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Abstract

The volume and Chern-Simons invariant of a
Dehn-filled manifold

Seokbeom Yoon
Department of Mathematical Sciences

Seoul National University

Based on the work of Neumann, Zickert gave a simplicial formula for comput-
ing the volume and Chern-Simons invariant of a boundary-parabolic PSL(2, C)-
representation of a compact 3-manifold with non-empty boundary. Main aim of
this thesis is to introduce a notion of deformed Ptolemy assignments (or vari-
eties) and generalize the formula of Zickert to a representation of a Dehn-filled
manifold. We also generalize the potential function of Cho and Murakami by
applying our formula to an octahedral decomposition of a link complement in
the 3-sphere. Also, motivated from the work of Hikami and Inoue, we clarify
the relation between Ptolemy assignments and cluster variables when a link is
given in a braid position. The last work is a joint work with Jinseok Cho and

Christian Zickert.

Key words: Hyperbolic manifold, volume, Chern-Simons invariant, Ptolemy
variety, cluster variable.
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Chapter 1

Introduction

For an oriented complete hyperbolic 3-manifold N of finite volume, the complex

volume of N is given by
Vol (N) := Vol(N) + iCS(N) € C/in*Z

where Vol and CS denote the volume and Chern-Simons invariant, respectively.
See, for instance, [Dup87), INZ85]. More generally, for a boundary parabolic
PSL(2, C)-representation p of a compact 3-manifold one can define the com-
plex volume Volc(p) by using the Cheeger-Chern-Simons form defined on the
flat PSL(2, C)-bundle. We refer to [GTZ15] for details.

1.1 Deformed Ptolemy assignments

Let N be an oriented compact 3-manifold with non-empty boundary. We fix an
ideal triangulation of the interior of N with ideal tetrahedra, say Ay, -+, Ap. Re-
call that an ideal tetrahedron A with mutually distinct vertices, say zg, 21, 22, 23 €

OH3, is determined up to isometry by the cross-ratio (or the shape parameter
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parameter)

(20 — 23)(21 — 22)
(20 — 22)(21 — 23)

e C\{0,1}

z=|z0:21:29: 23] :=

1
1—2z°

1—1 (see Figure . Due to Thurston [Thu7§], it is well-known that whenever

the shape parameters satisfy the gluing equations and completeness condition,

and 2" :=

where the cross-ratio at each edge of A is given by one of z, 2’ :=

we obtain a boundary parabolic representation p : m(N) — PSL(2,C) as a
holonomy representation.

The cross-ratios are good parameters for computing the volume but not
enough for the complex volume. See, for instance, [Dup87]. However, Neumann
[Neu04] showed that computing the complex volume can be achieved by con-
sidering two additional integers for each ideal tetrahedron which play a role to

adjust branches of logarithm functions as follows.

Definition 1.1.1 ([Neu04]). A flattening of an ideal tetrahedron with the shape

parameter z € C\{0, 1} is a triple a = (a’, a!, a?) € C3 of the form

log z + pmi

—log (1 — z) + gqmi

—logz+log(1—2)— (p+ q)mi

for some p,q € Z. Alternatively, a flattening is a triple a = (a,a',a?) € C3

satisfying a® + o' + o? = 0 and
a’=logz ol =log?, o =log2”

in modulo 7¢. Here and throughout the paper, we fix a branch of the logarithm;
for actual computation we will use the principal branch having the imaginary

part in the interval (—m,7].

Theorem 1.1.1 ([Neu04]). Suppose the interior of a compact 3-manifold N

2



CHAPTER 1. INTRODUCTION

decomposes into n ideal tetrahedra Ay, --- ,A,. Then for any collection of flat-
tenings «; of A; satisfying (i) parity condition; (ii) edge conditon; (iii) cusp
condition, we have

iVolc(p) = Z R(a;) mod °Z
j=1

where p : m(N) — PSL(2,C) is a boundary parabolic representation induced
from the flattenings and R is the extend Rogers dilogarithm given by

2

) 1
R(z;p,q) = Lia(z) + 7T?Z(plog(l —2) +qlogz) + ilog(l —z)logz — %

For simplicity, we here assume that every ideal tetrahedron is positively
oriented (see Chapter [3)).

Roughly speaking, the edge and cusp conditions are additive versions of the
gluing equations and completeness condition (obtained by taking logarithm) in
[Thu78], respectively. It follows that if the flattenings satisfy the edge and cusp
conditions, then the shape parameters automatically satisfy the gluing equations
and completeness condition. We therefore obtain an induced boundary parabolic
representation p : w1 (N) — PSL(2,C) as a holonomy representation. We refer
to Chapter [3] for details.

Fattenings satisfying the conditions in Theorem [I.1.1] give us the complex
volume but finding such one may be difficult in general. Fortunately, Zickert
[Zic09] (see also [GTZ15]) remarkably overcame this potential difficulty through
the notion of a Ptolemy assignment (or variety). We here briefly recall his key
idea.

Let 7 be an ideal triangulation of the interior of N. We denote by I the
set of the oriented edges. For an oriented edge e € 71 we denote by —e the same

edge e with its opposite orientation.

Definition 1.1.2 ([GTZ15]). A Ptolemy assignment is a set map ¢ : T+ —
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C* = C\{0} satisfying —c(e) = ¢(—e) for all e € 7! and
c(l3)e(lg) = c(ly)e(ly) + c(l2)e(ls)

for each tetrahedron A; of 7, where I;’s are the edges of A; as in Figure [I.1}

Iy 1

Figure 1.1: An ideal tetrahedron A; of T

A Ptolemy assignment c is associated with a boundary parabolic represen-
tation p. : m1(N) — PSL(2,C) up to conjugation. See [GTZI5|] or Section

It also determines the shape parameter of each A; (see [Zic09, Lemma 3.15] or

Proposition :
_ell)elly) ,_ cllp)els) -, ells)e(ls)
49 el 0T et P ey Y

for Figure where z;, 2}, and 2] are the cross-ratios at l3,l4, and lp, respec-
tively.

A key idea of [Zic09] is that taking a “logarithm” of the equation
gives us a nice flattening in the sense of Theorem Namely, if we take a

: 0 1 A2
flattening a; = (a5, aj,af) of A; as

a? = loge(ly) +logc(ls) — logc(ly) — loge(ls)
al = logc(ly) +logc(ls) — logc(ls) — loge(lg)
ajz = logc(lg) + loge(lg) —logc(ly) — loge(ly)

M E ) 8k o
I . I "
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then these flattenings automatically satisfy the edge and cusp conditions in
Theorem Note that «; is a flattening, i.e., oz?- + Oz} + ajz = 0 and a? =
log z;, ajl- = log 27, on2 = log 2] in modulo 7i. Moreover, even though the parity
condition may fail, it is proved that these flattenings still give the complex

volume of p.. Namely,
iVolc(pe) = ZR(aj) mod 72Z.
We refer to [Zic09, (GTZ15] for details.

1.1.1 Overview

In Chapter |3] we extend the formula of Zickert to a representation that is not
necessarily boundary parabolic. We here give an overview. We assume that each
boundary component ¥; of a compact 3-manifold N is a torus with a fixed
meridian p; and a longitude A; for 1 < j < h where h is the number of the
components of ON.

In Section [3.2 we suggest a notion of a deformed Ptolemy assignment as
a generalization of a Ptolemy assignment. A deformed Ptolemy assignment c
determines a representation p. : m(N) — SL(2,C) up to conjugation which
is not necessarily boundary parabolic. We stress that this is defined in a quite
different way from an enhanced Ptolemy assignment in [Zic16].

For k = (r1,81, - ,7h, Sp) we denote by N, the manifold obtained from N
by Dehn-filling that kills the curve r;u; +s;\; on each boundary torus 3;, where
(rj,s5) is either a pair of coprime integers or the symbol co meaning that we do
not fill ;.

Suppose the representation p. : m1(N) — SL(2,C) factors through m;(Ny)
for some k as a PSL(2, C)-representation. If the manifold N, has a boundary, i.e.
(rj,sj) = oo for some j, then we further assume that the induced representation

pe = T (Ny) — PSL(2,C) is boundary parabolic so that the complex volume of



CHAPTER 1. INTRODUCTION

pe is well-defined. In Section we show that the idea of Zickert can be applied
to this deformed case, not directly however, so the complex volume of p. can be
computed in a similar way (see Theorem . As examples, we compute the
complex volumes of several Dehn-filled manifolds obtained from the figure-eight

knot complement.

1.2 Potential functions

Let L be a link in S with a fixed diagram and let N = S3\L. Motivated by
the work of Yokota [Yok02], Cho and Murakami |[CMI13] defined the potential
function W (w1, - - ,w,) satisfying the following properties: (i) a non-degenerate
point w = (wq, -+ ,wy,) € (C*)™* = (C\{0})" satisfying

W

exp (wja> =1 foralll1<j<n (1.2.2)
6wj

corresponds to a boundary parabolic representation pyw : m1(N) — PSL(2,C)

(we shall clarify the meaning of a non-degenerate point in Section [4.1)); (ii) the

complex volume of py, is
iVolc(pw) = Wo(w) mod 7°Z

where the function Wy(w1, - -+ ,w,,) is given by
- ow
Wo =W (wy, - ,wy) — J; (wjaw]) log w;.

Furthermore, Cho [Chol6a] proved that (iii) any boundary representation p :
7m1(N) — PSL(2,C) which does not send a meridian of each component of L
to the identity matrix is detected by W. Namely, there exists a non-degenerate
point w € (C*)" satisfying the equation such that the corresponding

representation py, agrees with p up to conjugation.
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1.2.1 Overview

In Chapter [ we extend the potential function to a representation that is not
necessarily boundary parabolic. Precisely, we define a generalized potential func-
tion

W(W,I’I’l) = W(UJl,"‘ y Wn, M1,y amh)a

where h is the number of the components of L, and show that it satisfies anal-
ogous properties, Theorems [1.2.1] [1.2.2] and [1.2.3] to the potential function W.

We enumerate the components of L by 1 < ¢ < h and let u; and \; be a

meridian and the canonical longitude of each component, respectively.

Theorem 1.2.1. A non-degenerate point (w, m) e (C*)"*" satisfying

oW
exp (wja) =1 foralll1<j<n (1.2.3)

Wy
corresponds to a representation pwm : 71 (N) — PSL(2,C) up to conjugation

such that the eigenvalues of pw m (1) are m; and m;1 up tosignforalll < < h.

