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Abstract

Deep learning, also called as artificial neural networks, is one of the
most important and powerful subjects in industrial in recent years. Deep
learning starts to show a great performance from image classification and in
these days it have been applied to fields including computer vision, natural
language process, speech recognition and etc. The performance is better than
not only previous machine learning techniques, but also human experts in
some cases. For an area with time series data, recurrent neural networks is
widely used algorithm of deep learning. The aim of this theseis is to apply
deep learning, especially with recurrent neural networks, for an industrial
such as anomaly detection and trend prediction in financial market, with
time series data . Its main contributions are (1) a new model for anomaly
detection in time series data even for various length inputs, (2) various neural
architectures for prediction in finance, and (3) attention networks and model
analysis with attention vectors. Each experimental results of applications
show better performances than previous machine learning techniques.

Key words: Deep Learning, LSTM, Attention, Time series, Anomaly de-
tection, Trend Prediction
Student Number: 2015-30123
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Chapter 1

Introduction

From introducing an appearance of concept about deep learning in 1950s,
through the ice age in 1970s, in recent years it becomes one of the most
important and powerful subjects in industrial. Deep learning could have
developed with various neural network models, faster hardware computing
process and a big data. Primarily, deep learning, also called artificial neural
networks, includes in machine learning and deal with algorithms inspired
by the architecture and flow of the brain. One of important differences be-
tween machine learning and deep learning model is on the feature extrac-
tion area since machine learning done the process by human whereas deep
learning model figure out by itself with a big data. Therefore, deep learn-
ing can select various features of data that human cannot define with an
algorithm. Mathematically, non-linearity of neural networks with multiple
layers and various non-linear functions inside the deep learning model is
the reason of better performance than other machine learning techniques.
From beginning of simple neural networks, in these days we have various
kinds of neural networks for various input data such as an image, voice, sen-
tence and etc. It starts with simple neural networks with a few layers which
is called as Multi Layer Perceptron. For image area, convolutional neural
networks improve the accuracy for various tasks and this makes deep learn-
ing as the important subjects for industrial research. For sequential data,
recurrent neural networks which is modelling Markov model, are able to
learn and it developed to Long Short Term Memory networks and attention
networks for analyzing longer sequences. In this thesis, we will introduce
neural networks and varioius models for sequential data. Then we will apply
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CHAPTER 1. INTRODUCTION

deep learning models in several industrial areas. For anomaly detection as
unsupervised learning approach, we suggest a new ensemble model, Deep
Correlation Mapping, which is combined LSTM and t-SNE. For predicting
trend in financial market, we compare various deep learning models and we
got the best performance with weighted attention model. The thesis is or-
ganized as follows: In Chapter 2, basic backgrounds for neural networks and
some of techniques for stablizing training are introduced. In Chapter 7?7, we
introduce various deep learning models for time series data analysis. We will
explain each models with simple models of each networks. First application
in industrial is given in Chapter 4 with anomaly detection in unsupervised
learning approach. Second application for financial market is in Chapter 5
with predicting trend of KOSPI 200. Finally, Chapter 6 contains conclusion
and discussion for the future works.



Chapter 2

Deep Learning Background

2.1 Neural Networks

In this section, we will explain a basic introduction of neural networks with
simple figures. Fig 2.1 shows a single neuron with inputs and the output.
Denote the input with n-dimensional vector as x € R™ and activation func-
tion f to generate output z. Basically, inputs pass through a simple layer
which consists with bunch of neurons and activation functions to output for
next layer. The output is computed by the following function :

z=f(Whz +b)

Weight matrix W and the bias vector b are trainable parameters and that
implies these parameters moves towards to minimizing errors between model
outputs and target outputs.

Single Neuron

Activation
Function

Inputs Output

Figure 2.1: A single neuron with inputs, activation function and outputs.



CHAPTER 2. DEEP LEARNING BACKGROUND

Sigmoid TanH ReLU

0 for <0
z for >0

1@ ={

Figure 2.2: Common activation functions.

2.2 Various Activation Functions

Activation functions can be a linear function but normally we use non-linear
function for being able to find out complex non-linear features in data. The
activation function plays a major role in the success of training deep neural
networks and we will show some of major non-linear functions and their
properties.
Those activation functions are plotted in Fig 2.2.

1) Sigmoid function Sigmoid function looks smooth version of step func-
tion and its expression is following :

1

(&

It has non-linearity and differentiable function with bounded in range (0,
1).

2) Tanh Function Tanh function is similar with sigmoid function since it
composed with exponential functions as following :

1— e—2w
tanh(x) = =
It has close relation with sigmoid function and actually it can be expressed
with each other as tanh(x) = 2sigmoid(2x) — 1. Difference with sigmoid
function is tanh function is bounded to range (-1, 1).
3) Relu Rectified Linear Unit (Relu) is one of the most used activation
functions.

relu(z) = mazx(0, x)

It has range (0, o) and espeically ourput zero with negative input implies
this part is nothing changed when update weights and it can make the
network lighter and faster optimization to target output. Also, for large

T
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CHAPTER 2. DEEP LEARNING BACKGROUND

Figure 2.3: Example of backpropagation.

input, relu conserve its amount to update weights that helps us for training
faster and avoid vanishing gradients. However, sometimes 0 with negative
input can delete important features with negative value, so variations in
Relu like LeakyRelu [19], pRelu [10] are suggested.

2.3 Error Backpropagation

The learning process of neural networks takes the inputs and the target out-
puts and updates trainable parameters inside the model towards to making
model output get as close as possible from the target output. The backprop-
agation algorithm is the inverse direction of the feedforward process in order
to compute the gradients of whole network parameters. First, we compute
the error with target output y and model output haty. For a simple method
with sum of squared error, we can calculate error as

To reduce the value of the error function, we have to change these weights
in the negative direction of the gradient of the loss function with respect to
these weights. Let’s look at the simple example in Figure 2.3.
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We denote input is zg then forward propagation equations are as follows:

Input = zg
Hidden Layerl output = 21 = f1(Wixg)
Hidden Layer2 output = z9 = fo(Waxq)
Output = § = f3(Wsz2)

Backpropagation equations can be derived by repeatedly applying the chain
rule. First we start with the derivatives of final output error with respect to
Ws.

OF G- o7
ows T YV aw,
N oWsx
[(5 = ) o fi(Waz2)] ==

=[(g—y)o f3(W3$2)]372

Let d3 = (§ —y) o f3(W3x2)
oF
W3

T
= (53$2

Here o is the Hadamard product. We use chain rule for calculating each
partial derivatives effectively. Let us check the dimension of each matrixes.
A dimension of W3 is 2 x 3 and fWE;g must be same. Dimensions of (§ — y)
and f4(Wsxa) are 2 x 1, so &3 is also 2 x 1, so dimensions of dzz2 is 2 x 3
which is same with W3. For the weights in W2, we do same calculations:

oFE . (A_ )(91'3
ow, YT Y,
. O(Wax
=[@—y)o fé(W3x2)](m;/22)
_5 O(W3xo)
oW,
ox
_wT 2
= Wads 5y,
oWox
= W38 0 fy(Waan)] 5=

T
- 52:1:1



CHAPTER 2. DEEP LEARNING BACKGROUND

And for Wi which is a weight matrix of the first layer:

oE

- (W65 0 f1(Wizo)]ad

T

We do this process recursively and with L layers with weight matrices
Wi, Wy, .., W, and activation functions fi, fo, .., f1 respectively.
Forward Pass:

z; = fi(Wiri1)
1, .
E=5li -yl
Backward Pass:

