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Abstract

Development of Multi-scale/Multi-objective 
Spatial Optimization Model 

Based on Genetic Algorithms

Eun Joo Yoon

Interdisciplinary Program in Landscape Architecture,

Graduate School, Seoul National University

Supervised by Professor Dong Kun Lee

The meeting of heterogeneous goals while staying within the 

constraints of spatial planning is a nonlinear problem that cannot be 

solved by linear methodologies. Instead, this problem can be solved 

using multi-objective optimization algorithms such as genetic 

algorithms (GA), simulated annealing (SA), ant colony optimization 

(ACO), etc., and research related to this field has been increasing 

rapidly. GA, in particular, are the most frequently applied spatial 

optimization algorithms and are known to search for a good solution 

within a reasonable time period by maintaining a balance between 

exploration and exploitation. However, despite its good performance 

and applicability, it has not adequately addressed recent urgent issues 

such as climate change adaptation, disaster management, and green 

infrastructure planning. It is criticized for concentrating on only the 

allocation of specific land use such as urban and protected areas, or on 

the site selection of a specific facility.
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Therefore, in this study, a series of spatial optimizations are 

proposed to address recent urgent issues such as climate change, 

disaster management, and urban greening by supplementing 

quantitative assessment methodologies to the spatial planning process 

based on GA and Non-dominated Sorting Genetic Algorithm II (NSGA 

II). This optimization model needs to be understood as a tool for 

providing a draft plan that quantitatively meets the essential 

requirements so that the stakeholders can collaborate smoothly in the 

planning process. Three types of spatial planning optimization models 

are classified according to urgent issues. Spatial resolution, planning 

objectives, and constraints were also configured differently according 

to relevant issues. Each spatial planning optimization model was 

arranged in the order of increasing spatial resolution.

In the first chapter, the optimization model was proposed to 

simulate land use scenarios to adapt to climate change on a provincial

scale. As climate change is an ongoing phenomenon, many recent 

studies have focused on adaptation to climate change from a spatial 

perspective. However, little is known about how changing the spatial 

composition of land use could improve resilience to climate change. 

Consideration of climate change impacts when spatially allocating land 

use could be a useful and fundamental long-term adaptation strategy, 

particularly for regional planning. Here climate adaptation scenarios 

were identified on the basis of existing extents of three land use classes 

using Multi-objective Genetic Algorithms (MOGA) for a 9,982 km2

region with 3.5 million inhabitants in South Korea. Five objectives 

were selected for adaptation based on predicted climate change impacts 

and regional economic conditions: minimization of disaster damage;
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and existing land use conversion; maximization of rice yield; protection 

of high-species-richness areas; and economic value. The 17 Pareto land 

use scenarios were generated by six weighted combinations of the 

adaptation objectives. Most scenarios, although varying in magnitude, 

showed better performance than the current spatial land use 

composition for all adaptation objectives, suggesting that some 

alteration of current land use patterns could increase overall climate 

resilience. Given the flexible structure of the optimization model, it is 

expected that regional stakeholders would efficiently generate other 

scenarios by adjusting the model parameters (weighting combinations) 

or replacing the input data (impact maps) and selecting a scenario 

depending on their preference or a number of problem-related factors.

In the second chapter, the optimization model was proposed to 

simulate land use scenarios for managing disaster damage due to 

climate change on local scale. Extreme landslides triggered by rainfall 

in hilly regions frequently lead to serious damage, including casualties 

and property loss. The frequency of landslides may increase under 

climate change, because of the increased variability of precipitation. 

Developing urban areas outside landslide risk zones is the most 

effective method of reducing or preventing damage; planning in real 

life is, however, a complex and nonlinear problem. For such multi-

objective problems, GA may be the most appropriate optimization tool. 

Therefore, comprehensive land use allocation plans were suggested 

using the NSGA II to overcome multi-objective problems, including 

the minimization of landslide risk, minimization of change, and 

maximization of compactness. The study area is Pyeongchang-gun, the 

host city of the 2018 Winter Olympics in Korea, where high 
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development pressure has resulted in an urban sprawl into the hazard 

zone that experienced a large-scale landslide in 2006. We obtained 100 

Pareto plans that are better than the actual land use data for at least one 

objective, with five plans that explain the trade-offs between meeting 

the first and the second objectives mentioned above. The results can be 

used by decision makers for better urban planning and for climate 

change-related spatial adaptation.

In the third chapter, the optimization model was proposed to 

simulate urban greening plans on a neighborhood scale. Green space is 

fundamental to the good quality of life of residents, and therefore urban 

planning or improvement projects often include strategies directly or 

indirectly related to greening. Although green spaces generate positive 

effects such as cooling and reduction of rainwater runoff, and are an 

ecological corridor, few studies have examined the comprehensive

multiple effects of greening in the urban planning context. To fill this 

gap in this field’s literature, this study seeks to identify a planning 

model that determines the location and type of green cover based on its 

multiple effects (e.g., cooling and enhancement of ecological 

connectivity) and the implementation cost using NSGA II. The 30 

Pareto-optimal plans were obtained by applying our model to a 

hypothetical landscape on a neighborhood scale. The results showed a 

synergistic relationship between cooling and enhancement of 

connectivity, as well as a trade-off relationship between greenery 

effects and implementation cost. It also defined critical lots for urban 

greening that are commonly selected in various plans. This model is 

expected to contribute to the improvement of existing planning 

processes by repeating the positive feedback loop: from plan 
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modification to quantitative evaluation and selection of better plans. 

These optimal plans can also be considered as options for “co-design” 

by related stakeholders.

▣ Keywords: Climate change adaptation, Landslide damage, Non-

dominated sorting genetic algorithms II, Urban greening

▣ Student number: 2015-31321
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1. INTRODUCTION

Spatial planning is about how and where to distribute specific 

land uses and it provides an outline for realizing different levels of 

strategy on real space. However, a number of constraints and interests 

are involved in changing actual space (Neemaand Ohgai, 2010; Gong et 

al., 2012; Haque and Asami, 2014). Therefore, when allocating a use to 

a specific location, it is necessary to comprehensively consider and 

achieve various purposes, and this can be expressed as sustainability of 

space when it covers the environment, society, and economy aspects

(Jung et al., 2016). Although the necessity of sustainability has been 

consistently pointed out since sustainability was first advocated in 1972, 

failures of sustainability in actual spatial planning have also been 

reported (Chen et al., 2014). There has been a lot of research on the 

derivation and synthesis of indicators and strategies related to the 

environment, society, and economy. However, there is insufficient 

methodology to spatialize this (Bae, 2017).

According to the Geographical Information System (GIS) 

technique, spatially distributed habitat quality and productivity, the 

possibility of disasters etc. can be considered from a spatial perspective 

(Kim et al., 2012; Eum, 2016; Lee, 2011). However, the process of 

drawing boundaries for each land use is still based on the qualitative 

methodology, i.e., judgment of planners (Yoon et al., 2018a). This 

qualitative methodology has the advantage of utilizing 

comprehensively accumulated knowledge of experts, which is difficult 

to quantify. However, this is not sufficient to encourage cooperation 

among various stakeholders because it is difficult to objectively 
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determine whether the spatial plan is sufficient to solve the problem at 

hand or if it is the best possible scenario (Zhang and Chi, 2018; Mo et 

al., 2013). Furthermore, it is anticipated that the problem will be 

exacerbated by climate change impacts.

The meeting of heterogeneous goals while staying within the 

constraints of spatial planning is a nonlinear problem and cannot be 

solved by the existing linear methodology. Therefore, the problem is 

solved by using multi-objective optimization algorithms, and research 

related to this field has been increasing rapidly (Yoon and Lee, 2017). 

There are many kinds of algorithms—GA, NSGA II, ACO, SA, Tabu 

Search (TS), and greedy algorithm—but GA have the longest history 

and are still the most frequently applied in spatial optimization 

(Matthews et al., 2000; Stewart et al., 2004; Zhang and Huang, 2015). 

By combining exploration and exploitation, it is known to search a 

good solution within a reasonable time period (Datta et al., 2008). 

Although the planning model built on the basis of such an optimization 

algorithm shows good performance and applicability, it has not 

adequately addressed recent urgent issues such as climate change 

adaptation and green infrastructure planning. There is a criticism that it 

is concentrated on the allocation of single land use or the site selection 

of a specific facility.

Therefore, in this study, series of spatial optimizations were 

proposed to solve issues such as climate change, disaster management, 

and urban greening improvement by supplementing quantitative 

assessment methodologies to the existing spatial planning process 

based on optimization algorithms such as GA and NSGA II. In addition, 

the optimization model needs to be understood as a tool for providing a 
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draft plan that quantitatively meets the essential requirements so that 

the stakeholders can collaborate in the planning process smoothly, 

rather than replacing the existing space planning process. Three types 

of spatial planning optimization models are classified according to 

urgent issues. Spatial resolution, planning objectives, and constraints 

were also configured differently according to relevant issues. Each 

spatial planning optimization model was arranged in the order of 

increasing spatial resolution.
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2. CHPATER 1: Modelling Spatial Climate Change Land 

use Adaptation with Multi-Objective Genetic Algorithms 

to Improve Resilience for Rice Yield and Species 

Richness and to Mitigate Disaster Risk

2.1. Introduction

Ongoing climate change has increased the frequency and 

severity of droughts, flooding, and urban heat islands (UHIs) (IPCC 

2014). In recent decades, this has resulted in increased damage and 

casualties from weather-related disasters, decreased agricultural 

production, degraded or destroyed ecosystems, and other effects 

(Galán-Martín et al 2017, Klijn et al 2012, Lehmann et al 2013, 

Polasky et al 2008, Scarano 2017). Various studies have attempted to 

identify which areas will be most exposed to climate change impacts 

and at what intensities (Chavas et al 2009, Kim et al 2014, Thorne et al 

2017a), but further discussion of climate change adaptions from the 

perspective of land use is needed (Klein et al 2013). Although land use

decisions have long-term consequences and can be very climate-

sensitive (Hallegatte 2009), relatively little is known about best 

managent practices from a spatial perspective relative to climate change 

(Campbell 2006, Hurlimann and March 2012).

At multiple scales, allocating land use categories to appropriate 

areas with consideration of climate change impacts is an aggressive and 

important adaptation strategy (Hurlimann and March 2012, Wilson 

2006). This can be a pre-emptive measure because most climate 

adaptation measures for water stability, agriculture, and forestry are 
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implemented through land use or land management. For land use

planning, the integration of various adaptation strategies critical 

because related climate change impacts may spatially overlap. 

Furthermore, trade-offs between adaptation strategies can occur due to 

competing objectives and other conditions (Galán-Martín et al 2017, 

Kennedy et al 2016). For example, enhancing climate adaptation in one 

sector may weaken resilience in other sectors (Thorne et al 2017b). 

This raises the challenge of incorporating these complex relationships, 

in addition to existing considerations, into long-term land-use planning. 

Many studies have shown that these multi-dimensional problems are 

difficult to solve with existing planning models (Cao et al 2012, Porta 

et al 2013). Thus, innovative methodologies are needed to generate 

adaptation options with more robust and flexible characteristics under 

conditions of increasing uncertainty (Hallegatte 2009). 

The multi-objective genetic algorithm (MOGA) is a popular 

optimization algorithm for addressing multi-objective problems in land 

management (Eikelboom et al 2015, Matthews et al 2000, Stewart et al 

2004). It does not produce a single optimal (definitive) result, but is 

rather a scenario generator that detects a series of suitable solutions for 

multiple objectives by exploring possible combinations within a 

reasonable time (Li et al 2009). Studies using this optimization 

approach have examined realigning land use to respond to a single 

climate impact (Reichold et al 2010, Yoon et al 2017, Zhang and 

Huang 2015, Zhang and Huang 2014) or repositioning a single land use

(Caparros-Midwood et al 2016, Li et al 2009, Mehri et al 2014, Neema 

and Ohgai 2010, Reichold et al 2010). However, land use conversions 

in specific areas may lead to other conversions to maintain the current 
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land use proportions, or produce changes in regional resilience. Thus, it 

is important to incorporate multiple land uses and climate-induced 

events into one computational process. Repeated optimization 

modelling provides a range of land use scenarios for stakeholder 

engagement and is a well-known pathway to managing uncertain 

climate change scenarios (IPCC 2014). 

In this study, we addressed the gap between climate change 

impacts and spatial adaptation by identifying a range of spatially 

distributed regional scenarios that balance land use and climate 

adaptation using MOGA. In this methodology, several objectives and 

constraints that should be achieved for adaptive and sustainable land 

use scenarios were selected taking into account current and future 

condition of study area. There is much more involved in actual land use, 

but it is important to describe land use scenarios satisfying prerequisites 

encompassing various sectors. Recent studies have suggested spatial 

adaptation strategies as a practical tool, but they have mainly focused 

on agricultural sector and related land use (Eikelboom and Janssen 

2012; 2017, Dunnett et al 2018). However here, we established five 

objectives related to multi land use and multi sector of climate change 

impacts as a priority consideration for the entire region. Through this, 

co-benefit and trade-offs between sectors can be implicit in optimized 

land use scenarios, thus its effectiveness can be better even if the 

performance is lower than deriving the best one in single sector. When 

these are satisfied, model outputs could be served as a draft for co-

design with stakeholders with different interests, or support decision-

making of land use change strategies (Ligmann-Zielinska et al 2018).

2.2. Study area
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South Chungcheong Province is located in central South Korea, 

including the cities of Sejong and Daejeon as well as important 

agricultural areas with relatively flat terrain and warm climatic 

conditions. The average altitude of the area is about 100 m. The annual 

average temperature is 11.9 °C and annual precipitation is 1100–1300 

mm. In 2017, there were 3.5 million inhabitants. Sejong (population 

~30,000) is growing rapidly since its designation as the nation’s 

administrative capital. Daejeon (population ~1.5 million) is surrounded 

by a green belt intended to prevent urban expansion. The province is 

ecologically important because it covers the junctions of mountain 

ranges such as the Noryeong, Gaya, and Charyeong, semi-natural areas 

such as farmland, and rivers and oceans. Such heterogeneous landscape 

can support high species diversity (Choe et al 2018). In addition, this 

province includes major rice fields, accounting for 18% of total rice 

production in South Korea (http://kosis.kr). Urban, agricultural, and 

natural land comprise 305 km2, 3589 km2, and 5526 km2, respectively, 

while water covers 562 km2. Climate change adaptation plans for this 

region have been underway since 2016 (http://www.aurum.re.kr/), but 

strategic spatial planning has not been included due to a lack of 

relevant methodologies (Yoon et al 2018).
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Figure 1. Study area in South Korea
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2.3. Methodology

We produced land use scenarios for climate adaptation in the 

form of a 1 km raster projected to the 2050s. Each scenario consisted of 

three land use types: urban, agricultural, and natural (Yoon et al 2017). 

