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ABSTRACT: This study explores the development of prompt tsunami loss estimation methods that are 
based on inundation hazard parameters inferred from remotely-sensed images. Using a tsunami 
catastrophe model for the Tohoku region of Japan, approximate tsunami loss functions are derived for 
coastal communities in Miyagi Prefecture. Calibration of the prompt tsunami loss estimation models is 
carried out by utilizing predicted tsunami losses for 4000 stochastic earthquake scenarios of moment 
magnitudes between Mw7.5 and Mw9.1. Using numerous earthquake sources facilitates the robust 
calibration of the developed tsunami loss functions. Special considerations are given to investigate the 
effects of coastal topography and the potential bias due to errors in estimating inundation parameters.  

 
1. INTRODUCTION 
A probabilistic tsunami catastrophe (CAT) model 
using stochastic earthquake sources, which was 
developed by Goda and De Risi (2017), is a new 
performance-based tsunami engineering tool for 
coastal communities. The approach is innovative 
as it accounts for stochastic processes of 
earthquake rupture and heterogeneous slip 
distribution and propagates these uncertainties 
through tsunami hazard simulations and tsunami 
damage assessments in deriving tsunami loss 
estimates. It promotes various applications 
ranging from regional tsunami loss estimation to 
improved risk management for disaster resilience. 
Considering rare occurrence of devastating 
tsunamis, realistic tsunami CAT models that have 
been calibrated against well-recorded historical 
events (e.g. 2011 Tohoku Japan tsunami) are a 
viable tool for developing prompt tsunami loss 
estimation tools based on regional tsunami hazard 
metrics which can be obtained from remote 
sensing techniques in post-disaster situations.  

In the last two decades, remote sensing 
technology has played an important role for post-
disaster hazard monitoring and risk management 
(e.g. Voigt et al. 2016). Key areas of its 
applications include real-time risk assessment, 
facilitating the quick coordinated responses to 
large-scale disasters. Among remotely sensed 
data, high-resolution synthetic aperture radar 

(SAR) images are advantageous because they 
cover a wide spatial area and are unaffected by 
weather conditions. Liu et al. (2013) used satellite 
images of inundated areas in Miyagi Prefecture 
due to the 2011 Tohoku tsunami to estimate 
flooded areas based on drastic changes of the 
backscattering coefficients between pre- and post-
event SAR images. Recently, Moya et al. (2018) 
have proposed a hybrid tsunami damage 
evaluation method for buildings by integrating 
SAR images, numerical tsunami hazard 
simulation, and tsunami fragility curves through 
machine learning techniques. In future, remote 
sensing technology will become further advanced 
by improving timely acquisition of higher-
resolution images and accurate estimation of 
building damage immediately after a tsunami 
disaster. 

This study explores the development of 
alternative tsunami loss estimation approaches 
that are based on inundation depths or inundation 
areas inferred from satellite images. Using the 
probabilistic tsunami loss model for the Tohoku 
region of Japan (Goda and De Risi 2017), 
approximate tsunami loss functions are derived 
for buildings in Iwanuma and Onagawa. 
Calibration of the quick tsunami loss functions is 
carried out by utilizing predicted tsunami losses 
for 4000 stochastic earthquake rupture scenarios 
having Mw7.5 and Mw9.1. Using numerous 
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earthquake sources in calibration leads to robust 
quick tsunami loss estimation tools. Special 
considerations are given to investigate the effects 
of coastal topography (plain versus ria) and the 
potential bias due to errors in inundation 
parameters on the estimated tsunami loss. 

2. TSUNAMI CATASTROPHE MODEL 
The tsunami CAT model used consists of eight 
modules. Five of these components are for 
determining the tsunami inundation hazard across 
an affected region. Three remaining modules 
consist of an exposure model, vulnerability 
model, and loss calculation engine (Figure 1). 

 

 
Figure 1: Tsunami loss estimation procedure. 