= (5 —y) o fr(Wrzr—1)
8 = Wi 16i1 0 fl(Wizi1)

Finally, we update each weights with gradient descent rules:

OE
2 i:(sil‘zT—l

0E

P Gy

2.4 Regularization

2.4.1 Dropout

As deep learning models are going deeper, there are enormous trainabel
parameters to be updated and as epoch increases, the model overfits to train
dataset and can apart from test dataset. Dropout [29] helps these problems
by ignoring neurons during the training stage randomly. As in Figure 2.4 (b)
"Ignoring” implies neurons that choiced are not considered during a forward
or backward pass during a epoch which is difference with standard neural
networks in (a). Therefore we do not train whole neurons in layers where
we apply dropout and that helps prevent overfitting by reducing correlation
between neurons. Also, we can save memories while we training with less
neurons for an epoch. However, we need more numbers of epochs to converge
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CHAPTER 2. DEEP LEARNING BACKGROUND

a) Standard Neural Net

(b) After applying dropout.

Figure 2.4: Dropout in Deep Learning.

because of randomness of dropout.

2.4.2 Batch Normalization

While dropout is a simple method of regularization and it is a view point
from computing algorithms, batch normalization [13] is a regularization
method with adjusting mean and variance for preventing covariance shift.
To make training process being stabilized, we need stable range of inputs of
each layer without losing features among them. As algorithm in Figure 2.5,
batch normalization normalizes the output of a previous activation layer by
subtracting the batch mean and dividing by the batch standard deviation.
Therefore the process just change scale and move data to inside a unit cir-
cle. However, this fixed range of output(also, input of next layer) cannot be
enough with scale or variance aspects for next layer. Therefore they multiply
a parameter for a standard deviation and add a parameter for a mean and
both parameters are trainable parameters. Batch normalization reduces the
amount of differences of same classes inputs if the model is trained well for
extracting features and it implies not only for stablizing training process,
but also batch normalization makes faster convergence.
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Input: Values of = over a mini-batch: B = {zi _, }:
Parameters to be leared: ~. 3
Output: {y; = BN, 5(z:)}

1 m
KB +— — § x;
m =
i=1

1 e
Ok (@i~ ps)?
i=1

T
Vg + €

Yi ";%} + 3 = BN'T.,.'E(‘Ti)

// mini-batch mean

// mini-batch variance

T // normalize

// scale and shift

Figure 2.5: Batch Normalization Algorithm.



Chapter 3

Deep Learning Models

In this chapter 3, we present various deep leraning models that we use for
analyzing time series data in industrial. Each sections will introduce simple
forms of each models and we explain their features about time series data.

3.1 Multi Layer Perceptron

Multi Layer Perceptron(MLP) is a simple deep learning model which consists
of input layer, hidden layers, and output layer. (Figure 3.1) It contiains one
or more hidden layers and that enables model can learn non-linear functions
that a single layer perceptron cannot. We also called this network as fully-
connected layer since each neurons in a layer is connected to all other neurons
in the next layer. The connection(edge) has a weight and the network is
feed-forward neural networks. An MLP can be considered as a function that
maps from input to output vectors. Since the behaviour of the function
is parameterised by the connection weights, a single MLP can be express

Input layer Qutput layer

Hidden layer

Figure 3.1: Example of Multi Layer Perceptron.

10
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| Feature map 0
Stride: 2 Padding: 1

| Feature map 1

Kernel: 5x5

| Feature map 2

Feature map 3

Image L
Convolution Layer (S5x5, 2, 1, 4)
(kermel size, stride, padding, number of kernels)

Figure 3.2: Example of Convolutional Neural Networks.

various kinds of different functions. However the output of an MLP depends
only on the current input, and independent with any past or future inputs,
MLP is not a useful model for time series data. We will test MLP with other
models in our second application for financial market which is in Chapter 5.

3.2 Convolutional Neural Networks

Although MLP can implements various non-linear functions, we need more
complex and reasonable networks for solving problems. Especially, if posi-
tions are the important factors in features of data, MLP does not work well
because of the reason we mentioned at previoius section. Convolutional Neu-
ral Networks(CNNs), which use convolution operator with receptive field in
input domain, can overcome limitations of MLP and it becomes one of the
main reasons why deep learning is so popular today. Let us denote a con-
volution layer which accpets an input with volume of size W; x H; x D;.
Convolution layer need four hypermarameters such as number of filters K,
their spatial extent or size F', the stride S and padding type P. First, filter
size I’ contains a dimension for width, hegith, and depth and filter operates
convolutions through input as sliding window for all regions. Number of fil-
ters decide how many features we extract through this layer by convolution

11



CHAPTER 3. DEEP LEARNING MODELS

operation. The operation overlays as the filter size to the input and perform
element wise multiplication and add the result. Stride S decideds a length
that we move the filter in the input to calculate the next region of input.
We have two options of padding type P, ”same” and ”valid”. Same padding
increases the size of input with horizontally and vertically to maintain the
size after convolution. CNNs have great advantages of parameter sharing
and sparsity. Parameter sharing in CNNs controls the number of parame-
ters and that makes we need less memory for computing compared to MLP.
Sparsity of connections means unlike MLP, CNNs only need a weight ma-
trix for a receptive field with a size F' not whole connections between input
neurons and output neurons. We provide simple example figures of CNNs
in Figure 3.2. CNN is a very effective class of neural networks that is highly
effective at classifying structured data where the order of arrangement mat-
ters like images, audio and video. Many tasks with image data give the best
results with CNNs and even its performance on image recognition tasks has
surpassed human performance on standard datasets recently. We use time
series data as input so convolutional dimension depth will be 1. We call it
as 1D CNNs and this is very effective when we derive features from fixed
length segments of the overall data set and where the location of the feature
within the segment is not of high relevance. Therefore, it applies well with
time sequences such as sensor signal (if signals are fixed length), NLP and
audio data. We will build 1D CNNs model for our second application, trend
prediction in financial market, which is in Chapter 5.

3.3 Recurrent Neural Networks

Time series data have a correlation itself with past or future inputs and it
deals with markov chain models. Especially, Hidden Markov Model(HMM)
was widely used as machine learning method for time series prediction. How-
ever, HMM considers relations only for previous step of input and do linear
operation to get output. Therefore, we need developed algorithm for complex
features in time series data. Recurrent Neural Networks (RNNs) are popular
models that have shown great promise in many sequential data tasks like ma-
chine translation, speech recognition, sentence classification and etc. While
traditional neural network assume that all inputs (and outputs) are inde-
pendent of each other but RNNs perform the same task for every element of
a sequence, with the output being depended on the previous computations.
This is why we called it ” Recurrent” and that helps us to predict what comes
next by extracting features of input time series data. A simple RNN looks

12
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0
O O!’—I Ot Ot+1
A
\'4 W 14 \% VT
SO:) W dt—i‘ = 5 - Osm -
: w A W w
Unfold

U U U U

X X X X

-1 t t+1

Figure 3.3: Example of Simple Recurrent Neural Networks.

like in Figure 3.3 with a folding and unfolding figure. x; is the input at time
step t, and s; is the hidden state at time step t. s; is calculated based on
the input at time t and previous hidden state s;_1 :

= f(U.Tt + WSt_1)