We then reallocated the current spatial extent of each of land use type 

based on these projections and compared the results against current 

spatial distributions with regard to climate adaptation, economic impact, 

and conversion amount.

2.3.1. Climate change impact and optimization objectives

We set five objectives for adaptation based on predicted climate 

change impacts and economic conditions in the region. Three of these 

considered the direct impacts of regional climate change on land use, 

inconsistencies with the current land use patterns, and landslides, which 

may occur more frequently than in the past: ‘minimization of disaster 

damage’; ‘maximization of rice yield’; and ‘maximization of species 

richness’. We used predictive maps of landslide probability, potential 

rice yield, and the potential habitats of 30 plant species under the 

representative concentration pathway 8.5 (RCP8.5) climate projections 

in the 2050s (2046–2055) (Figure 2 A-C; Supplemental Table 1; 

http://motive.kei.re.kr/). RCP8.5 was selected because it is the current 

actual emission trend, and because it can make climate change 

problems the most apparent (Riahi et al 2011). And it was downscaled 

from the Global Climate Model (HadGEM2-AO) administered by the 

Korea Meteorological Administration. 
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The other two non-climate-based objectives were 

‘maximization of economic value’ and ‘minimization of land use

conversion’. We considered the latter important due to the high costs of 

such conversions (Cao et al 2011). We used economic productivity 

maps for urban, agricultural, and natural areas created using statistics 

from 2015–2016 (Figure 2 D-F; Supplemental Table 1). The five 

objectives were intended to be linked to long-term sustainability by 

maintaining a balance between social (safety from disaster), economic 

(land productivity and yield), and environmental (species richness) 

values.

Minimization of disaster damage: Landslides are a major risk 

in South Korea that can be amplified by more extreme weather events 

(Kim et al 2014). Since this region lacks a response system to 

landslides due to lack of experience, damage could be amplified when 

it occurs in future. We calculated disaster damage as the predicted 

economic losses ($) based on landslide probability, estimated by 

ensemble model (Supplemental Table 1), and monetary values of land 

use types in the 2050s. We assumed that maximum economic loss 

equaled the monetary value of land if landslide probability was 100%, 

reduced in proportion to reducing landslide probability (Figure 2A; 

Supplemental Equation 1).

Maximization of rice yield: Given regional variance in crop 

yield and limited South Korean areas for crop production, food security 

issues are an important consideration (Chavas et al 2009, Godfray et al 

2010). Moreover, this region is responsible for a significant portion of 

main farming system in nation, rice yield. Thus it is important to secure 

agricultural areas that are projected to remain highly productive. In this 
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objective, rice yield indicated the maximum amount (kg) of rice that 

could potentially be harvested from land use scenarios in one year in 

the 2050s. Potential rice yield was estimated by DSSAT (Supplemental 

Table 1) and we assumed only the potential rice yield of grids 

overlapping with allocated agricultural areas (Figure 2B; Supplemental 

Equation 2). 

Maximization of species richness: Even without increasing the 

extent of natural areas, total biodiversity can be increased when natural 

areas contain habitats more suitable for a wider range of species 

(Ceballos and Ehrlich 2006). Although this region has potential to 

support diverse species due to junctions of heterogeneous landscapes, 

the current land use patterns are inconsistent with projected future 

species richness patterns (Figure 2C). In this objective, possible target 

species were estimated by MigClim (Supplemental Table 1), and 

species richness indicated the sum of target species that could be 

conserved by gridded land use scenarios in the 2050s. We assumed that

conserved grids overlapped with allocated natural areas (Figure 2C; 

Supplemental Equation 3). 

Maximization of economic value: Economic value, as indicated 

by total economic productivity ($), was derived from current land use

using three assumptions. First, three land use types (urban, agricultural, 

and natural), could be mixed within a 1 km grid. Second, the current 

economic productivity of land uses varies depending on area, location, 

and economic factors such as transaction prices, added value, and rice

and timber yield. Third, the economic productivity of land use in the 

grid could be conserved if the same land use is allocated to that grid 

(Figure 2D-F; Supplemental Equation 4). 
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Minimization of conversion: Conversion refers to the total area 

(km2) over which land uses differ from the current situation. Reducing 

the conversion rate in the process of optimization is related to 

feasibility of results or costs of adaptation (Yoon et al 2017). We 

calculated the number of grids in which conversion occurred by setting 

all land use conversions to 1 (Supplemental Equation 5).

Figure 2. Projected future climate change impacts (A-C, RCP 8.5 in 

2050s) and current productivity by land use type (D-F, in 2010s).

These maps overlapped with spatial patterns of allocated and current 

land uses respectively; we then calculated potential disaster damage (A), 

potential rice yield (B), conserved target species (C), and conserved 

economic productivity by land use (D-F).

We excluded all water bodies and legally protected areas, and 

set an additional constraint to reduce the amount of conversion based 

on the current land use ratio in an individual grid (Supplemental Figure 
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1). This constraint ensured that a certain amount of new land use would 

originally exist in the grid even if land use conversion occurred at 1 km 

resolution. Thus, the actual amount of conversion was less than the 

value of the fifth objective, ‘minimization of conversion’ 

(Supplemental Equation 5).

2.3.2. Optimization model

1) Land use scenario

We set six weighting combinations for the five objectives: one 

consisting of equal weights, the others of one high weight (once for 

each objective) and four low weights. Since stochastic search methods 

show slightly different results in each run, we re-generated land use

scenarios three times by weighting combinations and analysed each run 

(Table 1). 

The performance of the three land use classes under future 

climate change was evaluated by comparing the values derived from 

the current land use patterns (e.g. level of rice production, 

���������������� ) with those from each of the alterative spatial 

scenarios (����������������� ) (Equations 1–2; Supplemental equations 

1–5):

�������������������� =

(
����������������������������������

����������������
) × �� × 100   (1)

�� = �

1																		��	������������	�����	���������
�

�����	����
		��	���������	��	����������																

−1																	��	���																																																										

(2)
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2) Optimization model

Optimization models can potentially provide better solutions 

than current land use patterns by exploring an enormous number of 

scenarios. We ran MOGA using a specially designed crossover 

operator to reduce spatial fragmentation (Yoon et al 2017). We allowed 

30% random seeding of land use while 70% were selected from 

existing land uses to initialize each run. Then, ‘variation’ and ‘selection’ 

was repeated from 15,000 to 35,000 times in each run until the fitness 

of each scenario showed convergence (Figure 3). In ‘variation’, 0.05% 

of each land use scenario was changed by the crossover operator (Yoon 

et al 2017). In ‘selection’, after combining changed and previous 

scenarios, land use scenarios with better fitness were selected by the 

tournament method (Karamouz et al 2010). Fitness indicated how each 

scenario ranked relative to others in terms of weights and performances 

of objectives and in the direction of minimization; we selected land use

scenarios with lower social costs:

Fitness =

Minmize ������ �
���������	������������,����

���������	���������
�−

∑ ��
�
��� (

������	������������,�

������	������
)�     (3)

j ∈ {1,2,3, … , �}, i ∈ {1,2,3, … , �}

where I is the number of scenarios, J is the number of 

optimization objectives except for ‘minimization of conversion’, ωj and 
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ωconv indicate weights of objectives in Table 1, and ‘Best’ and ‘Worst’ 

indicate the best and worst performances of all the optimized scenarios.
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Figure 3. Optimization model based on MOGA

2.3.3. Analysis of land use scenarios

After we generated 18 optimal land use scenarios according to 

the 6 weighting combinations, we conducted the following analyses.

First, we selected three representative scenarios that showed the best 

performances for disaster minimization, rice yield, and species richness. 

We calculated how these scenarios could mitigate climate change 

impacts and how much land use conversion was required. 

Second, we analysed trades-off between scenarios and objectives by 

connecting performances of each Pareto scenario with lines, whose 

slopes and directions differed according to the weighing combinations. 
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Third, we synthesized land use scenarios based on spatial frequencies 

to quantify the locations of optimum land uses showing common trends 

(e.g., Caparros-Midwood et al 2015, Zhang et al 2015). For example, if 

the frequency of land use A was more than half in a given area, that 

area was assigned to A, using the same colour series expressed with 

darker shades as the frequency increased. Areas without a majority of 

specific land use were assigned to ‘neutral’, shown in white 

(Supplemental Table 2).

Table 1. Weighting combinations influencing adaption. The highest 

weighting in each combination is shaded. These weights can be used to 

prioritize objectives and here, it is composed with arbitrary numbers. T

he weights can be adjusted with feedback from the previous results. Rel

atively high weight up to 0.4 is given to show how performances can di

ffer.

Emphasis Disaster Rice yield Richness Economic 

value

Convers

ion
Scenarios

Equal 0.2 0.2 0.2 0.2 0.2 1a, 1b, 1c

Disaster 0.4 0.15 0.15 0.15 0.15 2a, 2b, 2c

Rice yield 0.15 0.4 0.15 0.15 0.15 3a. 3b, 3c

Richness 0.15 0.15 0.4 0.15 0.15 4a, 4b, 4c

Economic 

value
0.15 0.15 0.15 0.4 0.15 5a, 5b, 5c

Conversion 0.15 0.15 0.15 0.15 0.4 6a, 6b, 6c



１８

2.4. Results

2.4.1. Representative land use scenarios for the climate change 

impact

In addition to the current land use pattern, we identified 18 land 

use scenarios, of which 17 were Pareto optimal. Of these, we chose 

three representative scenarios (2c, 3c, and 4b, Table 2) which had the 

best performance relative to the current land use pattern for the disaster, 

rice yield, and species richness objectives, respectively (Figure 5 A-C; 

Table 2). Scenario 2c had the best total performance (sum of all 

performances except conversion, 37.09%), and the best disaster 

performance (21.17%). Natural areas in scenario 2c were allocated

mainly to areas where disaster probability was expected to be high 

under climate change because the higher the disaster probability, the 

more damage can be reduced by re-allocation to natural areas. Scenario 

3c had the best performance for rice yield (8.85%), but its disaster 

performance decreased (-23.99%) compared to scenario 2c. Natural 

areas in scenario 3c were more fragmented than scenario 2c because 

agricultural areas were allocated to areas where both disaster 

probability and rice yield were expected to be high. In scenario 4b, 

which performed best with regards to species richness (41.45%), a 

large part of the natural areas distributed in the study area’s centre in 

scenarios 2c and 3c were moved to the west, and spatial fragmentation 

decreased. This was consistent with areas where the richness of target 

species was expected to be high, but it differed the most from the 

current land use composition of all scenarios, with a conversion rate of 

35.9%.
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Table 2. Performance of scenarios compared to spatial pattern 

of curent land use (%).  Highest three performances by objective 

are shaded. Except for conversion minimization, positive values 

indicate better than current land use patterns while negative values 

indicate worse.

Emphasis 

in weight

Scenarios Objectives

Disaster

Damage
Rice yield

Species

richness

Economic 

value

Conversi

on

Equal

1a 10.38 5.69 11.71 1.11 26.63

1b 12.51 5.76 10.25 1.23 27.19

1c 8.71 6.10 16.02 −0.05 28.42

Disaster 

damage

2a 19.06 4.82 9.73 1.71 27.32

2b 17.93 5.34 9.16 1.65 27.59

2c* 21.17 4.66 9.6 1.66 27.86

Rice yield

3a 1.77 8.56 10.45 −0.85 28.67

3b 1.18 8.84 10.92 −1.79 29.45

3c* −2.82 8.85 15.46 −2.95 31.01

Species 

richness

4a −25.06 6.28 39.51 −8.76 34.72

4b* −30.55 6.38 41.45 −9.72 35.9

4c −15.32 5.93 35.50 −6.44 33.33

Economic 

value

5a 16.35 3.92 0.43 4.58 26.58

5b 15.93 3.31 −0.08 4.75 26.47

5c 15.51 3.34 1.27 4.87 26.77

Conversio

n

6a** -0.16 3.98 6.44 0.82 21.66

6b 1.75 4.13 4.94 1.45 21.42

6c 1.25 4.15 6.89 0.91 21.61
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2.4.2. Trade-offs between scenarios

In all 17 Pareto land use scenarios, scenarios 3abc, 4abc, and 

6bc (emphasizing rice yield, species richness, and conversion 

minimization, respectively) showed the best performances for species 

richness and the next best performance for rice yield, but there were 

greater losses in disaster damage and economic value. In contrast, 

scenarios 5abc showed the best performance for disaster damage and 

the worst performance for species richness. This is the result of specific 

relationships between objectives as well as weighing combinations of 

objectives. 

For example, disaster minimization competed with rice yield 

and species richness and correlates with economic value. In particular, 

competition between disaster minimization and species richness 

maximization was very strong and performances were very sensitive to 

weights. In scenarios 4abc, which gave the highest weight to species 

richness (richness 0.4, others 0.15), conservation was 35.50–41.45% 

higher than current land uses, but economic value and disaster 

minimization were negative (indicating a worse result than current land 

use). This contrasts with the other scenarios, which produced positive 

performances for almost all objectives. Areas where species richness 

was expected to be high did not match current natural areas, so a large 

amount of land conversion (33.33–35.90%) was required to maintain 

*Representative scenarios show best performances in disaster 

minimization, rice yield, and species richness, respectively. 

**Scenario 6a is a non-Pareto solution showing worse performances than 

scenario 6c in all objectives
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species richness, leading to losses in disaster minimization, economic 

values, and conversion that were highly relevant to current land use

composition. Rice yield was the least sensitive objective, with 

performances ranging from 3.31-8.85%, regardless of the scenario 

(Table 2), because the difference in rice yields by locations was 

relatively small (Figure 2).

2.4.3. Spatial frequency of scenarios

Analysing the spatial frequency of the 17 Pareto scenarios 

showed that the central areas of all land uses were consistently 

allocated to the same land use, mirroring the current land use

distribution (Figure 5). However, marginal areas were transformed to 

mitigate climate change impacts. Neutral areas, 1.52% (143 grids) of 

the total area, were scattered throughout the study area (Supplemental 

Table 2 and Figure 5). Neutral areas could play an important role in 

spatial decision-making because all land use types were mixed within 

these grids (Supplemental Figure 1) and all land use types could be 

allocated in future according to different scenarios. Depending on 

which land use is expanded within grids of neutral areas, the whole 

study area could adapt differently to the three climate change impacts. 
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Figure 4. Trade-offs between adaptation scenarios

Figure 5. Representative scenarios (A-C) and spatial frequency of land use (D). If the 
frequency of a specific land use was more than half, it was assigned to the land use
with same colour series (red for urban, yellow for agricultural, green for natural area). 
High (15–17), medium (12–14), and low (9–11) frequencies are expressed as ‘H’, ‘M’, 
and ‘L’, respectively. Neutral indicates no majority of specific land use.

