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ABSTRACT: Μulti-objective design problems with probabilistic objectives estimated through stochastic 
simulation are examined in this paper. For the efficient solution of such problems a surrogate model 
based optimization scheme, termed MODU-AIM, was recently developed by the authors. Foundations 
of MODU-AIM are the formulation of the surrogate model in the augmented input space, composed of 
both the design variables and the uncertain model parameters, and an iterative implementation that 
adaptively controls surrogate model accuracy. At each iteration, a new surrogate model is developed, and 
a new Pareto front is identified using epsilon-constraint numerical optimization scheme. This front is 
then compared to the previous iteration’s front to examine convergence. If convergence has not been 
established, a set of refinement experiments is identified for the surrogate model development and 
process proceeds to the next iteration. In this paper, integration of multi-objective evolutionary 
optimizers (MOEA) is considered for MODU-AIM. This integration extends MODU-AIM’s 
applicability and numerical efficiency and requires a number of modifications and enhancements to 
address the unique traits of MOEA optimizers with respect to the Pareto front identification. 

 
1. PROBLEM FORMULATION 
Consider an engineering system with design 
vector xnX x   with admissible design space 
X, and uncertain parameters nΘ  θ   
following a known probability density function 
(PDF) ( )p θ with support Θ. Let ( ) znz x,θ 
denote the system’s response vector (with zm 
representing its mth component), obtained 
through a call to a deterministic computationally 
intensive simulator. Assume that there are 
multiple (nh>1) performance measures for 
quantifying the response vector’s favorability, 
written as vector ( , )h x θ  or [ | , ]h z x θ , whose ith 
component is ( , ) : xn n

ih  x θ   . We are 
interested in the following multi-objective 
optimization under uncertainty problem:  

  1min ( ) ( ), , ( )
hnX

H H   H x x x    (1) 

where the ith objective is the expected 
performance under the probability model p(θ):  

( ) ( , ) ( ) ;    1, ,i i hΘ
H h p d i n x x θ θ θ    (2) 

If these probabilistic objectives are competing 
then the design problem in Eq. (1) does not have 
a unique solution, but rather a set of Pareto-
optimal solutions. These solutions are the 
dominant (or equivalently not dominated) feasible 
designs, meaning that there is no other design that 
simultaneously improves on all objectives. The 
set of all Pareto optimal configurations is denoted 
as the Pareto set (PS) Xp with its elements as xp. 
The Pareto front (PF) is the representation of the 
PS on the objective space H(Xp).  

The numerical solution of the multi-objective 
problem of Eq. (1) aims at identifying a (discrete) 
subset of the PF that represent a comprehensive 
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picture of trade-offs between the performance 
objectives (Coello et al. 2007). This solution has 
a considerable computational burden (compared 
to single-objective optimization problems) due to 
the need to thoroughly examine the entire design 
space to evaluate the objective functions trade-
offs. This burden is substantially increased for 
design-under uncertainty applications, especially 
when the simulator evaluation of ( )z x,θ  is 
expensive, since estimation of each objective 
entails calculation of the multi-dimensional 
integral of Eq. (2), which can be reliably 
performed only though stochastic simulation.  To 
alleviate this burden, surrogate modeling 
techniques can be employed to replace the 
complex simulator with a fast-to-evaluate 
emulator (Eldred et al. 2002). Here the 
development of the metamodel in the so-called 
augmented input space (Taflanidis and Beck 
2008), composed of both the design variables and 
the uncertain model parameters is considered, a 
formulation that can provide substantial 
computational efficiency benefits. Kriging is 
adopted as metamodel and the recently developed 
MODU-AIM (Zhang and Taflanidis 2018) 
scheme is adopted and enhanced. Next the 
Kriging-based optimization is reviewed before 
discussing the proposed enhancements.  