Theorem 1.2.2. Let p : m(N) — PSL(2,C) be a representation such that
p(ui) # £1I for all 1 < i < h. If p admits a SL(2, C)-lifting, then there exists
a non-degenerate point (w, m) satisfying the equation (1.2.3)) such that the

corresponding representation pw m agrees with p up to conjugation.

We remark that such a non-degenerate point (w, m) can be explicitly con-

structed from a given representation p. See Examples [4.3.1] and [£.3.2] We also

stress that the assumption on SL(2, C)-lifting does not restrict too many cases.
For instance, if tr(p(y;)) # 0 for all 1 < ¢ < h, then p admits a lifting. In partic-
ular, any boundary parabolic representation has a lifting. Also, if L is a knot,
then any representation p : w1 (N) — PSL(2,C) admits a lifting.

For k = (r1,81, -+ ,7h, Sp) we denote by N, the manifold obtained from N

by Dehn-filling that kills the curve rju; 4+ s;A; on each boundary torus where

;4 _CI:I_ ]_-_]i
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(rj,s5) is either a pair of coprime integers or the symbol co meaning that we do
not fill ¥;.

Let p : m(N;) — PSL(2,C) be a representation. If N, has a cusp, we
assume that p is boundary parabolic so that the complex volume of p are well-
defined. Regarding p as a representation from 71 (N) by compositing the inclu-

sion 71 (V) — 71 (Ny), we have

tr i) = 12, tr(p(N;)) = +2 for (r;,s;) = ©
(p(ps)) (p(A)) (rs, si) (1.2.4)
p(pii ) = +1 for (r;, s;) # o0.

If we assume that p : m(N) — PSL(2,C) admits a SL(2,C)-lifting and
p(pi) # £1 for all 1 < i < h, then by Theorems [1.2.1] and [1.2.2] there exists a

non-degenerate point (w, m) such that pw m = p up to conjugation where m; is
an eigenvalue of p(u;). It follows from the equation (1.2.4]) that for (r;, s;) # o0

T

we have mi"lf" = +1 and thus r;log m; + s;logl; = 0 in modulo 7 where [; is an

eigenvalue of p()\;). From coprimeness of the pair (r;, s;), there are integers u;

and v; satisfying
rilogm; + s;logl; + mi(riu; + s;v;) = 0.
Theorem 1.2.3. The complex volume of p : 71 (N,) — PSL(2,C) is given by
iVolc(p) = Wo(w,m) mod 7°Z
where the function Wo(wy, -+, wp, m1, -+ ,my,) is defined by

= oW
Wo = W(w1,"' y Wn, M1y -0 )mh) - Z (w]a> logw]
=1 Wi

7

oW . T N2
_ Z [(mZ Py ) (logm; + ugmi) — — (log m; + u;mi) } .

; S
(7"1',81')7300 ¢

&1

| &1
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1.3 Cluster variables

Let D be a braid of length n and width m. Hikami and Inoue [HI15] consid-

n+1 each of which consists of 3m + 1

ered n + 1 cluster variables x!,x%,--- ,x
variables, and related two consecutive cluster variables x* and x**! (1 <i < n)
by an operator arising from cluster mutations. Precisely, if D has a braid group
presentation 0211 0,222 e O‘ZLL, where o, denotes the standard generator of the m-

braid group and ¢; = +1, then we have
x? = Rzll(xl), x3 = Rzz(xz), e, XV = Ry (x™).

We refer to [HIL5] for details.

Definition 1.3.1. The initial cluster variable x! € C3™*1 is called a solution if

x! = xnt+1

Recall that the space S3\(K U {p,q}) admits a decomposition into ideal
octahedra, where K is the knot represented by D and p # ¢ € S? are two points
not in K. See, for instance, [Thu99|, [Wee05|], or Section Dividing each
ideal octahedron into four ideal tetrahedra (as in Figure 4 of [HI15]), Hikami and
Inoue proved that a non-degenerate solution (see Definition determines
the shape parameter of each ideal tetrahedron so that these tetrahedra satisfy
the gluing equations and completeness condition. In particular, we obtain a

boundary-parabolic representation

p T (SPNK) = m (S°\(K U {p,q})) — PSL(2,C)

up to conjugation from a non-degenerate solution x!.

Conjecture 1.3.1. [HI15, Conjecture 3.2] Let D be a braid presentation of a
hyperbolic knot K. Then there exists a non-degenerate solution x! such that

the induced representation p,1 is geometric, i.e., discrete and faithful.
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Remark 1.3.1. In this thesis, we shall divide an ideal octahedron into five
tetrahedra, rather than four (see Figure . A non-degenerate solution, imply-
ing the non-degeneracy of the ideal tetrahedra, thus requires a slightly different
condition (see Definition from [HI15]. Henceforth, by a non-degenerate
solution we mean a solution that satisfies the condition in Definition E.1.1l We
stress that this change of an ideal triangulation is essential for the existence of
a non-degenerate solution (see Remark .

The main purpose of Chapter [5|is to analyze the above conjecture. In partic-
ular, we prove the following, which is a consequence of the more general results
Theorems [[.3.2] and [[L.3.3] below.

Theorem 1.3.1. Conjecture holds if and only if the length of the braid is
odd.

Note that one can always make the braid length odd by adding a kink if

necessary.

1.3.1 Overview

Let M be a compact 3-manifold with non-empty boundary and G be either
PSL(2,C) or SL(2,C). Recall that a representation p : w1 (M) — G is boundary-
parabolic if it maps peripheral subgroups to conjugates of the subgroup P of
G consisting of upper triangular matrices with ones on the diagonal. We shall
sometimes call such p a (G, P)-representation.

A representation 71 (M) — PSL(2,C) may or may not lift to SL(2,C) and
the obstruction to lifting is a class in H2(M;{+1}). Also, a boundary-parabolic
PSL(2, C)-representation may lift to an SL(2, C)-representation which is not
boundary-parabolic. The obstruction to lifting a (PSL(2, C), P)-representation
p to a (SL(2,C), P)-representation is a class, called the obstruction class of p,
in H?(M,0M;{+1}) [GTZ15, [GGZI5]. Note that the image of this class in
H?(M;{+£1}) is the obstruction to lifting p to SL(2,C). If M = S*\v(K), where

10
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v(K) denotes a small open regular neighborhood of a knot K, then we have
H?(M,0M;{+1}) ~ {£1}. Therefore, the obstruction class of a (PSL(2,C), P)-
representation p : m (M) — PSL(2,C) can be viewed as an element of {+1}.

Theorem 1.3.2. Let D be a braid of a knot K (not necessarily hyperbolic).

Then the obstruction class of py1 induced from a non-degenerate solution x! is

(—=1)™ where n is the length of D.

The obstruction class of the geometric representation of a hyperbolic knot is
non-trivial. This follows from the fact that any lift of the geometric representa-
tion maps a longitude to an element with trace —2 (see e.g. [Cal06], [MFP12,
§3.2] and also Proposition below). Hence, Theorem shows that having
odd braid length is necessary for Conjecture to hold. The fact that this is

also sufficient follows from the result below, which is proved in Section [5.2.2

Theorem 1.3.3. Let D be a braid of a knot K (not necessarily hyperbolic) and
p: m(S3\K) — PSL(2,C) be a non-trivial boundary-parabolic representation.
If the obstruction class of p is (—1)", where n is the length of D, then there
exists a non-degenerate solution x! such that the induced representation p,1

coincides with p up to conjugation.

We remark that the solution can be constructed explicitly when p is given
using the Wirtinger presentation of the knot group. This uses techniques devel-
oped in [CholG6al.

11



Chapter 2

Preliminaries

2.1 Cocycles

Let X be a topological space equipped with a polyhedral decomposition. We
denote by X the set of oriented i-cells (unoriented when i = 0). For an oriented
I-cell e € X! we denote by —e the same edge e with its opposite orientation.

Let G be a group. The set C*(X;G) of all set maps from X? to G forms a
group with the operation naturally induced from G. We call o € C}(X;G) a
cocycle if (i) o(e)o(—e) =1 for all e € X*; (ii) o(e1)o(ea) - --o(en) = 1 for each
face f of X where ey, -+ ,e,, are the boundary edges of the face in the cyclic
order determined by a choice of orientation of f. We denote by Z!(X;G) the
set of all cocycles.

The group C°(X;G) acts on Z1(X; Q) as follows:

ZYX;G) x C°(X;G) - ZYX; @), (0,7)— 0"
where 07 : X! — @ is given by 07 (e) = 7(v) " lo(e)T(w) for e € X!, where v

and w are the initial and terminal vertices of e, respectively. The following fact

is well-known (see e.g. [Zic09, Neu04]).

12
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Proposition 2.1.1. The orbit space H'(X;G) := Z1(X;G)/C°(X;G) has a
natural bijection with the set of all conjugacy classes of representations 71 (X ) —

G.

Note that if G is abelian, H'(M;G) is canonically isomorphic to the usual

cellular cohomology group with the coefficient G.

2.2 Obstruction classes

Let N be an oriented compact 3-manifold with non-empty boundary. We fix an
ideal triangulation of the interior of N. This endows N with a decomposition
into truncated tetrahedra whose triangular faces triangulate ON. A truncated
tetrahedron is a polyhedron obtained from a tetrahedron by chopping off a small
neighborhood of each vertex. We denote by N* and N the set of the oriented
i-cells (unoriented when i = 0) of N and 0N, respectively. We call an edge of
ON a short edge and call an edge of N not in N a long edge; see Figure

Figure 2.1: A truncated tetrahedron

Let G be either SL(2,C) or PSL(2,C) and P be the subgroup of G con-
sisting of upper triangular matrices with ones on the diagonal. We denote by
C*(N,0N;G, P) the subset of C*(N;G) consisting of 0 € C*(N; Q) satisfying
o(x) € P for all z € ON'. We let

ZY(N,0N;G,P) = Z'(N;G) n C(N,0N; G, P),
HY(N,0N;G,P) = Z'(N,0M;G,P)/C°(N,0N;G, P).

13
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An element of Z1(N,0N; G, P) is called a (G, P)-cocycle. One can easily check
that every (G, P)-representation (see Definition below) can be represented
by a (G, P)-cocycle. We refer to [Zic09, (GTZ15| for details.

Definition 2.2.1. A representation p : m1(N) — G is called a (G, P)-representation

if it maps 71(2) to the conjugates of P for every component ¥ of 0NV.