 
Seismicity model The expected distribution 

of earthquake occurrences is characterized in 
accordance with the seismic hazard model for the 
Tohoku region proposed by the Headquarters for 
Earthquake Research Promotion (2013). Using 
earthquake catalog data in the Tohoku region, the 
annual occurrence rate of tsunamigenic 
earthquakes having Mw7.5 is estimated to be 0.08. 
A Gutenberg-Richter curve is fitted to obtain the 
recurrence values for events between Mw7.5 and 
Mw9.1, which are discretized with a 0.2 interval.  

Fault model A regional fault source model is 
developed by extending the fault plane geometry 
for the 2011 Tohoku earthquake covering an area 
of 650 km long by 250 km wide. The strike angle 
is constant at 193º, while the dip angle is 

considered variable along the subducting plate 
interface, gradually steepening from 8º to 16º in 
the down-dip direction. The eastern boundary of 
the fault plane model approximately coincides 
with the Japan Trench. To characterize 
heterogeneous earthquake slip over the fault 
plane, the source zone is discretized into sub-
faults of 10km by 10km in area. 

Scaling model Eight source parameters are 
used to characterize the earthquake rupture in 
terms of fault geometry and slip distribution 
(Goda et al. 2016). The geometrical parameters, 
i.e. fault width and fault length, determine the size 
of the fault rupture, and the position of the 
synthesized fault plane is determined such that it 
fits within the source zone. The slip parameters, 
i.e. mean slip and maximum slip, specify the 
earthquake slip statistics over the fault plane. The 
Box-Cox power transformation parameter 
determines how the slip values are marginally 
distributed over the fault plane and is used to 
capture non-normal characteristics of earthquake 
slip (Goda et al. 2014). The spatial slip 
distribution parameters, i.e. correlation length 
along dip/strike and Hurst number, are used to 
characterize the heterogeneity of earthquake slip 
over the fault plane, represented by the von 
Kármán wavenumber spectrum. 

Stochastic source model After sampling the 
spatial slip distribution parameters, a random slip 
field is generated using the Fourier integral 
method (Goda et al. 2014), where the amplitude 
spectrum is represented by the von Kármán 
spectrum and its phase is uniformly distributed 
between 0 and 2. To achieve a slip distribution 
with realistic right-heavy tail features, the 
synthesized slip distribution is converted via Box-
Cox power transformation. The transformed slip 
distribution is then adjusted to achieve the target 
mean slip and to avoid very large slip values 
exceeding the target maximum slip. 

Inundation model To evaluate inundation 
depths at building locations, nonlinear shallow 
water equations are evaluated (Goto et al. 1997) 
by considering initial water surface elevation due 
to the earthquake rupture. The computational 
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domains are nested at four grid resolutions: 1350-
m, 450-m, 150-m, and 50-m domains (note that 
land elevation data are represented by 50-m 
grids). The simulated tsunami wave heights at the 
grid points are used to estimate inundation depths 
at building locations. Inundation simulations are 
conducted for all stochastic sources. 

Building stock model The exposure model 
characterizes the assets at risk within a region of 
interest. The building dataset used in this study is 
based on the post-2011-Tohoku tsunami damage 
data compiled by the Ministry of Land 
Infrastructure and Transportation (MLIT). The 
data contain information on building locations, 
damage levels based on post-tsunami surveys 
(minor, moderate, extensive, complete, or 
collapse, as defined by the MLIT), structural 
material (reinforced concrete, steel, wood, and 
others), and the number of stories. Regional 
statistics of unit building costs and floor areas are 
used to estimate the cost of the buildings, both of 
which are modeled as lognormal variables. 
 

 
Figure 2: Building distributions in Iwanuma and 
Onagawa. 

 

Fragility model Tsunami fragility functions 
relate tsunami hazard intensity measures 
(inundation depths) to probabilities of attaining 
different damage states. In this study, we adopt the 
empirical model by De Risi et al. (2017), which is 
based on the tsunami damage data gathered by the 
MLIT. Sampling a uniform random variable 
ranging between 0 and 1 and subsequently 
comparing this simulated value with the damage 
state probabilities, the corresponding tsunami 
damage state can be determined. According to the 
MLIT, damage ratios for the minor, moderate, 
extensive, complete, and collapse damage states 
are assigned as: 0.03–0.1, 0.1–0.3, 0.3–0.5, 0.5–
1.0, and 1.0, respectively. 

