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ABSTRACT: Comprehensive models of infrastructure networks feature many parameters 
characterizing the complex interdependencies that exist between systems. Most of these parameters are 
uncertain. Conducting sensitivity analyses is one way to characterize uncertainty in estimations of 
system-level performance based on component and interdependency parameters. Doing so provides an 
assessment of the importance of varying parameters and informs how to achieve targeted system 
outcomes through component- and system-level changes. To do this over interdependent infrastructure 
networks, we conduct inference over probabilistic Bayesian network-based models of these systems. 
We have developed a framework along with accompanying algorithms to conduct computationally 
tractable exact inference over the network model. Through a series of these analyses, we are able to 
analyze the impacts of changes in parameters on estimations of system-level performance. We apply 
the framework to a water distribution system including its dependencies with power and transportation 
networks. The results of the analyses show the effect of varying system parameters on probabilities of 
providing service across the network. We investigate the impacts on system performance of adding 
redundant power supplies, changing link configurations, and increased or reduced probabilities of 
component failures. The use of the sensitivity analysis results to support performance-based design 
based on system-level reliability measures is discussed. 

 
Infrastructure systems are increasingly 
connected, with interdependencies between them 
often governing their performance and leading to 
increased vulnerabilities to cascading failures 
(Buldyrev et al. 2010). Previously, we defined 
three generalized, comprehensive infrastructure 
interdependency types (Johansen and Tien 2017), 
advancing upon previous work in 
interdependency analysis (e.g., Rinaldi et al. 
2001) to include parameters affecting the 
recovery and resilience of infrastructure 
networks. Comprehensive models of 
infrastructure networks feature many parameters 
characterizing the complex interdependencies 
that exist between systems. Most of these 
parameters are uncertain. Conducting sensitivity 

analyses is one way to characterize uncertainty in 
estimations of system-level performance based 
on component and interdependency parameters. 
Doing so provides an assessment of the 
importance of varying parameters and informs 
how to achieve targeted system outcomes 
through component- and system-level changes. 
Prioritizing varying changes supports effective 
decisions to increase resilience of interdependent 
systems (Johansen et al. 2016, Ouyang 2016). 

In this paper, we conduct these analyses for 
interdependent infrastructure networks by 
performing inference over probabilistic Bayesian 
network-based models of these systems. We 
utilize a previously proposed framework for 
probabilistic vulnerability of interdependent 
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infrastructure systems and its accompanying 
algorithms to conduct computationally tractable 
exact inference over the network model 
(Applegate and Tien 2019). Through a series of 
these analyses, we are able to analyze the 
impacts of changes in parameters on estimations 
of system-level performance. We apply the 
framework to a water distribution system 
including its dependencies with electrical power 
and transportation networks to illustrate the 
approach. We investigate the impacts on system 
performance of adding redundant power 
supplies, changing link configurations, and 
increased or reduced probabilities of component 
failures. The results of the analyses show the 
effect of varying system parameters on 
probabilities of providing service across the 
network. We conclude with a discussion of the 
use of the sensitivity analysis results to support 
performance-based design based on system-level 
reliability measures. 

1. PROBABILISTIC SYSTEM MODEL AND 
APPLICATION 

To model the infrastructure network, we 
represent each component in the network as a 
node and the connections between them as links. 
With the connectivity and dependency 
relationships defined, we build the Bayesian 
network model of the interdependent system. 
The Bayesian network is a probabilistic graphical 
model that enables us to capture the uncertainties 
in the infrastructure system parameters, including 
uncertainties in the hazards a system is exposed 
to, individual component performance under 
hazards, and propagation to system-level 
responses. 

We define and capture three 
interdependency types: service provision 
interdependencies, where the functioning of one 
component depends on a service provided by a 
component in another system; geographic 
interdependencies, where components are more 
likely to fail together under a hazard due to 
geographic proximity or physical similarity; and 
access for repair interdependencies, where the 
ability of a failed component to be repaired 

depends on physical or cyber access provided by 
a component in another system. 

The application network of interest is the 
City of Atlanta water distribution system located 
in the state of Georgia, USA, including its 
dependencies with power and transportation 
networks. Figure 1 shows the distribution 
system, where smaller solid circles indicate end-
point distribution nodes and larger empty circles 
indicate water supply nodes. As the water supply 
components require electrical power to operate 
the treatment plants and pumping stations located 
at these nodes, the power supply components are 
also located at these nodes. 

