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ABSTRACT:  

This contribution deals with the vibrational response of Euler-Bernoulli beams equipped with tuned 

mass dampers, subjected to random moving loads. The theory of generalised functions is used to capture 

the discontinuities of the response variables at the positions of the tuned mass dampers, which involves 

deriving exact complex eigenvalues and eigenfunctions from a characteristic equation built as the 

determinant of a 4 x 4 matrix, regardless of the number of tuned mass dampers. Building pertinent 

orthogonality conditions for the deflection eigenfunctions, the stochastic responses, under Poissonian 

white noise, are evaluated. In a numerical application, a beam with multiple tuned mass dampers, acted 

upon by random moving loads, is considered 

1. INTRODUCTION 

The dynamic analysis of Euler-Bernoulli 

beams is a quintessential engineering problem and 

the cornerstone upon which the solutions of many 

problems in the field are based. In recent years, 

thanks to advances in computer technology 

required to solve increasingly complex problems 

and necessitated by significant leaps in the 

transport industry, the dynamic response of 

structures which can be typically modelled as a 

discontinuous Euler-Bernoulli beam, such as rail 

or road bridges, has become increasingly 

important. 

The analysis of these types of multi-span 

beam often focuses on moving loads which 

simulate the effects of traffic loading which these 

structures would be subjected to. Additionally, 

this type of forcing action is assumed because 

beams subjected to moving loads have greater 

maximum deflections and maximum moments 

than beams subjected to static loads. As ever 

faster locomotives are designed, this analysis 

becomes ever more important due to the danger of 

the locomotive reaching the beam's critical 

velocity; the velocity at which serious damage is 

caused to the beam.  

While the vast majority of these studies focus 

on deterministic solutions to known loading, a 

number of studies consider the effect that a series 
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of random moving loads have on the beam. In 

these studies, there is a general assumption made 

by many authors, in which the arrivals of the 

forces acting upon the beam are considered to 

follow a Poissonian distribution. Poissonian 

loading is a special case of random loading in 

which a series of impulses arrives at independent 

random times and with random magnitudes. 

Traffic loading (particularly considering road 

traffic, although this is also applicable to rail 

traffic) can be described as a Poissonian process 

as the magnitude of the forces is random as are 

their arrival times.  

Ricciardi [1] proposed a method of 

modelling the forcing action as a filtered Poisson 

process, this is obtained by finding "the response 

of a linear undamped oscillator excited by a 

Poisson white noise process"   

Currently when calculating the dynamic 

response of a Euler-Bernoulli beam to any forcing 

action, there are only a handful of solution 

methods which can be used to obtain accurate 

results; namely: computer models such as the 

finite element method, or the classical numerical 

method. This paper aims to expand on work 

conducted by [2] in which a novel numerical 

method was developed to find the response of a 

continuous system equipped with tuned mass 

dampers, to a series of moving loads.   

This paper will study the response of a 

continuous Euler-Bernoulli beam, equipped with 

tuned mass dampers, subjected to a series of 

random moving loads. The method developed in 

[2] will be applied and expanded upon, this 

method considers complex eigenfunctions caused 

by localised damping, in this case from the tuned 

mass dampers, for a beam which is subjected to a 

series of moving loads. By extending this to 

consider a series of random moving loads with 

random magnitudes and arrival times, the results 

should more closely reflect the response of a road 

bridge subjected to normal traffic.  

 

2. PROBLEM STATEMENT 

Consider a beam carrying just one tuned 

mass damper (TMD) although, using the method 

proposed in this paper, j number of spring-masses 

could be attached without changing the equation 

of motion.  

Using the proposed formulation, supports, 

lumped masses, TMDs, and a number of other 

attachments which do not cause localised rotation 

are assumed to be a shear discontinuity acting on 

a specific point, this allows the equation of motion 

to take the form [2]: 
4 2

4 2
(

( , ) ( , )
( , ) , )  

x t w x t
EI R x

t

w

x
m t f x t 

 


 
 

 

(1) 

 

Where: EI is the flexural rigidity, m is the 

mass per unit length, ( , )w x t is the transversal 

displacement response of the beam in the space 

and time domains, ( , )R x t  is a generalised 

function [3] used to account for the discontinuities 

and ( , )f x t is the forcing action. In this case, the 

generalised function represents a single TMD [4] 

which can be modelled as a shear discontinuity: 

 
1

( , )  ( )

N

j j

j

R x t P t x x



    (2) 

Where:  jP t  is the shear reactionary force, 

and ( )jx x   is a Dirac's delta function ensuring 

that the reactionary force is acting only at point 

jx , the location of the TMD.  

