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ABSTRACT: Quantification of collapse risk of buildings in seismically active regions is one of the key
elements for informed decision making for building design and establishment of public policies to
promote seismic safety and resilience. This paper focuses on development, testing and application of
efficient and reliable collapse classification algorithms using machine learning tools. To this end, a large
database of structural responses is developed by performing around two million nonlinear time history
analyses of an archetype 20-story tall building. Unscaled seismograms simulated for the Los Angeles
region as part of the Southern California Earthquake Center (SCEC) CyberShake project are used as
inputs for the analysis. Feature selection is performed using regularized logistic regression to identify
intensity measures with strong predictive power for classification of collapse. Results of regularization
generally confirm the understanding of important predictors as gained from scaling of recorded motions
as well as highlight additional important features. Logistic regression and support vector machine
(SVM) binary classifiers are then trained on the data to develop collapse prediction models. The
resulting collapse assessment models achieve high values of precision and recall and show good
performance when tested using benchmark collapse responses. Finally, trained collapse classifiers are
utilized to perform regional estimation of collapse risk. Collapse predictions are made using
CyberShake data from 336 sites across Southern California where there are around 500,000 simulated
seismograms at each site. Regional estimation of mean annual frequency of collapse is performed to
generate maps of collapse risk. Higher values of risk correlate well with geologic features such as
presence of sedimentary basins and the surface trace of the San Andreas fault.

1. INTRODUCTION

The emergence and maturity of physics-based sim-
ulations offer a unique opportunity for application
of machine learning tools for efficient evaluation of
building response. Collapse response is singled out
in this paper as a limit state of practical significance
that is at the same time numerically demanding to

estimate, particularly for regional estimations. Ad-
ditionally, conventional approaches of demand esti-
mation based on recorded seismograms usually re-
sort to scaling of seismograms in order to deal with
lack of data on extreme motions that can induce col-
lapse. This in turn implicitly requires assumptions
on intensity measures that control the response.
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In contrast to approaches based on recorded seis-
mograms, using extensive sets of site-specific un-
scaled motions requires no assumptions about how
properties of motions change with scaling and also
allows for statistically consistent estimation of re-
gional response. For instance, the Southern Cal-
ifornia Earthquake Center’s (SCEC) CyberShake
project [Graves et al. (2011)] performs probabilis-
tic seismic hazard analysis (PSHA) for Southern
California by completely relying on numerical sim-
ulation of earthquake wave propagation explicitly
capturing 3D effects such as seismic focusing and
basin amplifications that otherwise could not be as-
sessed by other methods. In this process millions
of site-specific ground motions are simulated, in-
cluding very extreme ground motions, which offers
a wealth of data to explore the potential of utiliz-
ing earthquake simulations for engineering appli-
cations.

Previous work in engineering utilization of
ground motion simulations mostly focused on val-
idation [e.g. Jayaram and Shome (2012); Galasso
et al. (2013); Burks et al. (2014); Bijelić et al.
(2018b)]. For example, it was shown [Bijelić et al.
(2018b)] that simulated motions can provide reli-
able estimates of seismic performance when used
in the way in which recorded motions are conven-
tionally used (i.e. ground motions scaled and se-
lected to match hazard targets based on empirically
calibrated ground motion prediction models). Fur-
ther, unscaled physic-based simulations from the
SCEC CyberShake project were also used for per-
formance assessment of tall buildings [Bijelić et al.
(2018a)] yielding new insights into reliable assess-
ment of collapse risk in the presence of basin ef-
fects. This paper takes a step further by applying
machine learning techniques to examine the utility
of different intensity measures (IMs) for collapse
assessment and performing efficient regional col-
lapse risk estimations.