Loss model The monetary loss associated 
with the tsunami effect on a building is calculated 
by sampling the total replacement cost from the 
lognormal distribution and multiplying it by the 
damage ratio determined from the fragility 
analysis. The procedure is repeated for all 
buildings in the portfolio to obtain the total 
tsunami loss for each event in the stochastic 
sample. These loss samples can then be used to 
construct the conditional probability distribution 
functions of the total portfolio loss for a given 
magnitude range, and to develop the 
unconditional probability distribution function of 
tsunami loss by considering the regional 
seismicity. 

3. PROMPT TSUNAMI LOSS ESTIMATION 
To predict regional tsunami loss immediately 
after a major tsunamigenic event, prompt tsunami 
loss estimation methods take advantages of proxy 
tsunami hazard metrics. Availability of tsunami 
hazard parameters is the prerequisite for a viable 
rapid loss estimation method. Inundation height 
and inundation area over a region can be evaluated 
based on post-tsunami images that are obtained 
from remotely sensed data (e.g. Liu et al. 2013). 
Two methods that are investigated herein are 
based on representative inundation height and 
inundation area.  
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Figure 3: Tsunami inundation characteristics for Iwanuma due to a M9.0 earthquake: (a) inundation 
height map, (b) inundation depth map, (c) histogram of inundation height at inundated cells, and (d) 
cross-sectional profiles of elevation, inundation height, and inundation depth. 

 

 
Figure 4: Tsunami inundation characteristics for Onagawa due to a M9.0 earthquake: (a) inundation 
height map, (b) inundation depth map, (c) histogram of inundation height at inundated cells, and (d) 
cross-sectional profiles of elevation, inundation height, and inundation depth. 
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Developing a prompt tsunami loss estimation 
method requires a calibration of a loss function 
based on surrogate tsunami hazard metrics. For 
such purposes, numerous pairs of tsunami hazard 
parameters (e.g. onshore run-up/inundation height 
and inundation area) and corresponding tsunami 
losses in a region of interest are needed. Because 
empirical tsunami loss data are insufficient in 
covering tsunami scenario characteristics in terms 
of rupture and magnitude comprehensively, using 
tsunami loss samples generated from a well-
calibrated CAT model is the only viable solution. 
In this study, benchmark tsunami hazard estimates 
are set to inundation depths evaluated through 
tsunami wave propagation and inundation 
simulations by solving NSWE using 50-m grid 
resolutions for land areas.  

With the data pairs of intensity and loss 
parameters, relationships between them can be 
developed via regression analysis. A linear 
regression method is deemed to be sufficient 
because the main purpose of this investigation is 
to compare the overall performances of rapid 
tsunami loss estimation methods based on 
different proxy tsunami hazard metrics. The 
considered functional form is: 

 𝑙𝑜𝑔ଵ଴𝐿் ൌ 𝑎଴ ൅ ∑ 𝑎௜𝑙𝑜𝑔ଵ଴𝐼𝑀௜
௡
௜ୀଵ ൅ 𝜀 (1) 

where LT is the regional tsunami loss for a given 
building portfolio, IMi (i = 1,…,n) are surrogate 
tsunami intensity parameters, a0,…,an are 
regression coefficients, and  is the regression 
error. A superior model results in smaller standard 
deviations of the regression error (i.e. sigma).  

3.1. Loss estimation based on inundation height 
A prompt tsunami loss estimation method that is 
investigated in this section considers single 
representative inundation height for a region. 
There are various ways to define such a 
representative inundation height for an area. 
Because inundation depths cannot be estimated 
directly from remote sensing images, this 
inundation height needs to be defined based on the 
elevation of inundated locations. Once the 
representative inundation height is determined, 
inundation depths at building sites can be 

estimated by subtracting local elevations from the 
(uniform) inundation height.  

