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ABSTRACT: Simulation of wind speed fields usually plays a crucial role in the reliability analysis of 
large-size and high-rise structures such as tall buildings, long-span bridges and offshore wind turbines. 
To simulate a fluctuating wind speed field by the spectral representation method (SRM), two schemes 
can be adopted: (1) the conventional SRM, involving the decomposition of the cross power spectrum 
density (XPSD) matrix of fluctuating wind speed inevitably; and (2) the joint wavenumber-frequency 
spectrum based SRM, where a series of trigonometric functions are directly superimposed without any 
decompositions of XPSD matrix. However, both the two approaches involve large amounts of random 
variables, which hinder the reliability analysis of structures. In this paper, the stochastic harmonic 
function (SHF) representation method is extended and integrated with the joint wavenumber-frequency 
power spectrum to simulate fluctuating wind speed fields in one spatial dimension. Further, an efficient 
non-uniformly discretized scheme in wavenumber and frequency directions is suggested such that the 
number of random variables is dramatically reduced. Simulation results demonstrate the efficiency and 
validity of the proposed method. 

 
Simulation of fluctuating wind speed field is of 
paramount significance in the design of wind 
sensitive structures such as long-span bridges, 
tall buildings and megawatt wind turbines (Zeng 
et al. 2017). Unlike the complexity in the 
physical mechanism based models such as the 
computational fluid dynamics (CFD) method 
(Huang et al. 2018), the fluctuating wind speed 
field can be modeled as a random vector process 
or a random field in a simple mathematical 

manner for engineering applications (Shinozuka 
1971). The spectral representation method 
(SRM), as the most widely used method, has 
been investigated and applied in structural wind 
engineering over decades (Tao et al. 2018). 
However, to simulate the fluctuating wind field 
as a random vector process with the SRM, 
decompositions of the cross power spectrum 
density (PSD) matrix are needed at each 
discretized frequency, which suffers from poor 
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efficiency in simulation of large scale wind 
speed fields (Tao et al. 2018). To circumvent the 
decompositions of matrix, a wavenumber-
frequency joint spectrum based SRM has been 
developed in recent years (Benowitz & Deodatis 
2015; Peng et al. 2017; Chen et al. 2018a; Song 
et al. 2018a). In this method, the fluctuating wind 
speed field is modeled as a temporal-spatial 
random field by straightforward superposition of 
trigonometric series, which is of much 
convenience in practice. 

In spite of the advances in wind field 
simulation, a large number of random variables 
(phase angles) are usually involved in these 
methods, which hinders the reliability analysis of 
structures (Spanos et al. 2007). Although several 
approaches have been investigated to reduce the 
number of random variables (Li et al. 2012; Liu 
et al. 2018), it remains an open problem. The 
stochastic harmonic function (SHF) 
representation method, which regards both the 
phase angles and discretized frequencies 
(wavenumbers) as random variables, can 
reproduce the target PSD exactly no matter how 
many trigonometric components are retained 
(Chen et al. 2013; 2017; 2018b). Therefore, it 
provides a promising approach in reducing the 
number of random variables for wind field 
simulation. 

In the present paper, the SHF representation 
will be extended to two-dimensional (2D) 
nonhomogeneous random field case and then 
integrated with the wavenumber-frequency joint 
spectrum to simulate fluctuating wind fields in 
one spatial dimension. The present paper is 
organized as follows. Section 1 briefly 
introduces the wavenumber-frequency joint 
spectrum for nonhomogeneous fluctuating wind 
fields in one spatial dimension and its spectral 
representation. In Section 2, the SHF 
representation for 2D homogeneous random field 
is firstly revisited, and then is extended to 
nonhomogeneous case. In Section 3, a numerical 
example for simulation of fluctuating wind speed 
field for a wind turbine tower is carried out to 
demonstrate the effectiveness of the proposed 

method. Concluding remarks pertaining to this 
study are provided in Section 4. 

1. WIND FIELD SIMULATION BY THE 
JOINT SPECTRUM BASED SRM 

The joint spectrum based SRM was firstly 
proposed by Shinozuka (1971). However, it has 
not been well noticed for decades until Benowitz 
and Deodatis (2015) simulated one-spatial 
dimensional homogeneous wind speed field 
along this line. It was then quickly extended to 
one-spatial dimensional nonhomogeneous and 
nonstationary cases (Peng et al. 2017) and two-
spatial dimensional homogeneous and 
nonhomogeneous cases (Chen et al. 2018a; Song 
et al. 2018a). In the present paper, only the one-
spatial nonhomogeneous case is considered. 