2. KRIGING-BASED OPTIMIZATION  

2.1. Fundamentals for Kriging approximation 
As in (Zhang and Taflanidis 2018) the metamodel 
output is chosen to correspond to the response 
vector z, instead of performance objective hi,  and 
the input, denoted herein y, to combination of both 
x and y, y=[x; θ]. For forming the metamodel, the 
output {zm(yt), t=1,…,n} is observed at n distinct 
locations for the input {yt, t=1,…,n}, called 
training (or support) points or experiments. The 
selection of these locations is called design of 
experiments (DoE). Ultimately, Kriging provides 
the following Gaussian process approximation for 
zm based on observations 1 ][ Tn Y y y  (Sacks 
1989): 

  2( | ) ~ ( ), ( )m m mM N  y Y y y   (3) 

where N(a,b) stands for Gaussian distribution 
with mean a and variance b, and ( )m y and 

2 ( )m y correspond to the predictive mean and 
variance for the output zm. Once the Kriging 
metamodel is established, the predictive mean and 
variance can be provided with small 
computational burden (Lophaven et al. 2002). For 
the entire vector z the approximation is 
established by combining the different 
components of the response vector and will be 
denoted as ( | )M z y Y . The essential parts are the 
predictive mean, ( )zμ y , and variance, 2 ( )zσ y , 
vectors assembled through the components of 

( )m y and 2 ( )m y , respectively.  
Based on the response approximation 
( | )M z y Y , the following predictive performance 

measure krig
ih  can be derived to approximate hi : 

 ( , ) [ | , ]

( )
              [ | , ]

( )

              [ ( ), ( ) | , ]

|

nz

krig
i M i

i

krig
i

h h

h d

h





 
  

 


 z

z

z z

x θ z x θ

z μ y
z x θ z

σ y

μ y σ y x θ

Y





  (4) 

where  |.M Y  denotes conditional expectation 
under ( | )M z y Y ,   corresponds to the standard 
Gaussian PDF and last equality stresses fact that 
integral of Eq. (4) can be analytically calculated 
for many practical applications [further 
discussions included in (Zhang and Taflanidis 
2018)]. By taking conditional expectation in Eq. 
(4), the metamodel error has been explicitly 
incorporated into the metamodel-based 
approximation for hi, something that can offer 
substantial benefits for design under uncertainty 
problems (Zhang et al. 2017).   

Approximation of Eq. (4) leads to the 
following metamodel-based predictive objective 

krig
iH for iH : 

 ( ) ( , ) ( )krig krig
i iΘ

H h p d x x θ θ θ   (5) 

and to estimate using Monte Carlo with 
Importance Sampling (IS):  

 
1

( )1ˆ |{ } ( , )
( )

iN j
krig krig j i
i i i i j

ji i i

p
H h

N q

 
  

 
 θ

x θ x θ
θ

  (6) 
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which can be efficiently estimated exploiting 
Kriging’s numerical efficiency. In Eq. (6) ( )iq θ  
is the IS proposal density introduced to enhance 
the stochastic simulation accuracy for the 
estimation of the ith objective and 
{ } { , 1, , }j

i i ij N θ θ   is the sample set from 
( )iq θ . Selection of Ni and qi(θ) that establishes a 

target accuracy for the estimate in Eq. (5) within 
the optimization framework are discussed in 
detail in (Zhang and Taflanidis 2018).  

Utilizing the approximated objectives in Eq. 
(6), the following approximate multi-objective 
problem is established: 

 1
ˆ ˆ ˆmin ( ) ( ), , ( )

h

krig krig krig
n

X
H H   H x x x   (7) 

This problem can be solved by any appropriate 
multi-objective optimizer. The important question 
is how to efficiently obtain a predictive PS for Eq. 
(7) that approximates the actual PS of Eq. (1)well. 
This efficiency is directly quantified by the 
number of experiments needed for the metamodel 
development. The adaptive iterative MODU-AIM 
scheme proposed recently by the authors  (Zhang 
and Taflanidis 2018) is utilized for this purpose. 

2.2. MODU-AIM optimization overview 
At each MODU-AIM iteration (k), the 

metamodel is constructed from all current 
available experiments and is used to create the 
current approximation to the performance 
objectives ( )ˆ krig k

iH  and subsequently, identify the 
design configurations belonging to the predictive 
PS ( ) ( ) ( ){ ; 1,..., }k r k k

p p pr n X x . This is established 
by solving optimization of Eq. (7)  through 
epsilon-constraint approach (Mavrotas 2009), 
which decomposes the multi-objective 
optimization into a number of single-objective 
constrained optimization problems. Then the 
current PS are compared to the PS in the previous 
iteration ( 1) ( 1) ( 1){ ; 1,..., }k r k k

p p pr n   X x . If 
convergence is not reached, the set of experiment 
is enriched with refinement experiments, a new 
metamodel is developed, and the optimization 
proceeds to the next iteration. In this manner, 
refinement experiments can be selected based on 
information from previous iterations, and total 

computational effort can be controlled by 
iteratively evaluating convergence properties and 
adaptively controlling metamodel accuracy by 
identifying regions of importance for the multi-
objective problem at hand.  