 

2.1. Free Vibration 

Let the equation of motion, in free vibration, 

be expressed as: 
4 2

4 2

( , ) ( , )
( ) 0,

x t w x t
EI m t

w
R x

x t

 


 
   (3) 

 

At this point the separable variables approach 

is generally applied, where: 

   , ( )w x t x g t  

 
(4) 

Where ( )g t can also be defined as: ( )
i t

g t e


  

Here, the space domain term  x and the 

time domain term ( )g t are split; this allows for the 

solution of the beam's eigenvalues and 

eigenfunctions, however, in order to account for 
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the effects of the reactionary forces in the space 

domain, ( , )R x t  must be Fourier transformed [5]: 

   
1

( )

N

j j j

j

P x x   



    (5) 

Where  jx x  is a Dirac's delta function 

specifying the application point of the force as 

before and [6]: 

 ( ) ( ) ( )j TMD j jK x      (6) 

Where ( )jx is the eigenfunction of 

deflection, and   TMD jK  is the frequency 

dependent stiffness of the spring-mass attachment 

given by [7]:  
2

TMD j   

TMD 2

 TMD j  

( +i  ) M  
( )

M  ( +i  )

TMD j TMD j

j

TMD j TMD j

k c
K

k c

 


 



 (7) 

Where:  MTMD j is the magnitude of the jth 

TMD, TMD jk the spring stiffness of the jth TMD, 

 TMD jc is the damping coefficient of the dashpot, 

which forms part of the jth TMD, and   is the 

natural frequency.  

 

3. EIGENSOLUTION 

The exact modes of vibration can be found by 

applying the separable variables method, equation 

4, allowing the transversal displacement  ,w x t , 

rotation  ,x t , bending moment  ,m x  , and 

shear  ,Q x t , to be expressed as: 

       i i
,  ; ,

t t
w x t x e x t x e

 
     

       i
,  ; ,

i t
m x x e Q x t x e

 
     

(8) 

This gives the four eigenfunctions of the 

response variables  x deflection,  x rotation,

 x  bending moment, and  x shear. These 

eigenfunctions are related in the following 

manner: 

 
     

;  
d x d x x

x
dx dx EI

  
     (9) 

 
 

 
   2

1

;

0 ( )

N

j j

j

d x
x

dx

d x
x

dx
P t x x





 





   
  

From these relations, the free vibration of the 

beam can then be expressed in terms of the first 

eigenfunction in only the space domain: 

 
   

4

2

4

1

0       

N

j

j

d x
P x

dx


  



    (10) 

Where 2 2 4
=( )/  mL EI  . 

Eq. (7) shows that the attached TMD 

reactionary force's relation to the deflection at 

point jx depends solely on the frequency 

dependent term concerning the spring stiffness 

and the attached mass.  

In Eq. (5) the variable ( )j  at jx  is an 

unknown due to the term containing the 

eigenfunction of deflection and the frequency 

dependence of the term which is currently 

unknown. Therefore, the matrix approach is 

applied: 

Let  xY  be a vector of the response 

variables of the eigenfunctions: 

          
T

x x xx x   Y  (11) 

Following the approach proposed by [8] the 

unknown ( )j  can be obtained as a linear 

function of the 4 1  vector c which is composed 

of the four integration constants found from the 

solution of the homogeneous equation. This leads 

to the following closed analytical expression of 

 xY : 

   x xY Y c  (12) 

Where  xY is a 4 4  matrix given by: 

     
1

+ ( ),
N

j j

j

Px x x x 


 Y Ω J  (13) 

Where: 
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 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x

   

   

   

   

   

   


   

   

 
 
 
 
 
 
 

Ω  (14) 

and [9]: 

         
        ,  

T
p p p p

j
x x J J J J

   
   J  (15) 

Where, for the sake of clarity, the matrix 

 xΩ  is constructed from terms contained in the 

general solution of the homogeneous equation in 

the first row and then, following the derivative 

method used to relate the eigenfunctions, the 

subsequent rows are constructed: 

   

       

   

       

   

     

1 2

3 4

1 2

3 4

1 2

3 4

2 2

2 2

                    

   cos             sin

               

   sin        cos

      

   cos        sin

x x

x x

x x

x e x e

x x x x

x e x e

x x x x

x e x e

x x x

 

 

 

 

 

 

 

 

 

 

 

   

 

  







   

   

    

    

    

     

   

       

1 2

3 4

3 3

3 3

           

   sin      cos

x x

x

x e x e

x x x x

 

 

 



 

   


    

    

 

(16) 

From here, the boundary conditions of the 

beam can be enforced which leads to the solution 

below: 

4 4 4 1 4 1  B c = 0  (17) 

Where B is a matrix constructed from 

enforcing the boundary conditions on the matrix 

 xY . 