Figure 5. Representative scenarios (A-C) and spatial frequency of 

land use (D). If the frequency of a specific land use was more than half, 
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it was assigned to the land use with same colour series (red for urban, 

yellow for agricultural, green for natural area). High (15–17), medium 

(12–14), and low (9–11) frequencies are expressed as ‘H’, ‘M’, and ‘L’, 

respectively. Neutral indicates no majority of specific land use.

2.5. Discussion

The MOGA optimization approach allows for simultaneous 

consideration of climate change impacts, economics, multiple land use

types, and other constraints, which we used to develop spatial land use

adaptation scenarios. We found that it was possible to increase 

performance for all five objectives slightly, relative to current land use

performance, visible in scenarios 1, 2, and 6 (Figure 4). However there 

were trade-offs, and scenarios that greatly improved on one objective 

such as minimizing landslides typically did so at the cost of other 

objectives, particularly for preserving species richness, and vice versa 

(Figure 4). Each land use scenario performed best for its high-weighted 

objective: to enhance the capacity to achieve adaptation capability 

(8.56-41.45% better than current land use), or conserve the most land 

productivity in all scenarios. The scenarios with equal weights (1abc) 

also showed slightly improved land use climate adaptation than the 

current spatial pattern of land use for all objectives. This indicates that 

not only does this approach provide spatially-explicit alternatives to 

make land use to be more resilient to climate change, but that options 

for overall improvements could made without greatly impacting 

performance of the five objectives are available.

The spatial patterns of land use change steadily over time and 

we expect will continue to do so depending on changes in population, 
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climate, and other factors. Therefore, we suggest that reasonable 

guidelines for land use adaptation can contribute to reducing social 

costs of climate change (Folke et al 2005). Land use scenario that are 

more responsive to climate change can be a basis for identifying 

options and implementing adaptation strategies for entire regions. 

Based on optimized land use scenarios, local government can question 

whether current spatial patterns of land use are appropriate or optimal 

for future conditions. This can also lead to local review of the extent to 

which land use can be designed and operated to promote resiliency and 

adaptive capacities. The reallocation of land uses will impact 

landowners differently. The outputs from this study will need to be 

discussed, and could be used to identify and support disadvantaged 

owners or vulnerable group in areas not relevant to climate change 

impacts. Finally, the approach can be used to mitigate climate change 

impacts related to natural disasters, food security, and ecological 

aspects by prohibiting development in increasingly high disaster-risk 

areas, moving agricultural lands into future high-productivity areas, and 

conserving future ecologically important areas (Bajracharya et al 2011). 

In addition, if such land use scenarios are considered in zoning 

ordinances, developers and landowners can improve public safety and 

welfare while conducting business. 

Uncertainties related to future climate change conditions are in 

part related to the multiple climate change models and emission 

scenarios, which can affect the establishment of adaptation strategies 

(Hallegatte 2009). To respond appropriately, it is important to identify 

a range of scenarios which have high uncertainties but that can cover a 

wide range of options in the decision space (Ligmann-Zielinska et al 
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2008). Furthermore, the decision space can be easily widened further 

by adjusting objective weights or replacing of input datasets. Weight 

adjustment can also be regarded as an iterative feedback process by 

stakeholders. In this case, we expect communication of the scenarios to 

proceed smoothly because the performance of each scenario is 

expressed in a way easy for non-optimization experts to understand 

(e.g., increased rate of rice yield compared to current land use). Also, 

since the optimization model has a highly flexible structure that can 

change input data and related fitness functions (Yoon et al 2017), other 

land use scenarios can be generated to simulate pressures on and 

mitigation of other climate scenarios or land use goals. Here, we 

focused on creating land use scenarios using pre-determined impact 

maps, but for practical applications, sensitivity to climate change 

scenarios or assessment models and the extent of uncertainty should be 

identified. How landscapes should be designed eventually depends on 

the choice of decision makers such as policer and planners referring to 

this identified uncertainty. Considering that the land use scenarios are 

potential solutions, the robustness and ability to perform satisfactorily 

over a broad range of future conditions also should be evaluated.

Scenario planning also has some limitations. First, high rates of 

land use conversion can be a reason not to implement a given scenario 

for climate adaptation. When we tried to keep the conversion rate 

below a certain level, it resulted in greater performance losses for other 

objectives. This indicates that regional climate change impacts will be 

significant, and that current land use patterns are likely vulnerable. It 

can be argued, therefore, that adaptation measures are urgently needed 

even while likely to be expensive. However, if the mitigation of climate 
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change impacts on disaster damage, rice yield, and species richness are 

translated into reduced social costs, much of the cost from land use

conversion could be offset.

Second, our spatial resolution of 1 km means the results cannot 

be regarded as definitive land-use compositions but instead as a 

‘strategic planning direction’. The entirety of each 1 x 1 km grid would 

not necessarily be converted to the allocated land use; our results 

simply suggest the direction in which to increase or decrease each land 

use within each grid (only currently existing land uses were allocated in 

the model). Third, factors related to specific spatial patterns of natural 

areas (e.g. connectivity, Keely et al 2018, and minimum patch size, 

Siitonen et al 2003, Westphal et al 2007) and urban areas (e.g. distance 

from infra structure, Cao et al 2012, Neema and Ohgai 2010) were not 

considered, because too many objectives and constraints can burden the 

optimization process. These factors can be a prerequisite for individual 

species or at the facility level, so it is necessary to incorporate them by 

modifying fitness functions or changing the optimization parameters 

(Haque and Asami 2014, Yuan et al 2014, Zhang et al 2016) in further 

studies. Fourth, while this study examined three potential impacts from 

climate change, we recognize that there are many other possible 

impacts that were beyond the scope of this study, including extreme 

events such as hurricanes or large wildfire. Further research efforts are 

needed to incorporate forecasts for these types of impacts. Fifth, we 

focused on reallocating land uses using the current extents, instead of 

comparing these with a ‘no change’ or considering expansion of 

existing urban areas. This is appropriate for South Korea because the 

population is expected to decline starting in the 2030s (http://kosis.kr/). 
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In general, however, land use patterns change continuously 

even without political pressure, and it is important to define the costs 

and benefits of optimized scenarios relative to no change scenarios (Li 

et al 2011). From the view of climate change adaptation, ‘land use

optimization’ and ‘land use prediction’ can play different roles: the 

former refers to a concrete plan for changing land use patterns for 

climate adaptation, while the latter shows the predicted effects of 

adaptation strategies on land use patterns, considering past trends 

(Yoon et al 2017, Zhang et al 2014). However, we are confident that 

more reasonable results can be achieved by combining these two 

approaches in further studies.

Adaptation is an important aspect of resiliency to climate 

change (Adger et al 2005, Scarano, 2017), but concrete methodologies 

for adaptation on the ground have not been sufficiently addressed. 

Multi-Criteria Analysis (MCA), which can consider competing issues 

to prioritize adaptation options using the full aggregation or the 

outranking method, is often used to support adaptation decisions 

(Trærup et al 2015, De Bruin et al 2009, Ishizaka and Nemery 2013). 

However, it cannot describe spatially-explicit solutions. Multi-objective 

optimization models can be an alternative. In recent studies, 

agricultural growth pathways were identified based on land use

optimization (Dunnett et al 2018), and urban expansion was optimized 

considering climate-induced events (Caparros-Midwood 2015). 

Nevertheless, in the context of adaptation, few studies have addressed 

multiple climate impacts affecting different sectors and land uses in a 

single model; our study is thus a new starting point for this approach.
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Supplemental Table 1. Variables and assessment model of input 

data. We set five objectives for adaptation based on predicted climate 

change impacts and economic conditions in the region. For the three 

objectives considering climate change impacts (A-C), we used 

predictive maps of landslide probability, potential rice yield, and the 

potential species under the RCP8.5 climate projections in the 2050s. In 

supplemental equation 1-3, the values of independent variables, 

���������	�������������, ���������	����	�������, and 

���������	���ℎ������ are referenced in these predictive maps 

respectively. For the other two objectives considering economic aspects 

(D-E), we used economic productivity maps by landuses and land cover 

map in current time, 2010s. In the supplemental equation 4, the value of 

��������	��������������� is referenced in economic productivity 

map of landuse k. And supplemental equation 5, the value of l is 

referenced in current cover map.

Objectives Input data Related variables Source Assessment

Model

A Minimizat

ion of 

Disaster 

damage

Map of 

landslide 

susceptibilit

y in the 

2050s

8.5 representative 

concentration pathway 

(RCP) scenarios (2046–

2055)

Survey of landslide 

occurrence

Topography

Vegetation

Deepness of roots

KMAa, 2016

NIFSb, 2014

MOEc, 2013

KFSd, 2013

Candadel et al., 

1996

Ensemble 

model1

B Maximiza

tion of 

Rice yield

Potential 

rice yield 

in the 2050s

8.5 RCP scenarios 

(2046–2055)

Soil

Rice cultivation /

management nformation

KMAa, 2016

RDAe, 2016

Jeong et al., 

2014

DSSAT2

C Maximiza

tion of

Species 

richness

Potential 

richness 

in the 2050s

8.5 RCP scenarios

(2046–2055)

National field survey 

data on vascular plant 

resources (for 30 target 

species)

6 Bioclimatic variables 

KMAa, 2016

MOEc, 2015

Koo et al., 2017

MigClim3

D Maximiza Economic Residential transition MOLITf, 2016 Net 
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tion of

Economic

value

productivity 

maps of 

urban, 

agricultural, 

and natural 

areas

price

Added value of service 

industry

Rice production and 

unit price

Timber yield

Land cover map

Statistics Korea, 

2015

Statistics Korea, 

2016

Statistics Korea, 

2015

MOEc, 2013

operating 

income4

E Minimizat

ion of 

Conversio

n

- Land cover map MOE, 2013 -

a Korean Meteorological Administration, b National Institute of Forest Science , 
c Ministry of Environment, d Korean Forest Service, e Rural Development 

Administration, f Ministry of Land, Infrastructure and Transport

Ensemble model1: Probability of landslide in 2050s was simulated by 

ensemble model combining MaxEnt and the Random Forest method.

DSSAT2: Potential yield of rice in 2050s was projected using the CERES-

Rice model included in the DSSAT (Decision Support System for 

Agricultural Transfer). 

MigClim3: Potential habitat of target species in 2050s was simulated using an 

ensemble method considering its dispersal ability. 

Net operating income4: Current economic productivities of landuses is 

calculated using area, location, and economic factors such as transaction 

prices, added value, and rice and timber yield. 

Supplemental Equations. Each land-use scenario can be evaluated 

with regard to five objectives using supplemental equations 1–5 

(below), in which M is the number of rows, N is the number of columns, 

and K is the number of landuse types.

Supplemental Equation 1. Disaster damage of the ith scenario 

(���������������� ) can be calculated as follows.  xmnk is a binary 

variable, which allows only one land-use type to be allocated to the 

individual grid. Monetary values of land-use types (Monetary	Value�)

are scaled referring to a previous study focused on another city in South 

Korea (Yoon et al., 2017). Disaster probability of each grid 

(Landslide	Probability��) is from the landslide probability map for 
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the 2050s under the RCP8.5 climate change scenario. �� is the total 

number of grids in the study area.

���������������� 	= ∑ ∑ ∑ (���� ×Monetary	Value� ×
�
���

�
���

�
���

Landslide	Probability��)   (1)

���� ∈ {0,1};    ∑ ���� = 1;							�
���

	∀� = 1,2, … , �;    ∑ ∑ ���� = ��
�
���

�
���

The process for calculating disaster damage in the landuse scenario is 

as follows.

Supplemental Equation 2. Rice yield of the ith scenario (������������) 

can be calculated as follows. ymnk, is a binary variable limiting the 

calculation to the grids allocated only as agricultural land. Potential rice 

yield of each grid (���������	����	�������) is from the maximum rice 

yield map for the 2050s under the RCP8.5 climate change scenario. ��
is the total number of grids in agricultural land.

������������ 	= ∑ ∑ ∑ (���� × ���������	����	�������)
�
���

�
���

�
���     (2)

y��� = �
1				��	� = �����������
0				��	not																											

;    ∑ ∑ ���� = ��
�
���

�
���
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The process for calculating rice yield in the landuse scenario is as 

follows.

Supplemental Equation 3. Total species richness of the ith scenario 

(����������������) can be calculated as follows. zmnk, is a binary 

variable limiting the calculation to the grids allocated only as natural 

land. Potential species richness of each grid (���������	���ℎ������) is 

from the potential species richness map generated by superimposing the 

potential habitats of 30 target plant species for the 2050s under the 

RCP8.5 climate change scenario. �� is the total number of grids in 

natural land.

���������������� 	= ∑ ∑ ∑ (���� × ���������	���ℎ������)
�
���

�
���

�
���     (3)

z��� = �
1					��	� = �������
0					��	not																		

;     ∑ ∑ ���� = ��
�
���

�
���

The process for calculating species richness in the landuse scenario is 

as follows.

Supplemental Equation 4. Economic value of the ith scenario 

(����������������) can be calculated as follows. xmnk is a binary 
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variable, which allows only one land-use type to be allocated to the 

individual grid. Economic productivity of each grid 

(����������������) is from the economic productivity maps generated 

for the three land-use types (urban, agricultural, and natural areas) 

under current conditions (2015–2016). The economic productivity map 

of the urban area was conducted using actual transaction prices, added 

values, and areas within 1km grid. Similarly, economic productivities 

of agricultural and natural areas were conducted using actual rice 

production, timber yield, related unit price, and areas within grid 

(Supplemental Table 1). �� is the total number of grids in natural land.

���������������� 	 =

∑ ∑ ∑ (���� × ��������	���������������
�
��� )�

���
�
���     (4)

���� ∈ {0,1}; 				∑ ���� = 1,�
��� 					

∀� = 1,2, … , �;     ∑ ∑ ���� = ��
�
���

�
���

The process for calculating economic value in the landuse scenario is as 

follows.

