, we will investigate
the performances of the proposed method on other
reliability problems hard to solve by means of sur-
rogate models (e.g. high dimensional problem and
multiple MPFPs).
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