The characteristic equation can then be built 

as the determinant of the 4 4  matrix B : 

 4 4det 0B =  (18) 

At this point the non-trivial solutions of c are 

found and exact closed form expressions can be 

built for the beam's eigenfunctions. As there is a 

damping element in the model, complex modes 

must be considered.  

 

4. ORTHOGONALITY CONDITIONS 

The orthogonality conditions are then built 

following the method presented in [10] to derive 

the particular impulse response function of this 

beam. 

Firstly the equation of motion in free 

vibration in the form shown below is considered: 

 
4

2

4

1

( )
  ( ) 0( )

N

TMDk jk k

j

k

kj

x
x

d
K x

dx


  



    (19) 

Considering modes m and n , multiplying 

the equation of motion at mode m  by  n x  and 

at mode n  by  m x  and then integrating 

between 0 and L with respect to x: 

 

 

2 2
2

2 2

0 0

 

1

( ) ( )
 

( ) 0

L L

m n
m mn

N

TMD j m mn j

j

x x
dx x dx

dx dx

K

d

x

d  
 

 




 

 


 (20) 

Where:   ( ) ( )mn m nx x x     

 
2 2

2

2 2

0 0

1

( ) ( )
 

( )  ( ) 0

L L

n m

n nm

N

TMD j n nm j

j

x x
dx x dx

dx dx

d d

K x

 
 

 




 

 


 (21) 

Integrating by parts and subtracting Eq. (21) 

from Eq. (20) then yields the first orthogonality 

condition: 

 

 

2 2

0

1

( )  

[  ( )]  ( ) 0

L

m n nm

N

TMD j n TMD j m nm j

j

x dx

K K x

  

  


 

 




 (22) 

The second orthogonality condition is then 

found by multiplying Eq. (20)  by 
n  and Eq. (21) 

by m  and then subtracting Eq. (21)  from Eq. 

(20) : 

 

     

2

2

0 0

( )
  ( )

[ ] 0

L L

mn

m n m n m n nm

m TMD j n n TMD j m nm j

x
dx x dx

x

K K x


    

    

 






  

   (23) 

Where 
2 2 2

2 2 2

( ) ( ) ( )
 mn nm

x x x

x x x

    

  
  and 

( )
m n m n

  


   
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5. FORCED VIBRATIONS 

These orthogonality conditions are then used 

to derive the beam's response to arbitrary loading. 

This is accomplished by using the complex modal 

superposition principle as defined by [10] where 

the complex modal impulse response function is 

used. This leads to [2]: 

     

1 0

     
2

 
 

(
  

, ) k

k

i

k

t

k k

t

x f e d
i

w x t
 

  






 
   (24) 

 

Where:  f  is the moving load and k is 

the effect that the beam’s mass and the attached 

TMD have on the beam’s response: 

  2 2

0
2 [ ( )] [ ( )]k k

N

j Jk

L

j

m x x dx TMD x     (25) 

Where 

 

2

2 3

2

 

[2  ) ]

[ ) ]

(

(

TMD j TMD j TMD j

j

TMD

k TMD j k TMD j

k TMD jj TMD j k

M k
T

i c i M c

i c M
MD

k

 

 


 

 
  

For a moving load, the response equation 

takes the following form: 

   

 

1 0

0

0

     

 

( , )

 

    

2

k

t

k

L

i t

k

k

k k

x e d

x x V dx

i

w x t
 

 

  








 
 
 

  







 

 (26) 

Where: )  is a Dirac’s delta function and 

0V  is the velocity of the load. 

 Further, when considering multiple loads 

traversing the beam, the effects of preceding loads 

must also be accounted for: 

 
 

   

0

0

1

0

  

     
    

               

2

(

    

, )

E
L L

k k

k

t

L

t
i t

k

k

k

t

k

i

x x V dx

x
i

w

e d

x t

e d
   

 

  




 





 

  



 
 
 
 






 

 (27) 

Where: 0

L and E

L  denote the start and end 

times of the Lth load.  

Due to the presence of complex conjugate 

pairs, Eq. (27) can revert to the following real 

form [2]: 

 

 

   

0

0

1

0

  

   
    

  

2

( , ) Re

 
E

L

k

L

k

k

t

L

k

k

k

t

i t

k

i t

x x V dx

x
i

e d e d

w x t

   

 

  




 





 

 









 
 
 
 
 
  
   
  




 

 
(28) 

6. POISSONIAN WHITE NOISE 

PROCESSES 

A Poissonian white noise process is a type of 

delta-correlated process [11], which is most 

commonly defined as [1]: 
( )

1

( ) ( )
N t

P P P

P

S t Y t T


   (29) 

Where ( )N t  is a counting function giving 

the number of impulses in the time interval (0,t), 

PY  is the random amplitude of the forcing action, 

and ( )Pt T   is a series of Dirac delta impulses 

[12] occurring at independent random times ( PT ) 

following a Poissonian distribution. 