Supplemental Equation 5. Land conversion amount of the ith scenario 

(������������������) can be calculated as follows. k and l indicate 

land-use types of current and scenario, respectively, in individual grids 
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(K and L indicate the number of land-use types). If k is not equal to l in 

each grid, a value of 1 is assigned to the grid (��������).

����������	� 	= ∑ ∑ ��������
�
���

�
���    (5)

�������� = �
1					��	� ≠ �
0					��	���	

; 						∀� = 1,2, … , �;     ∀� = 1,2, … , �
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Supplemental Figure 1. Restrictions based on current landuse 

composition. Although landuses are allocated in 1 km grids (coarse 

resolution), this restriction is based on current land-use composition in 

high resolution (B1–3). Allocated maps have four changed grids in 

common from current landuse (C1–3), but C3 is not available since 

“Use 2” is allocated to the grid where “Use 2” did not originally exist 

in the current composition at high resolution.



４３

Supplemental Table 2. Color palette for frequency map. Spatial 

frequency of optimized landuse scenarios are expressed using follow 

color palette. If the frequency of landuse A is more than half of the 

number of scenarios on the grid, it is assigned to landuse A, using same 

color series expressed with darker shades as the frequency increases. 

Frequency

Majority by one use Neutral

High Medium Low Others

Urban

Agricultural

Natural

Supplemental Table 3. Areas by frequency level (unit: km2). This 

frame is matched to supplemental table2. Considering total area is 

9,420km, most of the area (98%, 9,277km2) show a tendency to be 

allocated more frequently by specific landuse.

Frequency

Majority by one use

Neutral
High Medium Low Total

Urban 48 31 47 126

143Agricultural 1743 919 836 3498

Natural 3622 1170 861 5653

Total 5413 2120 1744 9277 143
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Supplemental Figure 2. Spatial frequency of each landuse in Pareto 

scenarios. Darker shades represent increasing spatial frequency of each 

landuse.
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3. CHPATER 2: Multi-Objective Land-Use Allocation 

Considering Landslide Risk under Climate Change: Case 

Study in Pyeongchang-gun, Korea

3.1. Introduction

In recent years, the increasing variability in precipitation 

patterns has triggered frequent extreme landslides [1,2]. Landslides are 

one of the critical natural phenomena that lead to serious problems in 

hilly regions on a global scale [3]. In the case of Gangwon-do, a typical 

mountainous region in Korea, 44 casualties (including 19 missing 

persons) resulting from flooding and landslides were reported in 2006. 

The Baduella District of Sri Lanka, El Cambray Dos of Guatemala, 

Maharashtra of India, and the Sindhupachok District of Nepal have also 

experienced severe damage, with more than 100 casualties in the last 

three years. These cities are still at risk for potential landslide damage 

because the frequency and scale of landslides may further increase in 

the near future due to climate change. Therefore, we are concerned with 

where the landslides may occur and how we should respond to the risk 

of landslides in these cities.

Over the past two decades, numerous researchers have assessed 

landslide hazard under the present and future conditions influenced by 

climate change to estimate potential probabilities [4–9]. In those studies, 

the amount of overlapping urban and hazardous areas represents the 

regional risk level because landslide damage, such as property loss and 

casualties, is concentrated in urban areas. Even though the reduction of 

risk in advance is extremely important for mitigating large-scale 
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disasters, only a few studies have addressed how to respond to potential 

landslide damage, i.e., landslide risk. For urban planning purposes, 

landslide risk can be reduced by placing urban areas in safe zones that 

have lower landslide hazard grades [10,11].

Land-use composition is driven by social, economic, and 

environmental factors and cannot be allocated based on the mitigation 

of landslide risk alone. In reality, numerous objectives, constraints, and 

stakeholders are involved in planning, which can be conflicting [12]. 

Researchers have called this a “nonlinear problem,” which cannot be 

solved with qualitative knowledge or traditional linear modeling. In 

many cases, land-use planning systems have failed to balance different 

values, such as economic benefits, protection of natural resources, and 

social safety [13]. Therefore, we require scientific and quantitative 

tools that can incorporate numerous factors and help us create 

comprehensive plans.

Genetic algorithms (GA) are the most popular optimization 

tools to address multi-objective problems in land-use planning [14–18]. 

Unlike other heuristic approaches, the GA approach is a general-

purpose search method, combining elements of directed and stochastic 

searches, which can create a superior balance between the exploitation 

and exploration of a search space [19]. Additionally, the application of 

a GA allows for immediate feedback to stakeholders because it can run 

a number of experiments with different parameter values. Therefore, 

we suggest a quantitative tool, the Multi-Objective Genetic Algorithm 

(MOGA), which can generate a comprehensive land-use allocation plan 

that considers landslides under climate change, and apply it to the 

Pyeongchang-gun area of Korea. Pyeongchang-gun, a typical 
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mountainous city, is the fastest changing region in Korea due to its 

development for the 2018 Winter Olympics. Urban sprawl into natural 

areas in this city has caused an increase in potential disaster risk, 

especially with regard to landslides. We also considered the 

“minimization of land-use change” and the “maximization of 

compactness” as optimization objectives. Land-use change is 

associated with a certain amount of economic cost and compactness is 

an important factor for land management. The optimized land-use plans 

that we created can be used as guidelines or as basic data by regional 

stakeholders. They can also contribute to the spatial adaptation plans 

against climate change impacts. We are careful to note that the 

optimization results are not the only good alternatives; rather, they are 

meant to support further detailed design or analysis by stakeholders 

[14,20].

In Section ‘Materials and Methods’, we introduce the study 

areas and describe the datasets, the method of landslide hazard analysis, 

and optimization. The optimization objectives and constraints are also 

described in this section. In Section ‘Results’, we present the changes 

in landslide hazards with climate change and related optimal land use 

patterns. In Section ‘Discussion’, we present the implications and 

limitations of the optimization results and directions for future research.
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3.2. Materials and Methods

3.2.1. Study Area

Our study area is Jinbu-myeon, located in Pyeongchang-gun, in 

the mountainous Gangwon-do region of Korea (Figure 1). The 

Gangwon-do region has high landslide probability, owing to its high 

elevation, a dynamic topography, and large elevation differences [4]. In 

2006, a large-scale shallow landslide was caused by Typhoon Ewiniar. 

Furthermore, we expect that the landslide probability could increase in 

the future according to the Representative Concentration Pathways 

(RCPs) climate change scenarios. However, most regional policies on 

landslides focus on management after the event, such as debris barrier 

installations, and cannot address potential landslide damage not yet 

incurred. 

Jinbu-myeon in Pyeongchang-gun has a higher landslide risk 

than the other cities in Gangwon-do, because urban zones are sprawling 

into mountainous areas; 69% of Pyeongchang-gun is at altitudes greater 

than 500 m above sea level. The 2018 Winter Olympics increased the 

pressure for development/expansion and the migration rate into the city. 

Jinbu-myeon is the second-most populous city in Pyeongchang-gun and 

has good accessibility supported by highways and a new railway that is 

under construction. According to the city master plan, the potential 

developed area in Jinbu-myeon may increase by 69.4% by 2020 to 

accommodate the increasing population and the facilities for the 

Olympics [21]. Therefore, we must determine the direction of land-use 

change in Jinbu-myeon, while considering the potential for landslide 

damage.
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Figure 1. Study area: Jinbu-myeon, Pyeongchang-gun

3.2.2. Dataset

We used input variables describing climate factors, topographic 

factors, ground material, and vegetation factors to analyze landslide 

hazard and conduct optimized land-use planning (Table 1). With 

respect to climate factors, we focused on calculating the extreme 

rainfall variables during 2006 using Automatic Weather System (AWS) 

data. In 2006, the Gangwon-do region, including the study area, 

experienced a large-scale shallow landslide and flood damage from 

Typhoon Ewiniar, primarily in urban and farmland zones, which 

resulted in 25 casualties and 19 missing persons. Because the detailed 

investigation for the landslide was conducted in 2006 and there has 

been no further investigation since then, the study period was limited to 

2006. We then used the 8.5 RCPs scenario to estimate the climatic 

conditions in the 2050s, referred to as “mid-term future” in climate 
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change research. The scenario predictions for 2041–2070 were 

averaged to reduce the uncertainty caused by using model data rather 

than observational data. In this regard, climate change was directly 

reflected as a variable in hazard analysis, while it was reflected 

indirectly through hazard analysis in land-use optimization. We also 

used a digital elevation model (DEM), a soil map, and a map of forest 

types to define the topography, ground material, and vegetation factors, 

respectively.

The land cover map shows 22 land-use types that were re-

categorized into three groups: urban, agricultural, and natural areas. 

Our purpose is to generate land-use allocation maps that are not final 

land-use plans, but rather alternatives to support the stakeholder’s 

decision or detailed design because simplified land-use types are more 

easily incorporated into planning as they provide only the approximate 

spatial extent of each land-use. Dataset resolution varied from 30 m to 

1 km (Table 1); thus, it was necessary to unify them at an appropriate 

resolution. Finally, the entire dataset was converted to 100-m resolution 

raster data composed of 116 rows and 114 columns. The difficulties of 

objectively determining the resolution of the final data are described in 

Section 4.
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Table 1. Dataset and variables for the study

Section Data Source and Type Reference
Data 

Format

Landslide 

hazard

AWS (Automatic Weather System) a

-Daily maximum rainfall (mm) 

-5 d of maximum precipitation (mm) 

-Number of days with over 120 mm of 

rainfall

KMA c, 

2006
Point

2041–2070 8.5 RCPs scenario b KMA, 2011
Raster, 1 

km

DEM (Digital Elevation Model) 

-Slope 

-Elevation

KME d, 2008
Raster, 

30 m

Soil map 

-Soil depth/soil drainage/soil type

WAMIS e, 

2006

Raster, 

30 m

Map of forest type 

-Coniferous/Deciduous/Mixed forest 

-Natural forest, Artificial forest

KME, 2005
Raster, 

30 m

Land-use 

allocation

2020 Master plan
Pyeongchan

g-gun, 2014
Tables

Land cover map 

-Urban/agricultural/natural data
KME, 2006

Raster, 

30 m

DEM 

-Elevation
KME, 2008

Raster, 

30 m

Regional statistics 

-Crop yield 

-Industrial/commercial production 

-Forest production

Pyeongchan

g-gun, 

2005–2015

Tables

a AWS data originally provided in hourly format was modified into daily 

format to be consistent with the climate change scenario. 

b Korea Meteorological Administration (KMA) downscaled the global model 

(HadGEM2-AO, 135 km unit) to the regional model (HadGEM3-RA, 12.5 km 

unit) using a dynamic technique. Additionally, the KMA revised the regional 

model to 1-km units using PRISM based downscaling estimation model. 
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c Korea Metrological Administration. 

d Korea Ministry of Environment. 

e Water Resources Management Information System.

3.2.3. Landslide Hazard Analysis

Landslide hazard was simulated using a maximum entropy 

model (MaxEnt) based on the variables in Table 1. MaxEnt, developed 

by AT&T Labs, has been applied to various fields, including statistical 

physics, optimization, and image construction [22]. Recently, MaxEnt 

has been applied to landslide assessment and has shown better 

performance regarding the area under curve (AUC) values than other 

models: multiple adaptive regression splines, logistic regression, and 

classification and regression trees [22]. Since the local government of 

the Gangwon-do Province possesses the only occurrence data of 

landslides, configuring MaxEnt to use the occurrence data is 

appropriate for this study area. We classified the potential landslide 

hazard for the future into ten grades, using the standard deviation 

values of the future landslide hazard and the threshold value in the 

present hazard model. The 10th grade represents the most dangerous 

areas for landslides, while the first grade represents the safest areas 

with respect to landslides. If the landslide hazard were classified into 

fewer than ten grades, the optimization of moving the hazardous urban 

areas to safe areas could not proceed well because the majority of safe

areas would be located in high altitude areas that restrict urban 

development.
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1) Objectives and Constraints

We defined three objectives for land-use allocation: the 

minimization of landslide risk, the minimization of change, and the 

maximization of compactness. The risk is a very useful concept when 

addressing the potential damage of future disasters under climate 

change [23]. Risk can be measured as the combination of the 

probability and consequences of an adverse event [24] (Equation (1)). 

We divided the probability into ten categories equal to the grades of 

landslide hazard because we assumed that the higher the hazard grade, 

the higher the probability of occurrence. We divided the consequences 

into three grades by land-use type: catastrophic, major-moderate, and 

minor-insignificant. Exposure to landslides differs by the intensity of 

development, namely, the land use [11]. We categorized urban areas as 

the highest consequence grade, “catastrophic”, while agricultural areas 

and forest areas were categorized as “major-moderate grade” and 

“minor-insignificant grade”, respectively. The spatial distribution of the 

consequences is altered by the optimized land-use plans. We calculated 

relative risk scores by comparing the average monetary value of real 

properties, movable assets, and services contained in each land-use type 

in Pyeongchang-gun. We assumed that all those monetary values were 

under the threat of landslides if allocated to the 10th probability grade. 

The risk scores decrease in proportion to the decrease in landslide 

probability (Table 2).

Risk = Probability(hazard) × Consequence(land − use	type) (1)
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Table 2. Risk matrix for the landslides (unit: ratio of monetary values)

Probability 

Consequence
1 2 3 4 5 6 7 8 9 10

Urban 0 0 1 4 10 20 33 48 59 65

Agricultural 0 0 0 1 3 3 10 14 17 19

Natural 0 0 0 0 0 1 1 1 2 2

Land-use change is associated with a certain amount of 

economic cost; thus, it is important to maintain the current land-use 

pattern as much as possible while also reducing the landslide risk. We 

used cost factors for converting land-use i to land-use j (Table 3). To 

reduce the error caused by using real cost, we applied dimensionless 

costs indicating the relative relationship of different types of land-use 

changes [25].

Table 3. Cost factors for land-use change

Land-Use Type

Change to (Land-Use j)

Developed 

Area

Agricultural 

Area
Natural Area

Change from 

(land-use i)

Urban area 0 1 1

Agricultural 

area
0.6 0 0.2

Natural area 0.7 0.4 0
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In our study region, some of the urban and agricultural areas are 

spatially scattered within the natural areas. It is very costly to manage 

and allocate resources in these areas, which may generate larger 

negative edge effects of urban and agricultural areas [26,27]. Therefore, 

we employed the third objective: maximization of compactness. The 

compactness of each cell can be measured by the number of 

neighboring cells that have the same land-use type as the focused cell. 