The applicability of MODU-AIM is 
somewhat constrained by the adoption of epsilon-
constraint as optimizer. This limits the extension 
beyond bi-objective problems, as computational 
burden of method drastically increases (Miettinen 
2012), as well as the size of the PS, since 
identification of each member requires a separate 
optimization. The reliance on epsilon-constrain is 
addressed next.   

3. EVOLUTIONARY-BASED MODU-AIM  
Over the past decades, a number of multi-

objective evolutionary algorithms (MOEAs) have 
been suggested (Coello et al. 2007). MOEAs 
directly identify a population of PS candidate 
solutions under some fitness assignment and 
selection operators. The primary reason for their 
popularity is due to their inherent parallelism and 
their capability to discover multiple Pareto-
optimal solutions in a single optimization run, as 
well as their easily scalability to many-objective 
problems (nh>2). To benefit from such advantages 
of MOEAs, we proposed an improved version of 
MODU-AIM that uses one of the popular MOEA 
techniques, the NSGA-II solver (Deb et al. 2002) 
to find predictive Pareto-optimal solutions in each 
iteration. In what follows, we provide several 
modification and enhancement strategies to 
MODU-AIM that takes into account the use of 
MOEA optimizers. 

3.1. Importance sampling proposal density 
In original MODU-AIM, the predictive PS in 

every iteration are always well-distributed and 
relatively small (10-20 solutions). Consequently, 
the IS proposal density can be chosen as the 
mixture of KDE optimal IS densities for all xp in 
the predictive PS. Under MOEA, two issues need 
to be addressed before using this approach. First, 
the predictive PS obtained with MOEA lacks 
guarantee to be as well distributed as ones 
obtained using epsilon-constraints optimizations. 
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They can be either over- or under populated in 
some particular sub-regions. Secondly, in order to 
fully utilize the advantage of MOEA, PS size are 
usually chosen significantly bigger than the ones 
under epsilon-constraints (several hundreds). It is 
then unnecessary to construct and mix optimal IS 
densities from all members in PS as neighboring 
solutions should have similar IS densities. 

Our remedy is to use clustering. We first 
cluster current PS by their predictive objectives 

 ( )ˆ krig kH x  (pre-normalized into [0, 1] range) 
with K-Means clustering (Hartigan and Wong 
1979) into nc clusters. Those solutions whose 
predictive objective  ( )ˆ krig kH x  is nearest to 
cluster centroids are further considered. The final 
IS proposal only uses KDE optimal IS densities 
for those solutions as the mixture component. 
Such clustering ensures that the selected subset of 
points are diverse in the objective space and can 
represent the whole PF well.  

3.2. Stopping criteria 
Stopping criteria, evaluating whether 

convergence has been established, are critical for 
the computational efficiency of MODU-AIM. 
This is established by assessing the performance 
discrepancy between previous and current PF. 
Upon convergence, the precedent PF should also 
be near Pareto-optimal in current iteration. In 
original MODU-AIM (Zhang and Taflanidis 
2018), this performance discrepancy was 
probabilistically assessed through pairwise 
comparisons between members in precedent and 
current PS, leveraging conditional realization 
(CR) of the metamodel predictions to incorporate 
the metamodel error in the estimation (leading to 
a probabilistic assessment as mentioned above). 
However, the computational complexity for CR 
approach makes it impractical to the MOEA-
based implementation, as the latter might have 
hundreds of members in PS.  