 

 
Figure 1: Water distribution system and power 
supply dependencies for application  

 
A representation of the probabilistic 

Bayesian network model that is built for this 
system is shown in Figure 2. Hazards are 
included to capture the geographic 
interdependencies. The reliance of water supply 
components on power supply components to 
function captures the service provision 
interdependencies. In Figure 2, MLS indicates 
the minimum link sets for the system. These 
provide the minimum paths required to be 
functioning to transport the infrastructure 

Application

To demonstrate the proposed framework and our approach, we ap-
plied it to the interdependent water and power distribution networks
in Atlanta, Georgia. We modeled the system and performed infer-
ence on the network using the model. We validated the methodol-
ogy by comparing the results from inference using the constructed
model to a real-world scenario in which a power outage led to
cascading failures in the water system.

System Overview

For the water system, we analyzed pipes greater than or equal to 18
inches in diameter. This included 112 components, seven of which
were supply stations and 105 of which were transshipment or
distribution nodes. There were 244 links, or pipes, in the network.
For the power system, we modeled the power substations that were
located at each supply node. Supply nodes had between one and
three electrical feeds, varying with each supply component.

Fig. 6 shows the system with supply nodes shown as empty
circles and distribution and transshipment nodes shown as solid
points. The supply nodes are also the locations of the power
components.

Bayesian Network Model

We then used the proposed framework to create the BN model of
the interdependent infrastructure systems.

Inputs
The input file was 4 MB and included identification numbers and
locations of 112 junctions in the water network. The start and end
junctions and size characteristics of 350 pipes were included. The
junctions were condensed to represent the start and end junctions of
each pipe rather than accounting for all on-pipe junctions.
Component Locations. The component locations were given as
state-plane coordinates in the example.
Component Connectivity. The component connectivity for the
application was obtained from a list of each link in the network
used in the hydraulic model of the system.

Component Type. The component types for the application were
defined depending on their function, i.e., supply, transshipment,
or distribution. The constituent elements of supply nodes, i.e., for
pump stations and treatment plants, were aggregated into a single
node for each supply. If such element-level information is available,
it can easily be incorporated into the model as parents of the supply
node. Supercomponent identification can be utilized to reduce
dimensionality as needed.
Component Failure Probability. For the application, component
failure probabilities were assumed to be consistent across each
component in order to better assess relative component vulnerabil-
ities. The failure probabilities given that a hazard occurred or did
not occur were assumed to be 1 × 10−2 or 1 × 10−4, respectively.
The hazard in the example was generalized and could, for example,
represent a storm. The equal prior failure probabilities across com-
ponents resulted in ranking and component prioritization rather
than specific failure probability values. If more information is
learned about the components, the failure probabilities can easily
be updated as inputs to the model.

Dimensionality Reduction
Running Algorithm 1 for the full system identified the MLSs from
a supply node to each of the transshipment and distribution nodes in
the network. This took approximately 2.19 s on a computer with
4 GB RAM and a 1.3 GHz Intel Core i5 processor using MATLAB
2017b for the entire network. This was a novel algorithm to identify
MLSs, because none were found in previous literature. There were
246 MLSs in the full system. The maximum number of MLSs
for a component was 5 and the maximum length of an MLS was
17 components. An example set of MLSs for node C7 is

!
C108; C58; C59; C7

C108; C60; C59; C7

"

where the first component in each row is a supply node and the
middle nodes are on the path to the final node. Supercomponents
were not needed for this example.

Defining Interdependencies
The interdependencies modeled in the application were service pro-
vision and geographic. Service provision interdependencies were
based on information provided by the owners of the water network.
There were power substations located at each of the water supply
stations. Each supply station had between one and three power sub-
stations. To model the service provision interdependencies, direct
links were added from each power substation to the water supply
node that it supplied. Backup generators could also be incorporated
to account for continued power in the case of an outage of a main
substation. There were a total of 15 power substations in the
network that provided power to seven water supply nodes.

We partitioned the water and power networks into hazard zones
that were used to represent geographic interdependencies. These
hazard zones also represented service areas surrounding each of
the water supply nodes. The seven zone partitions for the network
are shown in Fig. 7.