When considering a moving load, this 

characterisation of the Poissonian load must be 

altered, it is also assumed that the loads will have 

a constant and equal velocity: 

 
( )

0

1

   ( , )( )P P

N t

LP P

P

Y x t T VS W t T tt 


      (30) 

Where   0  Px t T V     is a modification 

of the Dirac delta function from equation (29) in 

which moving loads arriving at random times with 

random amplitudes are considered,
Lt  is the time 

taken for the load to traverse the beam, length 

divided by the velocity of the moving load, 0/L V  

and ( , )p LW t t t is a window function which 

removes the force after it has traversed the beam; 

here ( )U  is a unit step function: 

( , ) ( )[1 ( )]P L LW t T t U U t     .  

Following the method proposed by [1] [13] 

the Poisson process is filtered to ensure that it is 

applicable to the beam’s characteristics, this 

filtering causes Eq. (30) to take the following 

form: 
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   
( )

0

1

  ( , )
N t

k P

P

k P Lt Y V W t T tS  


   (31) 

Substituting this into the original equation of 

motion gives: 
4 2

4 2

( )

P

0

  1

( , ) ( , )
(

(

,

)  , 

)

( )
P k P

N t

L

x t w x t
EI R x

w
m

V

t
x t

Y W t T tt



 
 









 (32) 

 Considering the theory of separable 

variable, this can also take the following form in 

the time domain: 

  2 ) )
2

(   (k k k k

k

g t g t S t 


 (33) 

Where ( )kS t is the random forcing action at 

the kth mode, this takes the form: 

   
( )

0

1

    ( , )
N t

kk P L

P

t Y V tS W  


  (34) 

7. NUMERICAL APPLICATION 

 

Numerical results were then obtained for the 

beam shown in figure 2; this beam has a length of 

100m, its mass per unit length is 12000kg/m, and 

its flexural rigidity is 400GPa. It was subjected to 

a series of moving loads following a Poissonian 

distribution moving at a constant speed of 25m/s, 

which was simulated using the Monte-Carlo 

method where 2000 samples were generated for 

each of the 5 modes considered. The mean and the 

standard deviations of both the displacement and 

the velocity of the resultant vibrations are shown 

in figures 3-6 below. 

 

8. CONCLUSIONS 

This paper presents a novel method to 

calculate the dynamic response to deterministic 

loads and moving random loads of beams with 

any number of discontinuities, this method was 

then extended to consider random moving loads 

which follow a Poissonian distribution; arriving at 

random times and with random magnitudes, but 

with a constant velocity. The proposed solution 

yields significant computational advantages with 

respect to the classical modal superposition 

method which requires the beam to be divided into 

segments at the location of each discontinuity, this 

results in a matrix of dimensions 4( 1)x4( 1)n n   

for n number of attachments where the 

computational time required to find the 

determinant of this matrix, and to then build the 

characteristic equation, can be prohibitive.  

 This was achieved through the use of the 

theory of generalised functions and the modal 

superposition principle, this allowed novel 

closed-form expressions for the beam’s 

eigenfunctions to be derived by Fourier 

transforming the equation of motion. From this 

the characteristic equation could be found as the 

determinant of a 4x4 matrix for n number of 

attachments, saving computational time. From 

this characteristic equation, through the use of 

appropriate orthogonality conditions, the beam’s 

impulse response function can be used to find 

closed-form expressions of the time domain 

response which can then be calculated through the 

use of Duhamel’s integral for m number of modes.  

A Monte-Carlo simulation was then used to 

find the standard deviation and the mean response 

of the beam to a series of random loads. This 

consisted of solving Eq. 27 two thousand times for 

each mode, ten thousand simulations in total, with 

Figure 1 - Continuous Beam fitted with three TMDs 
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a sampling rate of 1000 samples per second for 15 

seconds. 

The numerical results section clearly shows a 

reduction in the standard deviation of 

displacement when a TMD is fitted although there 

does not appear to be any significant improvement 

using three TMDs vs only one. No such 

improvement can be seen in the mean of these 

results whereas the maximum velocity is greater 

when considering the standard deviation in the 

case with three TMDs although this could be due 

to the lower displacements involved. 

 

 

 

 

Figure 2 - Mean Displacement 

Figure 3 - Standard Deviation of Displacement 
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