To circumvent this challenge, stopping 
criteria utilizing directly the predictive 
performance objectives of Eq. (5), instead of CR 
of these objectives, are established here.  
Specifically, we compare the performance of 

previous PS ( 1)k
p
X  to current one ( )k

pX  under two 
popular measures for MOEAs  (Yen and He 
2014). The first one is the maximum spread (MS) 
measuring how well the previous PS ( 1)k

p
X  can 

cover the PF in current iteration. The second one 
is the ratio of non-dominated individuals (RNI), 
measuring how many previous PS members are 
non-dominated by current PS. Both measure are 
bounded in the interval of [0, 1]. As iterations of 
MODU-AIM progress, and convergence is 
gradually achieved, the current PF should not 
significantly extend to new regions. As such, 
convergence is assessed by checking whether MS 
and RNI of previous PS exceed some pre-
specified values (e.g., 0.8) when compared to the 
current PS.  

3.3. Design of experiments 
If convergence has not been achieved, the 

current experiments needs to be enriched to 
inform the development of a more accurate 
metamodel. We adopt the adaptive sampling-
based DoE framework proposed in (Zhang and 
Taflanidis 2018) with a few enhancements and 
modifications to make it compatible with MOEA. 
The sampling-based DoE has the ability of 
identifying multiple new experiments 
simultaneously. It achieves so by first locating a 
large population of candidate experiments using a 
target density ( , ) x θ  to represent domains of 
interests in the input domain, and then using a 
utility function to incorporate metamodel 
accuracy in the DoE, by prioritizing candidate 
experiments with larger predicted error. Finally 
clustering is conducted on the prioritized 
candidates to eliminate close-proximity solutions.    

The modifications here focus on the 
definition of target densities. For x, design 
candidates should be generated around non-
convergent PS regions. In original MODU-AIM, 
such non-convergent regions are discretely 
represented by current Pareto optimal solutions 
that probabilistically dominate any member in the 
previous PS, with probability of dominance 
evaluated using conditional realizations of the 
metamodel predictions. If the set of such solutions 
is denoted as ( ) ( ){ ; 1,..., }k r k

d d dr n X x , then the 
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target density for x is chosen as a kernel-based 
density ( )( | )k

d x X . In this paper, we replace the 
probabilistic dominance by a more efficient check 
for non-convergence. This is done by simply 
looking at the performance of current Pareto 
optimums in previous iteration, and retain the 
solutions being dominated by previous PS as non-
convergent solutions:  

)

( 1) (

( ) ( ( 1

)

)

1

1, , ,

ˆ ˆ            ( ')  ( )}

{ | ' , h

kri k

k k k

g k ri

p

g k
i i

d p i n

H H





    



X x X x

x x

X 
  (8) 

The principle behind definition of Eq. (8) is that if 
a current Pareto optimal solution is dominated 
with respect to the solution of the approximate 
multi-objective problem in the previous iteration, 
significant enhancements must have been locally 
achieved around this solution at the current 
iteration, which means that its domain should be 
regarded as non-converged and considered for 
further exploitation.   

For θ, the domain of interest corresponds to 
domains in Θ that provide higher contribution 
towards the integrand representing performance 
functions for each specific x. The optimal IS 
densities can be good choices here. In the original 
MODU-AIM, this is established by introducing 
the auxiliary density as an equal-weight mixture 
of the IS densities for each objective. This 
effectively means that for any design 
configuration, all objective are treated equally, as 
different IS densities generate same amount of 
candidate experiments. This however neglects the 
fact that different objectives have different levels 
of importance regarding the particular design 
configuration x. For example, if the design is the 
minimizer for one objective, reducing the 
metamodeling error for important domains of the 
other objectives would be far less critical 
(practically inconsequential) than the objective it 
minimizes. 

In this paper, we compute the importance of 
different objectives to the design configuration x 
using the Tchebycheff procedure (Miettinen 
2012). This approach finds the unique weight 
vector ( 1( ) [ ( ), , ( )]

hp p n p λ x x x ) that sum up 

to one and associate each Pareto optimum xp of 
Eq. (7) to the minimizer of a composited single-
objective as: 

,min
1, ,

ˆ( ˆ(arg min  m ) ]}ax { [ )
h

p i
X

gkrig kri
i i

i n
H H



 
 





x x x


  (9) 

where ,min
ˆ krig

iH  corresponds to the minimum of the 
ith objective. Using the PS, one can then 
approximately identify the weight vector ( )pλ x  
for each solution, for example, through exhaustive 
search on a large sample set of λ  which sum up 
to one and is inside the space [0, 1]nh.  For 
selecting the target density for θ, each optimal IS 
proposal density is ultimately weighted 
proportional to λ:  

 
1

1
( | ) ( ) ( | )

hn

p i p i p
ihn

  


 θ x x θ x   (10) 

where ( | )i θ x  is the optimal IS density for the 
ith objective (that is, the density proportional to 
the integrand of the objective)   

The target density is ultimately defined by 
combining ( )( | )k

d x X  for x (sampled first) with 
( | )p θ x  for θ (conditionally sampled second), 

where the latter is evaluated for the specific xp that 
corresponds to the respective Kernel selected for

( )( | )k
d x X .   

4. REVIEW OF ALGORITHM 
When combining the previous ideas, one can 

formulate the following optimization approach, 
termed MODU-AIMe  

Step 1 (Initial DoE): In the first iteration employ 
the initial DoE strategy to obtain total of n(1) 
training points, gradually increasing number of 
points till satisfactory cross-validation accuracy 
is achieved. Evaluate model response for these 
points {z(yt); t=1,…,n(1)}.  
Step 2 (Kriging model): Utilize all available 
observations in the database to formulate the 
Kriging metamodel and obtain approximation 

( ) ( , )krig k
ih x θ . 

Step 3 (IS density formulation): Cluster the PS 
in previous iteration )1(k

p
X  into nc centroids. For 

each centroid, identify the Pareto set member 
that is closest to it ( )1(r k

p
x ), and obtain nis 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 6 

samples from all of its optimal IS densities 
( )1( | )r k

i p θ x . For each objective, the IS density 
( ) ( )k
iq θ   is formulated through kernel density 

approximation combining all corresponding 
samples. In the first iteration skip this step and 
use (1) ( ) ( )iq pθ θ  [no prior information 
available].  
Step 4 (Stochastic simulation sample 
generation): Simulate set ( ){ } k

iθ  of Ni samples 
from ( ) ( )k

iq θ  as the stochastic simulation 
sample set for the current iteration.   
Step 5 (PS identification): Solve optimizations 
described by Eq.  (7) with NSGA-II optimizer 
to obtain current Pareto set ( )k

pX .  
Step 6 (Stopping criteria): Check if the stopping 
criteria have been reached as detailed in Section 
3. 2. If they are met or any desired limit on total 
computational effort has been exhausted, the 
optimization process is terminated.  
Step 7 (Refinement DoE): If optimization 
process is not terminated, employ the adaptive 
sampling-based DoE strategy (Section 3.3) to 
obtain total of na training points.  
Step 8 (Evaluation of the response): Evaluate 
the model response {z(yt); t=1,…,na} for the 
newly identified training points at Step 7 and 
combine with the previous observations in a 
database over all iterations. Proceed back to 
Step 2 advancing to k+1st iteration.  

5. ILLUSTRATIVE EXAMPLE 
For the illustrative example,  the design of bilinear 
passive dampers for the suspension of a half-car 
nonlinear model riding on a rough road is 
considered. 

5.1. Numerical details   
Numerical details are included in (Zhang and 
Taflanidis 2018). The nx=4-dimensional design 
variable contains average damping coefficients 

lC and the percentage increase of damping nr  for 
upwards movement of the suspension (creating 
the bilinear damping force). They are allowed to 
be separately selected for the front and rear 
dampers (distinguished by subscript f or r), 
leading to [ ]Tl n l

f
n

f rrr rC Cx . A total of 
nθ=15 uncertain model parameters are considered, 

including modelling parameters for the car model, 
the driving velocity and the road surface 
roughness (modeled as a stochastic process). 

Performance objectives chosen are related to 
the ride comfort and road holding, corresponding 
to typical objective examined tor suspension 
design (Dahlberg 1978). For the ride comfort the 
fragility related to the root mean square statistics 
(RMS) of the vertical acceleration at the center of 
mass RMSac is used, whereas for the road holding 
the sum of RMS dynamic forces developed 
between the ground and tires (RMStf, RMStr) is 
adopted. For the acceleration fragility, log-normal 
characteristic are assumed with threshold b=1 
m/s2 defining acceptable performance and 
coefficient of variation σb=5% for the fragility. 
This leads to the following performance measures 

 
1

2

ln( ) ln( )
( , )

( , )

ac

b

tf tr

h
RMS b

h RMS RMS


 

 




 




θ

θ

x

x

  (11) 