Four of the service areas were split into two groups for ease of
computation during inference. Therefore, in total, there were 11 par-
titions with hazard nodes as parents for the nodes in each of them.
Nodes were also created as children of the distribution nodes in each
zone, representing levels of service in each service area.

Adjacency Matrix
We build the adjacency matrix from identified MLSs and inter-
dependency relationships between nodes. Each MLS was a
parent of its dependent component node, and the components thatFig. 6. Atlanta water and power distribution systems.
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resource, in this case water, from supply to 
distribution nodes. The Zone nodes indicate 
water services provided to specific zones in the 
network. As the network includes 112 
components – seven of which are supply stations 
and 105 of which were transshipment or 
distribution nodes – and 244 links – or pipes – 
not all individual nodes in the network are 
shown. 
 

 
Figure 2: Representative Bayesian network model of 
water and power distribution systems 

 
An example of an access for repair 

interdependency is shown in Figure 3. Here, 
access refers to the physical access provided by 
operational roads such that repair crews can 
access potentially failed water supply or 
distribution components. Two main roads, 17th 
Street NW and Northside Drive NW, are shown 
around the Supply 4 node. 

 

 
Figure 3: Roads near water system supply node 
providing access for repair in the case of failure 

2. INTERDEPENDENCY PARAMETER 
SENSITIVITY ANALYSIS 

With the probabilistic system model built, we 
use it to assess the impacts of varying 

interdependent system parameters on the 
probabilities of providing service across the 
network. We use the previously proposed 
analysis framework, along with the 
accompanying modeling and inference 
algorithms, to perform exact inference over the 
network. This results in probabilities of failure or 
survival of each distribution node under varying 
scenarios. We investigate the effect of three 
system parameters on probabilities of providing 
service at each distribution node: adding 
redundant power supplies at the water supply 
nodes, changing link configurations to add 
redundant paths to distribution nodes, and 
increasing or reducing the conditional 
probabilities of water supply failure given a 
hazard. Each inference scenario analysis takes on 
the order of one minute on a personal computer 
with 4 GB RAM and a 1.3 GHz Intel Core i5 
processor using MATLAB 2017b. 

2.1. Redundant power supplies 
The main service provision interdependency in 
the network is the electrical power that is 
required at the water supply components. If 
power fails, the water supply component fails, 
propagating to failures at end-point distribution 
nodes. An example of such a cascading failure is 
shown in Figure 4. 

 

 
Figure 4: Power supply failure at node Supply 4 
propagating to failure of two distribution nodes 
 

MLSs denoted Water MLS1; : : : ;Water MLS246. MLSs are parents
of the distribution components that they supply. The subscripts
represent the number of nodes of each type in the network; the
BN comprised 382 total nodes.

Validation

We validated the model using a real-world scenario of cascading
failures due to the interdependent nature of infrastructure networks
that occurred in both 2014 and 2017. In these instances, a water
pump station lost power from both of its dual feeds and caused
outages throughout Atlanta’s downtown area. The water system

lost pressure in both cases and a boil water advisory became nec-
essary. To test the scenario with the model, we simulated an outage
to the power components supplying the affected pump station. The
resulting network showed outages throughout the downtown area,
as shown in Fig. 9. This was consistent with the outcomes of the
event in which the downtown area lost water pressure. We used the
loss of water pressure as an indicator for failure at the distribution
level in the example. The BN model included all the complexities
of the functionality and interdependencies of the networks, and
showed the effects of the outage directly.

Example Inferences

With the BN model built, varying inferences could be conducted
over the networks. The validation scenario above is an example
of assessing the impacts of a service provision interdependency,
in which the power supply of a water pump station failed and caused
cascading outages in the water system. Examples of other probabi-
listic vulnerability analyses include assessing the impacts of hazards
occurring in specific zones—geographic interdependencies—
or evaluating the effects of failures within the water system itself.

Fig. 10 shows inference results from a hazard occurring in
hazard zones 1 and 2. The gradient on the right represents failure
probabilities. Hazard zones 1 and 2 are in the upper right corner
of the system, so components in that area experienced increased
probabilities of failure. Because the supply nodes were distributed
throughout the rest of the network, no additional outages were
experienced due to this event scenario.

Another example of inference is to assess the effects of an ob-
served outage or the failure of a specific component in the network.
Inference over the BN updates the failure probabilities of all nodes
throughout the network. Fig. 11 shows the results from learning
that a large supply component in the bottom right area of the net-
work has failed. The figure shows the effects of such an outage on
the ability to provide service in that part of the network.

These inferences were performed to highlight the abilities of the
proposed framework. The results shown are a small subset of in-
formation that can be gained from the interdependent infrastructure
model. The model allows a user to input information across a wide

Fig. 8. Overall BN model of Atlanta water and power distribution networks.

Fig. 9. Atlanta outage scenario for validation.
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To mitigate such potential failures, 
redundant power supplies can be added at the 
water supply components. This increases the 
probability that electrical power will continue to 
be able to be provided to the water supply 
component even if there is an outage in one 
power supply or the electrical feed between a 
power supply and water supply goes down.  

Given a probability of failure for a power 
supply given a hazard of 10#$  and given no 
hazard of 10#% , the relative changes in 
distribution component probabilities of failure in 
adding a redundant power supply at the water 
supplies range between −10#'(, i.e., no change, 
and −0.497, i.e., a 49.7% decrease in probability 
of failure. As expected, adding redundant power 
supplies reduces component failure probabilities, 
protecting against single power supply failures. 
If a failure occurs for one power supply, the 
water supply node maintains functionality due to 
the added power backup. All prior probabilities 
of failure at the distribution nodes decrease with 
the addition of redundant power supplies. 

2.2. Changing link configurations 
In addition to power supply redundancies, link 
redundancies can increase the performance of a 
system. As the probability of providing a service 
at a distribution node depends on the ability to 
transport the resource from supply to distribution 
points, the configurations of the links in the 
network affects the number of possible paths 
along which the resource can be conveyed to 
end-point distribution nodes. 

To investigate the effect of varying link 
configurations on system performance, we map 
the distribution nodes to specific service areas 
based on United States census blocks. This           
. 

 
 
 
 
 
 
 
 

enables us to assess the impacts of infrastructure 
performance on populations. In the absence of 
specific block-level information, blocks are 
assigned to their closest nodes. Figure 5 shows 
the populations affected by failure in Supply 4 
propagating to failures in the two distribution 
nodes, indicated as node A and node B. 
 

  
Figure 5: Populations affected by failure in Supply 4 
propagating to failures in distribution nodes A and B 
 

Considering the original configuration and 
failure event as shown in Figure 4 as Scenario 1, 
Figure 6 shows alternate Scenarios 2-5 where 
varying possible link configurations are 
presented to protect populations against potential 
failures. Link configurations are varied by 
adding a single link between a failed node and 
any other node. Added links are selected based 
on a search of potential links with nearby nodes. 
In Figure 6, darker red nodes indicate failed 
nodes; lighter yellow nodes indicate nodes with 
higher probabilities of survival.  
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Figure 6: Effect of varying link configurations 
(Scenarios 2-5) on probabilities of failure of 
distribution nodes 

Table 1 shows the differences in population, 
number of housing units, and number of critical 
facilities affected in the scenario where Supply 4 
fails. This could be due to a loss of power at 
Supply 4 or failure of any other element of the 
supply node leading to Supply 4 failure. Values 
are based on service areas of failed components 
for corresponding census blocks. 
 
Table 1: Disruption of service due to Supply 4 failure 
for varying link configuration scenarios 

Scenario Population Housing 
Units 

Critical 
Facilities 

1 96,217 57,445 7 
2 96,217 57,445 7 
3 21,340 12,203 2 
4 96,217 57,445 7 
5 62,829 37,748 5 

 
From Figure 6 and Table 1, Scenario 3 

provides the link configuration solution that 
minimizes disruption to the population. In 
considering the varying link configurations, 
additional links protect against failures at 
distribution nodes due to supply failures if they 
are able to connect the node back to a different 
supply. Adding redundancies increases 
performance of the system; however, the 
redundancies need to be strategically placed to 
be effective in decreasing probabilities of failure 
under varying scenarios.  

2.3. Varying component failure probabilities 
To assess the effect of varying component failure 
probabilities on the ability to provide service 
across the network, we vary the conditional 
probability of failure of the water supply 
components given a hazard. Decreasing the 
conditional probability of failure represents the 
case where the component is retrofitted or 
hardened to better withstand the hazard. 
Increasing the conditional probability of failure 
represents the case where damage may have 
occurred at a supply component and sufficient 
repairs were not made before a hazard may occur 
again. Varying component failure probabilities 
can also represent the case where new 

2 

3 

4 

5 
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information is collected about a component to 
update one’s belief in the state of the component, 
for example, as in Lee and Tien (2018). 

The original probability of failure of the 
water supply component given hazard 
occurrence is set at 0.01. In this sensitivity 
analysis, the conditional probability of failure is 
varied from 0.001 to 0.20. To better characterize 
the change in probabilities of failure given these 
changes in water supply performance, the 
relative changes from the original values in terms 
of prior probabilities of failure are plotted. These 
changes are shown in Figure 7 as a function of 
the component characteristics: (a) number of 
minimum link sets, (b) shortest physical distance 
to a supply node, and (c) minimum number of 
hops (links) to a supply node. Each point 
indicates the relative change for a system 
distribution component. The relative change is 
given as the value and not percent, so a value of 
2 indicates a 200% increase in probability of 
failure for that component. 

 

 

 

 
Figure 7: Relative change in component prior 
probabilities of failure with changing water supply 
failure probabilities as a function of the (a) number 
of minimum link sets, (b) shortest physical distance to 
a supply, and (c) minimum number of hops (links) to 
a supply 
 

There are several observations from Figure 
7. First, in evaluating the effect of decreasing the 
conditional probabilities of failure compared to 
increasing them, there is larger effect on the 
components when probabilities of failure 
increase, i.e., the increase in probabilities of 
failure when supply failure probabilities increase 
from 0.10 to 0.20 is greater than the increase 
from 0.01, or even 0.001, to 0.10. 

Second, the effect on network performance 
is larger for components with fewer minimum 
link sets, shorter physical distance to a supply, 
and a fewer number of hops to a supply. This 
suggests that components that are closer to 
supplies are more directly affected by changes in 
the performance of the supply components. 
While it could be argued that farther components 
are more remote in the network and therefore 
less resilient to changes in the network, the 
results show that increases in distance actually 
correspond with more resilient components as 
there are more redundant paths to the component 
and the relative impact of the water supply on 
distribution component performance decreases. 

Third, the effect of water supply 
performance on network performance as 
measured by probabilities of providing service at 

(a) 

(b) 

(c) 
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distribution nodes appears to follow an 
exponential trend. This is particularly apparent in 
Figure 7(c). As the number of hops between a 
distribution component and a supply increases, 
the effect of changing the water supply failure 
probability decreases exponentially. 

3. USE OF SENSITIVITY ANALYSIS FOR 
PERFORMANCE-BASED DESIGN 

The sensitivity results shown in Figure 7 provide 
a basis for component-level performance-based 
design decisions according to network-level 
reliability measures. The larger effect of 
increasing probabilities of failure compared to 
decreasing them suggests that it is more 
important to repair slightly damaged 
components, indicated by having slightly higher 
conditional probabilities of failure, compared to 
retrofitting components to have exceedingly low 
probabilities of failure. 

The effect of increases in conditional 
probabilities of failure is magnified at higher 
failure probabilities. The relationship between 
the relative changes in distribution component 
probabilities of failure and the component 
characteristics informs those components that 
will have the largest changes in response to 
improvements or deterioration of supply 
components. This result supports repair or 
retrofit decisions based on the components that 
would most benefit from these actions for supply 
nodes. 

Finally, the exponential trend in effect of 
supply node changes on distribution component 
performance indicates a point of diminishing 
returns in terms of investments to improve or 
increase performance of supply components in 
the system. All of these recommendations are 
based on inference results showing the ability 
under varying scenarios to meet service 
provision performance targets at distribution 
nodes throughout the network. 

4. CONCLUSIONS 
Given the number of parameters affecting 
interdependent infrastructure system 
performance and the uncertainty associated with 

the problem, conducting sensitivity analyses 
provides a way to quantify the effects on system 
performance due to variations in the system 
parameters. The parameters studied in this paper 
are selected based on interests in investigating 
practical changes that can be implemented for 
interdependent infrastructure networks. 
Comparing effects across parameters enables 
prioritization of different investment strategies to 
increase overall infrastructure performance from 
component- and system-level changes. 
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