Three representative inundation heights are 
investigated by focusing on run-up front cells, 
which are defined as shallowly inundated 
locations having water depths between 0.1 m and 
0.5 m. Among all run-up front cells, IH1 is the 
maximum elevation, whereas IH2 is the mean 
elevation. IH3 is the average of IH1 and IH2. 
Different definitions of representative inundation 
height are possible by adopting different quantiles 
and/or by considering different subsets of 
inundated cells. Performances of the IH1, IH2, and 
IH3 approximations with respect to the reference 
case based on NSWE (IHNSWE) depend on the 
coastal topography and the extent of inundation. 
These approximate methods are intended for 
regional-scale assessments, rather than site-
specific assessments.  

To demonstrate the above-mentioned 
procedures of determining representative 
inundation heights IH1, IH2, and IH3, tsunami 
inundation characteristics in Iwanuma and 
Onagawa due to a Mw9.0 scenario are focused 
upon, and are displayed in Figures 3 and 4. Each 
figure contains (a) maximum inundation height 
map, (b) maximum inundation depth map, (c) 
histogram of maximum inundation height at 
inundated cells (obtained from (a)), and (d) cross-
sectional profiles of elevation, inundation height, 
and inundation depth along the line indicated in 
(a) and (b) (100 equally spaced points are defined 
along the line). The representative inundation 
heights IH1, IH2, and IH3 are indicated in (c) and 
(d). The results show the effects of regional 
topography on tsunami inundation clearly. For 
Iwanuma, the topography is flat (Figure 2) and 
thus the maximum inundation height decays with 
distance from shoreline monotonically (Figure 
3a,d) because of the spreading of the water over 
the area and the loss of run-up energy due to 
ground friction. As a result, a uniform 
representative inundation height does not capture 
inundation height distribution at individual sites 
(Figure 3d). By contrast, the maximum inundation 
height profile in Onagawa is nearly constant 
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because the entire bay area is submerged by the 
water (Figure 4a,d). Consequently, relative 
inundation depth profiles that are obtained based 
on IH1, IH2, and IH3 resemble those based on 
NSWE. However, absolute values of the 
approximated inundation depths tend to be 
underestimated because IH1, IH2, and IH3 are 
defined with respect to elevation and water depth 
information is missing. Although the estimates of 
inundation depths may be inaccurate at individual 
sites, the overall accuracy of the regional tsunami 
loss may be satisfactory. This is because 
prediction errors at different building sites tend to 
cancel one another to some extent. 

To examine the tsunami loss prediction 
accuracy of the approximate methods based on 
IH1, IH2, and IH3 with respect to the reference 
method based on IHNSWE, scatter plots of tsunami 
loss samples based on the approximate methods 
and the benchmark case for all 4000 scenarios 
from Mw7.5 to Mw9.1 are shown in Figure 5 for 
Iwanuma and Onagawa. The data points along the 
diagonal line indicate the exact correspondence 
between the reference and approximate methods. 
Results based on IH1 tend to overestimate the loss, 
whereas those based on IH2 tend to underestimate 
the loss. As expected, results based on IH3 are 
between these two cases and tend to be close to 
the diagonal line (good estimation). The results 
also indicate that the topographical effects of the 
areas are significant. For Iwanuma, differences of 
the approximate inundation heights can be large, 
whereas for Onagawa, differences are relatively 
small. The differences of the tsunami loss 
approximation performances can be explained by 
the topographical and run-up characteristics of the 
areas (Figures 3 and 4).  

To quantify the prediction accuracy of the 
prompt tsunami loss functions based on 
representative inundation height IH3, regression 
analyses are conducted for Iwanuma and 
Onagawa using Equation (1). The obtained sigma 
values are 0.13 and 0.06 for Iwanuma and 
Onagawa, respectively. The sigma values are to 
be compared with those based on other 
approximate methods. 

