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ABSTRACT: Power transmission networks are critical infrastructure systems of urban communities, but 

are prone to cascading failures due to their high level of interconnectivity. Therefore, it is of great interest 

to identify critical components of the network that may trigger cascading failures. However, existing 

approaches to identify critical cascading failures focus on topological effect for a limited number of 

initial component failures. Meanwhile, identification based on load flow analysis without a limit on the 

number of triggering component failures has not been extensively studied. In this study, we simulate the 

overload-induced cascading failures to find the most critical scenarios of initial failure events in a power 

grid. The proposed approach uses the multi-group non-dominant sorting algorithm (Choi and Song, 2017) 

with two objective functions, i.e. network impact measure, and the number of initial component failures. 

Numerical experiments on a 30-bus network demonstrate that the identified critical cascading scenarios, 

triggered by single and multiple component failures, may not share common components necessarily. 

The proposed approach is expected to identify a group of critical components, which may be neglected 

by existing approaches. 

 

1. INTRODUCTION 

Electric power supply networks are considered 

one of the most critical infrastructure systems 

supporting urban communities which thus needs 

to be secured with a priority. Due to the ever-

growing demand of electric energy and the high 

interdependency of infrastructure networks, 

however, the disaster risk of power networks also 

increases. Moreover, estimating the propagation 

of the damaging effect through the power system 

becomes challenging. For instance, the electric 

power blackouts in Italy (2003), the North-

Eastern U.S and Canada (2003), and Eastern India 

(2012), which brought catastrophic losses, were 

triggered from unexpected damage scenarios with 

low likelihoods (Andersson et al., 2005). To 

secure the service continuity and to avoid such 

significant direct and indirect losses due to the 

blackout, therefore, identification of critical post-

disaster scenarios of the power grid is an 

important task.  

To date, to identify critical scenarios of the 

infrastructure network, which are defined as a 

small number of initial component failures 

resulting in disproportionate consequences, 

various optimizing methods and impact measures 

have been proposed. Consequence-based search 

using multi-objective algorithms were proposed 

to detect critical components in the fields of 

reliability engineering, computer science and 

operational research (Rocco et al., 2009; Zio et al., 

2012; Ventresca et al., 2015 and 2018). 

Particularly, NSGA-II (Deb et al., 2002), a non-

dominant sorting genetic algorithm has been 

popular as the main search algorithm. While 

NSGA-II approach successfully resolved many of 

critical component identification problems, it has 

been reported in a few papers that some of the 

final non-dominant solutions were neglected as 
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the network size increases (Ventresca et al., 2018). 

This issue is partly related to the loss of the 

population diversity in early generations of 

NSGA-II. Therefore, to preserve the diversity of 

samples, the authors recently proposed a multi-

group non-dominant sorting algorithm (MG-

NSGA) in previous work (Choi and Song, 2017).  

In such an optimization-based search, 

defining proper impact measures is a key to 

finding critical components of the networks. Even 

for the identical network, a different set of the 

critical components could be identified depending 

on the definitions. As for the power grid, it is 

important to assess the impact of the final stage of 

the cascading failure since the initial failure and 

the final consequence could differ greatly. 

A number of recent studies addressed the 

cascading analysis mainly in terms of the 

topology of the power system (Zio et al., 2012; Li 

et al. 2013). This is mainly because the 

topological approach has an advantage in the 

simplicity of analysis and requires relatively less 

input data. However, a cascading failure in a 

power grid is sequential failures with strong 

interdependency due to the load re-distribution, 

which is affected by both network topology and 

electric properties of the individual components. 

Therefore, for improved simulations of cascading 

failure sequence, load flow analysis should be 

performed using additional information instead of 

relying on network topology only. 

There have been limited studies that consider 

the cascading failures triggered by more than one 

initial failure. The previous research focused on 

the cascading failures triggered by a single 

component failure (Li et al., 2013) or up to four 

(Zio et al., 2012). This may due to the complexity 

and the computational cost required for 

simulating cascading failures in a power grid. 

However, in practical circumstances, natural and 

manmade disasters often induce multiple 

component failures simultaneously. Therefore, 

cascading failures caused by multiple component 

failures should be considered. 

To identify critical cascading scenarios of a 

power system with consideration of power flow 

analysis but without imposing constraints on the 

number of trigger components, this study uses 

overload cascading model (OCM) and multi-

group non-dominant sorting genetic algorithm 

(MG-NSGA). The main features are summarized 

as follows: (1) To identify the critical post-

disaster scenarios, the damage impact at the final 

cascade stage is considered as one of the objective 

functions; (2) To evaluate the impact measure, 

over-load cascading failure analysis, which 

includes repeated DC load flow analysis, is 

performed; and (3) The cascading failures 

triggered by not only single component, but also 

multiple network components are investigated 

using the MG-NSGA approach. 

