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ABSTRACT: A stochastic semi-active control strategy for the MR damping controlled structure is 
provided in this paper. The integrated optimization of the weighting matrices pertaining to the active 
optimal control and the MR parameters pertaining to the semi-active optimal control is implemented. In 
order to reveal the advantages of this strategy, comparative studies on two aspects are involved, i.e. 
optimization schemes and probabilistic criteria. The comparison between the integrated and the separated 
schemes based on the probabilistic criteria in terms of statistical moments shows that the integrated 
scheme exhibits a better control effectiveness. While the comparison between the probabilistic criteria 
in terms of statistical moments and the reliability used for the integrated scheme shows that the 
probabilistic criteria in terms of reliability attains a more safe structure. 
 

1. INTRODUCTION 
Structural control has been developed into an 
effective method for mitigating the dynamic 
response and improving the safety and 
serviceability of structures since it was introduced 
into the civil engineering community (Yao, 1972; 
Housner et al, 1997). With the characteristics of 
low energy consumption and high efficiency, the 
semi-active control is regarded as an promising 
control strategy(Chu et al, 2005; Dan et al, 2015). 
The MR damper, for its excellent dynamic 
performance, is regarded as one of the most 
prospective semi-active control devices (Lozoya-
Santos et al, 2012; Wang & Dyke, 2013). Since 
the randomness inherent in the structure system, a 
reliable stochastic semi-active control strategy is 
necessary for achieving  satisfactory control effect 
of the structures with MR dampers.   

According to the definition, the classical 
strategies of the semi-active control basically 
include the active optimal control and semi-active 
control. Firstly, although the LQG method has 
been widely adopted in the MR damping control 
of structures (Zhu et al, 2001; Rosół & 
Martynowicz, 2016), the introduced Gaussian 
white noise for the design of these strategies is far 

away from the characteristics of seismic ground 
motions. For this reason, Li et al developed a 
physically-based stochastic optimal control 
strategy (PSO), which is adaptable for the 
structures with any kinds of stochastic excitations 
(Li et al, 2010; Peng et al, 2013). On the other 
hand, the widely-used semi-active control 
schemes belong to the two-states control 
(Leitmann, 1994; Jansen & Dyke, 2000) and 
bounded Hrovat control (Hrovat et al, 1983). Peng 
et al further extended the PSO into the MR 
damping control of structures subjected to random 
seismic ground motion, and proved that the semi-
active control strategy tracing the active optimal 
control gain can attain a satisfactory effectiveness 
(Peng et al, 2017). 

Therefore, a reasonable semi-active control 
strategy for MR damping control of randomly 
excited structures shall be the combination 
between the physically-based stochastic optimal 
control and the bounded Hrovat control. However, 
a lots of researches indicated that the weighting 
matrices in the active optimal control have a 
serious influence on the control effect (Li et al, 
2011; Shi et al, 2014). Although some researches 
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have been made to optimize the weighting 
matrices, most of them adapt the trial-and-error 
method (Stengel et al, 1995; Shi et al, 2013), 
which are insufficient for searching out the global 
optimal weighting matrices. For solving this 
problem, Li et al. established the probabilistic 
criteria based on the structural performance of the 
optimal controlled structure (Li et al, 2011). 
However, how to optimize the weighting matrices 
corresponding to the optimal semi-active control 
still remains open.  

 This paper proposes a stochastic semi-active 
control strategy for the MR damping controlled 
structure. It involves the combination between the 
physically-based stochastic optimal control and 
the bounded Hrovat control and can achieve the 
integrated optimization of the weighting matrices 
and the MR parameters. In order to reveal the 
control effect of the proposed strategy, 
comparative studies optimization scheme and 
probabilistic criteria are carried out. 

