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ABSTRACT: This paper introduces a practical comparison of a newly introduced inverse method for
the quantification of epistemically uncertain model parameters with the well-established probabilistic
framework of Bayesian model updating via Transitional Markov Chain Monte Carlo. The paper gives a
concise overview of both techniques, and both methods are applied to the quantification of a set of
parameters in the well-known DLR Airmod test structure. Specifically, the case where only a very
scarce set of experimentally obtained eigenfrequencies and eigenmodes are available is considered. It is
shown that for such scarce data, the interval method provides more objective and robust bounds on the
uncertain parameters than the Bayesian method, since no prior definition of the uncertainty is required,
albeit at the cost that less information on parameter dependency or relative plausibility of different
parameter values is obtained.

1. INTRODUCTION

In general engineering practice, the knowledge on a
structure is usually incomplete, be it due to inherent
variable model parameters or a lack of knowledge

on the true parameter values Ferson and Ginzburg
(1996). Hence, representing these model param-
eters as deterministic quantities might prove to
be inadequate when a reliable and economic de-
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sign is pursued, as a large degree of conservatism
is needed to prevent premature failure and corre-
sponding maintenance or insurance costs. This
over-conservatism not only impairs the economic
cost of producing the component; it also leads to
unnecessary weight increase, which is impermis-
sible in high-performance sectors such as machin-
ery design, aerospace or automotive. In the last
few decades, highly advanced techniques including
probabilistic Stefanou (2009), possibilistic Moens
and Hanss (2011) or imprecise probabilistic meth-
ods Beer et al. (2013) have been introduced to in-
clude non-determinism efficiently in these design
models and mitigate these risks.

In order for these tools to deliver a realistic quan-
tification of the non-determinism in the responses
of the design model, the description of the non-
deterministic parameters of the model should be
made objectively and accurately. Since not all pa-
rameters (such as e.g. connection stiffness values
or heterogeneous material properties) are trivial to
measure directly, inverse uncertainty quantification
(UQ) techniques have been introduced. Follow-
ing inverse UQ, the responses of the structure are
measured and used to infer knowledge on the non-
determinism in the model parameters. As concerns
inverse UQ in a probabilistic sense, the class of
Bayesian methods is considered the standard ap-
proach Beck and Katafygiotis (1998); Katafygio-
tis and Beck (1998), even for random fields Soize
(2011). However, in the context of limited, insuffi-
cient, vague or ambiguous data, the prior estimation
of the joint probability density function of the non-
deterministic parameter values is subjective. More-
over this estimate influences the quantified result to
a large extent when insufficient independent mea-
surement data are available.

Recently, a novel methodology for the identifica-
tion of multivariate interval uncertainty was intro-
duced by some of the authors in Faes et al. (2016,
2017), with an extension to interval fields in Faes
and Moens (2017a) and complex interdependence
structures Faes and Moens (2019). This method is
based on the convex hull concept for the represen-
tation of dependent uncertain output quantities of
an interval FE model, and iteratively minimizes the

discrepancy between the convex hull of these un-
certain output quantities with the convex hull over
a set of replicated measurement data.

The literature on comparing forward UQ in a
probabilistic and non-probabilistic context is abun-
dant Elishakoff (2000); Vandepitte and Moens
(2011); Beer and Kreinovich (2013) and both
classes of techniques are considered complemen-
tary rather than competitive. However, a theoretical
and practical comparison for inverse approaches is
severely lacking in literature and limited to works
of the authors Broggi et al. (2018); Faes et al.
(2019). This paper therefore presents a practical
comparison of Bayesian model updating with the
inverse interval quantification technique under very
scarce data via a case study approach. The paper
starts by briefly introducing Bayesian model up-
dating and interval quantification from a theoretical
perspective, highlighting potential shortcomings of
the techniques. Then, the results are compared
using the well-known DLR Airmod test structure.
Section 2 recalls the Bayesian approach to uncer-
tainty quantification. Section 3 introduces the in-
verse method for interval quantification. Section 4
applies both methods to the DLR Airmod test struc-
ture for the case of limited data. Finally, section 5
lists the conclusions of the work.

2. BAYESIAN APPROACH
The use of Bayesian methods for inverse uncer-
tainty quantification of is largely founded on the the
pioneering work of Beck and Katafygiotis Beck and
Katafygiotis (1998); Katafygiotis and Beck (1998)
in the late 1990s. Following the Bayesian interpre-
tation of probability, the probabilistic nature of an
uncertain parameter is interpreted as the degree to
which it is believed that each possible value of this
parameter is consistent with the available informa-
tion. Following Bayes’ rule, this degree of belief is
adjusted using independent information. As such,
the Bayesian methods translate this prior knowl-
edge on the uncertainty corresponding to the pa-
rameter values to an updated posterior knowledge,
based on experimental data.