Through applications to numerical examples, 

we investigate whether critical cascading 

scenarios, simulated by overload cascading model 

and induced by one or more initial component 

failure can be effectively identified using the MG-

NSGA. Through further development, this 

methodology is expected to broaden the 

understanding of cascading failure risk inherent in 

power supply networks. 

Sections 2 and 3 respectively provide the 

formulations and procedures of the cascading 

model, and MG-NSGA. In Section 4, the power 

grid example is presented as the case study. After 

providing the results and discussions in Section 5, 

Section 6 summarizes the paper along with 

concluding remarks.  

2. SIMULATING CASCADING FAILURE OF 

POWER SYSTEM 

In this paper, power supply networks are modeled 

such that power flow of transmission lines are 

estimated based on computational simulation of 

overload cascading failures. To this end, the 

sequence of interdependent failures is modeled 

using overload cascade model (OCM). Damage 

measures of this study, which are evaluated using 

the final cascading results, are also described. 

2.1. Modeling power system 

Using graph theory, network topology of the 

power system could be expressed by nodes and 

edges. Each bus of the power system, including 
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the generator and/or load, becomes a node while 

the power transmission lines become edges.  

2.2. Estimating line power flows: DC load flow 

To estimate the load flow in each line component 

of a power system, the power flow equations 

(Grainger, J. J. and Stevenson Jr, W. D.,1994) are 

employed in this study. Depending on whether the 

reactive power is accounted or not, the power flow 

analysis could be conducted using two different 

equations, i.e. AC flow analysis and DC power 

flow analysis. The AC power flow considers both 

active and reactive powers while the DC power 

flow considers only active power. Since the AC 

load flow analysis considers both active and 

reactive power, the analysis may require iterative 

calculations, and also does not ensure the 

convergence. As the simplified and linearized 

version of the AC load flow, on the other hand, 

the DC load flow analysis provides the solution 

without iterations. Therefore, in the optimization 

problem of the power supply system problem, the 

DC load flow estimation is often used because of 

its simplicity and effectiveness (Koh et al., 2003). 

In this research, we adopt the DC load flow 

analysis to avoid time-consuming iterations of 

load flow analysis during the cascading analysis 

and the search by use of a genetic algorithm.  

In the DC load flow analysis, the AC system 

is simplified through the following assumptions: 

(1) Line resistance is negligible; (2) Voltage angle 

difference is assumed to be small; and (3) 

Magnitudes of bus voltage are set to the flat 

voltage profile. By these assumptions, the DC 

flow equations can be expressed as 

 
ij ij ijf b   (1) 

where 
ijf  and 

ijb  are respectively the active 

power flow and susceptance of the line 
ijl  

connecting node i  and j ; and 
ij  is the voltage 

phase difference between the nodes. The power 

grid can be expressed in terms of the active power 

flow, i.e. 

 
1 1

d d

i ij ij ij

j j

P f b 
 

    (2) 

where iP  is the active power flow at node i  and 

d  is the degree of node i . As a result, the active 

power flows in a certain transmission line i , 

which connects the bus s  and r  can be 

calculated as 

 sr
Li

Li

P
X


  (3) 

where 
LiX is the reactance of line i . The load 

flows through branches are expressed using a 

matrix form 

 1[ ]    (4) 

 ( )   
L

b A  (5) 

where P denotes the vector of bus active power 

injections, B is the admittance matrix, and  is 

the vector for bus voltage angles. 
L

 is the vector 

for branch flows, b  is the susceptance matrix, and 
A  is bus-branch incidence matrix (Grainger, J. J. 

and Stevenson Jr, W. D.,1994). 

Eventually, when the network topology and 

electric properties (i.e. generated power and/or 

power demand at each node, reactance of each 

line) of the network component is given, power 

flow of each line can be evaluated using DC load 

flow equation. 

 

 
Figure 1: Flowchart of the Overload Cascade Model 

2.3. Overload cascade model (OCM) 

To simulate the cascading failure, the Overload 

Cascade Model (OCM) is adopted (Koc et al., 

2013; Pahwa et al., 2014; See flow chart in Figure 

1). The DC load flow analysis is first performed 

using the initial power grid topology. Afterwards, 

each flow of the lines in the power system is 
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compared with its line capacity. The lines with 

loads beyond their capacity due to the load 

redistribution are removed from the network 

topology. For each iteration of cascading failure 

analysis, the topology of the power grid is re-

constructed. With the updated network topology, 

the load flows are computed again until none of 

the line component trip due to the overload flow. 