The neighboring cells of the focused cell i(r, c) form a single rectangle 

from (r−1, c−1) to (r+1, c+1), consisting of eight cells. If a cell i is 

allocated to land-use k and there are no neighboring cells allocated to k, 

the compactness of cell i is at a minimum, whereas, if cell i has eight 

neighboring cells allocated to k, the compactness is at a maximum.

We considered the increase in urban areas to accommodate the 

future population to be a constraint. In accordance with the 2020 master 

plan of Pyeongchang-gun, we assumed that urban areas would increase 

by 70% by the 2050s. The relative risk score for the first objective 

(minimization of landslide risk) decreases in the order of urban, 

agricultural, and natural areas, even though these areas possess the 

same landslide probability. If we optimize the area of each land-use 

type, it is highly likely that the optimization of the first objective will 

be achieved by reductions in urban or agriculture areas. We also 

excluded the areas with altitudes above 800 m from this optimization 

because these areas are difficult to develop in practice (Table 4).
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Table 4. Areas of actual land-use types and constraints (unit: 10,000 

m2)

Total Urban Agricultural

Natural (9,132)

Above 800 m (Fixed)
Below 800 m 

(non-Fixed)

13,224 264 3828 3975 5157

2) Model Formulation

The objectives for the optimization can be expressed using the 

following formulations. There are K different land-use types and the 

model is divided into a regular grid with N rows and M columns. 

According to the formulas (2), (3) and (4), only one land-use k is 

assigned to each cell (i, j), because the binary variable ���� equals to 1 

or 0. The value ���� associates the costs or benefits with the allocation 

of any particular land use to the specific cell. In the first and second 

objectives, each cell is assigned an ���� value based on the score 

matrices defined in Section 2.4.1 (Tables 2 and 3). The sum of all ����

values across the study area is considered to be the optimization level 

for each objective. The value of ���� is the number of neighboring cells 

that have the same land-use type as the focused cell (i, j) and the sum of 

all ���� values is the optimization level of the third objective. The sum 

of the areas of all land-use types is equal to the area of the whole study 

area, �� (Equations (5) and (6)).
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Minimize:

−∑ ∑ ∑ ��������
�
��� 		�

���
�
��� (2)

Maximize:

∑ ∑ ��������
�
���

�
��� (3)

Subject to:

∑ ���� = 1�
��� 			∀� = 1,… , �; � = 1,… ,�; � = 1,… ,�  (4)

���� ∈ {0,1}

Where:

∑ ∑ ���� = �� 	
�
���

�
��� ∀� = 1, … , �; � = 1,… ,�; � = 1,… ,�  (5)

∑ �� = � ∙ ��
���   (6)

3) Non-Dominated Sorting Genetic Algorithm II

We found that GA was more successful in guaranteeing the 

optimal solution than other heuristic approaches, such as simulated 

annealing, greedy growing algorithms, and tabu search [19]. Therefore, 

land-use allocation in this study was optimized using a Non-dominated 

Sorting Genetic Algorithm II (NSGAII) [28] and a specially designed 

crossover operator. The NSGAII generally shows good performance for 

optimizing three objectives and it can efficiently produce a high-quality 

diverse Pareto set using a non-domination rank and crowding distance. 

Non-domination rank can reduce the computational time, while the 

crowding distance can guide the selection process toward uniformly 

spread-out Pareto optimal [28]. If all the fitness values of solution j are 

less than solution i, solution j dominates solution i and has a better rank. 
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If solutions i and j have the same rank, the solution located in less 

crowded regions is a better solution for the selection [28] (Figure 2). In 

our study, we used NSGAII to generate solutions that are diverse but 

appropriate for the three objectives: minimization of landslide risk, 

minimization of change, and maximization of compactness.

Figure 2. Crowding distance & non dominated solutions

We used a fixed-length chromosome representation method, 

which consists of grids of genes. Each gene represents a unit and the 

land-use type of the unit is determined by the fitness value. The 

iteration process of the GA applied to our study consists of several 

steps, including initialization, crossover, and selection. The main loop 

was repeated until the convergence was achieved for all objectives 

(Figure 3). Population size, iteration size, and crossover rate were 

determined empirically.



５９

Figure 3. Process of the genetic algorithm (GA)

Initialization: Initial populations were randomly generated to 

prevent convergence to the local optimum.

Crossover: Two focused cells, A and B, were selected randomly 

within one parent and then exchanged if the number of boundary cells 

of A and B had the same genes as B and A (Figure 4). Previous 

researchers developed a crossover operator similar to this method to 

dramatically improve the compactness [26].

Selection: First, we produced a solution pool composed of both 

the previous generation and new solutions generated by the crossover

to ensure elitism. Then, solutions for the next generation were selected 

based on the non-domination rank and crowding distance. First, non-

dominated solutions (number-one ranking) were selected and then the 

solutions of the next rank (dominated more than once) were selected. If 

the selected solutions by rank were greater than the population size, the 
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solutions of the lowest rank would be re-sorted by the crowding 

distance and selected until they satisfied the population size.

Figure 4. The crossover operator

3.3 Results

3.3.1. Landslide Hazard

Figure 5 shows the urban and agricultural areas that are exposed 

to potential landslide damage with ten grades of landslide hazards. 

Lower hazard grades are distributed on the peak of a mountain where 

development is generally restricted. Outside of this peak, the higher 

hazard grades (greater than 6) account for 49.3% of the study area (less 

than half), but 65.2% of urban areas and 70.0% of agricultural areas 

overlap with these grades (Table 5, Figure 5). In particular, the ninth 

and tenth grades are present in the lowest proportions but are 

distributed around the center of urban areas in the southwestern study 

area. The sixth to eighth grades overlap with much of the steep 

agricultural area around the plain.
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                   (a)                                                                 (b)

Figure 5. Current land use (a) and grades of landslide hazard (b)

3.3.2. Optimization

The optimization model was simulated over 350 iterations with

a population size of 100 and a crossover rate of 0.05, which were 

determined empirically. Non-dominated solutions in the final iteration 

were greatly moved to the inner fitness space. This indicates that 

solutions are optimized to a better status for all objectives during the 

simulation (Figure 6a). The fitness value of each objective decreases 

steadily and then converges at the point of certainty (Figure 6b,c,d). 

However, if we consider all non-dominated solutions, the coefficients 

of variation in the final generation would be different for each objective. 

The coefficient of variation of the third objective is lower than that of 

the first and second objectives. This indicates that all non-dominated 

solutions satisfy the third objective to some extent, but tradeoffs 

between the first and second objectives are relatively strong (Table 5).
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Figure 6. Change in the non-dominated solutions

Table 5. Statistics of the final Pareto plans

Objectives Average Minimum Maximum
Standard 
Deviation

Coefficient 
of Variation

First 
objective

36,362 28,009 45,981 5281 14.52

Second 
objective

1418 1150 1756 173 12.20

Third 
objective

6420 5316 7558 624 9.72

We organized six of the non-dominated solutions, A, B, C, D, E 

and F, along the two dimensions that explain the tradeoffs between the 

first and second objectives (Figure 7). Certain points that appear to be 
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“dominated solutions” on two dimensions correspond to non-dominated 

solutions on three dimensions (including the third objective, 

maximization of compactness). For example, plan D shows a more 

compact land-use pattern than the other plans that are located near and 

inside of plan D. If we consider the actual land as a reference point, 

plans A, B, C and D, which are located on the left side, can reduce the 

potential landslide risk by one-third compared to the actual land use. In 

contrast, plans E and F can increase the potential landslide risk despite 

conversion because conversion contributes to the improvement of 

compactness (Table 6, Figure 7). Additionally, all plans are better than 

the actual land use for the third objective-maximization of compactness 

(Table 6).
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Figure 7. Final optimized plans considering trade-offs. Red line 
indicates the level of landslide risk in actual land use; Plan A and F are 
the most effective alternatives for the first and second objective 
respectively. Plan B, C and D (plans between A and F) are alternatives 
by various combination of weights.

Table 6. Fitness values of the optimized plans

Plan A Plan B Plan C Plan D Plan E Plan F Current

First objective 24,089 28,408 30,982 36,363 41,224 46,239 41,100

Second 
objective

1747 1516 1407 1503 1232 1161 0

Third objective 6067 6684 6288 5814 5778 5814 17,870
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3.4. Discussion

We generated a range of optimized plans for the multi-objective 

problems without the relative weighting factors. From the perspective 

of reducing the landslide risk, land-use plans optimized on one 

objective could be better than the other plans optimized on multi-

objectives, but this can result in unacceptable plans for stakeholders 

with different interests. In multi-objective problems, however, defining 

the relative importance of each objective is very difficult. Additionally, 

the determined weights have difficulty in handling the changing 

environment; the most important objective under current conditions 

may not be the most important one in the future. The non-dominated 

land-use plans we suggested using NSGAII include all possible 

combinations of weighting factors [29]. The planners or decision 

makers can choose one plan, depending on their knowledge or 

problem-related factors [30] and use it to conduct detailed planning. 

All the optimized plans are better than the actual land use for at 

least one objective: minimization of landslide risk or maximization of 

compactness. All plans showed a dramatic improvement—especially in 

compactness—by at least 60%. However, in case landslides become a 

major issue, plans E and F are difficult to select (Figure 7) because of 

the landslide risk increase from the current level. Land conversion in 

these plans occurs only to improve compactness. Compactness is one of 

the most important objectives considered in most related studies 

[17,26,27,31–37], but landslide risk also needs to be reduced to some 

extent, because land use conversion is very costly. We have obtained 

100 non-dominated plans of various weight combinations, but the range 
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of plans that can actually be selected is narrow. If the Pareto front line 

is moved inward (southwestward), we can obtain more plans 

distributed on the left side of the red line (Figure 7). We expect this can 

be done in future studies by incorporating the actual land use in the 

initial population or by establishing strict constraints such as the 

conversion ratio [37,38] and maximum cost [39]. In this study, we 

employed some climate variables from the RCP scenario to reflect the 

long-term future of the study area in land-use planning. The spatial 

resolution of the RCP scenario can create some problems in generating 

land-use plans. The scenario data are produced at the resolution of 1 km 

by KMA and the resolution of other variables is 30 m. We considered a 

resolution of 100 m because further downscaling could decrease the 

reliability of the scenario data. However, the resolution of 100 m is too 

large to express linear land-use patterns such as rivers, railroads, and 

highways and subtle changes in soil and topography. In fact, the linear 

land-use types tend to disappear in all optimized plans. Therefore, we 

expect that the resolution problem of climate scenarios will be solved in 

future studies on land-use planning. 

Our optimized results can also be considered spatial adaptation 

options or solutions for the potential landslide problem under climate 

change. Climate change research has so far focused on the assessment 

of the impacts of climate change on disasters, ecology, and industry. 

We now need to discuss spatial adaptation: how to change the actual 

space in response to climate change impacts because climate change is 

already happening [23]. Adaptations to disasters such as landslides are 

a priority, as these events can lead to the loss of life and property. 

There are two ways to simulate land-use changes for adaptation: land-
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use predictions based on scenarios and land-use optimization to 

generate scenarios. Land-use prediction simulates land-use changes by 

a transition rule set based on the past trends and agent behavior. If we 

want to solve problems using land-use predictions, we have to establish 

related strategies first, then change the transition rule set, and finally 

simulate future land-use changes. It is not guaranteed, however, that 

simulated land-use change is appropriate for the problem at hand. 

Using the second approach, the land-use optimization, we can simulate 

appropriate land-use changes for the initial problem and then establish 

strategies to facilitate land-use optimization. GA is considered one of 

the most effective optimization tools. In some studies, these two 

approaches were applied in the coupled form to complement each other 

[40,41], but the optimization model was better than the prediction 

model in terms of problem-solving performance [42].

To obtain more reasonable adaptation options, we plan to 

conduct future research that considers the positive possibilities together 

with the negative impacts of climate change [43]. This study focused 

only on reducing the negative impacts of climate change by avoiding 

planning in urban areas where landslides are most likely to occur. 

However, by considering positive possibilities such as the expansion of 

suitable cultivation areas or habitats together, we can link the optimized 

results to sustainability in future climate change research, which will 

consider the balance among the social, environmental, and economic 

aspects.
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3.5. Conclusion

In this study, we suggested tools to identify comprehensive 

land-use alternatives that could contribute to the reduction of the 

potential landslide risk in Pyeongchang-gun. This approach can provide 

guidance to municipal governments when allocating urban, agricultural, 

and natural areas and when establishing spatial adaptation plans that 

consider extreme meteorological disasters under climate change. The 

model developed based on GA is generally flexible and thus, can easily 

be applied to other similar problems. We only need to modify some 

part of the fitness function and dataset according to the objectives or 

adjust model parameters that suit the problem. For example, to consider 

the landslide hazard under different climate change scenarios, we could 

generate new optimized plans for that problem by replacing landslide 

hazard maps derived from new scenarios. Our model could also be used 

to generate land-use allocation plans for other cities suffering from 

landslides. A risk matrix for the land-use priority, objectives, and 

constraints, however, should be identified for any new cases.
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4. CHPATER 3: Multi-Objective Planning Model for 

Urban Greening based on Optimization Algorithms

4.1. Introduction

Improving urban environments is becoming a major concern 

with the continuously growing urban population (Yu et al., 2017; 

Bayulken & Huisingh, 2015). Green space is generally composed of 

relatively small and fragmented patches, but it is a critical factor for the 

quality of an urban environment (Smith et al., 2017; van der Jagt et al., 

2017; Gaitani et al., 2014). The green spaces in urban environments 

provide multiple benefits, including runoff reduction (Li et al., 2017; 

Giacomoni & Joseph, 2017; Fintikakis et al., 2011), urban heat island 

(UHI) mitigation (Zhang et al., 2017a; Zhang et al., 2017b; Yang et al., 

2017b), aesthetic experience (Lay & Leone, 2017), and formation of a 

network for species movement (Aronson et al., 2017; Lay & Leone, 

2017). Flooding and UHI have recently been particularly emphasized 

because of the increasing variation in precipitation and temperature 

caused by climate change (Meerow and Newell, 2017; Jaganmohan et 

al., 2016; Yu et al., 2017). The multiple benefits of green spaces have 

driven the continued effort to expand them (van der Jagt et al., 2017; 

Rutt & Gulsrud, 2016) despite their high implementation cost (Jermé & 

Wakefield, 2013; Mathers et al., 2015) and relatively low economic 

feasibility compared to other public facilities.

