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ABSTRACT: This paper formulates the repair sequence scheduling problem for damaged component in 

post-disaster critical infrastructure systems (CISs) under limited repair resources in a general form and 

proposes a heuristic method to solve the problem. The proposed method are compared with typical 

existing solution methods in the literature in terms of the optimality gap and computational cost. All 

these methods are applied into post-earthquake damage scenarios for a real electric power system. Results 

show that the proposed method has better performance than existing methods and can be applied to the 

recovery of large-scale CISs with extensive disruptions. 

1. INTRODUCTION 

Critical infrastructure systems (CISs), including 

electric power, transportation, water supply and 

telecommunication systems, provide essential 

services to support the economy of a region as 

well as the well-being of its citizens. However, 

these CISs are subjected to types of disruptions, 

such as natural disasters and terrorist attacks, and 

the failures of these systems may cause severe 

societal and economic disruption (Hackl et al., 

2015). Designing resilient CISs is the key to make 

a city or nation resilient and a resilience CIS 

requires absorptive capacity (absorb the negative 

effect of a disruption), adaptive capacity (adapt to 

the new conditions after a disruption) and 

restoration capacity (rapidly recover after a 

disruption). Many studies proposed various types 

of measures, such as protecting and reinforcing 

critical components and adding line switch in the 

electric power systems, to resist and absorb 

potential hazards (Salmeron et al., 2004; Zhao et 

al., 2013; Fang et al., 2016), while this paper 

addresses enhancing restoration capacity of CISs 

after large-scale disruptions, such as seismic 

hazards. 

The restoration capacity of post-disaster CISs 

mainly depends on how to rapidly recover from 

disruption in the restoration process. However, 

the restoration processes of CISs can be very 

complicated in practice, which vary with different 

types of CISs, disruptions and objectives. A 

restoration process can be generally divided into 

three periods: response recovery period, which 

last from 1 to 7 days and some emergency actions 

are taken; short-term recovery period, which takes 

weeks to months and urgent components have 

been rehabilitated and repaired; long-term 

recovery period, which spends long times to 

totally recovery from disruptions or to improve 

the system better (Kaviani et al., 2018). In the 

restoration process of a post-disaster CIS, the 

most important phase is how to schedule the 

limited restoration resources to the damaged 

components. Before the repair phase, several first-

phase preparations, such as initial inspection and 

damage assessment, have been made (Cagnan and 

Davidson, 2004). Hence, this paper focuses on 
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how to schedule the limited repair resources for 

the damaged components in post-disaster CISs.  

In the literatures, scholars have proposed 

different methods and optimization formulations 

to assign the limited repair resources or schedule 

repair teams for post-disaster CISs. Some scholars 

evaluated the importance of those damaged 

components and the damaged components with 

high importance values have the high priority to 

be repaired. The importance value of a damaged 

components can quantified by betweenness 

(Ulusan and Ergun, 2018), degree (Sun and Zeng, 

2017), and the ratio of the functionality increase 

to its required repair time if repairing that 

component (Nojima et al., 1992). Moreover, Sato 

and Ichii (1995) used the travel time based total 

un-restored ratio as the objective function for the 

post-earthquake road network in the Izu Penisula, 

and solved the optimum repair sequence by using 

a genetic algorithm.  Similar methods solution 

techniques have been also used to schedule the 

repair resources to the damaged components 

(Ozdamar, et al., 1999; Xu et al., 2007). 

Some scholars proposed optimization 

formulations which model the repair sequence as 

decision variable, and optimize an objective 

function that describes the efficiency of a repair 

sequence. Hentenryck et al. (2011) studied the 

repair sequence scheduling problem of post-

disaster power systems with the consideration of 

the vehicle-routing constraints, and Coffrin et al. 