The response vector corresponds to the log of the 
RMS acceleration and the RMS tire forces with 
z=[ln(RMSac) RMStf RMStr]T. The predictive 
performance objectives in Eq. (4) are 

 
1

1 2 2
1

2 2 3

( ) ln( )
( , )

( )

( , ) ( ) ( )

krig

b

krig

b
h

h


 

 

   
  

 

y
x θ

y

x θ y y

  (12) 

For the algorithm numerical settings, the 
number of the initial support points ninit and the 
additional refinement support points na are both 
chosen as 200. The algorithm terminates when 
both the MS and RNI of precedent PS exceeds 0.8 
in current iteration. For the NSGA-II optimizer, 
the size of final obtained PS is set to np = 200. The 
other algorithm parameter settings are identical to 
(Zhang and Taflanidis 2018). In the sample run, 
MODU-AIMe converges within 6 iterations, 
using a total of 1200 experiments. For verification 
purpose, a set of 15 well-distributed Pareto 
optimum are obtained with a total number of 
3,590,000 function evaluations using a costly 
global optimization approach (Zhang and 
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Taflanidis 2018). This set will be further denoted 
as the reference PS. 

5.2. Results and discussion   
To show that the proposed framework can 

correctly identify the actual PF, we first obtain the 
actual objectives (i.e., estimated with the exact 
numerical model) of the predictive PS identified 
in different iterations of MODUM-AIMe, and 
depict them along with the reference PS in Figure 
1. As the computational cost to estimate actual 
objective function on every predictive Pareto 
optimums would be prohibitive, here we first 
conduct clustering as described in Section 3.1 to 
obtain 10 representative members per iteration, 
and then estimate the objectives on those 
members only.  

 

 
Figure 1. Evolution of Pareto front across the 
different iterations of MODU-AIMe. Evaluation is 
performed through the exact numerical model. 

 
Is it clear from this figure that as the iteration 

increases better agreement is established between 
the MODUM-AIMe and reference PF. This 
demonstrates that proposed framework can indeed 

adaptively improve the metamodel accuracy and 
subsequently the quality of the identified 
solutions across the iterations, facilitating a 
convergence to reference solutions with 
substantial computational savings (1200 model 
evaluations only).   
 

 
Figure 2. Comparison between precedent (red 
pluses) and current Pareto front (blue dots) across 
the different iterations of MODU-AIMe. Evaluation is 
performed through the current metamodel  
 

To evaluate the efficiency of the proposed 
stopping criteria, Figure 2 plots the predictive 
objectives of current PS [i.e., ( ) ( )ˆ ( )krig k k

pH X ] in 
current (kth) iteration as well as the updated 
objective values of the previous (k-1) PS [i.e., 

( ) ( 1)ˆ ( )krig k k
p
H X ]. By visual inspection one can see 

that the discrepancy between precedent and 
current PS indeed decreases. This can be seen 
from the increasing maximum spread (MS) of the 
precedent PF (see the distance between extremes 
in precedent and current PS), but also by more and 
more non-dominated members in the precedent 
PS (measured by RSI). Overall, this plot justifies 
the use of proposed stopping criteria. 
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6. CONCLUSIONS 
Multi-objective design problems with 
probabilistic objectives estimated through 
stochastic simulation were examined. Approach 
extends the authors’ previous Kriging-based 
iterative optimization scheme MODU-AIM, by 
the integration of multi-objective evolutionary 
optimizers (MOEA). This use of MOEA has the 
promise of broadening the applicability and 
enhancing the numerical efficiency of MODU-
AIM, but requires modifications to address the 
unique traits of MOEA optimizers, such as the 
lack of guarantee of well-distributed solutions and 
the large solution set. Adjustments to the 
importance sampling density selection as well as 
to the stopping criteria were proposed that are 
compatible with MOEA’s large PS size. A 
modified design of experiment (DoE) method that 
is compatible with MOEA was also proposed. The 
modified DoE established additional  
enhancements to accounts for different local 
importance of objectives. The computational 
framework was applied to an engineering problem 
considering the design of bilinear passive 
dampers for the suspension of a half-car nonlinear 
model riding on a rough road. The example 
demonstrated that the proposed framework can 
correctly converge to the true Pareto optimums 
with great computational efficiency.  
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