However, although some have considered the implementation 

cost, most studies supporting the planning of green spaces with a 

quantitative basis focused on a single benefit of greening. Some studies 
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suggested the optimal arrangement of trees or new green spaces to 

improve the cooling benefit (Wu and Chen, 2017; Zhang et al. 2017a) 

or runoff regulation (Giacomoni and Joseph, 2017). Yang et al. (2017a) 

analyzed the linear regression relationship between green coverage 

ratio and physiological equivalent temperature for the design of public 

urban spaces. Li et al. (2017) sought to develop a performance 

evaluation system of low impact development measures from the 

viewpoint of the hydrological process. There is a dearth of studies that 

provide a comprehensive treatment of the multiple benefits generated 

from urban green spaces. This gap in the literature has resulted in the 

failure to meet various stakeholder preferences and achieve regional 

sustainability (Chen et al., 2014); however, identifying an optimal 

spatial pattern subject to multiple benefits is challenging (Brooks, 

2001). In the process of maximizing a specific benefit by changing the 

location and the composition of green spaces, other benefits can be 

enhanced or diminished because of trade-off or synergistic 

relationships. In contrast, for land use problems, numerous studies have 

integrated heterogeneous issues, such as flooding, heat hazards, 

greenhouse gas emissions, soil erosion, and compactness based on the 

optimization approach (Caparros-Midwood & Dawson, 2015, 2016; 

Cao et al., 2011; Cao & Ye, 2013). Similarly, studies focusing on 

public facilities (e.g., health care center, water distribution system, and 

radiation sensors) have considered multiple criteria of utility and cost 

with an optimization model (Eusuff et al., 2006; Beheshtifar et al., 2015; 

Jankowski et al., 2014).

The present study aims to develop a planning model that can 

determine the optimal location and type of greening to maximize its 
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multiple benefits in a neighborhood scale by using an optimization 

approach. This study differs from those using the existing planning 

models for urban greening in the following four aspects:

1) Our model can quantitatively consider the synergies or trade-

offs between the greening benefits and cost by incorporating them into 

a single planning model.

2) It can be performed at the neighborhood scale. Obtaining 

large spaces for greening is often difficult in highly dense cities; hence, 

the benefits from greenery must be maximized by utilizing distributed 

small spaces. The related scientific studies on the benefits of green 

spaces have focused on coarser resolutions, but we can address the 

problems of neighborhood scales with a few assumptions and a 

hypothetical landscape.

3) It can determine the optimal location and type for greening 

and the amount of green space. Actual planning is the process of 

determining “where to allocate the amount of green space” and “where 

to invest a limited budget” as well as the “total required amount.” The 

majority of the literature has only addressed the amount of specific uses 

instead of location (Giacomoni & Joseph, 2017; ex. Galán-Martín et al., 

2017 and Reichold et al., 2010).

4) We dynamically consider the effects derived from the newly 

installed green space by coupling meta-heuristic algorithms with the 

objective model to evaluate the benefits and cost of greening. Albeit 

these advantages, the results from this model are not the final plans, but 

should be used as guidelines or quantitative evidence for a detailed 

design (Yoon et al., 2017).



７８

The method section describes the main components of the 

planning model, that is, the three objectives achieved in greening plans 

and the optimization process. We establish a hypothetical landscape 

appropriate for effectively showing the problem of the neighborhood 

scale. The result section presents the results of the planning model on 

the hypothetical landscape (i.e., greening plans and related 

performance). The last section, which is the discussion section, 

describes the contribution of this model to the existing planning process 

and some tasks for application to actual spaces.

4.2. Method

4.2.1. Outline of the multi-objective planning model for urban 

greening

Our model used an optimization approach that determines the 

location and the type of new green spaces by comprehensively 

considering the maximization of two kinds of greenery benefits (i.e., 

cooling of land cover and formation of an ecological network) and the 

minimization of cost as an implementation constraint. The cooling 

effect is related to human health and comfort, while the ecological 

network is a fundamental factor for urban biodiversity. Three 

assumptions were used for modeling: first, a green space can be 

installed only in an “empty lot,” which refers to land that has not been 

used for a specific purpose because of its small size or unfavorable 

location; second, three options can be selected for empty lots: 

vegetation type A, vegetation type B, and no vegetation (type A is a 

single-layered vegetation with grass only, while type B is a multi-
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layered vegetation comprising grass and trees); and third, only one 

greening option can be applied to each empty lot at 100%. Appendix 1 

lists the related model parameter, abbreviation, and unit.

1) Maximization of the cooling effect

Green spaces can reduce UHI because they can reduce the land 

surface temperature (LST) by changing the albedo of the space (Wu & 

Chen, 2017). Trees can also reduce the LST of the surrounding areas by 

shading and evapotranspiration (Yu et al., 2017; Chang et al., 2007). 

Thus, we calculated the cooling effect of new green spaces based on the 

changes in the LST. The LST shows a significant correlation with air 

temperature (Zhang et al., 2017a); hence, it can be an important 

criterion for urban thermal environment (Yang et al., 2017a). Many 

studies found that the LST of a green space is lower than the regional 

average in common; however, the differences vary depending on the 

spatial context, climate zone, and season from 1.61 °C to 4.4 °C (Zhang 

et al., 2017a; Zhang et al., 2017b; Yu et al., 2017). And other study 

presented that the small green spaces can reduce air temperature up to 

1.93 °C (Park et al., 2017). The cooling range of a green space must be 

ascertained based on an in-situ measurement of the target site. However, 

this study focused on developing a planning methodology and applying 

it to the hypothetical landscape. Thus, we set the default value of the 

cooling effect according to the relative magnitude order in the previous 

studies.

Considering the abovementioned factors, the cooling effect of 

the kth plan (�������	�����������) can be calculated based on the 
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location, area, and type of green spaces, as shown in Eq. (1). Every 

plan showed different cooling effects because vegetation types A and B 

were distributed differently by the optimization algorithms. The total 

area of green space (���������) and the surrounding areas of type B 

(������������_� and	������������_�) were calculated by summing up 

the grids corresponding to the respective conditions [Eqs. (2)–(4)]. N 

and M indicate the number of rows and columns, respectively. In Eq. 

(5), parameter � indicating the direct cooling effect on the green 

surface was set to 3 °C as the highest cooling effect. Parameters � and 

� denote the indirect cooling effect on the surrounding surface of type 

B, which consists of grass and trees. We set the indirect cooling effect 

to 1.0 °C (�), which is the lowest cooling effect, if the surrounding 

surface is affected by only one lot with type B. However, assuming that 

the cooling effects can be increased proportional to the amount of the 

neighboring green spaces, the indirect cooling effect is increased from 

1.0 °C to 2.0 °C (�)	if the surrounding surface is affected by more than 

one lot (Zhang et al., 2017, Figs. 1 and 3). Finally, the total cooling 

effects of the kth plan was averaged by the total study area.

Cooling	Effect����� = (Location����� , Areas����� , Type�����)     (1)

Area����� = ∑ ∑ x��
�
���

�
���     (2)

Area��������_� = ∑ ∑ y��
�
���

�
���     (3)

Area��������_� = ∑ ∑ z��
�
���

�
���     (4)
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∀j = 1,2, … . , J; i = 1,2, … , I;

x�� =	�
1			if	grid	with	type	A	or	B	

0			if	not																				

y�� =	 �
1			if	surrounding	area	of	single	lot	with	type	B	

0			if	not																																										

��� =	�
1			��	�����������	����	��	�����	����	���ℎ	����	�	

0			��	���																																										

�������	�����������= (α × ��������� + � ×������������_� + � ×

������������_�)/�����	����    (5)

Figure 1. Cooling effect of vegetation type B with grass and tree
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2) Maximization of connectivity

Urban green spaces are generally small and fragmented 

compared to suburbs or forests, but they play an important role as a 

stepping stone for species movements in urban environments (Lay & 

Leone, 2017). The common methods for measuring spatial connectivity

include gamma index, alpha index, and gravity model. However, the 

gamma and alpha indices are not appropriate for fragmented urban 

green spaces because they assess networks, where nodes and links are 

physically interconnected. The gravity model describes the degree of 

connectivity, which can be applied to fragmented green spaces, but lots 

adjacent to large forest patches are likely to be overestimated. In this 

model, we focused on individual “empty lots,” which are separate from 

other green spaces, but can make different levels of contribution to the 

species movement. According to the island biogeography theory, the 

closer the green areas are to each other and the larger the green areas 

are, the better the ecological connectivity achieved (Forman & Godron, 

1986). When new vegetation is installed in the lot, a “moving window” 

that is enlarged in proportion to distance d from the lot is created. All 

green areas distributed within the moving window are then summed up 

to evaluate the contribution of the new vegetation to the local 

connectivity improvement (Fig. 2).

The connectivity of the kth plan (Connectivity�����) can be 

calculated based on the distance between the new green space and 

others and the area and type of green spaces [Eq. (6)]. Every plan 

showed a different connectivity because vegetation types A and B were 

distributed differently by the optimization algorithms. In Eq. (7), J 
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indicates the number of empty lot, while I denotes the number of lots 

with the vegetation located within the distance d from the boundary of 

the jth lot. Distance d has to be set according to the spatial resolution 

and movement ability of the target species. However, this study was 

based on a hypothetical landscape, and the general movement of 

species in a fine scale has not yet been defined (Forman, 2014); thus, 

we set the default value for distance d as 10 m through repetitive pilot 

experiments such that it can show the variance of connectivity at the 

study site. The lots without vegetation were excluded from the 

connectivity analysis; therefore, the binary variable �� was equal to 0 or 

1. The green area of ���� (��������) was controlled by variable ��

corresponding to the vegetation type because the green area of type B, 

including the vertically layered vegetation, was larger than that of type 

A despite being in the same lot (Figs. 2 and 3). The ith green areas 

within distance d from the jth lot (��������) were summed together.

����������������� = �(�������������, ���������, 	���������)    (6)

����������������� = ∑ �� ��� × �������� +∑ ��������
�
��� �		

�
���	     (7)

∀� = 1,2, … . , �; � = 1,2, … , �;

�� =	�
1			��	���	���ℎ	����	�	��	�	

0			��	���																			

�� =	 �
1			��	���	���ℎ	����	�
2			��	���	���ℎ	����	�
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Figure 2. Moving window for new vegetation. The areas of green 

patches with a light-gray color are summed to calculate the contribution 

of the selected lots to connectivity

3) Minimization of cost

Without cost constraint, the best strategy would be to install 

vegetation wherever possible. However, actual greening plans are 

created and executed within a certain budget range. The changes in the 

benefit of greening must be visually presented against the changes in 

cost to support related decision making. Therefore, the implementation

cost of the kth plan (���������) can be calculated based on the location 

(which block), area, and type of green spaces [Eq. (8)]. The costs of all 

plans were different because they also depend on where the vegetation 

type was chosen. The implementation cost of each lot for the kth 

greening plan was calculated using the unit land purchase cost 

(��������), unit planting cost (��������������), and area of the jth lot 

(�������_�), then summed up. The land purchase cost is very different
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and varies according to the ambient conditions and location of cities, 

blocks, and buildings. We referred herein to the average land price of 

small–medium-sized cities in South Korea and provided some 

variations based on it. In other words, we used the representative land 

price by block within the range of $900 to $1200 [��������, Eq. (9)]. 

Referring to South Korea’s tables of construction in 2018, the planting

cost (��������������)l including the material and labor costs, was set to 

$30 and $600 for types A and B, respectively [Eq. (9)].

��������� = �(���������� , ���������, 	���������)    (8)

��������� =	∑ ����������� + ��������������� × ��������
�
���    (9)

∀� = 1,2, … , �;

�� =	�
1			��	���	���ℎ	����	�	��	�	

0			��	���																			

Figure 3. Greenery effects of type A with grass and type B with 
grass and tree. Different cooling effects and connectivity improvement 
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shown after vegetation types A and B are installed in empty lots 1 and 
2, respectively: (a) before and (b) after greening

4) Optimization process

Urban greening plans are optimized using a non-dominated 

sorting genetic algorithm II (NSGAII,) which can efficiently produce a 

high-quality diverse Pareto set using non-domination rank and 

crowding distance (Deb et al., 2002). A total of 30 initial plans were 

randomly created for the planning process to expand the search space 

beyond the existing knowledge (initialization step in NSGAII). A 

repetitive pilot test showed a threshold of 30, in which the search space 

was not expanded anymore. Thirty new plans were then created by 

combining previous plans or adding new attributes not in the previous 

plans (crossover and mutation steps in NSGAII). Among the previous 

and new plans, 30 plans for the next iteration were stochastically 

selected in terms of the “maximization of cooling effect,” 

“maximization of connectivity,” and “minimization of cost” (selection 

step in NSGAII). The process of creating new plans was repeated until 

no better plan can be found. The last created plans corresponded to the 

optimal result, that is, the Pareto set (Fig. 4, Appendix 2). The location 

and the shape of the Pareto line indicate trade-offs or synergy of the 

optimization objectives, allowing decision-makers to make a better 

selection. The optimization of the three objectives can be expressed as 

follows by Eq. (4):

Minimize�−�������	����������� , −����������������� , ���������� (10)

∀� = 1,2, … , �; 	� = �ℎ�	������	��	��������	�����
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Figure 4. Process of the multi-objective planning model for 
urban greening (Appendix 2)
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4.2.2. Hypothetical landscape

This study aimed to propose a new quantitative planning model 

for urban greening, but it could be limited using an actual space (to 

identify empty lots in actual space and determine appropriate model 

parameters, such as distance d require complicated procedures). We 

employed a hypothetical landscape in a raster format with a 2-m 

resolution and consisting of 50 rows and 60 columns (100 × 120 m). 

The 2 m spatial resolution was adequate for describing the green patch, 

road, building, canopy of tree, and empty lots in a highly dense urban 

environment at the neighborhood scale. The widths of the roads 

between the blocks and the inner side, building size, and spacing, and 

size of street trees were based on the laws related to urban design in 

South Korea (http://www.law.go.kr/; Fig. 5). In the whole hypothetical 

landscape, the area of the existing forest patches and roadside trees was 

16.6%, and the number of “empty lots,” where new vegetation can be 

installed was 66, constituting an area that was 8.7% of the total area 

(Table 1). The hypothetical landscape was divided into blocks, I, II, III, 

and IV to examine how the spatial distribution of the green spaces 

changes according to each characteristic (Figure 4). Block I shows a 

poor green space with only a few roadside trees, but with larger empty 

lots compared to other blocks. Block II has some forest parts and a few 

roadside trees, but empty lots that are smaller than those of the other 

blocks. Blocks III and IV show better existing green spaces compared 

to blocks I and II. They also have more abundant roadside green spaces 

in addition to some forest parts. Block IV is expected to have great 

potential for applying the largest number of greening strategies because 
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it has empty lots of various sizes and locations. Considering the range 

of land prices (as mentioned in the minimization of cost, $900–1200), 

the representative land prices of blocks IV, III, II, and I were set to 

$1200, 1100, 1000, and 900, respectively, in the order of good greenery 

assuming that living conditions, such as infrastructures, are the same.