From the central extension 1 — {+1} — SL(2,C) — PSL(2,C) — 1, we
obtain exact sequences (the standard proof of exactness still works in low degree

even though the terms are only sets, not groups)
H'(N;SL(2,C)) — H*(N;PSL(2,C)) — H?*(N;{+1}) and

HY(N,oN;SL(2,C), P) — H'(N,N;PSL(2,C), P) > H2(N,N; {+1}).

The latter sequence tells us that a (PSL(2,C), P)-representation p admits an
(SL(2,C), P)-lifting if and only if §(p) € H?(N,0N;{£1}) vanishes, where we
view p as a (PSL(2,C), P)-cocycle. We refer to d(p) as the obstruction class
of p. Note that it does not depend on the choice of a (PSL(2,C), P)-cocycle
representing p.

When N is a knot exterior in S3, the obstruction class can be directly
computed as follows. Recall that in this case we have H?(N;{+1}) = 0 and
H?(N,0N;{£1}) =~ {£1}; in particular, any PSL(2,C)-representation admits
an SL(2, C)-lifting.

Proposition 2.2.1. Let N be a knot exterior in S3. Then the obstruction class
of a (PSL(2,C), P)-representation p, viewed as an element of H?(N,0N;{£1}) ~
{£1}, coincides with half of tr(p()\)) where p : m1(N) — is any lifting of p and

A is the canonical longitude of the knot.

Proof. Considering any Wirtinger presenation of 7 (N), it is easy to check
that p has only two SL(2, C)-liftings p; and p_ such that tr(p;(¢)) = 2 and
tr(p_(p)) = —2, respectively, where u is a meridian of the knot. Since 71 (0N) is

14



CHAPTER 2. PRELIMINARIES

an abelian group generated by p and A, p admits an (SL(2, C), P)-lifting if and
only if tr(p4 (X)) = 2. Therefore, by definition the obstruction class (p) € {£1}
coincides with half of tr(p4(A)). On the other hand, the canonical longitude A
is in the commutator subgroup of 71(N) and thus it should be expressed in

Wirtinger generators of even length. Therefore, we have py(A) = p_(A). O

15
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Chapter 3

Ptolemy varieties

Based on the work of Neumann [Neu04], Zickert |Zic09] gave an efficient for-
mula for computing the complex volume of a (PSL(2,C), P)-representation of a
compact 3-manifold with non-empty boundary. In this chapter, we give a brief
review on [Neu04] (Section and extend the formula of Zickert to an arbi-
trary PSL(2, C)-representation (Section[3.2). This shall allow us to compute the
complex volume of a PSL(2, C)-representation of a closed 3-manifold obtained

from Dehn filling.

3.1 Formulas of Neumann

We first recall theorems in [Neu04] that we need for our main theorem of this
chapter.

Let N be an oriented compact 3-manifold with non-empty boundary and
let T be an ideal triangulation of the interior of N with n ideal tetrahedra
Ay, -+, A,. Following [Neu04], we assume that each A; has a vertex-ordering
so that these orderings agree on the common faces. We say that A; is positively
oriented if the orientation of A; induced from the vertex-ordering agrees with the
orientation of N; A; is negatively oriented, otherwise. We let €; = +1 according

to this orientation of A;.

16



CHAPTER 3. PTOLEMY VARIETIES

Recall that an ideal tetrahedron with mutually distinct vertices, say zg, 21, 22, 23 €

OHB3, is determined up to isometry by the cross-ratio

(20 — 23)(21 — 22)
(20 — 22)(21 — 23)

e C\{0,1}

z=|z0:21:22: 23] :=

where the cross-ratio at each edge is given by one of z, 2/ := -~ and 2" := 1— %

1-27
See Figure (left).

Figure 3.1: Cross-ratios and log-parameters

Definition 3.1.1 ([Neu04]). A flattening of an ideal tetrahedron with the shape

parameter z € C\{0, 1} is a triple a = (a?, !, a?) € C3 of the form

a¥ = logz + pmi
ol = —log(1—2)+qmi
a? = —logz+log(l—2)— (p+q)mi

for some p,q € Z. Alternatively, a flattening is a triple a = (a°,a!,a?) € C?

satisfying a® + o' + o? = 0 and
a’=logz o' =log?, o =log2”

in modulo 7i.

We refer to the complex numbers o, o', and o? as log-parameters and assign

each of them to an edge accordingly as in Figure Remark that a flatten-

17
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CHAPTER 3. PTOLEMY VARIETIES

ing a = (% a',a?) determines and is determined by another triple (z;p,q)

(see [Neu04, Lemma 3.2]). We thus often write the flattening « in either way:
(@, al,a?) or (2;p,q).

A closed path in the interior of N is called a normal path if it meets no edges
of any A; and crosses faces only transversally. When a normal path passes
through Aj;, we may assume that up to homotopy it enters and departs at
different faces of A; so that there is a unique edge of A; between these faces.
See, for instance, Figures and We say that the path passes this edge.
By the sum of log-parameters along a normal path, we mean the signed-sum of
log-parameters over all edges that the path passes. We refer to [Neu04] for the

signed-sum convention. In particular, when a normal path winds an edge of T

as in Figure [3.7] such a sum is called the sum of log-parameters around the edge.

Theorem 3.1.1 ([Neu04]). Suppose that the interior of N decomposes into
n ideal tetrahedra Aq,---,A,. Then for any collection of flattenings «; of A;

satisfying
e parity condition : parity along each normal path is zero;
e edge condition : the sum of log-parameters around each edge of T is zero;

e cusp condition : the sum of log-parameters along any normal path in the

neighborhood of an ideal vertex of I is zero,

we obtain

iVolc(p) = Z ¢;R(aj) mod 7°Z
j=1

where p : m(N) — PSL(2,C) is a (PSL(2,C), P)-representation induced from
the flattenings and R denotes the extended Rogers dilogarithm;
2

) 1
R(z;p,q) = Lia(2) + %(plog(l —2z)+qlogz) + ilog(l —z)logz — %

18
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Theorem [3.1.7] extends to a Dehn-filled manifold as Theorem [3.1.2] below.
We denote the components of 0N by X1, -+ ,%;, and assume that each com-
ponent ¥; is a torus with a fixed meridian p; and longitude A;. For x =
(ri,s1,++ ,7h, Sp) we denote by N, the manifold obtained from N by perform-
ing the Dehn filling that kills the curve r;u; + sj\; on each ¥, where (r;, s;)
is either a pair of coprime integers or the symbol co meaning that we do not fill
;.

Theorem 3.1.2. [NeuO4, Theorem 14.7] Let N,; be a Dehn-filled manifold ob-

tained from N. Then for any collection of flattenings «; of A; satisfying
e parity condition : parity along each normal path is zero;
e edge condition : the sum of log-parameters around each edge of J is zero;

e cusp condition : the sum of log-parameters along any normal path in the
neighborhood of an ideal vertex of J that represents an unfilled cusp is

Z€ero;

e Dehn-filling condition : the sum of log-parameters along any normal path
in the neighborhood of an ideal vertex of J that represents a filled cusp is

zero if the path is null-homotopic in the added torus,

we obtain the induced representation p : m1(N,) — PSL(2,C) and

iVolc(p) = Z ¢;R(a;) mod 7?Z. (3.1.1)
j=1

3.2 Deformed Ptolemy varieties

Let N be an oriented compact 3-manifold with non-empty boundary. Let T
be an ideal triangulation of the interior of V. Recall that this endows N with

a decomposition into truncated tetrahedra whose triangular faces triangulate

19
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ON (see Figure . We denote by X! the set of oriented 1-cells of X where
X = 0N,N,and 7. An edge e € N is called a short-edge if e € ON'; a long-edge
otherwise. We shall confuse an edge e € ' with a long-edge of N in a natural
way.

A cocycle ¢ € ZY(N;SL(2,C)) is called a natural cocycle if ¢(e) is of the
counter-diagonal form for all long-edges e and is of the upper-triangular form for
all short-edges e. Note that the term ‘natural’ is followed from |[GTZ15, [GGZI15].
A natural cocycle ¢ corresponds to a pair of assignments o : ON' — C* and

c: N' — C satisfying

(o)1
o(e) = ( 0 (e) ) for all long-edges e;
c
(3.2.2)
(a(e) c(e) )
o(e) = for all short-edges e.

We call ¢(e) a short edge parameter or a long-edge parameter according to an
edge e. Note that (i) ¢(—e) = —c(e) for all e € N'!; (ii) each long-edge parameter
is non-zero; (iii) the assignment o : 9N' — C* should be a cocycle, regarding

C* as the multiplicative group. We refer to o as the boundary cocycle of ¢.

Proposition 3.2.1. We consider a hexagonal face of N and denote the edges

as in Figure Then ¢ satisfies cocycle condition for the face if and only if

c(s12) = _olem) _elly)
a(s23) c(lh)e(lz)’
_ *0(812) C(h) .
| o) = o(s31) c(l2)e(ls)’ (3235)
C(S 1) _ _0'(823) C(lg)
\ 3 0’(312) c(l3)c(l1)

Proof. The cocycle condition ¢(l1) ¢(s12) d(l2) P(s23) ¢(I3) d(s31) = I is equiva-
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CHAPTER 3. PTOLEMY VARIETIES

Figure 3.2: A hexagonal face of N

lent to
o(lh) d(s12) D(l2) = P(s31) " d(l3) " P(s23) "
c(l3)e(s31) o(s23)
_ _0(82(21)20)([1) 0 ) ;(3251 —c(l3)c(s23)c(s31) + 70(531)22’(13)
o(s12)e(lh) | —
c(l)e(la)e(s12) === _7“;3(222(;3) o (s31)c(s23)c(l3)

We directly obtain the equation (3.2.3) by comparing the entries of the above

two matrices. OJ

The above proposition tells us that every short-edge parameter is non-zero

and is uniquely determined by the boundary cocycle o and long-edge parameters.

Proposition 3.2.2. We consider a truncated tetrahedron of N and denote the
long-edges as in Figure We also denote by s;; the short-edge running from
l; to l; as in Figure Then ¢ satisfies cocycle condition for all triangular faces

on its boundary if and only if

Q

(826)c(lg)c(l5)+ o(s13) o(s16)

0(835) 0(865) 0(334) 0(564>

Q
@
[\
&
Q

C(lg)C(lfj) = c(ll)c(l4). (3.2.4)

We call the equation (3.2.4) the o-deformed Ptolemy equation.