Although the idea of using machine learning
for structural response estimations is not new [e.g.
Koutsourelakis (2010); Yazdi et al. (2016)] and
the efficiency of intensity measures has received
a lot of research attention [e.g. Luco and Cornell
(2007); Eads et al. (2016)], this is the first time

that machine learning tools are applied to a large
database of unscaled, site-specific ground motion
simulations with specific goals to: 1) identify seis-
mogram features that control collapse response of
buildings, 2) develop efficient and reliable collapse
classification algorithms, and 3) perform regional
collapse risk estimations. To this end, we utilize a
structural response database obtained by perform-
ing around two million nonlinear time history anal-
yses of an archetype 20-story tall building using
input ground motions from the SCEC CyberShake
simulations for sites in Southern California. Regu-
larized regression is employed as a primary tool for
feature selection considering spectral accelerations
and significant durations. Following feature selec-
tion, model selection is preformed using logistic re-
gression and support vector machines to highlight
the utility of different IMs for collapse prediction in
a manner not possible with the limited database of
recorded motions. An efficient and reliable collapse
classification algorithm is developed and tested us-
ing benchmark results. Finally, the developed clas-
sifier is utilized to perform regional estimation of
collapse risk for Southern California.

2. BUILDING MODEL AND STRUCTURAL RE-
SPONSE DATABASE

2.1. Building model description
An archetype 20-story reinforced concrete special
moment is used in this study. The 20-story build-
ing was designed as part of a previous benchmark
study [Haselton and Deierlein (2007)], according to
the governing provisions of the 2003 IBC, ASCE7-
02 and ACI 318-02. The frame is idealized as
a 2D analysis model using OpenSees [McKenna
et al. (2006)], where the first three modal periods
are 2.63s, 0.85s and 0.45s. The nonlinearities are
captured in concentrated plasticity models in panel
zones and plastic hinges at the ends of columns
and beams. For additional details regarding the de-
sign and modelling assumptions, see [Haselton and
Deierlein (2007)].

2.2. Ground motion database
Ground motions used in this study are unscaled,
site-specific physics-based hybrid broadband sim-
ulated seismograms generated for sites in South-
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ern California (Figure 1) as part of the SCEC Cy-
berShake project [Graves et al. (2011)]. In par-
ticular, we utilize ground motions simulated for
four CyberShake sites as given in Table 1. The
LADT (Los Angeles downtown) is a site of soci-
etal importance due to its proximity to a large in-
ventory of tall buildings. The STNI site is situated
at one of the deepest basin depths in the regions,
where the effects of basin structure on the resulting
ground motions are very pronounced [Graves et al.
(2011)]. The WNGC and SBSM sites are interest-
ing from the perspective that they exhibit coupling
of basin and directivity effects in the ground mo-
tions [Graves et al. (2011)].
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Figure 1: Case study region in Southern California.
CyberShake sites indicated with white triangles, faults
indicated with yellow lines.

Table 1: CyberShake sites for training data and bench-
mark results

Site Latitude Longitude Z2.5 [km] # of seismograms # of collapses

LADT 34.05 -118.26 2.08 417,954 2,348
STNI 33.93 -118.18 5.57 475,910 17,378

WNGC 34.04 -118.06 2.44 478,210 9,135
SBSM 34.06 -117.29 1.77 483,672 27,873

2.3. Structural response database
To obtain the data for application of machine learn-
ing techniques, we develop a structural response
database by performing nonlinear time history anal-
yses of the archetype 20-story model for all of

the seismograms simulated at the considered Cy-
berShake sites (a total of 1,855,746 analyses per-
formed using the Sherlock HPC cluster at Stan-
ford University). No modifications of seismo-
grams are made for the analysis, i.e. as-simulated,
site-specific CyberShake seismograms are used as
inputs to nonlinear time-history analyses. The
database contains information on peak transient
story drifts (SDR) at all stories, the timing of the
SDRs in the waveform, residual SDRs for each
story, roof drift ratio, peak transient floor acceler-
ations (PFArel), and an indication whether a ground
motion induced a collapse. In this paper we limit
our attention to collapse responses although other
EDPs are also available in our database and will be
used in future studies.