(2012) investigated the last-mile restoration for 

interdependent power and gas systems. The 

models in these two studies were solved by 

heuristic algorithms. Considering a single CIS, if 

its operation is described by a linear programming 

model, the problem for identifying the optimum 

repair sequence can be formulated as a mixed 

integer linear programming (MILP), which can be 

directly solved by commercial solvers, such as 

CPLEX. Nurre et al. (2012) proposed a time index 

based optimization method to schedule repair 

teams for CIS restoration, which divides the 

whole restoration period into several equal small 

time periods and uses the total demand loss over 

all time periods as the objective function. Similar 

modelling approaches have been also used for 

post-earthquake interdependent power, water and 

gas systems in Shelby County, and interdependent 

power and telecommunications system in New 

York City (Cavdaroglu et al., 2013; Gonzalez et 

al., 2016). Instead of dividing the restoration 

period into equal small time period, recently 

Ouyang and Fang (2017) proposed a component 

index based optimization method, which repairs 

one damaged component at the beginning of each 

time period and uses the resilience loss as the 

objective function. However, this method was 

only applied for small-scale damage scenarios (a 

few components’ failures under the worst-case 

attack), how efficient this method is under large-

scale damage scenarios has not been investigated.  

As identifying the optimum repair sequence 

is a critical part for enhancing CIS resilience, 

adopting an efficient and accurate method is 

crucially important. Despite there are many 

methods for identifying the repair sequences for 

post-disaster CISs, how efficient each of those 

methods is has been seldom addressed in the 

literature. Hence, this paper first briefly 

introduces typical repair sequence scheduling 

methods in the literature and then proposes a 

novel heuristic algorithm. These methods are 

separately applied into post-earthquake damage 

scenarios for the electric power transmission 

system in Shelby County, USA, and are then 

compared in terms of the optimality gap and the 

computational cost, where resilience loss is taken 

as the metric to evaluate the solution. Note that if 

the exact solution cannot be obtained, the paper 

simple uses the minimal resilience loss among 

losses produced by all solution methods as the 

benchmark. The remainder of this paper is 

organized as follows. Section 2 formulates the 

problem, and section 3 briefly introduces or 

proposes different repair sequence scheduling 

methods. Taking the post-earthquake power 

transmission systems in Shelby County as an 

example, Section 4 compares different scheduling 

methods. Section 6 provides conclusions and 

future work. 
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2. PROBLEM FORMULATION 

A CIS is represented by an undirected connected 

graph G(V, L), where V is the set of nodes and L 

denotes the set of lines. There is a set of supply 

nodes 𝑉𝑠 ⊆ 𝑉, where each supply node 𝑛 ∈ 𝑉𝑠 is 

associated with real supply 𝑃𝑛
𝑆(𝑡) at time t and 

maximum supply 𝑃̅𝑛
𝑆 , a set of demand nodes 

𝑉𝐷 ⊆ 𝑉 , where each demand node 𝑛 ∈ 𝑉𝐷  is 

associated with real supply 𝑃𝑛
𝐷(𝑡) at time t and 

required demand 𝑃̅𝑛
𝐷 . Each line 𝑙 ∈ 𝐿  from an 

origination node o(l) to a destination node d(l) is 

characterized by its real flow 𝐹𝑙(𝑡) at time t and 

its capacity 𝐹̅𝑙 . Note that line damage can be 

equivalently modelled by adding a new node on 

each line, this paper only considers node damage. 

The set of damaged nodes under an event is 

denoted by 𝑉𝐴, and the state of node n at time t is 

denoted by binary variable 𝑥𝑛(𝑡), with its value 1 

indicating normal operation, and 0 otherwise.  

This paper formulate the repair sequence 

scheduling problem in a general form with the 

following assumptions:  

(1) Repair resources are characterized by 

repair teams and the maximum amount of 

available repair resources is determined by an 

input parameter RR, and repair team are identical 

and share the same work efficiency; 

(2) Each damaged component can only 

repaired by one repair team and the repair time for 

each damaged component n , which is determined 

by an input parameter 𝜏𝑛  to characterize the 

extent of the damage, is given and known 

beforehand;  

(3) The travel time and routing for the repair 

teams are ignored;  

(4) General network flow model and direct 

current power flow (DCPF) model are applied to 

simulate the operation of pipeline systems and 

electric power systems. 