The numbers of empty lots and options to choose from are 66 

and 3 respectively; hence, 3�� possible greening plans are available.

The best plan derived from examining all the possible plans was 

optimal, but was actually unavailable because of its time-consuming 

process. Moreover, involving various stakeholders requires repetitive 

feedback and simulation based on the adjustment of model parameters. 

Thus, the goal of this planning model was to create enough good plans 

that can meet the desired implementation cost, enhance connectivity, 

and reduce UHI within a reasonable time by exploring only some parts 

of the search space.

Figure 5. Study site. (a) composition and (b) cooling effect of domain
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Table 1. Description of the hypothetical study site (unit: m2, the 

number of lot/patch)

Block

Existing green
Defined 

empty 

lot

Building Total
Forest patch

Green patch (planted)

Total
Inside Road side

A 0 12(1) 48(11) 52(12) 360(10) 988(10) 2268

B 668(1) 0(0) 56(13) 724(14) 148(19) 1004(17) 2808

C 396(1) 0(0) 152(8) 548(9) 244(10) 1064(12) 2520

D 336(1) 180(8) 152(9) 668(18) 296(27) 1092(16) 3120

Road - 1284

Total 1400(3) 192(9) 408(41) 1992(53) 1048(66) 4148(55) 12,000

4.2.3. Analysis of alternatives for urban greening

The final optimal plans on the hypothetical landscape can be 

displayed as a Pareto surface on three dimensions: cooling effect, 

connectivity, and implementation cost. However, for these plans to be 

effectively used by stakeholders, more information (e.g.., representative 

plans and trade-offs between the objectives) should be provided. Using 

the Interactive Decision Maps (IDM) technique, we can represent the 

swap between the objective values while moving along the Pareto front 

on the two dimensions (Lotov et al., 2005; Jankowski et al., 2014). On 

the IDM map, we can define the key trade-off positions that show 

significant performance drop or increase of the two objectives under 

the selected value ranges of the other objectives (Jankowski et al., 

2014). The plans on these key positions can be regarded as 

representative plans. We analyzed the spatial distribution of the green 
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spaces based on them. Lastly, a frequency analysis was performed for 

vegetation types A and B to identify the commonly selected empty lots

despite the differences between the alternative plans.

4.3. Result

We applied our planning model for urban greening to a 

hypothetical landscape and obtained the final 30 Pareto plans (each dot 

filled with blue or black color indicates individual optimal plan, Fig. 6). 

A synergistic relationship between the two planning objectives (i.e., 

maximization of cooling effect and connectivity) was defined (Fig. 6b). 

The increase in the amount of green space led to a higher 

implementation cost (from red to blue color in Fig. 6b), but the 

greening benefits were improved. In contrast, the “minimization of cost” 

objective strongly competed with the other planning objectives (Fig. 6c 

and d). For efficient decision making, we placed 30 dots over the two 

dimensions and matched them with one of the greening benefits and the 

implementation cost. The other planning objective, which was not 

matched with a dimension, was represented by the bounded areas with 

a specific range of values. The dots located in more dark-blue bounded

areas represent the lower performance for the two objectives matched 

to the dimensions, but better performance for the other objective 

matched to each bounding. For example, the 14th plan represents the 

performances in the two objectives related to connectivity and cost 

lower than those of the 15th plan (Fig. 6c); however, the 14th plan can 

lower the surface temperature by 0.06 °C more than 15th plan 

(0.8930 °C–0.8357 °C, Table 2).
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Moving along each boundary from the top in the direction of 

improved connectivity (Fig. 6c) or cooling effect (Fig. 6d), we can 

define a few plans located on the inflection point where the slope 

abruptly changes. These plans are interesting alternatives for decision 

makers because they show significant performance drop and increase in 

the specific planning objective. For example, if we are moving from top 

to bottom along the third bounding (represented as black dashed line), 

we can meet three plans to the 14th plan. These three plans have similar 

cooling effects, but their connectivity performances significantly 

improved with the low implementation cost input. However, the two 

plans located after the 14th plan represent a poor improvement of 

connectivity, even with the same implementation cost. From this point 

of view, plans 16, 25, 15, 14, 8, and 26 (described as big-black dots) on 

the inflection points were selected as the representative plans (Fig. 6c 

and d), and further analysis was applied to them. Table 2 shows the 

performance of the three objectives for these plans. The gray boxes 

indicate a performance better than the mean value of all plans. The two 

greening benefits showed similar patterns (distributed on the left side), 

but the greening benefits and the implementation cost depicted a 

contrastive pattern.
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Figure 6. Trade-offs between the Pareto-optimal greening plans. (a) 
Pareto-optimal plans on three dimensions, (b) relationship between 
cooling effect and connectivity, (c) relationship between connectivity 
and cost, and (d) relationship between cooling effect and cost (the black 
arrows on each figure indicate the direction to a better performance of 
each objective)

The 8th plan showed the most aggressive greening strategy (Fig. 

7a). Types A and B were installed in most of the empty lots existing on 

the roadside and the inner side of all blocks. Type B, which consisted 

of grass and tree, was installed in Block I, which had no forest 

sculpture. This led to the best performance in the planning objectives 

related to the greening benefits while requiring highest cost (Table 2, 

Fig. 8a). The 14th (Fig. 7b) and 16th (Fig. 7c) plans showed a 

numerically similar connectivity (Table 2), but the distribution pattern 

of the green spaces was different. The 14th plan had a strategy of 

improving connectivity by dispersing the green spaces, whereas the 

16th plan had a strategy of installing type B around the existing forest 
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sculptures. Such a strategic difference led to the differences in the 

performance of the other planning objectives. The 14th plan had a 

better cooling effect than the 16th plan, but was worse in the 

implementation cost reduction (Table 2). The implementation cost of 

the 25th plan (Fig. 7d) was the most similar to that of the 16th plan, but 

had a slightly better cooling effect and worse connectivity than the 16th 

plan (Table 2) by allocating a limited budget to the empty lots on the 

roadside rather than around the existing forest patches. As such, no plan 

had the best performance in all planning objectives; rather, the plans 

derived by our model can be used as options with different scenarios. 

Even though the plans showed similar performances in specific 

objectives, trade-offs always occurred depending on the strategic 

differences.
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Figure 7. Selected plans for urban greening. (a) 8th, (b) 14th, (c) 
16th, and (d) 25th plans

Table 2. Fitness values of the selected plans. the gray boxes indicate 

a performance better than the mean of all plans.

Objectives
8th

plan

14th

plan

15th

plan

16th

plan

25th

plan

26th

plan
Mean

Cooling 

effect (°C)
−0.9483 −0.8930 −0.8357 −0.7937 −0.8070 −0.7503 −0.8574

Connectiv

ity
19,635 15,666 18,482 15,320 11,948 6,724 13,907

Cost ($) 320,530 239,690 198,370 141910 146,450 97,220 212,268

New green 

(lot)
59 49 53 42 45 33 47.0
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New green 

(m2)
226 178 144 101 106 70 150.4

Empty lots that are commonly selected for greening must also 

be identified, despite the differences between the plans. Concerning the 

cooling effect, the 8th plan (Fig. 8a) performed the best, while the 16th 

plan (Fig. 8b) was the second worst among the representative plans. 

However, in practice, green spaces are often installed in empty roadside 

lots, which are smaller in size and separated from other buildings or 

empty lots. This makes it possible to obtain a relatively large amount of 

area where the indirect cooling effect occurs with type B. This strategy, 

in which the empty lots on the roadside are prioritized, can be seen as 

pursuing the cost-effective cooling effect. The result of the frequency 

analysis for vegetation type B consisting of grass and tree showed that 

some empty lots located on the roadside of Block IV were the most 

frequently selected (empty lots filled with dark-blue color, Fig. 9b).

Figure 8. Cooling effect of the selected plans. (a) 8th and (b) 16th 
plans
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The frequencies of vegetation types A and B were analyzed for 

the 30 generated plans and ranged from 0 to 30. Empty lots were 

generally selected more frequently for one vegetation type and less 

selected for the other vegetation type. The colors of most empty lots 

were contrasted (Fig. 9). In the case of Block I, vegetation type B was

frequently installed in several empty lots with large areas (Fig. 9b). 

This strategy can be interpreted as a result of the combination of the 

following reasons: first, green spaces can be connected vertically from 

the forest patch in Block II to the upper side of Block I using this 

strategy (i.e., improvement of connectivity); second, the area where 

indirect cooling effect occurs is relatively large because three or four 

sides of the empty lot are open to the road (i.e., improvement of cooling 

effect); and third, Block I requires the lowest cost for creating the same 

greening benefits, given its cheapest land price (i.e., reduction of 

implementation cost). However, a few empty lots were also commonly 

considered less attractive for greening, regardless of the type (inner side 

of blocks I and IV, Fig. 9).

The optimization of our model was processed based on the 

benefit or loss of the whole study site; hence, interpreting why each 

empty lot was chosen or not was difficult. However, the empty lots that 

were commonly chosen (or not chosen) in lots of plans can be 

considered “critical lots” in the process of actual planning because they 

are prioritized above other lots, regardless of which objectives are 

emphasized in the planning strategies.
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Figure 9. Frequency analysis on types A and B. (a) type A with grass
and (b) type B with grass and tree

4.4. Discussion

Our model is a planning tool that determines the location and 

the type of green spaces considering two kinds of greenery benefits and 

implementation cost. The study was motivated by the lack of studies 

that consider the relationship between multiple benefits of greening, 

even though the connectivity, cooling effect of green spaces, and 

implementation cost are common factors in the existing planning. The 

planning process often omits certain factors or arbitrarily assigns 

relative importance based on the planner’s preferences (Fintikakis et al., 

2011). Furthermore, while the effectiveness of the draft plan is 

quantitatively assessed, the modifications afterwards are often 

qualitatively conducted. This study sought to improve this planning 

process by creating a positive feedback loop by repeating random 

modification (crossover and mutation in NSGA II), quantitative 

evaluation (fitness evaluation in NSGA II), and objective selection of 
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better plans (selection according to dominated rank and crowding 

distance in NSGA II) for a number of cases. Our model proposed a 

range of possible scenarios for urban greening that can satisfy 

environmental, economic, and social requirements in the early stages of 

the project.

The results can be used as base maps or guidelines for planners 

who try to incorporate considerations, such as UHI, conservation of 

species diversity, and cost–benefit analysis, among others. This study

can also reduce the gap between scientific assessment and its 

application to actual spaces. Most studies linking scientific assessment 

with spatial composition are limited to the suggestion of the appropriate 

amount or proportion of uses in a watershed or regional scale (Reichold 

et al., 2010; Galan-Martin et al., 2017; Liu et al., 2017). As such, where 

and how to change actual spaces at the neighborhood scale remain to be 

a problem for planners. To resolve this problem, our model provides 

plans with a 2-m resolution that can describe individual trees and 

incorporate the benefits and cost derived from new green spaces. This 

can be a methodological distinction as a tight-coupling approach that 

dynamically connects the input and the output of the objective model to 

assess the benefits and cost and the optimization model (Li et al., 2011).

Some studies have developed comprehensive models to 

synthesize multiple aspects of green space related to the environment, 

society, and economy based on a multi-criteria analysis (Meerow & 

Newell, 2017; Gül et al. 2006). In terms of the methodology, these 

models present possible options and choose the most viable ones by 

evaluating and comparing the options step by step (Gwak et al., 2017; 

Li et al., 2017). This approach aims to search for options within an 



１００

existing expert’s knowledge; therefore, it cannot obtain creative options 

beyond the already known ones. If the options are not sufficiently 

representative, we cannot be sure that the options are optimal solutions 

(Zhang and Chui, 2018). Furthermore, the options with an extremely 

good performance for one objective generally show major loss for the 

other planning objectives because of trade-offs; hence, there is a high 

possibility that these options are eliminated in a specific step even 

though it can be Pareto-optimal. However, in practice, these plans can 

be very useful options for some decision-makers or stakeholders under 

a specific condition. Contrary to that, our model can provide options 

could be sure of the best one by searching for an enormous number of 

options within a reasonable time. These options could be that we did 

not know before (i.e., this model takes 20 s).

We applied the planning model to the hypothetical landscape, 

not an actual space, to focus on its performance. The default values of 

the spatial resolution, cooling effect of green spaces, the distance d in 

which the green spaces interact with each other, land purchase price, 

etc., were set within a reasonable range. The application of this model 

to actual sites is expected to be covered in future studies; hence, tasks 

that would adjust these model parameters will be needed. First, the 

spatial scope and resolution of the study site should be set by 

considering the size and the distribution of the empty lot and the 

existing green spaces. Second, the LST variations in the green areas, 

surrounding areas, and other areas should be defined using remote 

sensing. Third, the distance d for the connectivity evaluation should be 

set according to the movement of the target species in the study sites. 

Fourth, the real land price should be considered in the implementation 
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cost by using regional statistics. If issues more important than 

connectivity, cooling effect, or implementation cost for the region exist, 

other appropriate metrics can be used with the optimization model. For 

example, if runoff reduction is particularly important, the objective 

model of connectivity or cooling effect can be replaced with a 

hydrological model, such as stormwater management model

(Giacomoni & Joseph, 2017). The NSGA II employed in the planning 

model has a very flexible structure to incorporate diverse evaluating 

techniques. Relying on the related studies, the evaluation techniques 

can be attached to NSGA II, including regional statistics (Karamouz et 

al. 2010; Yazdi et al. 2013; Zhang et al. 2014), expert judgment (Zhang 

et al. 2010; Liu et al. 2015a), and result or models of validated previous 

studies (Li and Parrott, 2016; Yuan et al. 2014). Therefore, this 

planning model would be applicable to various problems and sites by 

considering the distinct characteristics of the site and securing expertise 

in relevant fields (Yoon & Lee, 2017).