3. FEATURE SELECTION FOR COLLAPSE PRE-
DICTION

To examine the predictive power of commonly used
IMs – in particular, Sa values at periods between
0.2T1 and 4T1, and 5-75% and 5-95% significant
durations – feature selection was performed using
the L1-regularized logistic regression [Ng (2004)].
The regression, as implemented in LIBLINEAR li-
brary [Rong-En et al. (2008)] for scikit-learn (a
Python module for machine learning, Pedregosa
et al. (2011)), solves the following unconstrained
optimization problem:

min
θ
||θ ||1 +C

l

∑
i=1

log(1+ e−yiθ
T xi), (1)

where θ are coefficients associated with features x
and ||θ ||1 is the L1-norm. Parameter C is a cost
parameter that penalizes the absolute values of co-
efficients, i.e. ‘encourages’ the sum of the abso-
lute values of the model parameters to be small
[e.g. Ng (2004)]. Note that this formulation in-
volves minimization and applies the cost parameter
to the inverse of the logistic function. Therefore,
models with smaller values of C penalize the coef-
ficients more heavily effectively causing more co-
efficients to shrink towards zero (those models are
hence termed ‘less complex’ models).

Shrinkage of coefficients with cost parameter C
along with the corresponding measure of model
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performance is shown in Figure 2. Models with dif-
ferent values of parameter C were examined by per-
forming 5-fold cross validation on 70% of the data;
class membership ratios were preserved when split-
ting the data into folds. Since different IMs have
different units and span different numerical ranges,
features were standardized (zero mean, unit vari-
ance) to give them equal importance in regulariza-
tion [Hastie et al. (2009)]. Algorithm performance
was measured using precision-recall for following
reasons: (a) use of precision (fraction of examples
classified as positive that truly are positive) rather
than the false positive rate (ratio of false positive
classifications over total number of negative sam-
ples) captures the effect of class imbalance on al-
gorithm performance [Davis and Goadrich (2006)];
(b) use of area under the precision-recall curve
(AUC-PR) rather than a single-threshold value (e.g.
precision) is informative from the viewpoint of al-
gorithms ability to minimize both false positive
as well as false negative errors which is impor-
tant from application perspective. In order to
get reliable estimates of the AUC-PR, integrations
and threshold averaging were performed as recom-
mended in [Davis and Goadrich (2006); Fawcett
(2004)].

The values of coefficients associated with differ-
ent intensity measures that are preserved in differ-
ent models (i.e. for different values of cost param-
eter C) are shown in Figure 3. The figure indi-
cates the results of the regularization and a num-
ber of observations can be made. First, as shown
in Figure 3a, spectral accelerations for periods past
the fundamental structural mode (T1), in particular
Sa(1.5T1 < T < 3T1), have primary importance for
collapse as they appear in the least complex mod-
els (see Figure 2). This is consistent with previ-
ous observations based on recorded motions [e.g.
NIST (2011)]. Further, the Sa values at very long
periods (∼3-4T1) are also included in the best per-
forming models (Figure 3b) – an observation that
is generally not reported in the literature and may
stem from the capability of physics-based simu-
lated earthquakes to better characterize longer pe-
riod energy content. The best performing model
additionally includes significant durations as pre-

dictors (Figure 3c), conforming with recent find-
ings from a study of earthquake ground motion du-
ration effects on structural response [Chandramo-
han et al. (2015)]. Finally, including Sa values at
higher structural modes (0.2T1<T<0.5T1) as predic-
tors generally does not improve classifier perfor-
mance. Further increasing model complexity re-
sults in added weight to Sa values at small periods
without improvement in model performance (sug-
gesting overfitting problems, Figure 3d).

4. MODEL SELECTION FOR COLLAPSE CLASSI-
FICATION

Using the results of feature selection, we next per-
form model selections with the objectives to: 1) ex-
amine the utility of different IMs for collapse clas-
sification, and 2) explore machine learning tech-
niques for development of reliable and efficient col-
lapse prediction algorithms for an archetype tall
building. Based on the performed feature selection,
the following features are kept in consideration
when performing model selection: Sa at periods
between 0.2T1 and 4T1, significant duration (Da5-
75%), and SaAverage(0.2T1− 3.5T1). When com-
paring different models, we use precision-recall
curves as a measure of algorithm performance.