Proof. The cocycle condition ¢(s23)d(s34) = ¢(s24) for the top triangular face is

equivalent to c(s24) = o(s23)c(s34) + 0 (s34) "1e(s23). Replacing three short-edge

21
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CHAPTER 3. PTOLEMY VARIETIES

Figure 3.3: A truncated tetrahedron of N

parameters ¢(ss4), c(s23), and ¢(s24) by o and ¢(l;) through Proposition
we obtain the equation (3.2.4)):

c(s24) =0 (s23)c(s34) + 0 (s31) ' c(523)

o _9se2) clls) — (s )0(853) c(ls) (551) 10(s12)  c(lr)
o (s16) c(l2)c(la) # 5 (s15) c(l3)c(la) o (s31) ello)e(ls)
 0(s23) (SQG)C . 67(813)0(816)c .
< C(lg)C(lG) _0'(835) 0(565) (ZQ) (l5) + 0_(534) 0(564) (l ) (l4)

We compute similarly for other three triangular faces, each of which results in

the same equation ((3.2.4]). O

Definition 3.2.1. The o-deformed Ptolemy variety, denoted by P,(J ), for o €
ZY(ON;C*) is the set of all assignments ¢ : 71 — C* satisfying —c(e) = c(—e)
for all e € 7' and the o-deformed Ptolemy equation for each ideal tetra-
hedron of .

Propositions [3.2.1] and |3.2.2] tell us that the equation (3.2.2)) gives the one-

to-one correspondence

11 natural cocycles
[ P(7) < } (3.2.5)
oeZ1(oN; CX) ¢ € Z (N;SL(2,C))

In particular, P,(J) corresponds to the set of all natural cocycles whose bound-
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ary cocycle is o.

Remark 3.2.1. When o is trivial, i.e. o(e) = 1 for all e € N, the o-deformed
Ptolemy variety P,(J) reduces to the Ptolemy variety defined in [GTZ15]. This

interprets P,(7) as a generalization of the Ptolemy variety.

Recall that any (natural) cocycle determines a SL(2,C)-representation of

71(N) uniquely up to conjugation. We thus obtain the set map
p: | [ P-(9) — Hom(m (N),SL(2,C))/conjs € pe.

For each component, say 3, of N it follows from the equation (3.2.2) that

pe(v) = (UZ(V) . (:)1> (3.2.6)

up to conjugation for all v € m(X). Note that one can discard conjugation
ambiguity of p. by fixing a base point of 71 (V), while the homomorphism oy, :
m1(X) — C* has no conjugation ambiguity from the first (since the group C*

is commutative).

3.2.1 Isomorphisms

Recall that two cocycles 0,0’ € Z1(0N;C*) give the same homomorphism on
each component of N if and only if o/ = o7 for some 7 € C°(0N;C*). In the

case, we define a map
$:P,(T) > Pyr(T), c> "

by ¢™(e) = 7(v1) 7(v2) c(e) for all e € T! where vy and vo € N° are the endpoints

of e, viewed as a long-edge of N.

Proposition 3.2.3. @ is a well-defined isomorphism.
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Proof. Note that o™ = (¢™)™ for any 71,72 € C°(ON;C*). We thus may
assume that 7 € C°(ON;C>) is trivial except on a single vertex = € dNU.
Suppose z is the initial vertex of the long-edge I3 as in Figure[3.3] Then, in the
equation (3.2.4), only two terms o(s93) and o(s34) are affected by the T-action:
0" (s23) = 0(823)7'(33) and 07 (s34) = 7(x) o (s34). Multiplying 7(z) to both
sides of the equation (3.2.4), we have ¢” € P, (7):

T(x)c(zg)c(z6):“(523)7("”)"(526)0(52)0(15)+ o(s13) ”(Slﬁ)c(zl)c(z4)

o(s35) 0(s65) 7(x) 1o (s34) o (564)

= CT(l3) CT(Z6) = MMCT(ZQ)CT(ZE)) + mmcﬂr(ll)cq—(h).

0'7(535) 0'7(865) UT(534) 07(564)

Recall that ¢ (l;) = c(l;) for i € {1,2,4,5,6} and ¢ (l3) = 7(z)c(l3). On the
other hand, the inverse 7! € C°(ON;C*) (as a group element) exactly gives

the inverse morphism of ®. ]

Proposition 3.2.4. The following diagram commutes:
P,(T)
o \
Py (7) -2 Hom(m (), SL(2,C))/conj

Proof. Let ¢, and ¢.r € Z1(N;SL(2,C)) be the natural cocycles corresponding
to ce P,(7) and ®(c) = ¢™ € P, (T), respectively. Let 7 € C°(N;SL(2,C)) be

an assignment given by
3 T(v) 0
#(v) = »
0 7(v)

for all v e N = ONV. As in the proof of Proposition we may assume that

7 is trivial except at the single vertex x as in Figure The following equations

24
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CHAPTER 3. PTOLEMY VARIETIES

show that ¢.r = (¢.)7:

0 —7(z) te(ls)? 0 c(ls) ).
at I3 : = T\Z
Ho <T<x>c<zs> 0 ) <C<13> 0 ) ()

0'(531) C(ll) 0'(531) C(ll)
ab 52 T(II?)O'(SQ3) o(s12) T@)c(l3)e(l2) _ 0'(823) o(s12) c(l3)c(l2) ?(.’E)

0 T(x)_10(823)_1 0 0'(823)71

7(z) o (s34) ZEZ‘S T(x)g((lli))c(lg)

= 7(x) o (534) o (s53) c(la)c(ls)

0 T(:L')U(834>71 0 0(834)71

at s34 :

for Figure [3.3] Therefore, the induced homomorphisms p. and p.r agree up to

conjugation. O

The cocycle o™ coincides with o if and only if 7 € C°(0N;C*) is constant
on each component of N. In this case, the map ® induces a (C*)"-action on
P,(T), called the diagonal action |[GGZI5, [Zic16], where h is the number of the
components of 0 N. Precisely, enumerating the components of N by 31, -+, 3,

we have
((Cx)h X PU(ET) - PU(‘ET)> ((217"' ,Zh),C) = (21,"' 7Zh) G

where (21, ,2zp) - ¢ : 1 — C* is defined by ((z1,---,21) - ¢)(€) = zizjc(e)
where ¢ and j (possibly ¢ = j) are the indices of the components of dN joined

by e.

Definition 3.2.2. The reduced o-deformed Ptolemy variety P,(7) is the quo-
tient of P,(7) by the diagonal action.

Example 3.2.1. Let N be the knot exterior of the figure-eight knot in S3. It is
known that the interior of N can be decomposed into two ideal tetrahedra A,
and Ay [Thu78]. We denote the long edges by [ and Iz, and the short-edges by
81,82, ,S12 as in Figure We choose a meridian g and a longitude A of the
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knot as in Figure Note that the longitude A here is inversed to the one in
[Thu7s].

S1 S4 S7 510

Figure 3.5: The boundary torus

Let ¥ be the boundary torus of N. We choose a boundary cocycle o €
ZY(3;C*) for M, L € C* as follows so that the induced homomorphism oy :
m1(X) — C* satisfies ox(u) = M and ox(A) = L: 0(s4) = o(s7) = o(s10) = 1,
o(s2) = o(s5) = o(sg) = a(s11) = M, a(sg) = 0(s9) = o(s12) = M1, o(s1) =
L='M~2 and o(s3) = LM.

The o-deformed Ptolemy variety P,(7) is given by the set of all assignments
c:{l1,la} - C* satisfying

At —c(l)e(ly) = LM72c(ly)? — M2 ¢(ly)?
JAVE c(l1)e(le) C(l2)2 — Lc(ll)2

(with c¢(—1;) = —c(l;)). The reduced o-deformed Ptolemy variety P,(7) can be
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identified with the set of all z = % e C* satisfying

LM% +2z-M*2*=0and1—2—Lz*=0.
Taking the resultant of these two quadratic equations to eliminate z, we obtain
L—LM?—M*—2LM* — L2M* — LM® + LM® =0 (3.2.7)

which is the A-polynomial of the figure-eight knot [CCG™94]. Tt is clear that
the pair (M, L) should satisfy the equation (3.2.7), otherwise P,(J) shall be
empty.

3.2.2 Pseudo-developing maps

Recall that N is a compact 3-manifold with non-empty boundary and 7 is an
ideal triangulation of the interior of N. Let N be the universal cover of N and
let N be a topological space obtained from N by collapsing each boundary
component to a point. We call these points the vertices of N. The lifting of T
to the interior of N induces the notion of long edges and short edges of N , and
also the notion of edges of N.

We fix a base point g of m (N) in N together with its lifting % in N° so
as to fix the m(IV)-action on N.

Definition 3.2.3. A pair (D, p) of a map @ : N — HB and a representation
p:m(N)— SL(2,C) is called a pseudo-developing map if

e @ is p-equivariant, i.e. D(y - ) = p(y) D(x) for all v € 7 (N) and z € N;
e O sends all vertices of N to OH3;

o D(v1) # D(vz) for every pair of vertices v; and vz joined by an edge of N.

Note that if (D, p) is a pseudo-developing map, then (9@, gpg~—?!) is also a

pseudo-developing map for any g €. We say that two pseudo-developing maps
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I and @y coincides with gDy

(D1, p1) and (Da, p2) are equivalent if ps = gp1g~
only on the vertices of N for some g € SL(2,C). We denote the equivalence class
of (D, p) by [D, p]. We refer to [Zic09| for details.

In this subsection, we clarify a relationship between natural cocycles and
pseudo-developing maps. We first construct an intermediate object, called a

decoration (cf. [Zic09 Definition 3.1]).

Definition 3.2.4. A pair (1, p) of an assignment v : NO > C? and a represen-
tation p : m (N) — SL(2,C) is called a decoration if

e 1) is p-equivariant, ¥ (v - v) = p(y)¥(v) for all v € 71 (N) and v € NO;
o det (w(vl), 1p(v2)) # 0 if v1 and vy are joined by a long-edge of N;
e det (w(vl), w(vg)) = 0 if v; and vy are joined by a short-edge of N,

where an element of C? is viewed as a column vector. Note that the second

condition implies that 1(v) should be non-zero for all v € N°.