Based on the above assumptions and 

parameters, given a repair sequence of the set of 

damaged components under an event, 𝑉𝐴 with K 

nodes damaged, the formulation of repair 

sequence scheduling problem can be written as 

following: 

min
𝑃𝑛

𝑆(𝑡i),𝑃𝑛
𝐷(𝑡i),𝐹𝑙(𝑡i)

∑ ∑ 𝑤𝑛 ∗ (𝑃̅𝑛
𝐷 −𝑛∈𝑉𝐷

𝐾
𝑖=1

𝑃𝑛
𝐷(𝑡i)) ∗ 𝑇(𝑖)                                                  (1a) 

Subject to: 

𝑇(𝑖) = 𝑡𝑖+1 − 𝑡𝑖, ∀𝑖                                 (1b) 

𝑃𝑛
𝑆(𝑡i) − ∑ 𝑓𝑙(𝑡i){𝑙 ∈ 𝐿|𝑜(𝑙) = 𝑛}

+

∑ 𝑓𝑙(𝑡i){𝑙 ∈ 𝐿|𝑑(𝑙) = 𝑛}
− 𝑃𝑛

𝐷(𝑡i) = 0, ∀𝑛 ∈

𝑉, ∀𝑡i                                                                (1c) 

−𝑃̅𝑙
𝐿𝑥𝑜(𝑙)(𝑡i)𝑥𝑑(𝑙)(𝑡i) ≤ 𝐹𝑙(𝑡i) ≤

𝑃̅𝑙
𝐿𝑥𝑜(𝑙)(𝑡i)𝑥𝑑(𝑙)(𝑡i), ∀𝑙 ∈ 𝐿, ∀𝑡i                        (1d) 

0 ≤ 𝑃𝑛
𝑆(𝑡i) ≤ 𝑥𝑛(𝑡i)𝑃̅𝑛

𝑆, ∀𝑛 ∈ 𝑉𝑆, ∀𝑡i      (1e) 

0 ≤ 𝑃𝑛
𝐷(𝑡i) ≤ 𝑥𝑛(𝑡i)𝑃̅𝑛

𝐷 , ∀𝑛 ∈ 𝑉𝐷 , ∀𝑡i     (1f) 

where 𝑡i  is the exact finishing time of repair 

activity conducted on the (i-1)-th damaged 

components and 𝑡1 is the initial time point of the 

planning horizon. The objective function for 

minimizing the resilience loss is described by (1a), 

where 𝑤𝑛  denotes the weight of node n. 

Constraint (1b) presents the time interval between 

the current time point 𝑡i and the next time point 

𝑡i+1 at which one damaged component is repaired. 

Constraint (1c) ensures flow conservation. 

Constraint (1d) limits the flow capacity. 

Constraint (1e) states the maximum output. 

Constraint (1f) states the required demand level.  

The DCPF model can be formulated by 

adding the node phase angle constraint (1g) based 

on above equation (1a)-(1e).  

𝑓𝑙(𝑡𝑖
𝑗
) = 𝐵𝑙 (𝜃𝑜(𝑙)(𝑡i) − 𝜃𝑑(𝑙)(𝑡i)) , ∀𝑙 ∈

𝐿, ∀𝑡i                                                                (1g) 

where 𝐵𝑙  denotes the susceptance of line l and 

decision variable 𝜃𝑛(𝑡𝑖
𝑗
) denotes the phase angle 

of node n at time point 𝑡i. 

3. SOLUTION METHODS 

The first type of methods is the component 

importance based methods which determine the 

repair sequence of a set of damaged components 

in terms of their importance values, and then 

schedule the available repair teams (initially 
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available or available after repairing a damaged 

node) to damaged nodes according to this repair 

sequence. This paper selects degree based 

methods (DBM) for comparison, which provides 

the repair sequence by ranking the degree values 

of damaged nodes in a descending order (Sun and 

Zeng, 2017).  

The second type of methods is the genetic 

algorithm based methods (GABM), which 

simulate an evolutionary process of the repair 

sequence that represent points in a search space. 

The GABM used in this paper firstly numbers the 

damaged components and expresses a repair 

sequence by a genotype, and secondly computes 

the fitness value of each genotype based on a 

fitness function. After that, this method uses the 

selection, crossover and mutation operators to 

produce the next-generation individuals, and then 

returns to the second step until the maximum 

generation is reached. The genotype in the final 

generation with the minimum resilience loss 

corresponds to the optimum repair sequence (Sato 

and Ichii, 1995). 

The third type of approaches is programming 

based optimization methods which divide the 

whole restoration period into several small time 

periods and schedule the repair teams to repair 

damaged components during each time period for 

minimizing the accumulative system loss of all 

time periods. Depending on whether each time 

period is fixed (or set as input parameters) or not 

(as decision variables), this method can be further 

grouped into time index based optimization 

method (TIBOM) (Nurre et al., 2012) and 

component index based optimization method 

(CIBOM) (Ouyang and Fang, 2017). In these two 

methods, the time periods both start from 1 to Tp, 

where Tp is the numbers of all time periods, and 

𝑡𝑠 denotes the time point at the beginning of time 

period s. These two methods have some identical 

repair decision variables, including (1) binary 

variable 𝑥𝑛(𝑡𝑠) which represents the state of node 

n at the beginning of time period s, with 1 for 

normal operation and 0 otherwise; (2) binary 

variable 𝑟𝑘𝑛(𝑡𝑠) which represents whether node n 

is repaired by repair team k at the beginning of 

time period s, with 1 for repaired and 0 otherwise. 

In the TIBOM, each time period has the same 

interval T(s) which is the maximum recovery time 

Tmax (to repair all damaged nodes) divided by Tp. 

There may exist several damaged components 

repaired by one repair team during the same time 

period, then this paper further ranks the repair 

sequence of those components in terms of their 

demands in a descending order. However, in the 

CIBOM, the number of time periods Tp is equal 

to the number of damaged components, and at 

most one damaged component is repaired at the 

beginning of each time period, and 𝑇(𝑠) refers to 

the recovery time points for the two component 

repaired at the beginning of this time period s and 

at the beginning of the next time period s+1. 

Hence, TIBOM only provides an approximate 

optimal solution while CIBOM can provide the 

global optimum. Details of this two methods and 

formulations were introduced by Nurre et al. 

(2012) and Ouyang and Fang (2017). 

For the above two optimization methods, the 

TIBOM can return the results quickly when the 

number of time periods is small, but it uses an 

upper bound estimation of the resilience loss as 

the objective function and then cannot ensure 

exact solutions; the CIBOM can ensure exact 

solutions, but it cannot solve the problem with 

large number of damaged components. To take 

the advantages and overcome the disadvantages 

of those two methods, this paper proposes a novel 

time index and component index combined 

optimization method (TI&CICOM). In each time 

step s, this method first decides the time duration 

T(s) of the next time period, and then uses the 

TIBOM with Tp=1 (for only the next one time 

period) to minimize system functionality loss at 

the end of the next time period and return the set 

of damaged components to be repaired at the next 

time period; after that this methods uses the 

CIBOM to further rank that set of damaged 

components by minimizing the resilience loss 

during the next time period. To ensure that the 

CIBOM can be effectively integrated, the 

proposed method needs to initially set an 

appropriate value NCIBESM, which is the number of 
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damaged components that can be solved by the 

CIBOM within an acceptable computational time. 

Hence, this method needs to determine an 

appropriate T(t) during which at most NCIBOM 

damaged components that can be repaired no 

matter how the repair teams are scheduled. An 

appropriate T(t) is determined by following steps: 

(1) find the minimum time interval 

𝑇𝑢𝑝𝑝𝑒𝑟(𝑡) during which at least NCIBOM+1 

damaged components can be repaired based on 

the undamaged components; (2) set time interval 

T(t)= 𝑇𝑢𝑝𝑝𝑒𝑟(𝑡) − ε, whereε is a small positive 

number. Note that there may exist spare time 

remained by each repair team in the last time 

period which should be considered in this 

methods. The minimum time interval 𝑇𝑢𝑝𝑝𝑒𝑟(𝑡) 

can be determined by following formulation: 

𝑇𝑢𝑝𝑝𝑒𝑟(𝑡) = min 𝑇(𝑡)                             (2a) 

Subjtct to: 

𝑇(𝑡) + 𝑟𝑡𝑘(𝑡 − 1) ≥
∑ 𝑟𝑛𝑘(𝑡) ∗ 𝜏𝑛𝑛∈𝑉𝑁_𝐶𝐼𝐵𝑂𝑀(𝑡) , ∀𝑘                        (2b) 

∑ 𝑟𝑛𝑘(𝑡)𝑅𝑅
𝑘=1 = 1, ∀𝑛 ∈ 𝑉𝑁_𝐶𝐼𝐵𝑂𝑀(𝑡)        (2c) 

where variable 𝑟𝑡𝑘(𝑡) represents the spare time of 

repair team k at time period t, and 𝑉𝑁_𝐶𝐼𝐵𝑂𝑀(𝑡) 

denotes the NCIBOM+1 damaged components can 

be repaired. 