1.1. Joint spectrum for nonhomogeneous 
fluctuating wind speed fields in one-spatial 
dimension 

For clarity, the fluctuating wind speed filed in 
one-spatial dimension is denoted by ( , )u z t , in 
which z  axes denotes the vertical spatial 
direction and t  is the time. One can easily 
observe that ( , )u z t  is essentially a 2D temporal-
spatial random field.  

The Kaimal spectrum and the one-spatial 
dimensional Davenport coherence model are 
employed (Peng et al. 2017; Song et al. 2018b), 
i.e., 
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where ( )KaiS ω  denotes the Kaimal spectrum, ω
is the circular frequency, and *u  is the shear 
velocity. ( , )ρ ξ ω  denotes the coherence function,  

zC  is the exponential decay coefficient, 10U  is 
the mean wind speed at 10m high, and 
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1 2z z= −ξ  is the spatial separation. ( )U z  
denotes the mean wind speed at the height z and 
follows the following logarithmic law, 

 *
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  (3) 

in which κ  is the von Karman constant and 0z  is 
the roughness. 

Then, the joint wavenumber-frequency 
spectrum of the random field can be derived as 
(Peng et al. 2017; Song et al. 2018b) 
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where ( , , )S z k ω  denotes the joint spectrum in 
wavenumber-frequency domain, k is the 
wavenumber in z direction, and ( ),kρ ω  is the 
Fourier transform of ( , )ρ ξ ω  with respect to ξ . 
    It is noted that the wind spectrum and the 
coherence model can also take other forms. 

1.2. Spectral representation for wind speed fields 
Once the spectrum is obtained for the random 
field, the SRM is readily to be employed to 
generate fluctuating wind speed field samples 
(Peng et al. 2017; Song et al. 2018b), i.e. 
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where ik ’s are the discretized wavenumbers, 
, 1,2, ,i kk i k i N= Δ = Λ , U

kk k NΔ = , Uk  is the 
upper cut-off wavenumber, and kN  is the 
number of discretized wavenumbers. Likewise, 

jω ’s are the discretized circular frequencies,

j j k= Δω , 1,2, ,j N= Λ ω , U NΔ = ωω ω , Uω  is 
the upper cut-off frequency, and Nω  is the 
number of discretized frequencies. (1)

ijφ ’s and 
(2)
ijφ ’s are two different sets of independent 

random phase angles uniformly distributed over 
[0, 2π]. 

Eq.(5) indicates that based on the joint 
spectrum the wind speed field can be simulated 
by summing the trigonometric functions directly. 
This circumvents the decomposition of the 
XPSD matrix involved in the conventional 
methods (Tao et al. 2018). However, it is worth 
noting that Eq.(5) is a two-fold summation over 
the wavenumber-frequency domain. To obtain a 
satisfactory simulation result, the numbers kN  
and wN  are usually of the order of magnitude 

( )310 . Therefore, the total number of terms 
involved in Eq.(5) is in the order of magnitude 

( ) ( )5 610 10:  . A large number of random 
phase angles are involved simultaneously. 
Although the fast Fourier transform (FFT) 
technique can be employed in place of the 
summation to improve simulation efficiency, it 
has nothing to do with reducing the number of 
random phase angles. In the present paper, the 
SHF representation is adopted, through which 
the computational efforts as well as the number 
of random variables can be dramatically reduced. 

2. STOCHASTIC HARMONIC FUNCTION 
REPRESENTATION FOR WIND SPEED 
FIELDS 

The SHF representation was proposed by Chen 
et al. (2013) for 1D stationary random process. It 
was later extended to 1D nonstationary random 
process (Chen et al. 2017) and 2D homogeneous 
random field (Chen et al. 2018b). In the present 
paper, the SHF representation is further extended 
to 2D nonhomogeneous cases to simulate one-
spatial dimensional nonhomogeneous fluctuating 
wind speed fields. To make it clear, the basic 
idea of the SHF representation for 2D 
homogeneous random field is firstly revisited. 

2.1. SHF representation for 2D homogeneous 
random fields 

In the SHF representation, both phase angles and 
discretized frequencies (wavenumbers) are taken 
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as random variables. In contrast, only the phase 
angles are random variables in the SRM.  