The function f is an activation function which is usually a nonlinearity func-
tion such as tanh or Relu. o; is the output at step t. If we want to get
probability distributions with final outputs, o; = softmaz(V's;). For update
weights in RNN, we use backpropation through time (BPTT) that implies
the total error is just the sum of the errors at each time step.

o _
ow

on
— oW
For an instance, take a look at Figure 3.4. To update weights through back-

propagation, we need to calculate the gradients of the error respect to train-
able weights U, V and W. Take a look at the gradient of E3 respect to W

aEs Z O3 O Os3 sk
= é’Eg 0s3 0s. OW

i 093 6y3 0s; )%
E3683 e 058] 1 6W

0sj

Since derivative of tanh is bounded by 1, | . -| < 1 and this makes the

gradient % aES can be small value. Especially, as sequence get longer, higher

13
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Figure 3.4: Example of Vanishing Gradient Problem.

chance to derivative goes to zero and that occurs weight saturating even
they have high error. (If you want more details, check (On the difficulty of
training recurrent neural networks).) This problem is called ” Vanishing Gra-
dient Problem”. Therefore, we need more sophiscated networks for keeping
important features at the head of inputs until our model runs to the tail.

3.4 Long Short Term Memory

The Long Short Term Memory(LSTM) network is a recurrent neural net-
work is made for overcoming the vanishing gradient problem. LSTM is an ex-
tension for recurrent neural networks, which basically extends their memory
and that makes this network well suited to learn from important experiences
that have even very long time steps in between.

As in Figure 3.5, LSTM has three gates: forget, input and output gate.
Forget gate decides what information to discard from the unit. Input gate
decides which values from the input to update the momory state and output
gate decides what to output based on input and the memory of the unit.
Same with simple RNNs, each gates are decided by previous hidden state and
current input but each gate have trainable weights itself and they decide the
proportion how much they forget or add or pass for the next step. By using
those gates, LSTM then combine the previous state, the current memory,
and the input. It turns out that LSTMs are very efficient at capturing long-
term dependencies and this is why LSTM networks are widely used for
sequential data including time series data.

14
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Figure 3.5: A diagram of Long Short Term Memory.

3.5 Attention Networks

The attention mechanism was made for helping memorize long sequences
with focusing important features of inputs. The main difference between
LSTM networks and attention networks is that ” Attention” pays attention
to particular parts rather than treating the whole inputs with same weights.
For example, when we want to predict a financial market movement with
previous time series data, we want to pay attention to important days than
normal days that affects insignificantly to our target output. Then we need
to give higher weights for the important days than normal days and this
can be done by trained model which understand relations between inputs
and outputs correctly. To compute the weighted features for the attention
networks, we put an attention layer as in Figure 3.6. Let us denote inputs as
{x1,x9, - xp} and previous hidden state as hy;—; then we compute a score
s; to measure how much attention for z;:

S; = tanh(Whht_l + WxXZ)
For making scores to weights «; with summation as 1, we normalize s;:
a; = softmax(sy, S2, -+, ST)

Finally, we use Z to a new input to next layer:
Z = Z ;T4
i
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Figure 3.6: A diagram of attention networks.

In this section, we mentioned about attention networks for LSTM networks
and we also use simple attention networks for a simple input without hidden

state in Chapter 5.
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Chapter 4

Anomaly Detection

In industrial, as operation systems get more complex and developed, we need
investigation systems faster and more efficient than before. The most basic
knowledge for investigating system, we need to be able to handle properties
of sensors based on recorded time series data. Sometimes, defective prod-
ucts come out from some processes and we look into recorded sensors, time
series data, to find out root causes. We compare the data between normal
products and defective products and odd sensors are suspected as causes
of defects. Anomaly detection is the problem of finding rare items, events
or observations, which are differing significantly from the major patterns of
the data. Figure 4.1 explains anomalies in a simple two-dimensional data
set. We can regard the data has two groups, G1 and G2, since almost data
contains in these two regions. Points that are sufficiently far away from these
regions, for example, points p; and ps can be regarded as anomalies.
However, time series data of each sensors have various shapes or lengths
and it makes us hard to analyze correlation between them even they corre-
late each other as knowledge. For analyzing this problem, various methods
for calculating similarity or correlation coefficient between time series data
proposed. There are some papers based on deep learning to do anomaly de-
tection or unsupervised learning for time series data. [20] used mixture model
of LSTM and encoder-decoder that learns to reconstruct normal time series
behavior for anomaly detection. For anomaly detection in noisy highly peri-
odic data, [28] tested various models including DNNs, RNNs, and LSTMs to
perform regression and predict the expected value then compare the actual
values in the time series. Sensor data have complex features like different
lengths and consist with time steps, clean or noisy, various scale, time delay-
ing and so on even on the same manufacture process. Therefore, the model

17
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Figure 4.1: An example of anomalies in a two-dimensional data set.

to analyze sensor data need to consider those features and that can lead us
to detect abnormal data that can cause serious problems like making bad
products. In this chapter, we build a new deep learning model for extract-
ing features of complex signal data that is needed for reasonable embedding
result and define the metric to distinguish an abnormal data between them.
One of the most popular networks for processing sequential data is recur-
rent neural networks and Long-Short Term Memory (LSTM) network [12]
is especially widely used among them. The networks are used for various as-
pects using sequential data in deep learning like speech analysis, sentimental
analysis, voice recognition and financial analysis because of its characteris-
tics that can prevent forward features by long term memory and keep short
term memory well as simple recurrent neural networks. We used LSTM to
deal with our complex time series signal data with respect to each steps.
After we obtained features through the deep learning model, we used them
to optimize KL (Kullback-Leibler) divergence between original distribution
where computed by correlation between them and feature distribution where
computed by distance between feature vectors. We take inspiration from
parametric t-SNE [30], t-Stochastic Neighbor Embedding, which uses deep
neural network to parametrize the embedding. T-SNE minimizes the KL
divergence between an original data distribution and an embedded distri-
bution for optimizing the clustering process with features obtained by deep

18
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neural networks. The model towards learning for extracting features, which
can optimize KL divergence and its result, show us the simple map for clus-
tering complex original data. This map shows us which data can be regarded
as similar movement with steps and which data can be regarded as abnor-
mal data. We define a new metric to classify normal clusters and find out
abnormal data as results. In this chapter 4, we propose the ensemble model
of LSTM and t-Stochastic Neighbor Embedding method to obtain correla-
tion between sensors. Deep learning model will help us to extract features
of each steps and then we used them for representing features of sensor data
even they have complex properties. After feature extraction, t-SNE will do
reduction of dimensionality from high dimensional feature vector space to
low dimensional projected vector space as minimizing KL divergence. With
trained DeepCorr model, we get results with low dimensional space that
presents how much each sensors are close or relate. We calculate correla-
tions respect to a new function which we defined and then use them to do
anomaly detection.