As a first step in the inverse uncertainty quan-
tification, a prior probability distribution p(θ |M ),
conditioned upon a chosen mathematical model
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M , is assigned to a set of uncertain parameters θ .
These distributions represent prior information on
the uncertain parameters. Then, independent ex-
perimental data D are used to update p(θ |M ) by
means of Bayes’ theorem to obtain the posterior
distribution p(θ |D ,M ):

p(θ |D ,M ) =
p(D |θ ,M ) p(θ |M )

p(D |M )
(1)

where p(D |θ ,M ) is the likelihood of obtaining the
data D , given the value of the uncertain parame-
ters θ and a model of the structure M . The de-
nominator of eq. (1), also commonly referred to
as evidence, ensures that the posterior distribution
p(θ |D ,M ) integrates to one.

In the context of structural dynamics, the data
D usually consists of the residuals between experi-
mental measurements and predictions of M :

εi = ze
i − zm

i (θ), i = 1, . . . ,d (2)

where ze
i is the i-th measured eigenfrequency, zm

i (θ)
is the i-th predicted eigenfrequencies of a finite el-
ement model and d the number of considered re-
sponses.

In practice, the likelihood function is often cho-
sen to be a zero-mean multivariate normal distribu-
tion:

p(D |θ ,M ) =
N

∏
i=1

1
(2π)n/2|Σ|1/2

exp
(
−1

2
ε

T
i (θ)Σ

−1
εi(θ)

) (3)

where N denotes the number of data points in
D . The solution to eq. (1) is commonly approx-
imated by sampling from a Markov Chain that is
ergodic and stationary with respect to p(D |θ ,M ).
In this paper, transitional Markov Chain Monte
Carlo (TMCMC), as introduced by Ching and Chen
Ching and Chen (2007), is applied for the compu-
tation of the posterior distribution.

3. INTERVAL APPROACH
An inverse method for the quantification of mul-
tivariate interval uncertainty, based on a set D of

measured structural responses, was recently intro-
duced by some of the authors Faes et al. (2016,
2017); Faes and Moens (2017a,b).

Following this method, the experimental data D
are represented using their convex hull C e. Simi-
larly, also the convex hull C m of the uncertain real-
ization set z̃m is constructed. Specifically, z̃m is ob-
tained by propagating the multivariate interval un-
certainty, captured in an interval vector θ I , through
M :

z̃m =
{

zm
j | zm

j = M (θ i);θ i ∈ θ
I; i = 1, . . . ,q

}
(4)

Since the computational complexity of comput-

ing a convex hull scales O(bv
d
2
c c/bd

2c!), with vc
the number of vertices of C m Barber et al. (1996),
both convex hulls are not computed in d dimen-
sions. Therefore, both z̃m and D are projected
onto d+

r -dimensional sub-spaces prior to the com-
putation of the convex hulls. The sub-spaces are
defined by a lower-dimensional orthogonal basis
B+

i ⊂B, i = 1, . . . ,
( dr

d+
r

)
, constructed as a subset

of B, with d+
r << dr and

( dr
d+

r

)
the binomial coef-

ficient. This orthogonal basis B from which these
sub-spaces are constructed is defined in Rdr , with
dr << d:

B = span{φ e,d−dr
,φ e,d−dr+1, ...φ e,d} (5)

with φ e the dr eigenvectors corresponding to the dr
largest eigenvalues of the covariance matrix Ξe of
the measurement data set D . Specifically, the ith

orthogonal subspace basis B+
i ⊂B is defined as:

B+
i = span{φ m,Ii(1),φ mIi(2), . . .φ m,Ii(d+

r )} (6)

with Ii an index set containing the d+
r indices for

the ith, i = 1, ...,
( dr

d+
r

)
subspace of B.

Based on the convex hulls of measurement and
simulation data, the multivariate interval uncer-
tainty in θ

I is obtained by minimizing following
objective function:

δ (θ I) =

( dr
d+r
)

∑
i=1

(
∆V 2

m,i +wo∆V 2
o,i +∆c2

i
)

(7)
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with:

∆Vm,i = 1−
Vm,i(θ

I)

Ve,i
(8a)

∆Vo,i = 1−
Vo,i(θ

I)

Ve,i
(8b)

∆ci =
∥∥ce,i− cm,i(θ

I)
∥∥

2 (8c)

where Vm,i and Ve,i are the d+
r -dimensional vol-

umes of respectively C m
B+

i
and C e

B+
i

, Vo,i is the vol-
ume of the overlap of both convex hulls, and ce,i
and cm,i are the centers of gravity of respectively
C e

B+
i

and C m
B+

i
. Note that for notation simplicity,

the subscript B+
i is simplified to i.

4. CASE STUDY: THE DLR AIRMOD
4.1. DLR AIRMOD model and dataset
The DLR AIRMOD structure, as shown in figure
1, is a scaled replica of the GARTEUR SM-AG19
benchmark airplane model Govers et al. (2014).
The finite element model of this structure is ex-
plained in detail in Govers et al. (2014). A set of
18 parameters including support and joint stiffness
values, as well as mass parameters are selected for
the identification (see table 1), in correspondence
with literature on the subject Govers et al. (2014).
The locations of these parameters are indicated in
figure 1.

Figure 1: Illustration of the AIRMOD test structure
(adapted after Govers et al. (2014)

This model is solved for the first 30 eigenmodes
and corresponding -frequencies. Due to the low
stiffness of the support, also rigid body modes are
present in the model, which are also considered in

the quantification procedure. From the set of 30
computed eigenmodes, the 1st − 8th, 10th − 12th,
14th, 19th and 20th mode are selected for the iden-
tification (see Faes et al. (2019) for more details).
These 14 modes are selected to be consistent with
literature on the subject. A measurement data set
containing 5 measurements of the 30 eigenmodes
and -frequencies is applied for the inverse UQ. This
is a small subset of the complete measurement data
set that is available for the DLR Airmod test struc-
ture. For a complete explanation of the experi-
mental campaign that was followed to construct
this dataset, the reader is referred to Govers et al.
(2014).

4.2. Inverse uncertainty quantification
For the propagation of the interval uncertainty θ I ,
reduced transformation method Hanss (2002) is ap-
plied since the eigenfrequencies predicted by a lin-
ear numerical model are a strict monotonous func-
tion of the uncertain model parameters Adhikari
(1999). However, the number of necessary func-
tion evaluations for the propagation scales expo-
nentially with the number of uncertain model pa-
rameters. For the multivariate interval quantifica-
tion method, it is therefore assumed that the masses
at both wing-tips (i.e. θ9 and θ10) and the stiff-
ness introduced by the cables at the top and the bot-
tom of the structure (θ4 and θ5) are completely de-
pendent, reducing the number of uncertain param-
eters to 16. Hence, the number of necessary func-
tion evaluations for a single interval computation
reduces from 262144 to 65536. This assumption is
not made for the Bayesian method, as the Monte
Carlo sampling that underlies the applied TMCMC
approach is dimension-independent.

The Bayesian uncertainty quantification was per-
formed using 18 uncorrelated marginal uniform
prior distributions. The range of the distribution of
each parameter has been selected spanning an in-
terval from 5% to 200% of the parameter nominal
value. The parameters are selected as uncorrelated
to make the base assumption as objective as pos-
sible. The likelihood, as introduced in eq. (3), is
constructed under the assumption of independence
of the data. The interval uncertainty quantification
is performed by solving the optimization problem
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Table 1: Parameters that are used in the identification

Type Description Orientation Deterministic value
θ1 Stiffness Support stiffness y 1.80 ·1003 N/m
θ2 Stiffness Support stiffness y 7.50 ·1003 N/m
θ3 Stiffness Cables y 1.30 ·1002 N/m
θ4 Stiffness Cables y 7.00 ·1001 N/m
θ5 Stiffness Cables y 7.00 ·1001 N/m
θ6 Stiffness Joint stiffness x,y 1.00 ·1007 N/m
θ7 Stiffness Joint stiffness z 1.00 ·1009 N/m
θ8 Mass Cables / 2.00 ·10−01 kg
θ9 Mass Screws / 1.86 ·10−01 kg
θ10 Mass Screws / 1.86 ·10−01 kg
θ11 Mass Cables / 1.50 ·10−02 kg
θ12 Mass Cables / 1.50 ·10−02 kg
θ13 Mass Cables / 1.50 ·10−02 kg
θ14 Stiffness Joint stiffness x 2.00 ·1007 N/m
θ15 Stiffness Joint stiffness y 2.00 ·1007 N/m
θ16 Stiffness Joint stiffness z 7.00 ·1006 N/m
θ17 Stiffness Joint stiffness x 5.00 ·1007 N/m
θ18 Stiffness Joint stiffness y 1.00 ·1007 N/m

introduced in equation (7) via Particle Swarm Op-
timization (PSO). A swarm size of 100 particles is
used, and the optimization is considered to be con-
verged when it reached 15 stalling iterations. These
settings are found in a heuristic approach and based
on prior experience with PSO. The datasets are,
prior to solving eq. (7), projected on 2-dimensional
sub-bases B+

i of a 13-dimensional orthogonal ba-
sis B. For a more in-depth discussion concerning
the computational aspects and exact implementa-
tion procedure, the reader is referred to Faes et al.
(2019).