4.5. Conclusion

In this study, we suggested a planning model to describe 

comprehensive greening plans satisfying prerequisites prior to detail 

design, and showed the performance based on hypothetical landscape 

and data. Considering the conditions of high-density cities where 

installation of large green areas is difficult, we focused on 

neighborhood scale problems that were rarely addressed in previous 

studies. Although only two benefits of greening, namely cooling effect 
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and enhancement of connectivity between habitats were selectively 

incorporated, it is expected to cover a range of issues with a little 

modification of the model owing to its flexible structure. Competing 

issues between various stakeholders have been barriers of co-design to 

achieve regional sustainability. This model can support co-design by 

providing spatially explicit options considering trade-off between 

competing issues. Furthermore, as the scientific basis for the greening 

effects in the neighborhood scale is accumulated in the future, the 

actual applicability of this model is also expected to increase. 
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Appendix 1. Abbreviations and parameters

Lot. All patches, including existing green areas and newly installed 

green areas in the plan

Empty lot. A patch that has not been used for a specific purpose 

because of its small size or unfavorable location; in this study, new 

green spaces can be installed at empty lots only

Vegetation type A. A single-layered vegetation with grass only

Vegetation type B. A multi-layered vegetation consisting of grass and 

trees

Urban heat island (UHI). The phenomenon of the urban area being 

significantly warmer than its surrounding areas

Land surface temperature (LST). Radiative skin temperature of the 

land surface that is generally measured with remote sensing

N (n). The number of rows in the gridded hypothetical landscape

M (n). The number of columns in the gridded hypothetical landscape

I (n). The number of lots with green areas located within distance d

from the boundary of the jth lot

J (n). The number of empty lots (i.e., 66 empty lots in this study)

�������	����������� (℃/��). The average cooling effect that can be 

obtained from all green areas on the kth plan

����������������� . The total connectivity that can be obtained from all 

new green areas on the kth plan

��������� ($). The total cost of implementing all new green areas on 

the kth plan, including the costs of purchasing land and planting (labor 

and material)
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Distance d (m). Threshold distance at which the interaction between 

the green areas occurs in a neighborhood scale

Cooling effect � (℃). Direct cooling effect on the green surface (i.e., 

set herein to 3 °C as the highest cooling effect)

Cooling effect � (℃). Indirect cooling effect affected by only one lot 

with type B on the surrounding areas of that (i.e., set herein to 1.0 °C as 

the lowest cooling effect)

Cooling effect � (℃). Direct cooling effect affected by multiple lots 

with type B on the surrounding areas of that (i.e., set herein 2.0 .℃

��������� (��). Total area where the green space (type A or B) exists

������������_� (��). Total area affected by only one lot with type B 

among the surrounding areas of that

������������_� (��). Total area affected by multiple lots with type B 

among the surrounding areas of that.

�������� (��������) (��). Area of jth (ith ) lot with or without 

vegetation

�������� ($). Cost to purchase land for greening

�������������� ($). Cost related to planting, including material and labor 

costs



１１２

Appendix 2. Representation, crossover, mutation, and selection
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5. CONCLUSION

In South Korea, spatial planning has been established on the

basis of the Constitution and the National Territorial Law, in order to 

promote the quality of life of citizens and ensure sustainability of land 

use in the long term. It is specified from the national comprehensive 

plan, the provincial comprehensive plan, to the county comprehensive 

plan. In addition, there are various kinds of regional and sectoral plans 

related to development, infrastructure, housing, resource management 

etc. At each level of planning, it considers the specificity of the region 

while taking into account the planning direction presented in the upper 

plan. In order to achieve inter-sectoral goals and strategies of each 

planning level, it is important to determine “where”, “when”, and “how 

much” of the planning elements should be put on the ground. Through 

this, it is possible to present development direction to residents, to 

provide guidelines for lower level plans, and to suggest investment 

directions for the private sector.

However, it can be seen that the linkage is insufficient between 

the proposed goals and the spatial planning (or the spatial diagram) 

done to achieve those goals. For example, in the 4th National 

Comprehensive Plan (2011–2020, the nation's top-level plan), the main 

targets are “responding to climate change and disasters” and 

"environment friendly and safety society”. Correspondingly, the South 

Chungcheong Province’s comprehensive plan focused on strengthening 

conservation and restoration of ecological networks, adjusting land uses 

where disasters frequently occurred, and establishing a response system 

for the climate change agreement (Paris Agreement). In the process of 
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spatializing those goals and strategies however, environmental 

information such as the impact of climate change, hazardous area, and 

species habitat was not considered, and therefore the reliability of the 

results is also low. This is due to the limitation of the planning 

methodology in that it does not incorporate accumulated diverse 

environment information into spatial plans and adjust conflicts between 

sectors. Therefore, in this study, contribution of the spatial optimization 

models for the planning field can be emphasized as follows.

Firstly, the spatial optimization model can contribute to spatial 

planning on national and provincial scales by synthesizing various 

kinds of environmental information for a specific issue. This means that 

the output of the optimization model can be utilized as one of the input 

data in the process of planning. In the existing process of planning, 

planners determine appropriate locations of specific facilities or uses, 

referring to information by overlapping related thematic maps. 

However, as environmental issues are complex and ever increasing, 

related information is also diversified, leading to increased complexity 

in planning. Thus, synthesizing a variety of environmental information 

in accordance with the goals can contribute to reducing the complexity 

of planning. For example, in this study, the land use optimization 

model on a provincial scale suggested expansion direction of each land 

use by 1 km grids according to the adaptation path by synthesizing six 

kinds of environmental information, including climate change impacts. 

It is expected that this can be referred to comprehensive planning on 

national or provincial scales, when drawing a conceptual diagram of 

land use in response to climate change. 



１１５

Second, the spatial optimization model can also be used as 

critical methodology to draw the draft for detailed planning. Since 

actual space is limited and all sectoral plans target the same space, 

problem of competition among sectors can occur. However, in the 

national, provincial, and county comprehensive plans, there are no 

guidelines to resolve such problems. Actually, in South Korea, 

unreasonable patterns of green belts (protected areas to limit expansion 

of urban areas) were often found because of being steadily and 

separately affected by the conservation and development regimes. 

Therefore, it is necessary to simultaneously reflect inter-sectoral 

objectives in a single planning model. This will help achieve reasonable 

spatial patterns based on limited resources. This is consistent with the 

main advantage of multi-objective optimization models proposed in 

this study. Since the existing objective(s) and assessment 

methodologies of each sector can directly match with optimization 

objectives and related fitness function, applicability of the optimization 

model is also expected to be high.

Although research on spatial optimization is increasing rapidly, 

the cases used in actual planning or administrative process are rare. 

However, if it is utilized for challenging problems as is the approach of 

this study, it is expected to contribute to sustainability of the actual 

space in the long term.
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국문초록

유전 알고리즘을 이용한 다중스케일/다목적

공간계획 최적화모델 구축

윤은주

협동과정 조경학 박사과정, 서울대학교 대학원

지도교수 이동근

공간계획 과정에서 다양한 이해관계자와 결부된 목표와 제약

요건을 만족시키는 것은 복잡한 비선형적 문제로서 해결하기 어려운

것으로 알려져 왔다. 그러나 최근 이러한 문제에 유전 알고리즘

(genetic algorithms), 담금질 기법 (simulated annealing), 개미 군집

최적화 (ant colony optimization) 등의 다목적 최적화 알고리즘이

응용되고 있으며, 관련 연구 역시 급증하고 있다. 이 중 유전

알고리즘은 공간 최적화 부문에 가장 빈도 높게 적용된 최적화

알고리즘으로 “exploration”과 “exploitation”의 균형으로 합리적인

시간 내에 충분히 좋은 계획안을 제시할 수 있다. 그러나 공간 최적화

연구가 보여준 좋은 성과에도 불구하고 대부분의 연구가 특정 용도

혹은 시설의 배치에 집중되어 있으며, 기후변화 적응, 재해 관리, 
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그린인프라 계획과 같은 최근의 환경 이슈를 다룬 사례는 매우

미흡하다. 따라서 본 연구에서는 유전 알고리즘과 비지배 정렬 유전

알고리즘 (non-dominated sorting genetic algorithm II)에 기초하여

기후변화 적응, 재해 관리, 도시의 녹지 계획 등과 같은 환경 이슈를

공간계획에 반영할 수 있는 일련의 공간 최적화 모델을 제시하였다. 

개별 환경 이슈에 따라 공간 해상도, 목적, 제약요건이 다르게

구성하였으며, 공간적 범위가 좁아지고 공간해상도는 높아지는

순서대로 나열하였다.

논문의 첫번째 장에서는 행정구역 도 규모 (province scale, 

해상도 1㎢)에서 미래의 기후변화에 적응하기 위한 토지이용

시나리오를 모의할 수 있는 공간 최적화 모델을 제안하였다. 

기후변화가 먼 미래가 아닌, 현재 이미 진행되고 있으며 관련한 다수의

피해가 관찰되고 있기 때문에 공간적 관점에서 기후변화에 대한

적응의 필요성이 지적되어 왔다. 그러나 구체적으로 기후에 대한 회복

탄력성을 향상시키기 위하여 토지이용의 공간적 구성을 어떻게

변화시켜야 할지에 대한 방법론 제시는 미흡하다. 지역계획에서

기후변화 영향을 고려한 토지이용 배분은 매우 유용한, 기본적인

중장기 적응 전략에 해당한다. 본 연구에서는 다목적 유전 알고리즘

(MOGA, multi-objective genetic algorithm)에 기초하여 9,982㎢에
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350만의 인구가 거주하는 한국의 충청남도 및 대전광역시 일대를

대상으로 기후변화 적응을 위한 토지이용 시나리오를 제시하였다. 

지역적인 기후변화 영향과 경제적 여건을 고려하여 재해 피해 및

전환량의 최소화, 벼 생산량, 종 풍부도 보전, 경제적 가치의 최대화 등

다섯 가지의 목적을 선택하였다. 각 목적 별 가중치를 변화시키며 여섯

가지 가중치 조합에 대한 17개의 파레토 최적 토지이용 시나리오를

생성하였다. 대부분의 시나리오는 정도의 차이는 있으나 현재의

토지이용에 비해 기후변화 적응 부분에서 더 좋은 퍼포먼스를

보였으므로, 기후변화에 대한 회복탄력성이 개선할 수 있을 것으로

판단하였다. 또한 공간 최적화 모델의 유연한 구조를 고려하였을 때, 

지역의 실무자 역시 가중치와 같은 모델의 파라미터, 기후변화 영향

평가와 같은 입력자료를 변경함으로써 효율적으로 새로운 시나리오를

생성 및 선택하는 것이 가능할 것으로 예상하였다. 

논문의 두 번째 장에서는 행정구역 군 규모 (local scale, 해상도

100m)에서 기후변화에 따른 재해 피해를 관리하기 위한 토지이용

시나리오를 모의할 수 있는 공간 최적화 모델을 제안하였다. 

산악지형에서 폭우로 인한 산사태는 인명과 재산에 심각한 피해를

초래할 수 있는 것으로 알려져 있다. 더욱이 기후변화에 따른 강우의

변동성 증가로 이러한 산사태 빈도 및 강도 역시 증대될 것으로
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예상된다. 일반적으로 산사태 리스크가 높은 지역을 피해 개발지역을

배치하는 것이 피해를 저감 혹은 회피할 수 있는 가장 효과적인

전략으로 알려져 있으나, 실제공간에서의 계획은 매우 복잡한

비선형의 문제로서 이것을 실현하는 데 어려움이 있다. 따라서 본

연구에서는 비지배 정렬 유전 알고리즘 II에 기초하여 산사태 리스크

및 전환량, 파편화의 최소화 등의 다양한 목적을 만족시키는 종합적인

토지이용 배분 계획을 제안하였다. 대상지는 2018년 동계올림픽

개최지인 한국의 평창군으로서 2006년에 산사태로 인한 대규모의

피해를 경험하였으나, 올림픽 특수 등의 개발압력으로 인한 난개발이

우려되는 지역이다. 최종적으로 한번의 모의를 통해 현재의 토지이용

보다 적어도 한가지 이상의 목적에서 좋은 퍼포먼스를 보이는

100개의 파레토 최적 계획안을 생성하였다. 또한 5개의 대표적인

계획안을 선정하여 산사태리스크 최소화와 전환량 최소화 간에

발생하는 상쇄 효과를 설명하였다. 본 연구결과는 기후변화와 관련된

공간 적응 전략의 수립, 보다 향상된 개발계획을 위한 의사결정을

효과적으로 지원할 수 있을 것으로 예상하였다.

논문의 세 번째 장에서는 블록 규모(neighborhood scale, 

2m)에서 도시 내 녹지계획안을 모의할 수 있는 공간 최적화 모델을

제안하였다. 녹지 공간은 도시민의 삶의 질에 결정적인 영향을 미치기
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때문에 다양한 도시 재생 및 개발계획에는 녹지와 직 간접적으로

관련된 전략이 포함된다. 녹지 공간은 도시지역 내에서 열섬 현상 완화, 

유출량 저감, 생태 네트워크 증진 등 다양한 긍정적 효과가 있음이

알려져 있으나, 공간 계획의 관점에서 이러한 다양한 효과를 종합적, 

정량적으로 고려된 사례는 매우 미흡하다. 따라서 본 연구에서는

비지배 정렬 유전 알고리즘 II에 기초하여 녹지의 생태적 연결성 증진, 

열섬 효과 완화와 같은 다양한 효과와 설치에 따르는 비용을

종합적으로 고려하여 적절한 녹지의 유형과 위치를 결정한

녹지계획안을 제시하였다. 블록 규모의 가상의 대상지에 본 최적화

모델을 적용함으로써 30개의 파레토 최적 녹지계획안을 생성하였으며, 

각 목적 간 퍼포먼스를 비교하여 녹지의 열섬 완화 효과와 생태적

연결성 증진 효과 간의 상승 관계 (synergistic relationship), 이러한

긍정적 효과와 비용 절감 간의 상쇄 효과 (trade-off relationship)를

분석하였다. 또한 다양한 계획안 중 대표적인 특성을 지니는 계획안, 

다수의 계획안에서 공통적으로 녹지 설치를 위해 선택된 주요

후보지역 역시 규명하였다. 본 연구에서 제시된 모델은 계획안의

수정에서부터 정량적 평가, 계획안 선택에 이르는 일련의 긍정적인

피드백 과정을 수없이 반복함으로써 기존의 녹지계획 과정을

개선하는 데 기여할 수 있을 뿐만 아니라 모델의 결과 역시 다자간
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협력적 디자인 (co-design)을 위한 초안으로서 활용될 수 있을 것으로

예상하였다. 

▣ 주요어: 기후변화 적응, 산사태 피해, 비지배정렬 유전 알고리즘 II, 

녹지 계획

▣ 학번: 2015-31321
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