For clarity, the spectrum of the 2D 
homogeneous random field 1 2( , )Y x x  is denoted 
by ( )1 2,YS k k . The wavenumber domain of 
interest is U U

0 1 2[0, ] [0, ]D k k= × , where U
1k  and 

U
2k  are the upper cut-off wavenumbers in 1x  and 

2x  directions, respectively. Partition U
1[0, ]k  into 

a set of non-overlapping subintervals [ ](1) (1),i ik k  

1( 1,2,..., )i N= such that [ ]1U (1) (1)
1 1[0, ] ,N

i i ik k k==Υ  
and [ ] [ ](1) (1) (1) (1), ,i i l lk k k k = ∅Ι , i l∀ ≠ . Likewise, 
partition U

2[0, ]k  into [ ](2) (2),j jk k 2( 1,2,..., )j N= . 
Thus, the SHF representation for the 2D 

homogeneous random field can be expressed as 
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where ( )(1) (2),i jK K  is a random vector of 
wavenumber in the subdomain [ ](1) (1),ij i iD k k= ×

[ ](2) (2),j jk k  with the probability density function 
(PDF) ( )(1) ( 2 ) 1 2,

,
i jK K

p k k . (1)
ijφ ’s and (2)

ijφ ’s are 

uniform random phases independently 
distributed over [0, 2π]. 

For convenience, ( )(1) (2),i jK K  is taken as a 
uniformly distributed random vector over ijD , 
i.e., the PDF of ( )(1) (2),i jK K  is  

( )
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Then, the amplitudes are given by 
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    Obviously, the SHF representation is an 
extension of the SRM. Besides, one can easily 
prove that the PSD of 1 2( , )Y x x  represented by 

Eq.(6) is identical to ( )1 2,YS k k  no matter how 
many harmonic components are retained in 
Eq.(6). Therefore, the number of random 
variables can be markedly reduced. 

2.2. Extension of the SHF representation for 2D 
nonhomogeneous random fields 

The concerned 2D random field in this study 
( , )u z t  is nonhomogeneous in spatial dimension 

and stationary in temporal dimension. This is due 
to the fact that its spectrum ( , , )S z k ω  is only 
dependent on the spatial position but not on the 
time.  

Similar to the 2D homogeneous case, the 
wavenumber-frequency domain of interest is 
denoted by U U

0 [0, ] [0, ]D k= × ω , where Uk  and 
Uω  are the upper cut-off wavenumber and 

frequency, respectively. Partition U[0, ]k  into a 
set of non-overlapping subintervals [ ],i ik k  
( 1,2,..., )ki N= such that [ ]U

1[0, ] ,kN
i i ik k k==Υ  and 

[ ] [ ], ,i i l lk k k k = ∅Ι , i l∀ ≠ . Likewise, partition 
U[0, ]ω  into [ ],j jω ω ( 1,2,..., )j N= ω . Then, the 

SHF representation for the 2D nonhomogeneous 
random wind field can be expressed as 
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where ( ),i jK Ω  is a random vector in the 
subdomain [ ] [ ], ,ij i i j jD k k= × ω ω  with the PDF 

( ), ,
i jKp kΩ ω . (1)

ijφ ’s and (2)
ijφ ’s are uniform 

random phases independently distributed over 
[0,2π]. ( ),i jK Ω  is taken as a uniformly 
distributed random vector over ijD  as well, i.e., 
the PDF of ( ),i jK Ω  is  
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ω
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It is easy to show that the correlation 
function of ( , )u z t  is 
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Meanwhile, similar to that in 1D 
nonstationary cases (Chen et al. 2017), the 
prescribed correlation function of ( , )u z t  can be 
obtained from Wiener-Khintchine formula, 
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Comparing Eqs.(11) and (12) term to term 
yields 
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2.3. Determination of the subdomain ijD  and 
random vector ( ),i jK Ω  

As interpreted in subsection 2.2, the wavenumber 
and frequency ranges of interest are firstly 
partitioned into a number of kN  and Nω  
intervals, respectively. Then, 0D  can be 
partitioned into a number of kN Nω  subdomains 

[ ],ij i iD k k= × [ ],j jω ω  by tensor products.  

According to Chen et al. (2018a) and Song 
et al. (2018a), the wind speed PSD value in the 
range close to the origin is far greater than that in 
the range away from the origin. Therefore, the 
computational efforts can be reduced by taking 
denser wavenumber-frequency points in the 
range close to the origin Chen et al. (2018a). The 
idea is followed in the present paper and a new 
discretization scheme is suggested as follows 
instead of that in Chen et al. (2018a). 