2. SEMI-ACTIVE OPTIMAL CONTROL 
STRATEGY 

The proposed semi-active optimal control strategy 
includes the following contents: 1) generation of 
stochastic seismic samples based on the physical 
stochastic seismic model (Li & Ai, 2006); 2) 
calculation of the optimal control force 
corresponding to each sample; 3) analysis of the 
semi-active control gain; and 4) optimization of 
the weighting matrices and the MR parameters 
involved in the semi-active control algorithm. 

2.1. Generation of samples of seismic ground 
motions 

Based on the physical mechanism of seismic 
ground motions, Li and Ai established a physical 
stochastic seismic model, which can be expressed 
as (Li & Ai, 2006): 
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where ( , ), ( , )g bX UΘ Θ 
b w denote the frequency 

domain expressions of seismic ground motions at 
the engineering site and the bedrock, respectively; 

{ , , }
g g b   Θ Θ  denotes the random vector 

characterizing the randomness involved in the 
ground motion at the surface of the engineering 
site. ,

g g    denote the random source of the 

site soil, i.e. the predominant frequency of the 
engineering site g  and the equivalent damping 

ratio g . b
, 1{ }s

b b i i Θ  denote the random vector 

characterizing the randomness involved in the 
seismic ground motion inputted in the bedrock, bs  

being the number of the random variables 
involved in this stage.   denotes the circular 
frequency.  

The time history of the stochastic seismic 
ground motion could then be obtained by the 
inverse Fourier transformation: 
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To describe the non-stationary of the seismic 
intensity, the following uniform modulation 
function is used: 

2

0.8( )

/ 4

( ) 1
b

a

a b

t t
b

t t t

f t t t t

e t t T 

 


  
  

           (3) 

where, at and at  denote the starting and ending 

time point of the strong seismic intensity, 
respectively. T denotes the duration time of the 
seismic.  

2.2. Calculation of optimal control force  
With the stochastic samples of seismic ground 
motions, the active optimal control force 
corresponding to each sample can be calculated, 
which will be used as a reference for the bounded 
Hrovat semi-active control. Considering a 
structure controlled with MR dampers, the 
dynamic equation of the structure can be 
expressed as: 

( ) ( ) ( ) ( ) ( , )s st t t t tMX +CX +KX = B U + D F Θ     （4） 
where, X denotes a n-dimensional displacement 
vector; Θ denotes the random source of the 
dynamic system; U  denotes a r-dimensional 
control force vector; F  denotes a p-dimensional 
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random excitation vector; M,C,K denote the 
mass, damping and stiffness matrices, 
respectively; sB  denotes the n r -dimensional 

location matrix of the control force;  sD  denotes 

the n p -dimensional location matrix of the 
excitation. For the sake of simplification, Eq.(4) 
can be simplified as the expression in state space: 

Z = AZ + BU + DF                   （5） 
where, Z denotes the 2n-dimensional state vector; 
A denotes the 2n×2n- dimensional system matrix;  
B denotes the 2n×r-dimensional location matrix 
of control force;  Ddenotes the 2n×p-dimensional 
location matrix of excitation. 

The linear quadratic cost function is defined 
according to the classical LQR control as (Li et al, 
2011): 
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where,  f ZtS Q，  denote 2n×2n-dominational 

positive semi-definite symmetric weighting 
matrices pertaining to the structural state; UR

denotes r×r-dimensional positive definite 
symmetric weighting matrix of control force. 
Without considering the influence of the cross 
terms,  f ZtS Q， and UR are all the diagonal 

matrices.  
For a closed-loop control system with the 

consideration of state feedback, the control gain 
can be expressed as follows according to the 
Pontryagin maximum principle: 

1( , ) ( , ) ( , )T
U Zt t t  U Θ = R B PZ Θ G Z Θ   （7） 

where 1 T
Z U

G = R B P denotes the control gain 
matrix; P can be obtained by solving the 
following equation: 

1T T
U Z
PA + A P - PBR B P + Q = 0      （8） 

The state vector Z and optimal control force 
U corresponding to each sample can be obtained 
through combining and solving Eq.(5) and Eq.(7), 
which will be used for calculating the semi-active 
control force. From Eq.(7), it can be seen that the 
selection of weighting matrices will directly affect  

ZG , which will further affect the control force and 
the control gain. Therefore, it is essentially to 
optimizing the weighting matrices ZQ and UR  

for achieving an optimal semi-active control. 