We first construct a correspondence

{ natural cocycles

be 7 (N:SL(2,C)) } — {decorations (¢, p)} /~ (3.2.8)

where the equivalence relation ~ in the right-hand side is defined by (1, p) ~
(gv, gpg~1) for g € SL(2,C). We denote the equivalence class of (1, p) by [¢, p].
Since the base point of 71(N) is fixed, a natural cocycle ¢ € Z'(N;SL(2,C))
induces a unique homomorphism p : 71 (N) — SL(2,C) without conjugation
ambiguity. We denote by ¢ € Zl(]\wf; SL(2,C)) the cocycle obtained by lifting ¢.
We then consider an assignment ¢y € C° (N ;SL(2,C)) satisfying

~

ov(To) = I and ¢ () = v (v1) ™" dy(v2) (3.2.9)
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for all e € N 1 where v; and vy denote the initial and terminal vertices of
e, respectively. Such an assignment @y exists uniquely and is by definition p-
equivariant. Finally, we define ¢ : NO - C2? by the first column part of @y,

i.e.

for all 2 € N°. From the facts that dv is p-equivariant and ¢ is a natural cocycle,
the pair (v, p) is a decoration. We define the correspondence (3.2.8)) by sending

¢ to [, p].

Proposition 3.2.5. The correspondence ¢ — [v, p] is surjective.

Proof. Let (¢, p) be any decoration. We define ¢y € CO(N; SL(2,C)) by

dv() = (W”)’ e w(f”/)) ©

for all z € N 0 where 2’ is another vertex of N connected with by a long-edge.
The second condition of decoration guarantees det(¢)(z), 1 (2’)) # 0. Since ¥ is p-
equivariant, so is ¢y. We define ¢ € Z1(N;SL(2,C)) by & (¢) = dy(v1) ™! dy(v2)
for all e € N 1 where v; and vy denote the initial and terminal vertices of e,

respectively. Then it satisfies

d(y-e) = vy -vi) " dv(y - v2)
(p(M)Pv (1))~ p(7) v (v2)
= ov(v1) Loy (ve)

()

2

I
2

for all v € m(N) and e € N!. Therefore, we obtain ¢ € Z'(N;SL(2,C)) by

projecting ¢ to N. One can check that ¢ is a natural cocycle and hence the
correspondence (3.2.8) is surjective. O

Remark 3.2.2. Let (¢, p) be a decoration and let ¢ € P,(T) be a corresponding
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element under the correspondences (3.2.5) and (3.2.8). Then ¢ and ¢ can be
directly determined by v as follows. For an edge e € N'!

Y(ve) = o(e)p(vr) if e is a short-edge
cle) = det(¢(v1), ¥(v2)) if e is a long-edge.

where v, and vy are the initial and terminal vertices of any lifting of e, respec-

tively. Note that (¢, p) and (g, gpg~') determine the same o and c.

We now construct a pseudo-developing map (D, p) from a decoration (1, p).
For a non-zero C' = (cy,¢3) € C? let h(C) = ¢1/c2 € C U {0} = JH3. We first
define a map @ : N — HP on each vertex v of N by

D(v) = h(Y()) (3.2.10)

where z € NV is arbitrarily chosen in the link of v. The well-definedness of
D follows from the fact that h(Cy) = h(Cs) if and only if det(Cy,Co) = 0
for non-zero C; and Cy € C2. Also, recall the third condition in the definition
of a decoration. Furthermore, the first and second conditions of a decoration
guarantee the first and third conditions in Definition |3.2.3] respectively. Now we
extend @ over the higher dimensional cells in order. See [CS83, §4.5]. Such an

extension is unique up to the equivalence relation. This defines a correspondence

(3.2.11)

do-developi
{decorations (¢, p)} /~ — penidomdevelopis /~
maps (D, p)

by sending [+, p] to [D, p].

Proposition 3.2.6. The above correspondence [, p] — [D, p] is surjective.

Proof. Let (D, p) be a pseudo-developing map. Since 71 (N) acts freely on NO
there exists a p-equivariant assignment v : NO - C? satisfying the equation
(13.2.10)) for every pair of a vertex v of N and z € N9 contained in the link of v.
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Then the pair (¢, p) should be automatically a decoration, so the correspondence
(13.2.11)) is surjective. O

Summing up all the correspondences (3.2.5)), (3.2.8)), and (3.2.11]), we obtain

]_[ Py(7) BER natural cocycles
- ¢ € Z(N;SL(2,C))

pseudo-developing } /

—» {decorations (¢, p)} /~ — { maps (D, p)

Whenever we choose ¢ € Py(7 ), each ideal tetrahedron A; of 7 admits a non-

degenerated hyperbolic structure.

Proposition 3.2.7. The cross-ratio r(Aj,l3) of A; at the edge I3 is

0'(812)0’(845) c(ll)c(l4)

r(Aj,13) = o(s24)0(s51) c(l2)c(ls)

(3.2.12)

where [;’s denote the edges of A; as in Figure and s;, denotes the short-edge

running from I; to lx.

Figure 3.6: An ideal tetrahedron with its truncation

Proof. We choose any lifting of A; in N and identify it with its developing

image. We denote its vertices by vy, -+ , vy as in Figure[3.6] We choose a vertex
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z; € NO in the link of v; as in Figure We may assume ¢y (x1) = I, so
1 .
D (v1) = h(¥(x1)) = h(;) = o0. From the equation li we have

-1 -1
o(s c(s9: —c(ly) 7t c(s93)c(l %

dv(x2) = (1) (623) - cloa) 0 (t2) = (s23)c(lz)
0 0(823)_1 c(l2) 0 —o(s23)c(le) =

and D(va) = G Similarly, we obtain @ (v3) = 0 and D (v4) = o(s34)c(S34)-

—o(s23)
Then the cross-ratio r(Aj;,[3) is given by

. . . _ c(s23) _ c(s23)
[D(vs3) : D(v1) : D(v4) : D(v2)] = o (53310 (531)c(3a1) o (san)clsan);

Recall that the cross-ratio [A: B: C : D] = %. The equation (3.2.12

is obtained from the above equation by replacing c(s23) and c¢(s34) through

Proposition [3.2.1 O

Remark 3.2.3. These cross-ratios automatically satisfy the gluing equations
for 7. Namely, the product of the cross-ratios around each edge of I is equal to

1. Furthermore, they are invariant under the isomorphism ®.

3.3 Flattenings

Let 0 € ZY(ON;C*) and ¢ € P,(7). In order to consider log-parameters, we
consider an edge of J without its orientation. However, the vertex-ordering
endows each unoriented edge [ with an orientation, so ¢(l) is well-defined without

sign-ambiguity.
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Recall Proposition that if A; is positively oriented,

( ~,0(s12)a(sa5) c(l1)c(ls)
#(e) = icr(324)(7(851) c(l2)c(ls)
/ _ 0(ss3)a(s2s) cllz)e(ls)
2 Ze) = i0(332)0(365) clis)clle) (3.3.13)
p o (s64)0 (s31) c(ls)c(ls)
|59 = o) el )elly)
and if A; is negatively oriented,
(. o = o(s24)0(s51) c(l2)c(ls)
40 = A () elella)
von o 0(sa3)a(sie) ellr)e(la)
2 Ze) = i0(364)0(331) c(Us)ells) (3.3.14)
p o (s32)0(s65) c(l3)c(ls)
G = A )7 (sa0) lia)ells)
where [, -+ ,lg are now regarded as unoriented edges. Zickert showed that tak-

ing a “logarithm” of the above equations gives a nice flattening. However, we can

not directly apply it to our case, since it won’t give a flattening. Remark that

logo o : dN! — C may not be a cocycle (cf. Equations (3.3.15)) and (3.3.16)).

We therefore consider the followings sets:

A ={ae Z'(0N;C)|a=logoo (mod i)}

B b= (b, - by) b;j : m1(X;) — C homomorphism
such that b; =log ooy, (mod 7i)
It is clear that (ax,, - ,ax,) € B for all a € A. Recall that ag; : m1(2;) — C de-
notes the homomorphism induced from the cocycle a € A. The set B can be iden-
tified with Z2", where (u1, vy, -+ ,up,vp) € Z*" corresponds to b = (by,--- ,by) €
33
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CHAPTER 3. PTOLEMY VARIETIES
B given by
bj(pyj) = logos, (11j) + ujmi and b;(A;) = logos, (A;) + v;mi

for all 1 < j < h. Recall that 71(X;) is an abelian group generated by p; and
Aj.

Proposition 3.3.1. The map ¢ : A — B, a — (ax,,- - ,ayx,) is surjective. In

particular, A is non-empty.

Proof. Let b = (by,--- ,by) € B. We define a : dN! — C on each component
Y; of ON as follows. We choose a spanning tree T on ;. For each unoriented
edge e of T we choose any orientation of e and define a(e) := logo(e) and
a(—e) := —logo(e). For an oriented edge ey of ¥; not in T let ey, --- , ey be
oriented edges of T" such that together with ey they form a unique cycle v in
T v {eo}. We define

a(eo) == b;(v) —ale1) — - —alen).

Note that a(eg) = logos;(y) —logo(er) — ---logo(en) = loga(e) in modulo
mi. One can check that a is a cocycle satisfying t(a) = b € B from the fact that

the cycle «v forms a fundamental cycle basis. O

We define a flattening o (c, a) of each ideal tetrahedron A; of 7 (depending

on the choice of ¢ € P;(7) and a € A) by defining log parameters ag, a;, and
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ajz: if A; is positively oriented,

-

ag = logc(ly) +logc(ly) —loge(le) — logc(ls)
+a(s12) + a(sss) — a(s24) — a(ss1),
< ozjl- = logc(le) + logc(ls) — loge(l3) — log c(lg) (3.3.15)
+a(ss3) + a(s26) — a(ss2) — alses),
a? = loge(l3) + logc(lg) —logc(ly) — loge(ly)
+a(sea) + a(s31) — a(sa3) — a(s16)

and if A; is negatively oriented,

a? log c¢(l2) + log c(l5) — logc(l1) — log c(l4)

+a(s24) + a(ss1) — a(s12) — a(sas),

Q
I

logc(ly) + loge(ly) — log e(l3) — log ¢(l
I gc(lh) + loge(ls) —loge(ls) — log c(lg) (3.3.16)

+a(s43) + a(s16) — a(ses) — a(s31)

o? log c¢(I3) + log c(lg) — log c(l2) — log c(15)

L +a(s32) + a(ses) — a(ss3) — a(s2e)

for Figure Note that «;(c, a) is indeed a flattening of A;. Namely, ag-) + ajl- +
ajz = 0 and a? = log 7}, a} = log z;, ajz = log zg-’ in modulo 7i, since a € A is a
cocycle that agrees with log o ¢ in modulo 7i.