4.1 Related Works of Anomaly Detection

4.1.1 Anomaly detection

While supervised anomaly detection has relation with classification tech-
niques, unsupervised anomaly detection is a quite difficult problem since it
has no target label in the data. To do unsupervised anomaly detection many
approaches with clustering and then find out data which is out of cluster.
For clustering complex data, many machine learning techniques like PCA,
linear discriminant analysis, t-SNE are widely used to mapping lower dimen-
sional space where we do clustering. [20] used mixture model of LSTM and
encoder-decoder that learns to reconstruct normal time series behavior for
anomaly detection. The outputs are from reconstruction by LSTM Encoder-
Decoder model and difference with original data implements anomaly scores
of the sensor. The data they used were periodic time series is difference
with our non-periodic data and noisy sensors will have high anomaly scores
even they are normal sensors with the model. For anomaly detection in noisy
highly periodic data, [28] tested various models including DNNs, RNNs, and
LSTMs to perform regression and predict the expected value then compare
the actual values in the time series. Moreover, they ensemble different mod-
els that one with statistical backing and another that can be easily modified
by the user and get robust method to detect anomalies. However, their ap-
proaches are based on supervised learning and not end-to-end model makes
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high computational cost which is not proper for faster industrial business.

4.1.2 t-SNE

t-SNE is the popular method for dimension reduction and visualization for
big data by embedding data in high dimensional space to low dimesional
space. It develops from SNE(Stochastic Neighbor Embedding) which makes
low dimension probablity space similar to high dimension probability space
stochastically using loss function as Kullback-Leiber divergence. However,
SNE assumes both distribution as Gaussian distribution and it implies j‘h
element which is nearby i*h element in original high dimension space and k'h
element which is nearby i'h element in original high dimension space are not
quite different from the probability view point as chosen neighborhood of
i'h element. Therefore t-SNE [30] suggests t-distribution instead of Gaussian
distribution with low dimensional distribution and remains high dimensional
distribution as Gaussian distribution. This method is the state-of-the-art
in data visualization and dimensionality reduction for non-formulaic data.
However, datasets which they used were focused on image datasets or only
simple text data which is quite simple than sensor data.

4.1.3 Clustering

For unsupervised learning for anomaly detection, autoencoder method is
widely used because it has a strong point to capture proper features of
input to decode itself or similar domain. In [5], they used Stacked Denoising
Autoencoders to perform anomaly detection traking from low level features.
However, there are not abundant researches using deep learning techniques
to Anomaly detection.[7] [33] gave us a key idea to how to use deep learning
techniques to anomaly detection. They used KL divergence for loss function
to optimize parameters and they clusterized with k-means clustering features
from deep neural networks. However, they still used autoencoder model for
parameter initialization that cannot be hard to adjust to our data because
of a variable length property.

4.2 Deep Correlation Mapping

Consider we have signal datasets X = {X;, X, -+, X} and each signal data
can be expressed as X; = {xll,O? e 7x21,t1>$12,07 T 7:612,1527 e 7xiz,0? T 7'%'%,75"}
which have n steps with time length {t1,t2, - ,t,}. Instead of calculating

correlations directly in the data X, we transform the data with nonlinear
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mapping fy : X — Z where 6 are learnable space and Z is the latent space.
Our model consider the following problems to find out proper fy First, we
need to consider how to extract features that consist latent space with re-
flectling properties of our original data which in high dimensional space. We
need to use time analysis model with variable length inputs because some
of them look similar but different length for each steps. Also, the target
function to train the model within obtatained latent space is important for
anomaly detection. Our model should solve not only complex problems, but
also preserve the simple problems that highly correlated data even with a
simple method.

4.2.1 LSTM

Denote time series of one data sample as {x’g, ok 55]5,0’ e ,xfk} where k
is the time step number of the data. The simple forms of the equations for
the foward of an LSTM unit with a forget gate as follows:

= og(What + UShE., + ) (4.21)
it = og(Wlay + UFhi_y +b}) (4.2.2)
of = o,(Whal + UFRY_| +b%) (4.2.3)
of = ff Oty +if ©oe(Whay + Ulhy_y + ) (4.2.4)
hi = of @ an(cy) (4.2.5)

where fF is a forget gate, i¥ is an input gate, of is an output gate, ¢; is
a cell state, hf is a hidden state and the operator ©® denotes the Hadamard
product. We trained each weight matrices W, U and b.

We train an LSTM model for extracting features of steps respectively
and they represent each steps even they have different lengths. Given X, hz
is the hidden state of k" step at time t € {0,--- 4} , where h € R®, cis the
number of LSTM units in the hidden layer. The final state h;’“ is used as the
feature of k*" step. The concatenate layer on top of the LSTM layer of each
steps is used to combine each step features to feature vector of sensor data,
i.e. concatenate; = {h{,---  hir}. From various length inputs, we get fixed
size output of each LSTM that represents entire time series data with steps.
Then we use fully connected layer to encode concatenate vector to obtain
v°% which is a small dimensional vector to represents reducted dimensional
space. We can get final output vector that contains each steps features and
features among each steps.

21

Ty
o
sy



CHAPTER 4. ANOMALY DETECTION

4.2.2 t-SNE
We gather features through LSTM and fully connected layer,

out out ,out out
Vv :{Ul yUg et 5 Vg }

We use t-SNE not only for dimension reduction but also visualize to check
low dimension distribution. While optimize t-SNE process, we need to con-
serve close sensor pairs which get high value with the Pearson correlation
coefficient. Moreover, we need to preprocess the data to compare their sim-
ilarity in the high dimensional space. Therefore, we preprocess the data to
make signals with same length and normalize with same amplitude. This pre-
processing only uses for calculating high dimension probability space. During
training, LSTM and fully connected layer uses X; as input to obtain the v?%!,
and learn towards to minimize KL divergence between original space and
small dimensional space. We let P denote target distribution which is rep-
resenting high dimensional space with preprocessed X and () denote output
distribution which is representing low dimensional space obtained by V4.
As in [12], we compute the conditional probability p;; with p;; = %
where

exp(—|lz; — 2;%/207)
Zl;éi exp(—||z; — xl||2/2‘7i2).
In above equation, o; is the variance of the Gaussian that is centered on
datapoint x;. t-SNE aims to learn the distribution Q where

pili =

(L g™ = w))~!

B Y R D

We define our objective as a KL divergence loss between the output proba-
bility ¢;; and the target probability p;; as follows:

p

KL(P||Q) = sz‘j log q”
ij

i#]
4.2.3 Full Model Architecture

The data we are going to handle are split with steps and each step have
to be investigating locally and globally along with whole data. Therefore
we consist LSTM for each steps first. Moreover, each steps have different
features, for example the first time step have steady state before operation
starts and the next time signal can be dramatically move with operation.
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Output
» LSTM for Output » Fully connected
each step Layer
Output
LSTM Layer Dense Layer
Input Layer  (Faatyre extraction for each Cogcuatt;State (Feature extraction for whole
step) step)

Figure 4.2: Feature extraction model for time series data.

Therefore we train LSTMs for each steps separately to be able to consider
each steps features. Then concatenate those outputs and pass through fully
connected layers to get the feature vector of whole signal data. We take low
dimension as two and train our model towards to minimize KL divergence
loss with adam optimizer. We run on batch as sensor data within process
of a same product for preserving simple correlation among them. The full
modle architecture can be seen as Figure 4.2.

Pseudo code for Deep Correlation Mapping as follows :

Algorithm 1 Deep Correlation Mapping Pseudo Code

Input: Recipe - Waferl - Sensorl = (Stepl, Step2, ..., Step n)
- Sensor2 = (Stepl, Step2, ..., Step n)
- Wafer2 - Sensorl = (Stepl, Step2, ..., Step n)

Output: low-dimensional data representation (Q)
1: Preprocessing : Make all signal data same length, and same amplitude.
(P)
LOOP Process
2: for wafer in Recipe : do
3:  Compute distribution of Original high dimensional data (P)
4 for number of epoch do
5: Achieve final output using Deep learning Model
6: Run T-SNE with final output
7 Compute distribution of low dimensional data (Q)
8 Compute cost function ( KL(P | Q) )
9: Update weights in Deep learning Model
10:  end for
11: end for

As in algoritm 1, we can build end-to-end deep learning model with dif-
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feret length dataset and our model conserve the simple correlation property.
Correlations between sensors are defined using Fuclidean distance in low
dimensional space which is achieved results from DeepCorr model.