2.3. Analysis of semi-active control force 
According to the scheme of physically-based 
stochastic optimal control, the optimal control 
force corresponding to the given weighting 
matrices ZQ and UR  can be obtained. Further, the 

semi-active control force can be calculated 
through tracing the stochastic optimal control 
force. In this paper, the bounded Hrovat semi-
active control algorithm is used, which can be 
expressed as follow (Peng et al, 2017): 

,max

,max

,max

,min

( , ) sgn[ ( , )],  

  Case A:  0 and 

sgn[ ( , )],                    
( , )

       Case B:  0 and 

( , ) sgn[ ( , )],    

       Case C:  0

d dc

a a d

a

s

a a d

d dc

a

C X t U X t

U X U U

U X t
U t

U X U U

C X t U X t

U X

 


 


 
 





 







 



Q Q

Q
Q

Q Q









 (9) 

where  ,sU tΘ denotes the semi-active control 

force offered by MR damper;  ,aU tΘ denotes the 

reference optimal control force;  ,max ,dU tΘ

denotes the maximum damping force generated 
by MR damper;  ,X tΘ denotes the damper 

velocity; dC denotes the viscous coefficient; 

,maxdcU and ,mindcU denote the maximum and 

minimum Coulomb forces of MR damper, 
respectively. Generally, the Coulomb force equals 
to be zero if no current input to the MR damper. 
Therefore, the parameters dC and ,maxdcU  need to 

be determined. In this paper, the parameters will 
be optimized together with the weighting matrices 
forming into an integrated scheme for parameter 
optimization. 

With the definition of parameters, the semi-
active control force can be obtained through 
Eq.(9). Then,  substituting the achieved semi-
active control force into Eq.(1), the semi-active 
control gain of the structure can be obtained. 
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2.4. Optimization of MR parameters and 
weighting matrices 

As mentioned in the previous sections, the control 
effectiveness is highly relevant to the weighting 
matrices and MR parameters. In order to achieve 
the best control effectiveness, it is necessary to 
optimize them based on suitable criteria.  

Since the reliability is an important index, it is 
reasonable to establish a criterion in terms of the 
reliability of structural state and control force. In 
this paper, the following index is established. 

2 2 2
R Semi X Semi UX Semi

J R R R  
              (10) 

where, -X SemiR
-X Semi

R  denote the global reliabilities 

of displacement and acceleration of the structure; 

UR
 
denotes the global reliability of the semi-

active control device. According to the existing 
literatures, the probability density functions of 
displacement, acceleration and the semi-active 
control force all are governed by the generalized 
probability density evolution equations (GDEEs) 
(Li et al, 2007; Chen & Li, 2007; Li & Chen, 2010; 
Li & Chen, 2008, whereby the global reliability in 
Eq.(10) can be readily solved.  

In order to verify the benefit the reliability-
based criterion shown in Eq.(10), another index 
based on the statistical moment is given by 
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where  E  and    denote the mean and 

standard deviation;  denotes the confidence level 

coefficient; ,X X denote the equivalent extreme 
values of  ,X X ; S ThrX  , S ThrX 

 and ,S Thr iU  denote 

the thresholds of the corresponding variables.  

3. CASE STUDY 
In order to illustrate the effectiveness of the 
proposed control strategy, a SDOF structure 
system subjected to random seismic ground 
motions is investigated. The parameters of the 
system are: structural mass 51 10 kgm   ; natural 
circular frequency 0 11.22rad / s  ; damping ratio 

0.05  ; maximum damping force of MR damper 

,max 150kNMRU  . The physical stochastic ground 

motion model is employed here. The random 
variable  12rad/s, 0.42g N  and  0.1, 0.35g N   . 