Following Theorem (cf. the equation (3.1.1))), we define the map

U: Py(T7) x A — C/n°Z, (c,a) — Y € R(e(c,a)).
j=1

Proposition 3.3.2. U(c¢,a) = ¥(c,d’) if v(a) = 1(a’) € B.

Proof. Since a and a’ induce the same element of B, there exists § € C°(ON; C)

satisfying o’ = a’. As in the proof of Proposition we may assume that 6
ying
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is trivial except on a single vertex xo and 0(xg) = mi. Let [y be the long-edge of
N having xg as an endpoint, and Ay, --- , A,, be the tetrahedra of 7 containing
lo- Let aj(c,a) = (2j;p5,q5) and aj(c,a’) = (255D}, q;) be the flattenings of A;

given by the equation ([3.3.15)) or (3.3.16)), where z; is the shape parameter of A;

at lp. One can check that p] p; and q] =¢q; + 1 for all 1 < j < m. Therefore,
we have
ﬂ" m . m
€ _ 2
U(e,a') — =5 g €;log z;) 1:[ 7=0 mod 7°Z.
For the last equality we use Remark ]

We therefore obtain the induced map, also denoted by W,
U:P,(7) xB— C/nZ
by defining (e, b) := ¥(c,a) for any a € A such that t(a) = b e B.

3.3.1 Main theorem

Recall that for x = (r1, 1, ,7p, Sp) the manifold Ny is obtained from N by
performing a Dehn filling that kills the curve r;u; + sj\; on each Xj;, where
(rj,s;) is either a pair of coprime integers or the symbol co meaning that we do
not fill ;.

Let ¢ € P,(7) such that the representation p. : m1(IN) — SL(2,C) factors
through N, as a PSL(2, C)-representation. If N, has a boundary, i.e. (r;, s;) = o
for some 4, then we further assume that the induced representation p. is a
(PSL(2,C), P)-representation, so that the complex volume of p. are well-defined.
This exactly happens when

tr(pe(py)) = £2, tr(pe(A))) = £2 if (rj,s5) = ©

pe(pi A)') = +1 if (rj,85) # o0
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and in this case, the equation (3.2.6|) tells us that

0y%; (N]) = =+1, 0y; ()‘]) = £1 for all (rj78j) =@

oy (,ugj)\jj) =+1 for all (rj,s;) # 0.
Therefore there exists an element b = (by,--- ,by) € B satisfying
bi(ui) =b;(N;) =0 forall (rj,s;) =00
J(Ni) ~ 5 (Aj) (5, 55) (3.3.17)
bj(u A7) =0 for all (r},s;) # .

Theorem 3.3.1. Suppose that the representation p. : m(N) — SL(2,C)
factors 7 (Ny) as a PSL(2,C)-representation and induces a (PSL(2,C), P)-
representation p. : m(N;) — PSL(2,C). Then the complex volume of p. is
given by

iVolc(pe) = ¥(c,b)  mod %TI‘QZ (3.3.18)

for b = (by,--- ,bp) € B satisfying the equation ((3.3.17]).

Proof. Let a € A satisfying ¢(a) = b and let a(c, a) be the flattening of A; given
by the equation (3.3.15) or (3.3.16). Let us rewrite the equations (3.3.15) and
(3.3.16) as follows (note that a € A is a cocycle) : if A; is positively oriented,

() = loge(lh) ~loge(lz) — alsm) +a(s12) — a(szs)
+logc(ly) —loge(ls) — a(ssq) + a(sas) — a(ss3),
< aj = loge(ls) —loge(ls) — a(sas) + al(sss) — a(ssza) (3.3.19)
+loge(ly) —loge(l) — a(sa2) + a(ss) — a(se4),
a? = logc(lg) — loge(ly) — a(s2e) + a(ses) — a(s42)
+logc(l3) —logc(ly) — a(sa3) + a(s31) — a(s12)
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and if A; is negatively oriented,

a? = —logc(lh) +loge(la) + a(ss1) — a(s12) + a(s23)
—logc(ly) +logc(ls) + alssa) — alsas) + alss3),
< ozjl- = —logc(ls) + logc(ls) + a(s26) — a(sea) + a(s42) (3.3.20)
—logc(ls) +loge(ly) + a(s23) — a(ss1) + a(s12),
oz? = —logc(ls) + loge(lz) + a(sas) — a(ss3) + a(ss3a)
—logc(l2) +logc(ls) + a(sa2) — a(s26) + a(sea)

for Figure Note that each log-parameter in the equations (3.3.19) and

(13.3.20)) consists of ten terms, where the first five terms lie on a single face

of A]’

and the other five terms also lie on another face of A;.

Claim 1. The sum of log-parameters around each edge of T is zero.

Proof of Claim 1. Let us consider the log-parameters around an edge Iy of 7.

We denote edges around Iy by I, s, -

the short-edge joining from I; to I; by s;;.

lom21 #

B “l2
l 2m. )

< \) :

. ‘,‘_'.‘_._._,;____. ........
NV

l /4 l14
................. N

[lo

‘\/ y

s lom—1,lam as in Figure 3.7 and denote

RN

l5

Figure 3.7: Log-parameters around an edge [y

Then the sum of log-parameters around [y is given by

—logc(ly) + log c(l2) — a(so2) + a(s21) — a(s10)
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+logc(ls) —loge(ls) — a(so3) + alssa) — alsao)
—logc(l3) +logc(ls) — a(s04) + alsa3) — alss3o)
+loge(ls) —loge(ls) — a(sos) + alss6) — alseo)

—log c(lam-1) + log c(lam) — a(So(2m)) + a(82m)2m—1)) — a(S2m-1)0)
+loge(ly) — logc(l2) — a(so1) + a(s12) — a(s20)

and is canceled out to zero, since a(s;;) = —a(sj;). O

Claim 2. The sum of log-parameters along a normal path + in the neighborhood

of an ideal vertex v; of 7, corresponding to ¥, is 2b;(7).

Proof of Claim 2. The proof of [Zic09, Theorem 6.5] exactly tells us that the
sum of log c-terms along v is canceled out to zero. Therefore we may consider
the sum of a-terms only.

As v crosses a face, it picks up three a-terms as it enters to the face and also
picks up another three a-terms as it departs the face. More precisely, suppose

~ crosses a face whose edge are denoted by ly,ls, and I3 as in Figure 3.8 As ~

Figure 3.8: A normal path crossing a face

enters to the face, it may pass either {; or ly. From the equations (3.3.19)) and

(3.3.20)), one can check that it picks up a(ss1) + a(s32) + a(s12) if v passes ly;
a(ss1) + a(ss2) + a(s21) if v passes lo. Similarly, as v departs the face, it picks
up a(s13) + a(sa3) + a(s91) if v passes l1; a(s13) + a(s23) + a(s12) if v passes lo.
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Summing up the cases, we have 2a(s12) if v passes [; and 3 in order; 2a(s91) if
passes Iy and [y in order; zero, otherwise. Therefore, the sum of a-terms along ~y
results in 2b;(7y). See also Figure Recall that b; : m1(2;) — C is the induced

homomorphism from a € A. O

Figure 3.9: Log-parameters along a normal path

Claims 1 and 2 tell us that if we choose b € B as in the equation ,
then the flattenings (¢, a) satisfy the edge, cusp, filling conditions in Theorem
Finally, the theorem follows form [Neu04, Lemma 11.3], which says that if
the flattenings «;(c, a) satisfy the conditions of Theorem except the parity
condition, then the equation (3.3.18)) holds in modulo %7‘(’22. O

Remark 3.3.1. As in [Neu0O4] or [Zic09, Remark 6.7], parity along normal
curves can be viewed as an element of Ker(H'(N;Z/2) — H'(0N;Z/2)). There-

fore, if NV is a link exterior in the 3-sphere, then we have the trivial kernel and
Theorem [3.3.1] holds also in modulo 72Z.

Example 3.3.1. Let us continue Example of the figure-eight knot com-
plement. Assigning vertex-orderings of Ay and Ay as in Figure [3:4], we have
€1 = 1 and €3 = —1. To consider K = (r,s)-Dehn filling on the knot comple-
ment, we need a pair (M, L) satisfying M"L* = 1 and the equation (3.2.7),
the A-polynomial of the knot. Among all the possibilities, we choose one that
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maximizes the volume in order to find the geometric one (see [Thu78, Era04]).

Using Mathematica, for instance, we choose (M, L) as follows.

K (M, L) (u,v)
(1,5) | (0.840595 + 0.007451z, —0.838678 — 0.6070674) (4,0)
(2,5) | (0.841492 + 0.014849:, —0.871207 — 0.6236227) (2,0)
(3,5) | (0.842985 + 0.0221407, —0.906286 — 0.6368857) | (—2,2)
(4,5) | (0.845070 + 0.0292647, —0.721385 — 0.494189) (1,0)

For each given pair (M, L) one can check that P,(7) consists of a single element,
say ¢: {l1,lo} — C with ¢(l2) = 1, up to the diagonal action.
We then need b € B satisfying b(u"A*) = 0, or equivalently (u,v) € Z?
satisfying
r (log M + uri) + s (log L + vrmi) = 0.

Recall that b(u) = log M + umi and b(\) = log L + vmi. One can check that such
(u,v) is given as in the above table. We also choose a € A satisfying t(a) = b
as follows: a(s4) = a(s7) = a(s10) = 0, a(s2) = a(ss) = a(sg) = a(s11) = b(u),
a(se) = a(sg) = a(s12) = =b(w), a(sz) = —b(A) +b(n), and a(s1) = b(A) —2b(u).
(Compare the definition of a with that of o in Example [3.2.1])

Let 21 be the cross-ratio parameter of A at the edge 12 and 2o be the cross-
ratio. parameter of Ay at the edge 03. From Proposition and the equations

(3.3.15)) and (3.3.16]), the flattening a(c,a) = (z1;p1,q1) of Ay is given by

4C 2
pr o= = [b(\) +4b(p) + 2logc(ly) — 2loge(lz) — log 1]
a = % [—b(A) — 2b(p) —logc(lr) + loge(ly) + log (1 — 21)]
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and the flattening as(c, a) = (z2;p2, q2) of Ag is given by

[

1 c(l2)
c(ly)

[—b(A) + 2log c(l2) — 2log c(l1) — log 22]
[b(A) + loge(ly) — loge(le) + log (1 — 22)] .

zZ9 =

o

L
1
T

p2 =

1
Q2 = =

Finally, i times the complex volumes are given by ¥(c,b) = R(z1;p1,q1) —

R(z2;p2,q2) as follows. These complex volumes coincide with the one given by
Snappy in modulo 727Z (see Remark 3.3.1)).