Figure 2 shows all combinations of the eigenfre-
quencies corresponding to the 1st−8th, 10th−12th,
14th, 19th and 20th mode. These eigenfrequencies
are obtained by propagating the intervals and pos-
terior distributions, quantified using respectively
the interval method and Bayesian model updating,
through the FE model of the DLR Airmod structure.

Concerning the marginal eigenfrequencies, the
bounds predicted by the quantified interval method
circumscribe the measurement data set tighter as
compared to the Bayesian samples, which are
shown to be more over-conservative. This is e.g.,

the case for f1, f2, f3, f4, f5, f11, f14 and f19.
The only exception hereto is the 8th eigenmode
(i.e. the 1st symmetric wing torsion mode), which
is completely missed by the quantified interval
method. Keeping in mind that the 7th, 8th and
12th eigenmode correspond to respectively anti-
symmetric torsion, symmetric torsion and wing
fore-after bending modes, the inaccurate prediction
of their dependence in the interval model is a direct
cause of the assumption that θ4 - θ5 and θ9 - θ10
are fully dependent. The main reason for this lack
of overlap is explained by the assumed perfect de-
pendence between parameters θ4 - θ5 and θ9 - θ10,
combined with the low data availability.

Due to the scarcity of the data-set, none of the
methods was able to give an accurate estimate on
the actual dependence between the eigenfrequen-
cies. As such, apart from the 8th eigenmode, it
is shown that the interval method outperforms the
Bayesian model updating under the availability of
these scarce data. Note that for the full data set,
the Bayesian model updating was proven more ac-
curate Broggi et al. (2018). This is a direct effect
from the wide prior distribution that is applied for
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Figure 2: All combinations of considered eigenfrequencies, obtained by propagating the quantified intervals and
posterior distributions through the AIRMOD FE model. The quantified results were obtained by using only 5 mea-
sured replica Faes et al. (2019).

the Bayesian model updating. In case there are in-
sufficient or insufficiently informative experimen-
tal data, the results obtained via Bayesian methods
indeed tend to be highly dependent on the defined
prior information. Hence, when this prior is highly
biased with respect to the actual parameter values,
the obtained posterior distribution will show simi-
lar bias. The interval method on the other hand does

not need an initial estimate of the parameter uncer-
tainty, since the global optimization routine actively
searches the space of input parameters for those in-
tervals that best prescribe the available data.

4.3. Reflection on the results and lessons learnt
The most important observation that is made in this
work is that the performance of the considered in-

6



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

verse UQ approaches depends largely on the data.
This can be explained from a philosophical stand-
point. Interval UQ methods approach the prob-
lem from the outside, as they bound possible values
of the uncertain parameters between crisp bounds.
This quantification is performed without making in-
ference on the likelihood of each value within that
interval. Consequently, only a worst-case inference
is attainable based on the obtained information, but
this inference is objective. Bayesian methods ap-
proach the uncertainty from the inside, as they as-
sign a degree of plausibility to each possible value
of the uncertain parameters within a range and em-
ploy independent data to infer the most plausible
parameter values based on Bayes’ theorem. Hence,
more information on the uncertain parameters is ob-
tained, however at the price that this might be sub-
jective. As such, in case large data sets are avail-
able or the analyst has need for quantifying the rel-
ative likelihood of several parameter values being
realized, including their (joint)-plausibility, corre-
lation and multi-modal descriptors, Bayesian meth-
ods have the upper hand over interval approaches.
However, the analyst should ensure that sufficient
informative data are available to limit the effect of
subjectivity or incorrectness of the prior distribu-
tion. On the other hand, when data are vague or
scarce, interval methods are expected to provide a
more objective and accurate quantification of the
uncertainty, as less a priori assumptions on the un-
derlying likelihood structure are needed. This how-
ever is achieved at the cost that only worst-case in-
formation is delivered to the analyst. As such, the
selection of the most appropriate method must rely
on the data that are available to the analyst and the
information on the non-deterministic nature of the
model quantities under consideration.

5. CONCLUSIONS
This paper presents a comparison of Bayesian
model updating via Transitional Markov Chain
Monte Carlo with a recently introduced inverse
method for the quantification of multivariate in-
terval uncertainty under scarce data. Hereto, both
techniques are applied to the DLR AIRMOD case
study using a small set of 5 measured eigenmodes
and -frequencies. It is shown that the interval

method provides, under these scarce data, tighter
bounds on the uncertainty. The explanation for
comparable large conservatism in the Bayesian es-
timates is the comparably large uncertainty in the
defined prior distributions on the AIRMOD param-
eters combined with the lack of sufficient indepen-
dent data to counteract this effect. The interval
method on the other hand doesn’t require initial es-
timates on the uncertain parameters and is hence
more objective. This however comes at the cost
that no statistical properties on the model param-
eters can be quantified.
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