Correlation(X;, X;) = 1/(1 + ad(out;, out;))

We set @ = 10 in our experiment.

4.2.4 Anomaly detection using Deep Correlation Mapping

We use Deep Correlation Mapping model for anomaly detection. We trained
whole sensor signal data of different wafer with the same recipe and the re-
sults that projected in low dimensional space apply to do anomaly detection.
If the sensor data is abnormal one, the result in low dimensional space will
locate far from other normal data results. Therefore, for same sensors with
different wafers, we calculate variance of the each sensor results and if it is
bigger than threshold then we alert the sensor as abnormal one. If data is
from normal sensor, they put in similar locations and if not, they put in
various regions in low dimensional space.

4.3 Experimental Results

In our deep learning model, we have an option about LSTM with using a
shared LSTM or different LSTMs for each steps. If each steps are regarded
as similar features, we can use shared LSTM and it will be effective for
reducing memory cost. However, our dataset have different features for each
steps, so we get better result when we train the model with different LSTMs.

4.3.1 Correlation

As in Figure 4.3, simple pearson correlation coefficient map shows us that
only few sensors are related and almost sensors do not have common fea-
tures. However, there are some of sensors which have common features as
properties and even look similar but with small correlation due to noise and
delayed time movement.

Therefore, we compare our results with the Pearson Correlation Coeffi-
cient to check 1) DeepCorr model have similar coefficients with high Pear-
son Correlation Coefficient. 2) DeepCorr model can handle highly correlated
sensors that have low correlation in Pearson Correlation Coefficient.

The heat map in Figure 4.4 shows us that not only nearby sensors, but
also various sensors can be highly correlated with proposed model. The plots
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Figure 4.4: Heat map from Deep Correaltion Mapping result.
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Figure 4.5: t-SNE map from original data.

in the figure show that our model can be used for noised or time delayed
data to find out correlation between them since our model gather features
of each steps while preserving the original time data.

The Figure 4.6 shows the visualization the results of low dimensional
space from original high dimensional space which is obtained through our
model after training. For understanding visualization easily, we set low di-
mensional space as 2-dimensional space and same sensors with same color.
As we analyzed with correlation heat map, same sensors are only grouped
in low dimensional space in Figure 4.5 when we plotted with preprocessed
raw data. It seems sensors are not quite related and they are just seperat-
ing even on same process with correlated work. After we trained our model
and get output to 2-dimensional space, some of sensors flock according to
their correlation with preserving group with same sensors. Therefore, we can
analyze our result to find out correlation among sensors.

The following examples of some specific high relative sensors will show
us difference between simple correlation model and our model.
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Figure 4.6: t-SNE map from Deep Correlation Mapping.
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Figure 4.7: An example of related sensors.
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Figure 4.8: An example of related sensors.

At Figure 4.7, there are two different sensors which look flat shapes but
they have pearson correlation coefficient -0.5 because of small noises in each
steps. We can preprocess denoising preprocessing to compare flat sensors
with noise efficiently but we cannot define the noise is small enough to
ignore or small but important value. Therefore we let our model to decide
how to handle noise by learned from whole data. As a result, our model
correlation value is 0.76 and it means the noise is not an important feature
for seperating those sensors as low correlated sensors. This example shows
that our model can figure out noise which should be ignored to calculate
correlation between them.

At Figure 4.8, two different sensors have pearson correlation coefficient
0.69 which is high but not as we expected and the correlation value comes
from their slight delayed time at peaks. In sensor signals, some of sensors
depend on other sensors and move after other sensor signals or before. There-
fore simple correlation method have a problem to handle these pairs of sen-
sors. We can fix this problem through synchronize with peaks but then other
parts also modified even they have important features. To handle this prob-
lems, our model encodes each steps features to vectors and gather them to
reperesent the sensor features. Therefore, our model succeed to find out high
correlated sensors like Figure 4.8, by giving us correlation value as 0.91. This
example shows us even delayed time difference, our model used LSTMs for
each steps and they can extract features then gather them to find out their
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Figure 4.9: t-SNE map of an abnormal sensor.

correlation efficiently.

4.3.2 Anomaly detection using DeepCorr

We defined correlation between sensors upon low dimensional space through
our model and as we mentioned previous subsection, the result preserve sim-
ple challenges like similar shape correlation property and complex challenges
like delayed time property. As we mapped in Figure 4.6, t-SNE map shows
us most of sensors are grouped together but some of them are outside the
group appreciably like Figure 4.9. As in Figure 4.9, one data quitely far from
other data even they are obtained from same sensor and it implies we need
to check this sensor as abnormal one.

Therefore, signal data of same sensors project in almost similar points
in the low dimensional space but few of them do not which can be regarded
as abnormal data. In our experiments, if the variance of the results of same
sensors are bigger than the threshold (we take 0.5 with Euclidean distance)
we regard it as abnormal one.

Figure 4.10, and Figure 4.11 show abnormal sensors that we obtained
from our experiments.

29



CHAPTER 4. ANOMALY DETECTION

o
0t o
0s
00 o0 00
Y5 b % » B % % e 5 b 5 h E w % T % £ & & % 3
12 12 15
10 10
o 0s (\/\/»\/ 10 ,/\/\
o
o o
0
i 5 b 5 % 3 % 3 RN R ]
1s
150 o 02
125
o1 o
100 N 1
ors o0 00
i % 5 % 3 % % i 5 b E B 5 % % i % b £ H F % 3 @
03 oe 12
0 04 10 \J\
0
o 02
AN ”
00 o0
v 5 b b5 & 3 % 3 v 5 b b5 & B % B 5 b B d B B B @

Figure 4.10: An example of noisy abnormal sensor data.
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Figure 4.11: An example of different time abnormal data.
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The abnormal sensor in Fig 4.10. are caused by different shapes and that
make this sensor data have various points distribution in low dimensional
space with our model results. They are not close even they are named same
sensor. In this result, it can be regarded as our model still preserve simple
correlation with small coefficient. On the other hand, sensor data in Fig 4.11.
seems like quite similar shapes between them but it is slightly different time
to peak at each steps. We can detect this differences with spread points in low
dimensional space because of investigating each steps properties and then
gather it to compute correlation. Their difference in low dimensional space
is caused by difference in high dimensional original space. If we regard the
data without considering steps they have similar shapes with high correlation
coefficient. However, our model consider not only for the entire shape but
also time difference at each time steps we can find abnormal sensor data
successfully.

4.4 Conclusion

In this chapter , we suggests a new model, called Deep Correlation Mapping,
to find out relations between signals and make an application to anomaly
detection. Deep Correlation Mapping works well not only for noisy signals
but also for time delayed sequences that cannot be analyzed by traditional
correlation methods since our model captures each steps features with LSTM
which can handle inputs with various lengths and various featurese due to its
properties. We define a new correlation for low dimensional space derived
from high dimensional space through our model regardless their various
lengths and different time steps. Finally, our method can also suggest a new
approach to recognize abnormal signals using the correlation. While our
model can be used for time series anomaly detection, the model can be used
to clustering various time length dataset.
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Chapter 5

Trend Prediction

Predicting the trends of financial markets is one of the most important tasks
for investors. Prediction of the trends is useful not only for real investing
but also analyze general direction of other indexes in financial markets. They
have tried to predict the trends using various methods like technical anal-
ysis and fundamental analysis. Technical analysis is one of the traditional
methods that uses historical stock prices and trading volumes to determine
the trend of future stock movement. This analysis is based on supply and
demand in financial markets and easy to build a model since this approach
only considers numerical parameters. Fundamental analysis predicts stock
prices by using intrinsic values. The stock values are determined by financial
news or sentiment of market and economic factors. Investors estimate the
profits of firms and evaluate whether they are proper. Methodologies to fore-
cast stock prices have researched for a long time and a number of techniques
in various academic fields have been proposed and applied in real markets.
For quantitative methods in finance are using machine learning techniques
frequently.

In these days, deep learning has been widely used in classification prob-
lems in taking advantage of nonlinearity and has given out of standing
performances than other previous classification methods. Some researches
have compared deep learning with time series models for predicting time
series data. For example, Kohzadi [17] compared the performance of Artifi-
cial Neural Networks(ANN) with that of AutoRegressive Integrated Moving
Average(ARIMA) model for forecasting commodity prices. Kara [14] have
applied ANN and Support Vector Machines(SVM) to predict Istanbul Stock
Exchange(ISE) National 100 Index prices and also ANN shows better ac-
curacy than SVM with polynomial kernel respectively. Deep learning tech-
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niques for time series data, especially using LSTM model, have shown better
results than previous machine learning techniques in speech recognition [9],
sentimental analysis [23], and time series prediction. Moreover, attention
mechanism is widely used for analyzing data both in images and time series
data [34] and leads us to better results when we combine attention with
LSTM than other plain deep learning models and moreover attention net-
works help us to be able to visualization as plotting attention vector weights
for understanding the model.

In this paper, we predict the trends of KOSPI 200 with various deep learning
models and compare them with accuracy. The data set consists of various
index parameters like currency, global index, and commodities. We trained
data from start of 2007 to end of 2016 and test data from start trading day
of 2017 to end of July, 2018. We get the best trends accuracy with weighted
attention networks and also explain the reason of prediction through visu-
alizing attention vectors that we used.

5.1 Related works of Trend Prediction

Kohzadi [17] tested ANN and ARIMA model for forecasting commodity
prices and compare the results of them. The result was that ANN gave a
27% and 56% lower mean squared error than an ARIMA model. Kara [14]
have applied ANN and support vector machines (SVM) to predict Istanbul
Stock Exchange (ISE) National 100 Index prices. Ten technical indicators
were used as inputs and they got maximum 75.74% and 71.52% in ANN
and SVM with polynomial kernel respectively. The inputs were only based
on the technical factors which use historical index prices and volume data.
However, experimental procedures in [17] and [14] are not practical to in-
vestors in that training and test data was used without considering time
series data. Training sets should not be later than test set in analyzing time
series data because of high correlation between training set and test data
set can be occured. It means to invest in real markets, we need to define
training set with previous dates sooner than predict date of time series data
to hide test data set from the model definitely. In paper [25], they compare
various models include traditional machine learning techniques like ARIMA,
SVM and deep learning techniques like DAE (Denoising Autoencoder) and
mixture both of them. From their results in paper, DAE-SVM shows higher
results than other methods and they normally get better result with time
series model than simple machine learning models. In paper [24], they pre-
dict KOSPI 200 index with SVMs and ANN with google trends. They got
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the best result 52% accuracy with shorter periods and using google trends.
However, their accuracy is not enough for who wants to real investment.
Although above papers can be explained as deep learning technique is more
effective than other machine learning techniques in extracting high level
representation of input features, so that it can enhance their performances.

Sometimes 1D CNN show better performances for classifying sequential
data. A convolutional neural network (CNN) widely used in image tasks, for
example, image classification, image segmentation, denoising, super-resolution,
and etc. In these days, not only for image area, but also 1D CNN is very
effective to derive important features from segments of a whole sequential
data and where the location of the feature within the segment is not that
important. This applies well to the analysis of sequential sensor data, fixed
length periodic signals, and NLP. In recent papers [8] and [27] describe how
to learn semantically meaningful representations of sentences by using CNNs
in NLP. The models given in the papers recommend potentially interesting
documents to users based on what they are currently reading. In [16], eval-
uates a CNN architecture on sentiment analysis and topic categorization
tasks. The 1D CNN architecture achieves a remarkable performance than
previous papers. Also, the network used in this paper is quite simple and
easy to implement.

Time series classification tasks have been accomplished with recurrent
neural networks in these days. Especially LSTM is widely used in sequential
data like sequence labelling [15], speech recognition [9], anomaly detection
[21], and also in financial time series prediction [4]. Many kinds of time series
problems have used simple LSTM model or stacked LSTM model to predict
their goals successfully. However, LSTM model have some problems with
vanishing gradient and losing simple features in long sequences even their
advantages for time series data. Vaswani [31] suggested “attention” mecha-
nism and they told us with using attention is useful for many ways and solve
those problems. Attention is a simple vector, sometimes represents probabil-
ity distribution using softmax function. Recurrent neural networks or other
deep learning models should take an input as a complete sequential data and
compress all information into a fixed-length vector as output of the model
before. It implies even a data with hundreds length represented by fixed-
length or sometimes only output of final time step, and maybe the output
is much shorter than an input length, will surely lead to information loss.
However, attention partially fixes this problem. It allows model to analyze
all the information of the original data, then generate the proper output.
Attention network is getting widely used in these days image captioning
[32], neural machine translation [3], question and answering [35]. In a paper
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[31], they build multi-head attention module for replacing the recurrent or
convolution neural networks most commonly used in encoder-decoder archi-
tectures. The attention model comes between the encoder and the decoder
and helps the decoder to pick the encoded inputs that are important for
each step of the decoding process. They showed a better performance for
translation task than previous machine translation tasks with lower compu-
tational cost. The model not only trained faster but also outperformed even
all previously reported ensembles.

5.2 Trend Prediction with Deep Learning Models

We will build multiple deep learning models with multi-layer perceptron
(MLP) model, 1D convolutional neural network (1D CNN), stacked Long-
short term memory (stacked LSTM), attention networks and weighted at-
tention networks. Those methods are quite popular for sequential data tasks
and shows better results than traditional machine learning techniques in var-
ious tasks. In this section, we will introduce our datasets and then describe
details of various methods.

5.2.1 Dataset

The KOSPI 200 index is a weighted combination of the 200 most traded
securities in Korea Stock Exchange market. We take inputs as change ratios
of KOSPI 200 and various indexes like currency, commodity and global in-
dexes, which are quite related with Korean financial market in a view point

of fundamental analysis. We gather our data using pandas-datareader [1]
close price[t+1]—close price[t]
close price[t+1]
initial data r[0] is given. We set look back days as p trading days of tar-

get index and if a day is not include in trading days of target index, we
remove the day and re-calculate the return with a previous close price (We
take p=10 in this paper). We can write our input z[t] = [R![0];-- ; R![p]]
where R'[i] is a collection of input indexes return at the day t. The target
output is defined by KOSPI trends whether larger than 0 or not. We will
build up binary classification model by analyzing time series data as input.
We predict q trading days (we take q=19 in this paper) after the final day
of each input and define trend as

and

and calculate a return of a day as r[t + 1] =

close price[t + q| — close price[t]

trend|t] =
rend|t] close price|t]
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Input Layer Hidden Layer Output Layer

Parameter - #1
Parameter - #2

Parameter - #3

Figure 5.1: An example of a simple Multi layer perceptron with one hidden
layer which consists of 4 hidden neurons.

and target label is

~ ) [1,0] if trend[t] <O
ltl = {[0, 1] otherwise

that we describe as an one-hot vector.

5.2.2 MLP

Multi-layer perceptron consists of fully connected layers, at least three, and
each layers, except input and output, contains hidden neurons inside which
are trainable. Figure 5.1 shows an example of a MLP model with one hidden
layer with 3 neurons. Neurons in hidden layer take the values of inputs pa-
rameters, sums them up with multiplying assigned weights, and adds a bias.
By applying the transfer function, the value of the outputs would be deter-
mined. The number of neurons in input layer corresponded to the number of
input parameters [22]. In paper [2], they got better result in compounded an-
nual return with MLP rather than a standard factor model. Sezer[26] predict
Dow30 stocks with the model trained data of the daily stock prices between
1997 and 2007 and tested with data from 2007 to 2017. They achieve com-
parable results against the Buy and Hold strategy in most of the cases with
setting the most appropriate technical indicators. We build a simple MLP
model with 4 layers and each hidden layer contains 64 hidden neurons for
our experimental results. Notice that an input of MLP model should be a
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Figure 5.2: An example of a a 1D-CNN with sliding kernel size 3.

vector, so we flatten the input matrix to make an input vector which is going
to feed in our model.

5.2.3 1D-CNN

Many applications of convolutional neural networks had focused on images
area after imagenet [18] shows successful results for classifying natural im-
ages and quite better accuracy than other image classification methods.
However, because of time series property that current state relates with
before state, only recurrent neural networks used for analyzing time series
analysis. In a paper [16], they did sentence-level classification tasks, which
include sentiment analysis and question classification with 1D-CNN and
they got improved results. A 1D Convolutional Neural Network is expected
to capture the data locality well with the kernel sliding across the input
data. In Figure 5.2, a sliding kernel with size 3 do convolution operation
over input parameters and get output of each locations. We should choose
hyper-parameters like kernel size, number of kernels for better results, since
output we get from 1D CNN should represent local patterns and types of
pattern can be found in various types of kernels. One-dimensional CNNs
work with patterns in one dimension, and tend to be useful in signal analy-
sis over fixed length signals. We tried a bunch of 1D CNN models and finally,
we recommend the model with 2 convolutional layers and 3 fully connected
layers to predict target labels.

5.2.4 LSTM

LSTM [12] is one of the most popular module of recurrent neural networks.
The networks are widely applicable for various aspects about sequential data
problems like speech analysis, sentimental analysis, voice recognition and
financial analysis because of its characteristics that can prevent features that
important along with whole sequence by long-term memory and keep short-
term memory as well as simple recurrent neural networks. In [6], they used
LSTM networks for predicting movements of S&P 500 from 1992 until 2015.
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Figure 5.3: An example of unit of LSTM.

LSTM model outperform memory-free classification methods, i.e., a random
forest, MLP, and a logistic regression classifier. [11] suggests LSTM model
to forecast stock prices and indexing problems. Deep learning outperform
than other classical models because of nonlinearity and overcome in-sample
approximation quality.

One unit of a time can be figured as in Figure 5.3, and the simple forms
of the equations for the forward of an LSTM unit with a forget gate as
follows:

Ji =o0g(Wrxy + Ushy—1 + by) ( )
it = og(Wize + Uhe_1 + b7) (5.2.2)
or = 0g(Woxy + Ushi—1 + b,) (5.2.3)
ct = fi Oci—1 + it ©Qoc(Wery + Uchi—1 + be) ( )
hy = oy © on(ct) ( )

where f; is a forget gate, i; is an input gate, o; is an output gate, ¢; is a cell
state, h; is a hidden state, ¢ is an activation function and the operator ®
denotes the Hadamard product. We trained each weight matrices W, U and
b.

We will train our model with stacked LSTM to understand more complex
features among parameters of the data. Stacked LSTM is widely used in
sequential data like speech recognition [9], anomaly detection [21], and also
in financial time series prediction [4].
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5.2.5 Attention Networks

The core of sequential data model is to assign a probability of a data by
Markov Assumption. Due to the various lengths of inputs, RNN is naturally
introduced to model the conditional probability among times like Markov
chain model.

P(wiwsg -+ wy) ~ H P(w; | wj—g -+~ wi—1)
i

Usually, vanilla RNN have common problems with gradient vanishing/ ex-
ploding problems and structure problem like ordering. Similar to add fully
connected layer, we set a same number of hidden neurons with previous in-
put length. The attention model helps to pick only the inputs of previous
layer that are important for each step of the rest of model. Once we calcu-
late the importance of each encoded vector, we normalize the vectors with
softmax and multiply each encoded vector by its weight to obtain a ”time
dependent” input encoding which is fed to each step of the decoder RNN.
There are a few kinds of attention depends on how attention is defined. The
alignment weights are learned and placed “softly” over all of the input is
called “Soft Attention” and on the other hand, if only selects one part of
the input to attend to at a time is called “Hard Attention”. Soft attention
makes model smooth and differentiable but expensive when the input is
large. Hard attention has a low computational cost but requires more com-
plicated techniques such as reinforcement learning to train since the model
is non-differentiable. In our experiments, we use soft attention module as in
Flgure 5.4 and equations are followings.

er = tanh(Wy[z1, 29, ,27] + b) (5.2.6)
exp(e
2k=1 €xp(ex)

In those equations the attention probabilities @ = (ayq,...,ar) soft-
max output of a vector based on the input sequence z; and the trainable
weights matrix W,. Then we get output of attention as [c1,co, -+ ,cr] =
[.’Bl,iUQ, e 7~TT] * [ala Q- 7aT]-

Intuitively, this vector summarizes the importance of the different ele-
ments in the input. We will visualize this by plotting an attention vector as
a bar. We try various attention networks like attention before LSTM net-
works, after Istm networks and attention for time aspects, factor aspects
or both. For final results, we decide to use attention networks for time and
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Figure 5.4: Soft attention networks for input vector.

factor aspects both, then multiply attention vectors to get final vectors as
an input data for LSTM networks. Before going to the next lstm network
layer, we get output with attention networks as following equations :

et = Vo - tanh(Wasi—1 + Ushy) (5.2.8)
EeExrPple;

aje = —22PE)

2e—1 exp(er)

where similar with previous equations but input sequence h; and the
internal hidden state of the output cell s;—; and trainable matrix V, appear.
After attention networks with LSTM, we run LSTM one more as stacked
LSTM network then pass through fully connected layers to get final predic-
tion. Our full model architecture is in Figure 5.5.