3.2. Loss estimation based on inundation area 
Alternatively, tsunami loss can be related to 
inundation area of a region. In this assessment, no 
evaluation of inundation depths is performed at 
individual locations. It is important to recognize 
some challenges in evaluating inundation areas in 
the post-tsunami situations. This is because when 
the images of the inundated areas are taken, 
waters have receded and not all inundated areas 
can be identified directly from the images. In this 
regard, Liu et al. (2013) successfully retrieved the 
run-up limits and inundation areas based on 
satellite images in a region south of Sendai (where 
Iwanuma is located) that were taken 2 days after 
the 11 March 2011 Tohoku tsunami. To account 
for possible variations of the estimated inundation 
areas, four thresholds for detecting inundated 
areas are considered: 0.1 m, 0.3 m, 0.5 m, and 1.0 
m. For instance, for the case of 0.5 m detection 
threshold, it is assumed that areas that are 
inundated with depths greater than 0.5 m can be 
identified from the SAR image analysis.  

Figure 6 shows scatter plots of tsunami loss 
samples with respect to inundation areas that are 
estimated based on four detection thresholds of 
0.1 m, 0.3 m, 0.5 m, and 1.0 m for Iwanuma and 
Onagawa. The variations of the inundation areas 
could be regarded as possible ranges of inundation 
areas, and their impacts tend to be greater for 
coastal plain regions than for ria regions. It is 
important to observe that without considering the 
potential bias associated with the evaluation of the 
inundated area, the relationship between the 
tsunami loss and the inundation area is close to 
one-to-one with small variability, and such a 
relationship can be developed for regions with 
different topographies. This proves that if one can 
evaluate the inundation area without biases with 
respect to the calibrated inundation area-tsunami 
loss relationship, the prediction of the tsunami 
loss will be accurate.  
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Figure 5: Comparison of tsunami-induced monetary losses based on three representative inundation heights 
(IH1/IH2/IH3) and NSWE: (a) Iwanuma and (b) Onagawa. 

 

 
Figure 6: Comparison of tsunami-induced monetary losses based on inundation areas for different detection 
threshold values and NSWE: (a) Iwanuma and (b) Onagawa. 

 

 
Figure 7: Comparison of tsunami-induced monetary losses based on NSWE and moment magnitude: (a) 
Iwanuma and (b) Onagawa. 
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Regression analyses of inundation areas 
versus regional tsunami losses are carried out to 
quantify the prediction accuracy by considering a 
case that considers single detection threshold of 
0.1 m, and the other case that considers three 
detection threshold values (= 0.1 m, 0.3 m, and 0.5 
m) as possible variation of the estimated 
inundation area. The former corresponds to an 
ideal situation where there is a high confidence in 
the calibrated inundation area-tsunami loss 
relationship, whereas the latter corresponds to a 
situation where uncertainty associated with the 
evaluation of inundation area cannot be ignored. 
For the single detection threshold case, sigma 
values are 0.11 for Iwanuma and Onagawa. When 
variability of the estimated inundation areas is 
included, sigma values increase to 0.15 and 0.18, 
respectively.  

For comparison, additional regression 
analyses are performed by considering Mw as 
(crude) tsunami hazard measure. Because Mw is a 
macroscopic measure of earthquake released 
energy, regional tsunami loss are expected to 
scale with Mw broadly, which are shown in Figure 
7. The sigma values calculated for the Mw-based 
approximate tsunami loss functions are 0.58 and 
0.41 for Iwanuma and Onagawa, respectively. 
These sigma values are significantly greater than 
those calculated for the inundation-based tsunami 
loss functions. Indeed, the superior performances 
of the inundation-based methods to crude Mw-
based methods can be visually inspected by 
comparing the results shown in Figures 5 to 7. 

4. CONCLUSIONS 
Prompt tsunami loss estimation methods that take 
advantages of proxy tsunami inundation metrics 
were developed. Two types of regional inundation 
measures, i.e. representative inundation height 
and inundation area, were considered, which can 
be evaluated based on post-tsunami images 
obtained from remotely sensed data. The accuracy 
of the approximate tsunami loss models was 
quantified through regression analysis. The 
results clearly demonstrated the potential merit of 
further development of the inundation-based 
prompt tsunami loss estimation. 
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