4. CASE STUDY 

To demonstrate the efficiencies of the proposed 

method, those existing solution methods 

introduced in Section 3 and the proposed method 

are performed on the electric power transmission 

system in Shelby County, Tennessee (Shinozuka 

et al., 1998). Shown in Fig. 1, this system has 

eight gate stations, seventeen 23kv substations, 

twenty 12kv substations and fourteen 

transmission nodes, and they are connected by 73 

transmission lines. Based on Adachi and 

Ellingwood (2010), this paper considers an 

earthquake scenario with seismic epicenter at 35.3° 

N and 90.3°W, including magnitudes within the 

range of 𝑀𝑤 ∈ [6.0, 9.0] . For each seismic 

magnitude, 500 damage scenarios are generated. 

The computational experiments are performed on 

a laptop with Intel i5 3210M quad-core @2.50 

GHz and 4GB memory. Each optimization model 

in the solution methods is solved by MATLAB 

with CPLEX Toolbox. 

 
Figure 1: Electric power transmission system in 

Shelby County, Tennessee, USA (Shinozuka et al., 

1998). 

 

Table 1 shows the average optimality gap and 

the average computational time over 500 damage 

scenarios under each earthquake magnitude when 

there is only one repair team (RR=1). Figure 2 

further shows the cumulative distribution curves 

for the relative resilience loss error produced by 

each method when the seismic magnitude is 7.0 

and 8.0, respectively. Note that if the optimal 

solution cannot be obtained, this paper simply use 

the minimal resilience loss achieved by all 

methods as the benchmark to measure the 

optimality gap. Hence, the relative resilience loss 

error is quantified as the difference between the 

resilience loss calculated from a particular method 

and the minimal resilience loss among all methods, 

normalized by the minimal resilience loss. From 

the table and figures, it can be found that the 

degree based method (DBM) shows the best 

performance in terms of computational cost, with 

the average computational time for each 

magnitude less than 0.5s, while its maximum and 

average gap are up to 106.50% and 1054%, 

respectively, which means this method may 

provide extremely bad solutions. The genetic 

algorithm based method (GABM) shows better 

performance in term of optimality gap, with the 

average optimal gap for GABM less than 1.34%, 

and it can produce the relative resilience loss error  
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Table 1: Average optimality gap and computational time for each repair sequence scheduling method over 500 

component damage scenarios under seismic magnitude from 6.0 to 9.0 when there is only one repair team. NCIBOM 

is set as 8. TIBOM1and TIBOM1means TIBOM with Tp=5 and Tp=10, respectively. Symbol ‘--’ means that the 

results cannot be returned within one hour. 

Methods 

𝑀𝑤 = 6.0 𝑀𝑤 = 7.0 𝑀𝑤 = 8.0 𝑀𝑤 = 9.0 

Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) 

DBM 0 0.1 53.28 0.1 106.50 0.3 59.22 0.4 

GABM 0 92.9 0.05 288.3 0.48 1,240.2 1.34 1,462.3 

TIBOM1 0 0.1 3.37 0.2 9.36 0.5 8.27 0.8 

TIBOM2 0 0.2 1.04 0.6 4.25 1.0 3.35 15.2 

CIBOM 0 0.1 0 0.6 -- -- -- -- 

TI&CICOM 0 0.1 0.05 0.2 0.62 3.1 0.26 4.8 

(a) 

(b) 
Figure 2: Cumulative distribution curves for the 

relative resilience loss error produced by each method 

when the seismic magnitude is (a) 7.0 and (b) 8.0. 

 

less than 1% for around 99.4% and 87.4% 

scenarios with 𝑀𝑤 = 7.0  and 𝑀𝑤 = 8.0 , 

respectively.  

The average optimality gap provided by time 

index based optimization method (TIBOM) is less 

than 10% and 5% with Tp=5 and Tp=10, 

respectively. Increasing the number of Tp can 

improve the solution quality in terms of the 

optimality gap, but it also increase the 

computational cost, with the average computation 

time increasing from less than 1s for Tp=5 to 15.2s 

for Tp=10, and the maximum computational time 

increasing from 3s for Tp=5 to 570s for Tp=10. 

The component index based method (CIBOM) 

can provide the exact solution for damage 

scenarios with 𝑀𝑤 ≤ 7.0  whose maximum 

number of damaged components is less than 8, 

and the average computational time is less than 1s. 

However, this method cannot provide the results 

within one hour for large scale of disruption. In 

the TI&CICOM, the number of NCIBOM is set to 8, 

and the TI&CICOM have significantly better 

performance than existing methods, with the 

average optimality gap less than 0.62% and the 

average computational time less than 4.8s. 

Moreover, this proposed method can produce the 

relative resilience loss error less than 1% for 

around 99.4% and 81.0% scenarios with 𝑀𝑤 =
7.0 and 𝑀𝑤 = 8.0, respectively. 

The previous results are concluded from the 

case that there is only one repair team, while there 

may multiple repair teams working in parallel in 

practice. Hence, this section will further compare 

the solution methods when there are several repair 

teams (RR>1). Table 2 shows the average 

optimality gap and computational time when 

𝑀𝑤 = 8.0 and RR=2 to 5. Figure 3 show shows 

the cumulative distribution curves for the relative 

resilience loss error produced by each method 

when RR=3. From the table and figure, it can be 

still found that degree based method holds the best  
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Table 2: Average optimality gap and computational time for each repair sequence scheduling method over 500 

component damage scenarios under seismic magnitude 𝑀𝑤 = 8.0 when RR=2 to5. 

Methods 

RR=2 RR=3 RR=4 RR=5 

Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) CPU(s) 

DBM 84.62 0.26 66.98 0.26 52.13 0.25 40.19 0.25 

GABM 0.05 1,093.8 <0.01 1,091.0 0.02 1010.57 0 1104.0 

TIBOM 15.96 1.09 19.01 3.23 18.73 8.97 17.68 15.22 

TI&CICOM 3.12 3.16 6.12 2.73 9.46 1.95 14.19 1.69 

 
Figure 3: Cumulative distribution curves for the 

relative resilience loss error produced by each method 

when 𝑀𝑤 = 8.0 and RR=2. 

 

performance in term of computational cost, and 

GABM performs the best in terms of the 

optimality gap when 𝑀𝑤 = 8.0 and RR from 2 to  

5. Moreover, the average computational time of 

GABM is much larger than others and could be up 

to 1100s, which is hundreds to thousands times 

more than that for any other method. The 

optimality gap provided by the TIBOM and the 

TI&CIBOM is less than 20% and 15%, 

respectively. However, the TI&CIBOM provides 

the relative resilience loss error less than 10% for 

around 87.4% scenarios while only 19% for 

TIBOM when RR=2. Note that the computational 

time for the DBM and the GABM does not depend 

on RR, but the computational time for each of 

those methods with optimization models increases 

exponentially for larger RR. 

5. CONCLUSION 

This paper propose a novel heuristic method to 

solve the repair sequence scheduling problem for 

post-disaster CISs. The proposed method is 

compared with typical existing solution methods, 

including a degree based method, a genetic 

algorithm based method, a time index based 

method and a component index based method in 

terms of optimality gap and computational cost. 

All these methods are applied into post-

earthquake damage scenarios for the electric 

power transmission system in Shelby County, 

Tennessee, USA. Results show that the proposed 

methods better performance than existing method 

can be applied to the recovery of large-scale CISs 

with extensive disruptions.  

This paper still has several issues remained 

and can be improved in the future work. First, 

improve the solution quality in terms of optimality 

gap for the proposed method when there are 

multiple repair teams working in parallel. Second, 

model the restoration process with more 

complexities, such as the routing for the repair 

team. 
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