(5.2.9)

5.2.6 Weighted Attention Networks

After we build the attention network model as in above subsection, we try
another model, weighted attention networks with modified loss function.
Since we train various models with categorical cross entropy as loss function
and labels are defined with one-hot vector, our trained model are focused
only on hit ratio. However, in financial markets, we need to care about how
much is a change ratio of the day and we want to do right prediction on a
large change day than a small change day. Therefore, we custom our loss
function with multiplying absolute value of the change ratio of test data and
original categorical cross entropy value. Categorical cross entropy function
for binary class is defined as

Hy(y) == — Y (yilog(y:) + (1 —3/}) log(1 — y))

i
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Figure 5.5: Attention networks for KOSPI200 prediction.
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where y; is the predicted probability for class i and y/ is the true probability.
Our weighted categorical cross entropy is defined as

He 9" (y) .= —abs(change ratio;) = ¥ (y; log(yi) + (1 — y}) log(1 — vi))

i

where change_ratio; is the change ratio of the test data i. Therefore, our
model updated to predict right at bigger change ratio data to minimize loss.

5.3 Experimental Results

We will train and test with various deep learning models which we metioned
in Section 4. We define our measurement as hit ratio which is the precision
of trends prediction and its formulation as followings:

vazl prediction;
N 9y

hit ratio =

and
. {1 if prediction; - real; > 0
prediction; =
0 otherwise
where prediction; denotes the prediction of i th sample change ratio, and
real; denotes the real market change ratio.

We set our train data as before the test data and test data will be
unseened in our model. Therefore we subsampled our training data set to
use validation set with split ratio 0.7. (That is 70% for training and 30% for
validation, randomly in whole train data set.) We set our train data from
start trading day of 2000 until end of 2016 and test data from start trading
day of 2017 to end of July, 2018. We choose the best model with highest hit
ratio and then test the our target data.

5.3.1 Best Lookback Days

First, we do experiments to find out how many days we should lookback
to get best accuracy for deep learning models that we suggest. We set our
lookback days as 5, 10, 15, 20, 30, 60 days since 5 trading days are regarded
as 1 week and it means we lookback 1, 2, 3 weeks and 1, 2 months for our
intput data. For 5, 10 lookback days, we test days from the next day after
lookback days to 5, 10 days after lookback days and for 15, 20, 30, 60 days
we predict days the next day after lookback days to 1 week, 2 week and so
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Figure 5.6: Hit ratio with respect to lookback days.

on until predict days reach to same days as we lookback. For example, if
lookback days are 15 and prediction days are 10 then our input data is 3
weeks information and we predict a trend over 2 weeks after the last day of
our lookback days.

In Figure 5.6, each bar from right to left imply hit ratio of 5, 10, 15, 20,
30, and 60 lookback days. This result is from the best hit ratio for test data
with various deep learning models and we do not use the best model for
validation data since we are focused on finding out the best lookback days.
As we can check in Figure 77, longer lookback days get better hit ratio
and especially on 60 lookback days, our best model for test data approaches
almost 80% and that is quite high hit ratio in financial prediction. Therefore,
in next subsection, we try to compare various deep learning models with 60
lookback days and various prediction days.

5.3.2 Results of Various Deep Learning Models

As we metioned in above subsection, we will test various deep learing models
with 60 lookback days and prediction days from the next day to every weeks
until prediction days reach as 60 days. In this experiment, we get hit ratio
with the best model for validation data since we want to know which model
is the best model without seeing the test data. We trained 5 times for each
models to check stability of each models and they got similar hit ratio results.
The Figure 77 represents the average of hit ratio of each models with various
prediction days.

As we can see at Figure 5.7, attention network outperforms than other
models for 60 lookback days. For long time series prediction, we assume that
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Figure 5.7: Hit ratio with respect to prediction days with various deep learn-
ing models.

LSTM has advantages because of its properties with memory cell and LSTM
shows better hit ratio than MLP, and 1D CNN which are simple methods.
In paper [24], they got best hit ratio results as 0.52 when they use ANN and
SVMs with or without google trends. (We assume our MLP model and ANN
model in paper [24] are quite similar because their ANN accuracy 0.51 is
almost same with our MLP result.) With both attention models (weighted
or not), we got best results when we predict 40 days after of our input data
ended. We got hit ratio with the test data set 0.715 with attention networks
and 0.763 with weighted attention networks with our best validation models.
Moreover, we analyze more about those models with positive and negative
trends and considering when large change ratio occurs comparably.

Dataset | Attention Networks | Weighted Attention Networks
Positive 0.602 0.709 0.825
Negative 0.398 0.723 0.671
Total 1.0 0.715 0.763
Earn points | 1525.20 656.236 989.724

Table 5.1: Best Model Results.

In table 5.1, our test data set has positive, and negative trend as 6:4 and
if we correct all the up and down trends, we can earn 1525.20 points. We
got better accuracy with weighted attention networks at positive trends and
attention networks at negative trends. We can earn 50.8% more points than
plain attention networks if we use weighted attention networks.
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Figure 5.9: Attention vector of times.

5.3.3 Visualization Attention Vectors

In Section 3.5, we mentioned attention network has great advantages of
visualizing attention vector to analayze which parameter our model look
carefully with a higher weight. If we change input data, the attention vectors
change together so in this paper, we just show one example of visualizing
attention vectors when we put an input data with the highest change ratio.

There are two kinds of attention vectors which we used in our attention
models. Figure 5.8, and Figure 5.9 are representing attention vector of factors
and times, respectively when we put the input data with highest change
ratio among our test data to weighted attention networks. For this case,
with aspects of factors, currency index of dollar and global index S&P 500
are the highest weights factors and with aspects of times, the last day of
input data and a few days in the middle have highest weights. From a view
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point of times, in this example, our result affected most by the last day of
lookback days and middle of days but only 4% of whole weights is the largest
value. It is still hard to analyze in details with these vectors since they got
complex relations and they pass through our model to decide the trend is
going up or down but we can figure out which is the most affective factor
and time intuitively through visualizing attention vectors.

5.4 Conclusion

In this chapter, we tested various deep learning models for predicting the
trends of KOSPI 200 index. We tried MLP, 1D CNN, LSTM and Attention
Networks which are widel used in sequential data applications. While short
lookback days have low hit ratio with various models, long lookback days
with 60 trading days gave us higher hit ratio with various models. It implies
look more days with input data, better accuracy with hit ratio. With 60
trading days as lookback days, 40 trading days as prediction days get highest
hit ratio with Attention networks model. Not only to get the highest hit
ratio, but also get the highest earn points when we use weighted attention
networks since loss function is minimized when the model get more accurate
at higher change ratio. With our experimental results, we can confirm with
following statements. First, LSTM works well with sequential data which
depends on time than MLP and 1D CNN. Second, longer lookback days,
higher probability to get better hit ratio and normally better results with
the model which have LSTM networks inside. Finally, weighted attention
networks works better for long sequential data and have an advantage of
visualization for analyzing the model intuitively.
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Chapter 6

Conclusion and Future
Works

In this thesis, we introduces various kinds of deep learning models for time
series data and apply to two different industrial areas. First, we suggest a
new deep learning model which is an ensemble model of LSTM networks
and t-SNE, which is called Deep Correlation Mapping, for anlayzing and
anomaly detection time series data. Not only we got reasonable correlation
between sensor data, but also we can do anomaly detection with various
length inputs even they have noise and time delayed correlation. Second, we
tested various deep learning models to predict trend of KOSPI 200 index.
Our weighted attention networks achieved the highest hit ratio 0.76 which
can be used in real investment. Also, we can visualize attention vectors to
understand the reason why the model choice a direction of financial market
intuitively. We will keep researching with time series data widely such as
smart factory and healthcare.
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