The overload cascading process is completed 

when the load flow is finally stabilized. 

2.4. Damage measures 

After cascading failure simulation, the damage of 

the network is quantified in terms of selected 

damage measures based on the condition of the 

final cascading stage. In this paper, the post-

disaster scenario which has more nodes 

disconnected from the power source is considered 

to be more critical. Therefore, the number of 

disconnected nodes from the generator nodes at 

the final stage of cascading failure is selected as a 

damage measure. 

A subjunctive node, which connected to the 

generator node with imaginary non-breakable 

links, is introduced to assess the number of nodes 

isolated from a group of generator nodes (Lee et 

al., 2011). To identify such nodes, the 

connectivity analysis is performed using breadth-

first search (BFS) algorithm (Moore, E. F., 1959). 

3. IDENTIFICATION OF CRITICAL POST-

DISASTER SCENARIOS USING MG-

NSGA 

In this study, we use the multi-group non-

dominant sorting algorithm (MG-NSGA) to 

search the sample space and identify the most 

critical cascading scenarios. To apply MG-NSGA 

to the network cascading failure scenario problem, 

genetic representation of network failure scenario 

and proper objective functions need to be defined. 

3.1. GA-based representation of network 

component failure scenarios 

As shown in Figure 2, each scenario of component 

states can be expressed by a binary string. The 

values 1 and 0 indicate the survival and failure of 

the network component respectively. For the 

example power supply system consisting of 5 

nodes and 4 links in Figure 2(b), the post-disaster 

scenarios can be represented by the binary string 

with length 4. It is important to note that the 

network scenario sampled in the optimization 

process are to simulate the initial failure of the 

network, not the final cascading failure condition 

of the network.  

 

 
Figure 2: (a) General structure of genetic 

representation of network scenarios; and (b) example 

of link failure scenarios and corresponding genetic 

representations 

3.2. Objective functions 

To identify critical scenarios of interest, two 

objective functions are defined for MG-NSGA: (1) 

damage measure, i.e. the number of nodes still 

connected to power generator node at the final 

cascading stage, and (2) the number of links failed 

at the initial stage. In this paper, we consider 

scenarios in which a small number of the initially 

failed link induce a large number of disconnected 

nodes as most critical ones. Using the two 

objectives conflicting with each other, MG-

NSGA can effectively identify the most critical 

scenarios. 

In evaluating the first objective function, i.e. 

the number of nodes connected to the generator 

after potential cascading failures, cascading 
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analysis is performed using the Overload 

Cascading Model (OCM) described in section 2.  

 

 
Figure 4: Flowchart of MG-NSGA 

3.3. Multi-Group NSGA (MG-NSGA) 

MG-NSGA framework (Choi and Song, 2017) is 

a heuristic optimization-based approach to find 

optimal non-dominant solutions using genetic 

operators, i.e. crossover and mutation, and 

selection process. 

As illustrated in Figure 4, the main feature of 

MG-NSGA is in the procedure to assign Pareto 

rank procedure. To resolve the issue of losing 

population diversity in large-size problems, raised 

by various research (Ventresca et al., 2018), the 

authors recently proposed to divide the sample 

space into multiple groups. It is shown in Figure 

5 that more diverse samples are given the first 

Pareto rank when compared to the original 

NSGA-II. By dividing the sample space into 

multiple groups at the rank assignment, samples 

with more diversity are expected to survive 

throughout the generations. Eventually, the final 

Pareto surface can be derived from the improved 

sample diversity. 

 
Figure 5: Comparison of (a) fast-non-dominated 

sorting (NSGA-II), and (b) proposed MG-NSGA 

4. CASE STUDY  

In this paper, a modified version of the IEEE 30 

bus test case in Figure 6(a) is studied. Critical 

cascading scenarios of the power system are 

identified by incorporating OCM into MG-

NSGA-based search. The topology and the 

electric properties of the power system are 

obtained from Alsac and Stott (1974). The power 

generated at each generator node is selected 

within the maximum power limit. The test power 

supply network is modeled as the graph of total 30 

nodes (generator and substations), including 6 

generators, and 41 edges (transmission lines) as 

shown in Figure 6(b). 

Additionally, overload cascade analysis is 

performed using an open source Matlab code, 

MATCAS (Koc et al., 2013) after several 

modifications. First, the initial failure is defined 

by the sampled population generated by MG-

NSGA instead of the removal strategies suggested 

in original MATCASC. Through this 

modification, the initial failure is not restricted to 

single component failure scenarios, and thus 
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cascading failure scenarios induced by multi-

component breakdown can be simulated. Second, 

the line capacity is modified to use the given data. 