K U(c,b)

(1,5) | 1.967879974 + 1.918602377:
(2,5) | 5.909776683 + 1.9195203614
(3,5) | 3.930060763 + 1.921026911
(4,5) | 7.872366052 + 1.923087332i
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Chapter 4

Potential functions

For a diagram of a link L in $3, Cho and Murakami [CM13] (motivated from

the work of Yokota [Yok02]) defined the potential function whose critical point,
slightly different from the usual sense, corresponds to a (PSL(2, C), P)-representation
of 71 (S3\L). They proved that the complex volume of such representations can

be computed from the potential function with its partial derivatives. In this
chapter, we extend the potential function to an arbitrary PSL(2, C)-representation
and, under a mild assumption, we present a combinatorial formula for computing

the complex volume of a PSL(2, C)-representation of a closed 3-manifold.

4.1 Generalized potential functions

Let L be a link in S? with h components. Throughout the chapter, we fix an
oriented diagram, denoted also by L, of L. We assume that every component of L
has at least one over-passing and under-passing crossing, respectively, so that we
can consider the octahedral decomposition © of S3\(L U {p, q}) where p,q € S3
are two points not in L. Such a decomposition was introduced in [Thu99] and
can be found in several articles, such as [Yok02 [Wee05) [Chol6al KKY16]. See
also Section [£.1.2

We denote the number of the regions of L by n and assign a complex variable
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wj (1 < j < n) to each region of L. We let w = (w1, - ,wy). We also assign
a complex variable m; (1 < ¢ < h) to each component of L and let m =
(mq,- -+, mp). For notational simplicity, we enumerate a region and a component
of L by the index of the variables assigned to them. For each crossing, say ¢, of

L we define

W, (w, m) := Lis ( m ) + Liy ( Wk > — Li ( o ) —L12< . )
Mmaw; MW mawy, MW,
, 2
+Lig<w]wl ) —7r+log< m )10g< il >
Wi WE 6 maw; MaW;
for Figure [4.1a) and
WC(W,H’I) := —Liy <m5wm> — Lis (mawk> + Lis (mﬂwl> + Lis <mawl>
wj W Wk Wm
— Lig ( Ly > + W—Q — log <m5wm> log (mawk>
Wi W 6 wj wj
for Figure [4.1(b). We remark that each dilogarithm term of W, corresponds to

an ideal triangulation (see Figure or . We then define the generalized

potential function

W(w,m) := Z We(w, m)

crossing ¢

where the sum is over all crossings of L.

(a) Positive crossing (b) Negative crossing

Figure 4.1: Variables around a crossing

Remark 4.1.1. The generalized potential function W reduces to the potential
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function W in [CM13] or [Chol6b] when m; = -+ = my, = 1.

Definition 4.1.1. (i) A point (w,m) e (C\{0})"*" = (C*)"*" is called a
solution if 5
exp < W> =1 foralll<j<n. (4.1.1)

(ii) A point (w, m) is said to be non-degenerate if the following five values are

not 1 at each crossing of L:

W Wi wy wy w;wy

) , , , for Figure 4.1|a
mgwj mawj mﬁwk MW WnWE & ( ) L1
MWy, MW, MBW] MW WjW) (4.1.2)

Y 9 Y Y
wy wy Wi Wm, W W,

for Figure [4.1|(b).

Theorem 4.1.1 (Theorem [1.2.1). A non-degenerate solution (w,m) corre-
sponds to a representation pw m : 71 (S*\L) — PSL(2,C) such that the eigen-
values of pw m (i) are m; and mi_1 up to sign for all 1 < ¢ < h. Here u; denotes

a meridian of the i-th component of L.

4.1.1 Proof of Theorem 4.1.1]

Following [Chol6al], we subdivide each ideal octahedron of © into five ideal
tetrahedra as in Figures and We denote by J the resulting ideal tri-
angulation of S3\(L U {p,q}). For a given non-degenerate solution (w, m) we
assign the cross-ratio to each ideal tetrahedron of J as in Figures [£.2] and [£.3]
The equation guarantees that these tetrahedra are non-degenerated. The
product of the cross-ratios around each of edges that are created to divide the

octahedra into tetrahedra is 1:

Wm MpWE Wi _ Wk MaWm Wit o Figure [4.1)a)
mgw; W, WpyWk MaW; W WnWg
Mottt Wj Wklm _ g _ W MPWIWRm Figure [4.1(b)
Wy MaWE WjWy mgWm Wi Wiw
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Therefore, at each crossing, five tetrahedra are well-glued to form an octahedron.

w4 wy

Wm Wi

Wk

Maw;

Figure 4.2: Cross-ratios for Figure (a)

Figure 4.3: Cross-ratios for Figure (b)

We now check that the given cross-ratios satisfy the gluing equations for ©,

i.e. the product of the cross-ratios around each edge of © is 1. We thus shall
46
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obtain a representation
pwm - T (S\(L U {p,q})) = m(S°\L) — PSL(2,C)

up to conjugation as a holonomy representation. We note that a similar compu-
tation can be found in [Chol6a] and [KKY16]

Recall that L has n regions, so n—2 crossings, n—2 over-arcs and n—2 under-
arcs. Here an over (resp., under)-arc is a maximal part of L that does not under
(resp., over)-pass a crossing. See Figure Recall also that the octahedral
decomposition © has 3n — 4 edges; (i) n regional edges corresponding to the
regions; (ii) n — 2 over-edges corresponding to the over-arcs; (iii) n — 2 under-

edges corresponding to the under-arcs. We refer to [KKY16, §3] for details.

Wiy ‘ Wi ‘ Wigm i1 ‘ Wy, | Wjs Wizm+1
m; > . > T | ——
Wya ‘ Wiy ‘ Wiam+2 ‘ Wiy Wia Wiam 12

(a) Over-arc (b) Under-arc

Figure 4.4: Over- and under-arcs

Suppose an over-arc of L over-passes m crossings as in Figure (a). Then
around the corresponding over-edge, there are 4m + 2 cross-ratios; each of the
over-passed crossings contributes 4 cross-ratios, and two crossings coming from
the ends of the over-arc respectively contributes one cross-ratio (cf. Figure 10

in [KKY16]). The product of these cross-ratios is

1 -1
< Wiy, > ) <miwj1 Wiy > (miwjzml Wioma2 ) . <miwj2m+2> -1
miWj, Wi, MWy Wi MiWjay g Wiomy1

for Figure (a). Similarly, the product of cross-ratios around an under-edge is
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< Wi, > ' <miwj2 Wiy >_1 o (miwjzm Wigmin >_1. (miwbmﬂ) _
MW, Wiy MWy Wigm-1 MiWjgm 42 Wiamt2
for Figure [4.4(b).

Suppose a region of L has m crossings (or corners). The corresponding re-
gional edge is represented by a horizontal edge of the octahedron at each of
these crossings. Therefore, there are 3m cross-ratios around the regional edge.
See Figures and that three cross-ratios are attached to each horizontal
edge. Let 7., be the product of cross-ratios coming from a crossing c¢ and at-
tached to the regional edge corresponding to the j-th region. Then it is clear
that the product of the cross-ratios around the regional edge corresponding to
the j-th region is given by

[ 7 (4.1.3)

crossing ¢

where the product is over all crossings appeared in the j-th region. On the other

hand, 7-values can be directly computed as follows from the cross-ratios given

in Figures 4.2] and :

(%ﬁwl - wk)(m%lwl — W) WjW; — W Wiy,
Tel = ) Tek = 71
W W — WjwW; (mwk - wj)(mﬁwk - wl)
. _ WjW; — WrWm, o (mawj - wk)(mﬁwj - wm)
T Gagwm — wg) (maw — )’ Wit = wjw

for Figure [4.1f(a) and

WEWp, — WjwW] (Mmawy, — wj)(%ﬁwk —wy)
Ted = ) Tek =
(mpw; — wg) (Maw; — Wiy,) WjW — WEW,
(Mawm — ;) (5= wm — wy) Wiy, — Wi,
Tem = v Tej = 71 1
WjW; — WyWn, (i — wi) (55 w5 — wm)
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for Figure [1.1(b). Furthermore, a straightforward computation shows that

oW,
Tej = Xp | Wj5 =
J

holds for any crossing ¢ and any region. It thus follows from the equation (|1.2.3])
that the 7-product in the equation (4.1.3) is 1. Namely, the product of the

cross-ratios around each regional edges is 1.

Remark 4.1.2. Rewriting the equation (4.1.1)) as the equation (4.1.3]), one can
checked that the equation 1) is invariant under change m; — m% for all

1<i<h.

We finally claim that the eigenvalues of pyw m(p;) are m; and m; ' (up to
sign). Since we assume that each component of L has at least one over-passing
crossing and at least one under-passing crossing, it contains a local diagram
as in Figure (left). Then a meridian p; (up to base point) passes through
two ideal tetrahedra coming from the ends as in Figure (middle). Therefore,

the scaling factor of the holonomy action for y; is given by the product of two

-1
W m;w;
J —J = m?
MW Wi

It follows that the eigenvalues of pw m(p;) € PSL(2,C) are m; and m; ' up to

cross-ratios

sign.

Figure 4.5: A meridian
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4.2 Relation with a Ptolemy assignment

Let us briefly recall the notion of a deformed Ptolemy assignment (Section
which is the key ingredient for proving Theorems [1.2.2] and

Replacing each ideal tetrahedron of 5 by a truncated tetrahedron, we obtain
a compact 3-manifold, say N, whose interior is homeomorphic to S3\(L U {p, ¢}).
Recall that a truncated tetrahedron is a polyhedron obtained from a tetrahedron
by chopping off a small neighborhood of each vertex; see Figure Note that
the boundary N is triangulated and is consisted of h tori with two spheres. We
denote by N and dN' the set of the oriented i-cells (unoriented when i = 0) of
N and 0N, respectively. We call an 1-cell of 0N a short edge and call an 1-cell
of N not in dN a long edge. We denote by ! the set of the oriented 1-cells of
J and identify each edge of  with a long-edge of NV in a natural way.