To interpret the utility of different IMs for col-
lapse classification we use relative performance of
linear logistic regression classifiers. For instance,
using SaAverage(0.2T1 − 3.5T1) as a single pre-
dictor yields significantly better performance than
Sa(T1) or Sa(2T1), as seen from precision-recall
curves shown in Figure 4, where classifier perfor-
mance is related to the area under the curve (AUC-
PR). Further, including significant duration in addi-
tion to SaAverage improves model performance by
bringing in the information on duration of ground
motions. The best performing models are obtained
by including Sa spectral acceleration values at a
range of different periods. While not shown in the
figure, it is noted that in the case of using Sa(T >
0.2T1) as predictors, the addition of significant du-
ration did not improve the model performance. This
suggests that the earthquake magnitude, which is
strongly correlated to duration, is already reflected
in the Sa values of the unscaled motions. Note that
this observation would not apply when ground mo-
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Figure 2: Regularized logistic regression: (a) standardized coefficients vs. cost parameter – shrinkage of the coef-
ficients; (b) algorithm performance, measured as area under the precision recall curve (AUC-PR) vs. cost param-
eter. Vertical lines indicated with A-D represent snapshots of the shrinkage process; associated features that are
preserved in the model are indicated in Figure 3.
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Figure 3: Feature selection using regularized logistic regression – importance of different intensity measures for
prediction of collapse. Values of cost parameter associated with cases A-D are indicated in Figure 2.
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tions are scaled, such as it is typically done using
recorded motions.

Recall = TP / TP + FN
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1: Sa(T1); AUC-PR = 0.63
2: Sa(2T1); AUC-PR = 0.82
3: SaAverage([0.2-3.5]*T1); AUC-PR = 0.88
4: SaAv. + Da5-75%; AUC-PR = 0.93
5: Sa(T>0.2T1); AUC-PR = 0.96
6: Sa(T>0.2T1), SVM-RBF; AUC-PR = 0.95

Figure 4: Collapse classification using logistic regres-
sion and SVM – precision-recall curves. TP - true posi-
tive, FN - false negative, FP - false positive.

The observations in the previous paragraph are
all based on logistic regression models with lin-
ear features. To gauge the benefit to be gained
from consideration of nonlinear combinations of
predictive features, we considered the support vec-
tor machine (SVM) algorithm with Gaussian ker-
nel (radial basis function, RBF) and trained with
all Sa features (note: using the Gaussian kernel
corresponds to training the model using an infi-
nite dimensional feature mapping [Ng (2015)]).
The SVM was implemented using LIBSVM [Chih-
Chung and Chih-Jen (2013)] and can be described
by the following optimization problem:

min
θ ,b,ξ

1
2

θ
T

θ +C
l

∑
i=1

ξ i

subject to yi(θ
T

φ(xi)+b)≥ 1−ξ i,

ξ i ≥ 0, i = 1, . . . , l,

(2)

where the used Gaussian kernel is of the form:

K(xi,x j) = e−γ||xi−x j||2 (3)

Parameters C and γ were determined using a grid
search with 70% of the data yielding final parame-
ters C = 1, and γ = 0.01136; standardized features
were used in the model. As shown in the Figure
4, the SVM model achieves essentially the same

performance as its logistic regression counterpart.
We also note that using the SVM algorithm is fairly
more involved than using logistic regression mod-
els.

5. TEST OF COLLAPSE CLASSIFICATION ALGO-
RITHM ON BENCHMARK SITES

We next examine the question of how well do the
collapse classifiers trained with data from one site
generalize to other sites. Figure 5 shows the com-
parison of the predictions of mean annual frequency
of collapse (λc) at case study sites obtained us-
ing an algorithm trained with data from WNGC
site. It can be seen that the algorithm achieves a
relatively good performance with differences be-
tween predicted values and benchmark results rang-
ing from around 20% to 30% depending on the site.
While these values seem relatively large, in the con-
text of discrepancies in computing the λc using the
well-established approaches (see for instance ap-
proximation of direct analysis results with multi-
ple stripes analysis (MSA) combined with gener-
alized conditional intensity measure (GCIM) based
selection discussed in [Bradley et al. (2015)]) they
are deemed acceptable. However, there is still
room for improvement which could potentially be
achieved by considering additional intensity mea-
sures as well as including source, rupture and site
properties as predictive features. Such fine-tunings
are left for future study. Additionally, one of the fu-
ture goals is to predict entire seismic demand curves
for instance by training neural networks on the de-
veloped structural response database. Finally, we
mention that such algorithms are very computation-
ally efficient – training takes around 4min on a con-
temporary personal computer while making predic-
tions for hundreds of thousands of samples takes
less than a second. This makes such algorithms par-
ticularly attractive for risk studies at a regional level
as described in the next section.

6. REGIONAL COLLAPSE RISK ESTIMATION

CyberShake study area consists of 336 sites across
Southern California (Figure 1) and around 500,000
seismograms with two horizontal components are
simulated at each site. The simulated seismograms
are available on SCEC servers, while the data on
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Figure 5: Predictions of mean annual frequency of
collapse (λc) using a collapse classifier trained at the
WNGC site.

intensity measures is stored in an SQL database
which allows for easy access.

We train the collapse classifier with data from
WNGC site and then use the trained classifier to
make collapse predictions at each of the Cyber-
Shake sites while also computing the mean annual
frequency of collapse (λc), as shown in Figure 6.
Since the λc values are very small, the map plots
the log(λc) to better distinguish between different
values. As seen from the figure, higher values of
collapse risk correlate well with locations of sedi-
mentary basins (e.g. Los Angeles, San Bernardino
and San Fernando basins). Additionally, higher val-
ues of risk are observed along the San Andreas fault
predominantly reflecting the influence of rupture
directivity. Areas of very small λc values are ob-
served in mountainous regions.

7. CONCLUSIONS
With the broader goal of informing building design
and improving seismic risk assessment of tall build-
ings, this work focused on development, testing,
and application of efficient and reliable collapse
classification algorithms for regional collapse risk
assessment. A large structural response database
was developed by performing around two million
nonlinear response history analyses of an archetype
20-story tall building using CyberShake simulated
seismograms. The database was used to contrast
the utility of different intensity measures for col-
lapse prediction, and to develop efficient and reli-

Log(MAF_col)
-30 -5

Log(lc)

Figure 6: Collapse risk (λc) of an archetype 20-story
tall building for Southern California.

able classification algorithms for prediction of col-
lapse. The developed collapse classifier was uti-
lized to perform collapse risk estimation for South-
ern California using CyberShake data as inputs.

The analyses performed in this paper exemplify
the possibility of physics-based simulated ground
motions to provide novel insights to questions of
engineering concern in ways not possible with
recorded ground motions. Additionally, they open
a number of directions for future exploration. First,
given the success of the applied regularization, the
efficiency of an arbitrary set of earthquake inten-
sity measures can be analyzed. This can include
previously unused features or end-to-end machine
learning approaches which can prove to be particu-
larly useful for generalization of the models to dif-
ferent geological settings. Furthermore, the devel-
oped structural response database can be utilized to
characterize different damage states of the building
prior to collapse using e.g. multinomial classifica-
tion. Finally, analyses similar to the ones performed
here can be used on a range of different build-
ing types; having building properties as predictors
would enable development of models to simulate
seismic performance of a diverse building stock al-
lowing for loss assessment studies on community
scale. Thus, the classification models developed in
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this study could ultimately be used for seismic risk
mitigation.
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