The non-uniform discretized wavenumbers 
and frequencies is determined, respectively, by 

 ( ){ ( / )U

1

, ( 1, 2,..., )
, ( 2,3,..., ); 0, ( 1)

ki N
i k k k

i i k i

k k N N i N
k k i N k i−

= × =
= = = =

  (14) 

( ) ( / )U

1

, ( 1, 2,..., )
, ( 2,3,..., ); 0, ( 1)

j N
j

j j j

N N j N
j N j

ω
ω ω ω

ω

ω ω
ω ω ω−

= × =
 = = = =

 (15) 

in this way, the lengths of the subintervals in 
wavenumber and frequency direction 
approximately exponentially increase as the 
subintervals depart away from the origin. An 
example of the partitioned subdomains obtained 
by tensor products after the operation of Eqs.(14) 
and (15) is shown in Figure 1. 
 

 
Figure 1: Example of partitioned subdomains 
obtained by the suggested scheme. 

 
Since the subdomains have been specified, 

the random vector ( ),i jK Ω  is determined by 
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where (1)
iλ ’s and (2)

jλ ’s are uniform random 
variables independently distributed over [0,1]. In 
this way, the SHF representation for wind speed 
fields can be implemented conveniently based on 
Eqs.(14), (15) and (16). 

3. NUMERICAL EXAMPLE 
Consider a standard 5-MW offshore wind 

turbine model (Jonkman et al. 2009). Simulation 
of fluctuating wind speed field for the 90m high 
tower is carried out in this section.  

Parameters of the joint spectrum are 
determined as follows: the decay coefficients is 

7zC =   (Peng et al. 2017), the average wind 
speed at the height of hub ( )90mz = is 

ref 20m/sU = ; the turbulence intensity is 

ref 0.16I = ; the standard deviation of turbulence 
is ref ref 3.2m/su I Uσ = = . It is ready to obtain 

2 2
*6u uσ =  by integrating Kai ( , )S z ω  with respect 

to ω , thus, * 1.306m/su = ; 0z  and 10U  are then 
specified by Eq.(3): 0 0.197mz = , 10 12.8m/sU = . 
The other parameters for the numerical 
simulation are: the upper cut-off wavenumber 
and frequency are U 0.5π rad/mk =  and 

U 4π rad/sω =  (Chen et al. 2018a), respectively; 
the time history length of wind speeds is 

600sT = , and the time step of the simulation is 
0.25stΔ = . The number of the partitioned 

intervals in wavenumber and frequency 
directions is = =50kN Nω  in this case. 

A population of 500 samples are generated 
by the proposed method. To evaluate the 
performance of the method, the fluctuating wind 
speed samples at the heights 10m, 50m and 90m 
are employed in reproducing the ensemble 
statistical properties, including the auto-PSD, 
cross-correlation function and coherence 
function. The fluctuating wind speed time 
histories of a wind field sample for the three 
points are shown in Figure 2. 
 

 

 

 
Figure 2: Fluctuating wind speed time histories at 

different heights. 
 
Based on the simulated samples, the auto-

PSD, the cross correlation function and the 
coherence function of the fluctuating wind speed 
processes can be estimated (Chen et al. 2018a). 
The comparisons between the reproduced values 
and the target values among the three points are 
shown in Figures 3-5, respectively. 

 

 
Figure 3: Comparisons of the estimated spectra with 

prescribed Kaimal spectrum at different heights. 
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Figure 4: Comparisons between estimated and target 
cross-correlation functions between different heights. 

 

 

 
Figure 5: Comparisons between estimated and target 

coherence functions between different heights. 
 

It is seen that the estimated values of the 
auto-PSD, the cross correlation function and the 
coherence function are well consistent with the 
target values, demonstrating the effectiveness of 
the proposed method. Besides, the number of the 
harmonic components involved in this case is 
only 2500, whereas, it is around 106 in the SRM. 
Therefore, the computational efforts and the 
number of random variables are greatly reduced. 

4. CONCLUSIONS 
The SHF representation has been extended to 
simulate nonhomogeneous wind speed random 
fields in one-spatial dimension based on the 
wavenumber-frequency joint spectrum. In this 
method, both the phase angles and frequencies 
(wavenumbers) are regarded as random variables.  
Particularly, the subdomains of wavenumber-
frequency are determined by tensor products 
after the axes of wavenumber and frequency are 
non-uniformly discretized by exponential spaces 
approximately.  The conclusions include: (1) The 
SHF representation for random fields can 
reproduce the target PSD exactly by a very finite 
number of harmonic components; (2) Compared 
to the SRM, the number of random variables and 
computational efforts in the SHF representation 
can be dramatically reduced in the simulation of 
wind speed fields. Meanwhile, the high accuracy 
is maintained.  

The present paper focus on the simulation 
of fluctuating wind speed fields in one spatial 
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dimension. Simulation of fluctuating wind speed 
fields in two spatial dimensions is to be done in 
the future. 
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