An assignment o : ON! — C* is called a cocycle if (i) o(e)o(—e) = 1 for all
e € ON; (ii) o(e1)o(ez)a(e3) = 1 whenever eq, ez, and eg bound, respecting an
orientation, a 2-cell in ON. A cocycle o : ON! — C* induces a homomorphism
7m1(X) — C* on each component ¥ of dN. For notational simplicity we denote

all of such homomorphisms by @.

Definition 4.2.1. For a given cocycle o : 0N! — C*, an assignment ¢ : 71 —
C* is called a o-deformed Ptolemy assignment if ¢(—e) = —c(e) for all e € T!

and

. 0'(823) 0'(826) 0'(813) 0'(816)
c(l3)e(lg) = > (535) 0(865)c(l2)c(l5) + > (531) 0(864)c(ll)c(l4)

for each ideal tetrahedron A of 7. Here [/;’s denote 1-cells of A and s;; denotes
the 1-cell in N n A running from /; to /; as in Figure

Recall that a o-deformed Ptolemy assignment ¢ corresponds to an assign-
ment ¢ : N — SL(2,C) satisfying cocycle condition. It thus corresponds to a
representation p. : m(IN) — SL(2,C) up to conjugation. The cocycle ¢ can be
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explicitly given as follows:

_o(ske) _clly)

0 —e(l)-1 o(si) = 5(s,0) el
¢<zj>:< c(l;) ) Soig) = ENEOER)
C(lj) 0 O O.(Sij)—l

where the index £ is chosen so that [, and s;; lie on the same 2-cell. Also, c
determines the cross-ratio of each ideal tetrahedron of J; see Proposition [3.2.7]

For instance, the cross-ratio at I3 in Figure [3.3]is given by

o(s12)0(s45) c(l1)e(ly)
o(s24)o(s51) c(l2)e(ls)

Recall Remark that these cross-ratios are non-degenerate and satisfy the

gluing equations for J such that the holonomy representation coincides with p..

e C\{0,1}.

The following proposition shows how a o-deformed Ptolemy assignment is
related to the variables w and m in Section Recall that 5 has n regional
edges, each of which corresponds to a region of L. We orient these edges so that
their initial points are the same (see Figures and , and denote them by
e; (1 < j < n) according to the index of regions. Note that these edges appear
as horizontal edges of an octahedron as in Figure (cf. Figure .

Proposition 4.2.1. Let ¢ : ON' — C* be a cocycle trivial on the sphere

components. Then for any o-deformed Ptolemy assignment ¢ : 7! — CX,

(W’ m) = (6(61),‘ o 70(671)’5(“1)7"‘ 76(/”1))

is a non-degenerate solution such that pw m coincides with p., viewed as a

PSL(2, C)-representation, up to conjugation.

Proof. At each crossing of L, we denote edges of I as in Figure We orient
these edges so that they coherent with the vertex-ordering given as in Figure[4.6]
Recall that h2 and h* are identified in 7 and so are hy and hy. We denote by s%

o1

&1

| &1

11’



CHAPTER 4. POTENTIAL FUNCTIONS

(resp., sij) the short-edge running from A’ to h? (resp., h; to h;). For instance,

512 and s49 are short-edges winding the over-arc and under-arc, respectively.

0_~ms Ma 0
h4 h3 h3 h2
]’Ll €] h2 h4 €] hl
+2¢ /- < A > —2 -2 ¢ /. > \ > +2
Em A ( YEr EmY ( ACL
-1 +1 +1 -1
(a) Positive crossing (a) Negative crossing

Figure 4.6: Octahedron at a crossing.

Applying Proposition the cross-ratio at h! in Figure (a) is given by

c(h?)c(em) c(em) c(em)

a(s'2)c(h)ele;) — a(s®)e(e;)  T(pg)ele)”

By the cross-ratio at h!, we mean the cross-ratio at I3 with respect to the tetra-
hedron chosen as in Figure We use terms the cross-ratios at h3, h®, ki, hs, in a
same manner. Similar computation gives us that the cross-ratios at h', h3, h%, hy, h3

for Figure (a) are respectively given by

clem)  o(ug)cler) clej)eler) cler) T (pa)c(em)
a(up)ele)”  cle) 7 clem)eler)” T(pa)cle;)”  cler)

and the cross-ratios at h', h3, h%, hi, hs for Figure (b) are respectively given
by

c(ej)

o(pa)cer)’  clem)

clej)cer) " a(pg)clem)’  clex)
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The proposition directly follows from comparing the above cross-ratios with
the cross-ratios given in Figure and We remark again that the above

cross-ratios are non-degenerate and satisfy the gluing equations for 7. O

For a representation p : m1(N) — SL(2,C) we say that a cocycle o : N1 —

(o) *
P’Z(’Y)-( 0 J(’y)l)

up to conjugation for all v € m(X) and for any component ¥ of dN. Here

C* is associated to p if

ply : m(X) — SL(2,C) means the restriction. Since every component ¥ of 0N
is either a sphere or a torus, the restriction p|y; is reducible. Therefore, for any

representation p there exists a cocycle o associated to p.

Theorem 4.2.1. Let p : m(N) — SL(2,C) be a representation such that
p(pi) # +I for all 1 < i < h. Then for any cocycle o : ON! — C* associated
to p, there exists a o-deformed Ptolemy assignment ¢ such that p. = p up to

conjugation.

A proof of Theorem is essentially also given in [CYZI8, §4] (see also

[Chol6a]). The proof given in [CYZ1§| assume that p is a (lifting of) (PSL(2, C), P)-

representation, but this is not actually required in the proof. For completeness
of the paper, we present a detailed proof of Theorem in Section

Corollary 4.2.1 (Theorem [1.2.2)). Let p : m1(N) — PSL(2,C) be a represen-
tation satisfying p(u;) # +1I for all 1 < ¢ < h. If the representation p admits
a SL(2, C)-lifting, then there exists a non-degenerate solution (w, m) such that

Pw,m = p up to conjugation.

Proof. For each sphere component ¥ of dN, the restriction ply : m(X) —

SL(2,C) is clearly trivial. Thus one can choose an associated cocycle o such
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that it is trivial on the sphere components. Then the proof directly follows from
Proposition [4.2.1) and Theorem |4.2.1 ]

4.2.1 Proof of Theorem [4.2.1

For simplicity we may assume that a given cocycle o : 0N' — C* is trivial on
the sphere components. Let N be the universal cover of N. We lift o to 0N , and
denote the resulting cocycle also by o : ON! — Cx.

Definition 4.2.2. A decoration @ : N° — C2\{(0,0)!} is an assignment satis-
fying

e (p-equivariance) D (v - v) = p(7)D(v) for all v € 7 (N) and v € N°;

e D(vy) = o(s)D(vy) for all s € ON'! where v, and v, are the initial and

terminal vertices of s, respectively.

Remark that a decoration exists, since a given cocycle o is associated to p.

For a decoration @ we define ¢: 7! — C by
c(e) = det(D(v1),D(v2))

for e € 7 where v; and vy are the initial and terminal vertices of any lifting of e,
viewed as a long edge of N, respectively. Note that c(e) does not depend on the
choice of a lifting of e, since D is p-equivariant. Also, note that ¢(—e) = —c(e)

forallee J1.

Proposition 4.2.2. If c¢(e) # O foralle e 7!, then c: ' — C* is a o-deforemd

Ptolemy assignment.

Proof. Let us choose a lifting of an ideal triangulation A of 7. We denote the
edges of its truncation as in Definition l; denotes a long-edge and s;;
denotes the short edge running from I; to [;. We also denote the initial and

terminal vertices of I; by v; and v?, respectively as in Figure
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Figure 4.7: A truncated tetrahedron.

Applying the Plucker relation to @ (v1), D (vs), D (v4), D (v?), we obtain

det(D(v1), D (v4)) det(D(vs), D(v?))
= det(D(v1), D(vs)) det(D(v4), D(v?)) + det(D(v1), D (v?)) det(D(vs), D (v4)).

By construction of ¢, it is equivalent to

o(se1)0(s64)c(ls) o(s32)o(s35)c(l3) = o(s15)c(li)o(sa2)c(ly) + o(s21)c(la)o(s54)c(ls)

< c(ls)e(lg) = 26220 7020) (1 ye (1) + 2(813) o(s16) 01 )e(ly).

a(s35) o(ses) (s34) o(s64)

Therefore, ¢ : 7' — C* is a o-deformed Ptolemy assignment. O

Therefore, it is enough to prove that there exists a decoration @ such that
the induced assignment ¢ : 71 — C satisfies c(e) # 0 for all e € 7.

We first consider the regional edges eq,--- , e, of 7. We choose a lifting, €;,
of each e; so that their terminal point agree as in Figure Let ,Ug and v,i be
the initial and terminal points of €}, viewed as an edge of N , respectively. Since
o : ON' — C* is trivial on the sphere components, we have CD(U}) = D(v}).

Moreover, from p-equivariance of @, we have

D(vF) = p(g)D(v}) (4.2.4)
for some g € m(N). From elementary covering theory one can check that if
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ej U e wraps an arc of K, then the loop g should be the Wirtinger generator
corresponding to the arc; see Figure For simplicity we let W = @(v})(z
D(v})) and V; = CD(U?) for 1 < j < m. Note that c(e;) # 0 if and only if
det(W,V;) # 0.

We then consider the edges of I that intersect v(L). Let us consider an
ideal triangle (with edges denoted by x,y,ex) in S3\(L U {p, q}) together with
its lifting (with edges denoted by 7,7, €x) as in Figure Let v, and v, be the
initial vertices of & and ¥, again viewed as edges of N , respectively. Then for

the Wirtinger generator g, we have

p(9)D(vz) = D(g - va) = 7(9) ' D (va).

Therefore, D (v,,) is an eigenvector of p(g). It follows that ¢(z) = det(W, D (vy)) #
0 if and only if W is not an eigenvector of p(g). Similarly, ¢(y) # 0 if and only

if Vi is not an eigenvector of p(g).

Figure 4.8: Local configuration of a lifting.

We finally consider an edge of I that joins ¢ to itself. Let us consider an
ideal triangle (with edges denoted by e;, ex, 2) in S\ (LU {p, q}) together with its
lifting (with edges denoted by &;, &, 2) as in Figure [1.9] It follows that ¢(z) # 0
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if and only if det(V}, