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ABSTRACT: This paper presents a novel method based on the Information Theory, Machine Learning
and Independent Component analysis for Uncertainty Quantification and Structural Reliability Analysis.
At first, it is shown that the optimal probabilistic model may be determined through minimum relative
entropy and the theory of statistical learning; it is also discussed that methods based on the maximum
entropy may perform well for the evaluation of the marginal distributions, including the tails. To
determine the joint distribution of the basic random variables it is introduced the multivariate
probabilistic model of Distributions with Independent Components (DIC). It has same computational
simplicity of Nataf, but it is more accurate, since it does not pursue any assumption about the tail
dependency. The proposed framework is applied to determine the joint distribution of wave height and
period of wave data. Its extension for high dimensional reliability analysis of complex structural
systems is straightforward.

1. INTRODUCTION
The failure probability Pf with respect to an as-
signed limit state is defined as [Madsen et al.
(1986); Ditlevsen and Madsen (1996)]

Pf =
∫

G(x)≤0
fX(x)dx (1)

where x is an n-vector collecting the basic ran-
dom variables, G(x) is the limit state function,
G(x) = 0 is the limit state surface separating the
failure set G(x) ≤ 0 from the safe set G(x) > 0
while fX(x) is the joint probability density function
of the basic random variables X1,X2, . . . ,Xn.

The failure probability can be evaluted by using
approximate methods such as the First Order Relia-
bility Method (FORM) or the Monte Carlo Simula-
tion (MCS). The MCS is the most robust procedure,
but in particular in its crude form requires exces-
sive computational effort for the evaluation of very
small failure probabilities. To reduce the computa-

tional cost an alternative strategy is given by the Re-
sponse Surface Methodology, which builds a surro-
gate model of the target limit state function, defined
in a simple and explicit mathematical form [Bucher
and Burgound (1990); Dubourg et al. (2011); Al-
ibrandi et al. (2015)]. Alternatively, data-driven
methods, including statistical and machine learn-
ing approaches, are recently arising, to determine
probability distributions of the performance func-
tions from small samples of data [Alibrandi and
Mosalam (2017, 2018)].

A critical step in eq.(1), sometimes underevalu-
ated, is represented by the evaluation of the joint
Probability Density Function (PDF) fX(x) of the
basic random variables. This challenging task is
of great interest, because it has well recognized the
high sensitivity of the reliability of the engineering
systems to the distribution functions of the input
[Elishakoff (1991)].

Unfortunately, usually there is lack of data
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to characterize the joint distribution [Beer
et al. (2013)]. Under incomplete information,
it is assumed that only marginal distribu-
tions fX1(x1), fX2(x2), ..., fXn(xn), together with
their correlations, are available. This assump-
tion gives rise to an approximate joint PDF
f̂X(x) ≈ fX(x). It is claimed that through
eq.(1) it is possible to determine the failure
probability for any limit state function G(x).
However if G(x) = [(X1 ≤ x1)∩ (X2 ≤ x2)], then
Pf = Prob[G(x) ≤ 0] = FX1X2(x1,x2), FX(x) being
the joint Cumulative Distribution Function (CDF)
of X. But of course, if the approximate f̂X(x) is
adopted, then eq.(1) will provide P̂f 6= Pf .

The Nataf model [Der Kiureghian and Liu
(1986)] is widely adopted in reliability analysis un-
der incomplete information. It is applicable to an
arbitrary number of random variables and is proven
to be quite effective for structural reliability analy-
sis. However, the obtained distributions may have
undesirable behavior if the marginal distributions
are highly non-normal. Moreover, some codes, e.g.
[DNV (2010)] recognize that Nataf should be used
with caution for Uncertainty Quantification (UQ)
due to the simplified modeling of the dependency
between variables. In fact, it assumes implicitly a
Gaussian dependence structure, which implies the
tail independency between the random variables.
This may negatively affect the joint distribution in
its extreme values [Lebrun and Dutfoy (2009)].

Dutfoy and Lebrun (2009) show that a natural
extension of the Nataf model is represented by the
copula, which from a theoretical point of view is
the exact concept of stochastic dependence. How-
ever, they note that from a practical point of view
the identification of the copula of a multivariate dis-
tribution may be as challenging as the direct identi-
fication of the full joint distribution.

The joint PDF may be also well modeled in terms
of a marginal distribution and a series of condi-
tional density functions. However, especially in
the presence of a high number of random variables,
the definition of the conditional distributions is not
straightforward.

The main objective of this paper is to reinter-
pret uncertainty quantification and structural relia-

bility analysis through information theory and ma-
chine learning. At first, it is shown through infor-
mation theory that methods based on the maximum
entropy may perform well for the evaluation of the
marginal distributions, including the tails. Then, we
introduce the Distributions with Independent Com-
ponents (DIC) for the direct evaluation of the joint
distribution fX(x). Finally, by simulating samples
from fX(x), the distribution probability fG(g) of
the performance function G is evaluated through
the Kernel Density Maximum Entropy (KDMEM)
[Alibrandi and Mosalam (2017)]. The accuracy
and performances of the proposed formulation are
shown through the application to the joint distribu-
tion of wave data.

2. INFORMATION THEORY
2.1. Entropy
In information theory, the entropy of a random
variable is a "measure of uncertainty" and it can
be interpreted as the degree of information that
the observation of the variable gives. Let us con-
sider a discrete-valued random variable X with
probability distribution given by pi evaluated at xi,
i = 1,2, . . . ,N. The Shannon’s entropy functional
[Jaynes (1957, 1978)] of the discrete distribution p
is defined as follows:

H(p) =−
N

∑
i=1

pi logpi (2)

while the (differential) entropy of a continuous-
valued random variable X with PDF fX(x) is

H(X) =−
∫

f (x)log f (x)dx (3)

The Kullback-Leibler (KL) divergence D(X1,X2)
(also called relative entropy) measures the entropy
difference between the PDFs f1(x) and f2(x) of two
random variables X1 and X2

D(X1,X2) =
∫

f1(x)log
[

f1(x)
f2(x)

]
dx =

= H(X1,X2)−H(X1)

(4)

where H(X1,X2) is the joint entropy of X1 and X2.
The relative entropy may be considered a measure
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of the ‘distance’ between two distributions, since
it is always non-negative for all the possible distri-
butions f1(x) and f2(x), while D(X1,X2) = 0 only
when X1 ≡ X2.

Let us consider a continuous-valued random
variable X with PDF fX(x). The best (minimally
prejudiced) probability distribution, subjected to
the satisfaction of the available information, max-
imizes the entropy. It minimizes the relative en-
tropy, see eq.(4), and it can be interpreted as the
density that is compatible with the measurements
and imposes the minimum number of assumptions
on the data. Therefore, it “represents the most hon-
est description of our state of knowledge” [Jaynes
(1978)].

2.2. Mutual Information
The mutual information I(X1,X2) of two random
variables X1 and X2 measures the information that
they share. Thus, it is a measure of their depen-
dence and it is defined as

I(X1,X2)=
∫∫

f (x1,x2)log
[

f (x1,x2)

f1(x1) f2(x2)

]
dx1 dx2

(5)
where f (x1,x2) is the joint PDF of X1 and

X2, while f1(x1) and f2(x2) are the corresponding
marginals. It is seen that the mutual information is
equivalent to the KL divergence between the joint
density f (x1,x2) and the product of its marginal
densities. It is always non-negative and it is equal
to zero only if the variables are statistically inde-
pendent. Alternatively it may be expressed alterna-
tively in terms of entropies

I(X1,X2) = H(X1)−H(X1|X2) =

= H(X2)−H(X2|X1) =

= H(X1)+H(X2)−H(X1,X2)

(6)

where H(Xi|X j) is the conditional entropy of
given X j, which quantifies the amount of informa-
tion needed to describe the outcome of Xi given the
value of X j. Eq.(6) shows that the mutual infor-
mation measures how much the knowledge of one
variables reduces the uncertainty about the other. It

is of interest to note, see Figure 1, the analogy be-
tween the union and of the intersection of two sets
with joint entropy and mutual information, respec-
tively.

Figure 1: Mutual Information, Venn’s diagram

3. UNCERTAINTY QUANTIFICATION
3.1. Maximum Likelihood and KL Divergence
Let consider now a set of ns data x =
{x(1),x(2), . . . ,x(n)} drawn independently from
the true but unknown target distribution f (x).
Let fm(x;θ) the adopted probability model of
parameters θ = {θ1,θ2, . . . ,θp}. The Maximum
Likelihood Estimation (MLE) gives the model
θMLE with the highest probability to the observed
data

θMLE = max
θ

(
1
ns

ns

∑
i=1

log
[

fm(x(i);θ)
])

≈max
θ

E [log( fm(x;θ))]

(7)

The KL divergence provides the lost information
in representing f (x) with the model fm(x), while
the minimum divergence is

θ
∗ = min

θ
D [ f (x), fm(x;θ)]

= max
θ

∫
f (x) log [ fm(x;θ)]dx≡ θMLE

(8)
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and the optimal parameters θ coincide. However,
differenty from the maximum likelihood, the KL di-
vergence has a known minimum value of zero. This
can be helpful in the choice of the optimal statistical
model. Different probability models are compared,
including parametric distributions (e.g. Gaussian,
Lognormal, Weibull, etc) and nonparametric ones.
To choose the best model, we use the theory of
the statistical learning [Vapnik (1995)]: the origi-
nal dataset of ns data is split into the training set
xtr of ntr data and the test set xts of nts data, with
ns = ntr + nts. Typically the training set collects
80% data of the entire dataset. The parameters θ ∗i
of the probabilistic models fi(x,θ ∗i |xtr) are evalu-
ated through eq.(7) or eq.(8) applied on the training
set xtr. For each model fm,i(x) obtained, the mini-
mum relative entropy with respect to the empirical
distribution f̂ (x)based on the test set xts is evaluated

Di = D
[

f̂ (x|xts), fm,i(x;θ |xtr)
]

(9)

The optimal model for the given dataset x has the
minimum divergence Di. For structural reliability
analysis, an attractive model is represented from the
Kernel Density Maximum Entropy (KDME) [Ali-
brandi and Mosalam (2017)] since it provides the
least biased distribution given the available infor-
mation, including the tails, from a reduced sample
of data.

3.2. Kernel Density Maximum Entropy Method
Let us consider a random variable X , whose PDF is
f (x) with support Ω. The target PDF, is expressed
as a linear superposition of Kernel Density Func-
tions (KDFs) as follows:

f (x)≈ fKD(x;p) =
N

∑
i=1

pi f K
i (x;xi,h) (10)

where the coefficients pi satisfy the constraints
0 ≤ pi ≤ 1, ∑i pi = 1, while f K

i (x;xi,h) is the ith
basis KDF, centered in xi with bandwith h. If the
Gaussian distribution is chosen as KDF, then xi and
h are the mean value and the standard deviation σ

of the Gaussian KDF, respectively. The centers xi,
i= 1,2, . . . ,N, are uniformly spaced with a constant
step ∆x = xi+1− xi in the range [xmin,xmax]. The

bandwidth is h = (2/3)∆x, which is shown to be
a suitable value under uniform spacing of the cen-
ters [Alibrandi and Ricciardi (2008); Alibrandi and
Mosalam (2017)]. It is noted that when N → ∞,
then h→ 0, and Eq.(10) gives

fKD(x;p) =
N

∑
i=1

piδ (x− xi) (11)

where δ is the Dirac delta function. There-
fore, the representation (10),(11) can reconstruct
any kind of distribution. Let us consider a set of
M independent functions gk(x;α) of parameters α ,
representing the available information. Multiplying
both sides of Eq.(11) by gk(x;α), k = 1,2, . . . ,M,
and integrating over the domain, the following re-
lationship holds:

1T p = 1
M(α)p = µ(α)

(12)

where 1 is a vector of N unit entries, and p col-
lects the N parameters p1, p2, . . . , pN , while M(α)
and µ(α) are defined as

Mki(α) =
∫

gk(x;α)δ (x− xi)dx = gk(xi;α)

µk(α) =
∫

gk(x;α) f (x)dx = E[gk(x;α)]
(13)

According to Jaynes (1957), the Maximum En-
tropy (ME) probability distribution, pME , is the
least biased distribution, given the satisfaction of
the available information. It is obtained through the
maximization of the Shannon’s entropy [Eq.(2)]:

max
p

H(p)

1T p = 1
M(α)p = µ(α)

(14)

The optimization problem (14) is convex, which
implies the uniqueness of the ME distribution pME

pME
i (λ ;α) = exp

[
−λ0(λ )−

M

∑
k=1

λkgk(xi;α)

]
i = 1,2, . . . ,N

(15)

4



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

where λ collects the M Lagrange multipliers
λ1,λ2, . . . ,λM of the dual optimization problem,
while

λ0(λ ;α) = log

[
N

∑
i=1

exp

(
−

M

∑
k=1

λkgk(xi;α)

)]
(16)

The Lagrange parameters λ can be determined
as a solution of a linear system of M equations [Al-
ibrandi and Mosalam (2017)]

Θ(α)λ = ρ(α) (17)

From Eqs.(15)-(17), the parameters pME are de-
termined, and after substitution into Eq.(10), the
Kernel Density Maximum Entropy (KDME) distri-
bution is obtained, i.e. fKDME(x) = fKD(x;pME).

The KDMEM may be summarized as follows:
1. The original dataset of ns data is split into the

training set xtr of ntr data, the validating set xtv
of ntv data and the test set xts of nts data, with
ns = ntr +ntv +nts.

2. Differents sets of hyperparameters
α(1),α(2), . . . are chosen

3. For each set of hyperparameters α(k)

• the optimal parameters pME(α
(k)) are

evaluated through eq.(14) or eqs.(15)-
(17);
• the minimum relative entropy with re-

spect to the empirical distribution based
on the validation set xtv is evaluated

Dk = D
[

f̂ (x|xtv), fKDME(x|α(k),xtr)
]

(18)

4. The KDME model minimizes the divergence
(18)

5. The performances of KDMEM are evaluated
by determining the minimum relative entropy
with respect to the empirical distribution based
on the test set xts, see eq.(9)

DKDME = D
[

f̂ (x|xts), fKDME(x)
]

(19)

3.3. Distributions with Independent Components
(DIC)

Let X a vector collecting the n dependent ran-
dom variables X1,X2, . . . ,Xn. The aim is the de-
termination of its joint Probability Density Func-
tion fX(x) = fX1X2...Xn(x1,x2, . . . ,xn). Let µX and

ΣX be the mean value and the covariance matrix of
X. First, a normalization of the random variables is
developed as follows:

Z = Ψ(X−µX) (20)

where Z1,Z2, . . . ,Zn are n uncorrelated (but not
independent) random variables with zero mean and
unit variance, i.e. µZ = 0 and ΣZ = I, where I is
the identity matrix of order n. Let us assume that
the covariance matrix is written as ΣX = DXRDX,
where DX = diag[σXi] is the diagonal matrix of
standard deviations of X and R = [ρi j] is the corre-
lation matrix. In such case Ψ = L−1D−1, where L
is the lower triangular decomposition of the correla-
tion matrix, i.e. R = LLT . Alternatively, Ψ can be
obtained through eigenvalue and eigenvector anal-
ysis.

Second, we assume Z1,Z2, ...,Zn can be ex-
pressed as a linear combination of n unknown in-
dependent and usually non-Gaussian random vari-
ables Y1,Y2, ...,Yn, called Independent Components
(IC):

Z = AY =
n

∑
j=1

a jYj (21)

where A = [a1a2...an] is the mixing matrix of or-
der n×n, while the vectors a j are its columns. It is
assumed that both the n ICs Y1,Y2, ...,Yn and matrix
A are unknown, while we only have samples of the
vector X, and consequently Z through Eq. (20). The
fundamental assumption of ICA is that the compo-
nents Y1,Y2, ...,Yn are statistically independent and
that at least one of them follows a non-Gaussian
distribution. It is also assumed that A is invertible,
so that an alternative formulation of Eq.(21) is

Y = WZ =
n

∑
j=1

w jZ j (22)

where W = A−1 = WT . The main objective is
the evaluation of the directions Y1,Y2, ...,Yn with
maximum independence. To this aim, we minimize
their mutual information I(Y)

I(Y1,Y2, ...,Yn) =
n

∑
i=1

H(Yi)−H(Y) (23)
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It is noted that I(Y) takes into account the whole
probabilistic dependence of the random variables,
and not only the covariances. Combining Eqs.(20)
to (22), one obtains:

Y = P(X−µX) (24)

X = µX +QY (25)

where P = WΨ = WL−1D−1, while Q = P−1 =
DLA. From Eq.(25) it follows that the generation
of samples of the ICs Y allows to determine sam-
ples of the joint random variables X1,X2, ...,Xn. The
joint distribution of X is obtained by the elementary
probability transformation rule fX(x)dx = fY(y)dy
and considering that Y1,Y2, ...,Yn are independent,
we obtain the following:

fX(x) = fY(y)|Jy,x|
= |P| fY1(y1) fY2(y2)... fYn(yn)

(26)

where Jy,x is the Jacobian of the transforma-
tion (24). Eq.(26) shows that the evaluation of the
joint PDF fX(x) is simply reduced to the evalua-
tion of the univariate PDFs of Y1,Y2, ...,Yn. DIC
may model the exact full dependence of the random
variables including the tails. This, differently from
Nataf, where the dependence is described only in
terms of correlations.

The following main particular cases of DIC may
be detected: (i) Parametric Distributions with In-
dependent Components (PDIC) where the ICs are
modelled through the classical parametric distri-
butions (Gaussian, Lognormal, Weibull, Gamma,
etc.), (ii) Kernel Density with Independent Com-
ponents (KDIC) where ICs are modelled through
the Kernel Density Estimation, (iii) Kernel Den-
sity Maximum Entropy Method with Independent
Components (KDMEMIC) where ICs are modelled
through the Kernel Density Maximum Entropy.
This classification of course is not exhaustive, since
any univariate probabilistic model can be converted
into the multivariate case, through the DIC frame-
work.

4. STRUCTURAL RELIABILITY: ISO-
PROBABILISTIC TRANSFORMATION

In structural reliability analysis, it is common to de-
velop an isoprobabilstic transformation toward the
normal standard space, so that Eq.(1) becomes

Pf =
∫

g(u)≤0
ϕn(u)du (27)

Typically the Nataf transformation is adopted,
but as discussed above, it assumes the tail indepen-
dence of the distribution, which however it is not
always realistic. In this regard DIC is an attractive
tool because not only it may provide the exact fail-
ure probability, but also the transformation from the
space of the IC y1,y2, . . . ,yn toward the normal stan-
dard space u1,u2, . . . ,un is straightforward, pursued
component by component

Φ(ui) = FYi(yi), i = 1,2, . . . ,n (28)

5. NUMERICAL APPLICATION
The joint distribution fTz,Hs(t,h) of the significant
wave height and period is considered. The DNV
code (2010) suggests to use the conditional model
approach, i.e.

fTzHs(t,h) = fTz|Hs(t|h) fHs(hs) (29)

where the significant wave height Hs is modeled
by the following 3-parameter Weibull PDF:

fHs(h) =
βHs

αHs

(
h− γHs

αHs

)
exp

[
−
(

h− γHs

αHs

)βHs
]

(30)
The zero-crossing wave period Tz conditional on

Hs is modeled by the following lognormal distribu-
tion

fTz|Hs(t|h) =
1

σt
√

2π
exp

[
−(log t−µ)2

2σ2

]
(31)

where the distributions of parameters µ and σ

depend on the significant wave height

µ = E [logTz] = a0 +a1ha2,

σ = std [logTz] = b0 +b1hb2
(32)
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where ai, bi, i = 0,1,2 are estimated from the
data. The DNV code suggests the parameters ap-
pearing in Eqs.(29)-(32) for various world-wide
nautical zones. The nautical zone 63, close to
Singapore, has been chosen, whose parameters are
αHs = 1.88, βHs = 1.70, γHs = 0.0, a0 = 0.70, a1 =
1.026, a2 = 0.155, b0 = 0.07, b1 = 0.1477, and
b2 = −0.0224. The joint PDF (29) is taken as the
target and it is used to benchmark DIC. In Figure
2, we represent 10,000 samples generated from the
target model, Eqs.(29) to (32).

Figure 2: Wave data

Fig.3 shows the joint probability of exceeding

P = Prob [(Tz ≥ 2ρ)∩ (Hs ≥ ρ)] (33)

where ρ is a threshold ranging from 0.0 to 5.5
with steps of 0.25 for different models: target,
Nataf and KDMEMIC trained with m= 1,000 sam-
ples. Each probability level is estimated through
MCS by assuming a coefficient of variation νP =
2%.

In Fig.4 the relative error incurred by the two
models is described. In the Nataf model, the
marginal distributions fTz(t) and fHs(h) of Tz and Hs
are described through a Lognormal and a Weibull
distribution, respectively. It is seen that Nataf is in
good agreement with the marginal empirical distri-
butions. Consequently, as expected, the approxi-
mation given by Nataf for the lowest threshold is
excellent, while the error incurred for the highest
thresholds is to be attributed to the assumption of
the tail independency. The results show the good

Figure 3: Joint probability of exceeding of {Hs,Tp}

prediction capabilities of KDMEMIC for the joint
extreme values of the distributions, even if trained
over samples of reduced size.

Figure 4: Joint probability of exceeding of {Hs,Tp},
relative error

6. CONCLUSIONS
In this paper a novel framework for Uncertainty
Quantification and Structural Reliability analysis
has been presented. It is based on Information The-
ory and Machine Learning. In the earlier stages of
structural reliability, there was lack of available in-
formation, so the uncertainty quantification of the
basic random variables under incomplete informa-
tion was developed through statistical approaches,
and it involved the knowledge of the marginal dis-
tributions and their correlation. Nowadays, the
availability of data from experiments or networks
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of sensors installed on the built environment, high
performance computing and advanced probabilistic
computational tools may allow enhanced modelling
of the uncertain quantities and better estimates of
the failure probability. This work goes into this di-
rection. The effectiveness of the proposed frame-
work has been shown through the prediction of joint
extremes of wave data, and its extension to high di-
mensional reliability analysis of complex structures
is straightforward. Thus, it has the potential of pro-
vide an enhanced tool of risk-based design for the
fourth (digital) revolution industrial.

7. ACKNOWLEDGMENTS
This research was funded by the Republic of Sin-
gapore’s National Research Foundation through a
grant to the Berkeley Education Alliance for Re-
search in Singapore (BEARS) for the Singapore
Berkeley Building Efficiency and Sustainability
in the Tropics (SinBerBEST) program. BEARS
has been established by the University of Cali-
fornia, Berkeley, as a center for intellectual ex-
cellence in research and education in Singapore.
K.M. Mosalam is a core principal investigator of
Tsinghua-Berkeley Shenzhen Institute (TBSI). The
authors acknowledge the funding support from Sin-
BerBEST and the partial support from TBSI.

8. REFERENCES
Alibrandi, U., Alani, A., and Ricciardi, G. (2015).

“A new second-order svm-based response surface
for structural reliability analysis.” Probabilistic Engi-
neering Mechanics, 41, 1:12.

Alibrandi, U. and Mosalam, K. (2017). “Kernel den-
sity maximum entropy with generalized moments for
evaluating probability distributions, including tails,
from a small sample of data.” International Jour-
nal for Numerical Methods in Engineering, 113(13),
1904–28.

Alibrandi, U. and Mosalam, K. (2018). “Code-
conforming peer performance based earthquake engi-
neering using stochastic dynamic analysis and infor-
mation theory.” KSCE Journal of Civil Engineering,
22(3), 1002–15.

Alibrandi, U. and Ricciardi, G. (2008). “Efficient eval-
uation of the pdf of a random variable through the

kernel-density maximum entropy approach.” Interna-
tional Journal for Numerical Methods in Engineer-
ing, 75(13), 1511–48.

Beer, M., Zhang, Y., Quek, S., and Phoon, K. (2013).
“Reliability analysis with scarce information: com-
paring alternative approaches in a geotechnical engi-
neering context.” Structural Safety, 41, 1:10.

Bucher, C. and Burgound, U. (1990). “A fast and effi-
cient response surface approach for structural reliabil-
ity problems.” Structural Safety, 7, 57:66.

Der Kiureghian, A. and Liu, P. L. (1986). “Structural
reliability under incomplete probability information.”
Journal of Engineering Mechanics, 111(1), 85–104.

Ditlevsen, O. and Madsen, H. O. (1996). Structural Re-
liability Methods. Wiley.

DNV (2010). Recommended practice DNV-RP-C205,
Environmental conditions and environmental loads.

Dubourg, C., Sudret, B., and Bourinet, J. (2011).
“Reliability-based design optimization using krig-
ing surrogates and subset simulation.” Structural and
Multidisciplinary Optimization, 44(5), 673:690.

Dutfoy, A. and Lebrun, R. (2009). “Practical approach to
dependence modelling using copulas.” Proc. IMech.
E, Part O: J. Risk and Reliability, 223, 347–361.

Elishakoff, I. (1991). “Essay on reliability index, prob-
abilistic interpretation of safety factor and convex
models of uncertainty.” Reliability Problems: Gen-
eral Principles and Applications in Mechanics of
Solids and Structures.

Jaynes, E. T. (1957). “Information theory and statistical
mechanics.” Phys. Rev., 106, 620–30.

Jaynes, E. T. (1978). “Where do we stand on maximum
entropy?.” Maximum Entropy formalism, 15–118.

Lebrun, R. and Dutfoy, A. (2009). “An innovating anal-
ysis of the nataf transformation from the copula view-
point.” Probabilstic Engineering Mechanics, 24, 312–
320.

Madsen, H. O., Krenk, S., and Lind, N. C. (1986). Meth-
ods of Structural Safety. Prentice-Hall.

Vapnik, V. (1995). The Nature of Statistical Learning
Theory. 10.1109/tnn.1997.641482 edition.

8


	INTRODUCTION
	INFORMATION THEORY
	Entropy
	Mutual Information

	UNCERTAINTY QUANTIFICATION
	Maximum Likelihood and KL Divergence
	Kernel Density Maximum Entropy Method
	Distributions with Independent Components (DIC)

	STRUCTURAL RELIABILITY: ISOPROBABILISTIC TRANSFORMATION
	NUMERICAL APPLICATION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