The peak value of seismic ground motions is 0.1g. 
Phase angle used in Eq. (2) is defined by

 0 , 0.1N  . According to the strategy of 

probability-assigned partition via tangent spheres 
(Chen & Li, 2008), 221 representative samples of 
seismic ground motion are generated, the 
frequency and duration of which are 50Hz and 
20.48s, respectively. The parameters at and bt

within uniform modulation function Eq.(3) are 2s 
and 16s. The threshold values of displacement and 
acceleration are 10mm, 1500mm/s2, respectively. 
The threshold value of the control force equals to 
the damping force upper limit value of the MR 
damper, i.e. ,max 150kNMRU  . The weighting 

matrices is defined as the form = IZ q Q and 

= IU r R , which means that the influence of the 

weighting matrices to the control effect mainly 
depends on the value of  /q r . With the 
assumption of q=100, the optimal weighting 
matrices could be obtained. The GA toolbox 
within MATLAB is used. The range of the 
variables are 20 5[10 ,10 ]r   , [0.2,2]dC  , 

,max [50,150]dcU  . In order to reveal the difference 

of control effectiveness between the proposed 
integrated scheme in this paper and the separated 
scheme in the previous investigation (Peng et al, 
2017), a comparative study is carried out. The 
separated scheme refers to as that the weighting 
matrices are optimized merely based on the active 
optimal control, then the MR parameters are 
designed based on the semi-active control 
algorithm. The optimized results of weighting 
matrices and MR parameters corresponding to 
different criteria and difference schemes are 
shown in Table 1, where JE-Opt corresponds to the 
separated strategy based on the moment criteria. 
 
Table 1: Weighting matrices and MR parameters 

Performance 

index 
r 

Cd     

(kNꞏs/mm) 
Udc,max   

(kN) 
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JR-Semi 10-15.31 0.2060 110.258

JE-Semi 10-17.61 0.4830 105.832

JE-Opt 10-11.90 0.6119 82.280
 

Figures 1 and 2 show the displacement and 
acceleration in the sense of root-mean-square 
values. It is seen that both the integrated and 
separated schemes based on reliability and 
moment can achieve excellent control 
effectiveness. 
 

 
Figure 1: Comparison of root-mean-square 

displacement  

 
Figure 2: Comparison of root-mean-square 

acceleration 
  

Reliabilities of arguments of the semi-active 
control based on different schemes and different 
criteria are shown in Table 2. It is revealed that the 
integrated scheme can achieve a better trade-off 
among the arguments of the controlled structure 

than the separated scheme. On the other hand, the 
integrated scheme with the criterion in terms of 
the reliability attains a better trade-off and larger 
reliabilities of arguments than the criterion in 
terms of the statistical moments. 

Table 2: Reliabilities of arguments of semi-active 
control  

Performance 
index 

X (mm) X (mm/s2) SemiU (kN) 

JR-Semi
 0.9997 0.9803 1.0000

JE-Semi
 1.0000 0.9678 0.9982

JE-Opt 0.9998 0.9046 0.9988
 

4. CONCLUSIONS 
This paper proposes a reliability based 
optimization scheme for semi-actively controlled 
seismic structures with MR dampers. The 
integrated optimization of the weighting matrices 
pertaining to the active optimal control and the 
MR parameters pertaining to the semi-active 
optimal control is implemented. In order to reveal 
the control effect of the proposed strategy, 
comparative studies optimization scheme and 
probabilistic criteria are carried out. Numerical 
results show that: (i) the integrated scheme can 
achieve a better trade-off among the arguments of 
the controlled structure than the separated scheme; 
(ii) the integrated scheme with the criterion in 
terms of the reliability attains a better trade-off 
and larger reliabilities of arguments than the 
criterion in terms of the statistical moments. 
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