 

 
Figure 6: the IEEE 30-bus test system: (a) single line 

diagram; and (b) network graph 

5. RESULTS AND DISCUSSIONS 

Figure 7 shows the critical cascading scenarios of 

the test case, identified by the proposed method. 

Each point in the plot represents a cascading 

scenario which was archived through the 

evolution process of MG-NSGA. Especially, the 

final Pareto surface, the blue line in the figure, 

indicates the most critical cascading scenarios 

induced by the corresponding number of failed 

links at the initial stage. 

5.1. Critical zone selection 

“Critical zone” is a sub-area of the sample space, 

which is considered particularly important in the 

decision-making process (Choi and Song, 2017). 

For example, suppose the stakeholder of the test 

power network wishes to prevent critical 

scenarios leading to at most 15 network nodes still 

connected to the generator, and the probability 

that more than 10 links fail at the initial stage is 

negligible. In this case, the gray area in Figure 7 

can be considered a critical zone. The samples 

located in the intersection between the critical 

zone and the feasible domain identified by the 

Pareto surface require further investigation. For 

example, the management strategy could be 

designed to minimize the intersection between the 

critical zone and the Pareto surface. In 

determining the boundary of a critical zone, both 

engineering and non-engineering aspects, e.g. 

financial condition of network management 

authority should be taken into account. 

 

 
Figure 7: Cascading scenario archive and final 

Pareto solutions for IEEE30 bus network in the 

sample space defined in terms of the number of nodes 

connected to generators after final cascading stage 

and the number of failed links at the initial stage 

5.2. Verification of results 

Since the proposed search algorithm is heuristic, 

the results from the MG-NSGA should be taken 

with caution. To validate the result of the 

numerical example, we compare the final Pareto 

surface with the solutions obtained by thorough 

enumerations. As shown in Figure 8, Pareto 

surface derived from the MG-NSGA and that 

identified by checking all possible scenarios 
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induced by six cases of the number of initial 

component failures match each other. 

 
Figure 8: Comparison between Pareto surfaces 

achieved from MG-NSGA and all possible solutions. 

5.3. Findings from results 

As indicated in Figure 7, the cascading failure 

impact triggered by the initial failure increase 

disproportionately as the number of initially failed 

links increases. The disproportionate impact is 

mainly due to the non-linearity of the power grid 

cascading failure. As an example, one of the 

critical scenarios is presented in Figure 9 

(represented by “ ” markers in Figure 7). The 

sequence of cascading failures is the most critical 

case that can be induced from four component 

disruptions. Initial failure itself does not impact 

on the connectivity directly because of network 

redundancy. However, due to the sequential loss 

of the links caused by the overload line trip, 21 

nodes among the 30 nodes in the power network 

eventually lose the connection to the power source 

at the final stage. 

It is also noteworthy that the set of most 

critical components, which triggers the most 

critical cascading failure induced from single to 

three initial component failures, is not a subset nor 

has intersection with the set of components 

identified from scenarios induced by four 

component failure scenario. Unless cascading 

scenarios induced by more than four component 

failure are examined, the components identified in 

the first stage of Figure 9 attract less attention than 

many other links of the network. However, 

included in the combination of four, these links 

are identified as the most critical failure 

combination. Therefore, the cascading scenario 

triggered by the multiple failures of the link 

should not be neglected during critical cascading 

failure identification. 

 

 
Figure 9: Most critical cascading scenarios induced 

by the 4-component failure (“ ” marker in Figure 7) 

6. SUMMARY AND CONCLUSIONS 

In this study, we proposed a method to identify 

critical cascading scenarios of power supply 

systems using MG-NSGA. The critical cascading 
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scenarios, which bring serious consequences such 

as large scale blackout but triggered by a relative 

small number of initial component failures were 

effectively identified. In this approach, cascading 

failures are simulated with consideration of the 

redistribution of the power flow caused by the 

overload line trips, using OCM. As a result, 

several critical combinations, which otherwise 

would attract less attention as a single component, 

were indicated as critical component of the system.  

The presented work is expected to support 

decision makers to mitigate the cascading failure 

risk within the power supply networks through a 

comprehensive decision making process. Through 

a broad demonstration of cascading scenario cases, 

the decision maker would be able to identify 

feasible cascading risk inherent in the power grid. 

With additional development of protection 

and recovery model, the post-disaster condition of 

the power supply network can be further explored. 

Future work will focus on constructing an 

effective decision-making framework to prevent 

the identified worst-case scenarios. It will be also 

meaningful to upgrade the current infrastructure 

network management process by systematic 

treatment of critical post-disaster scenarios. 
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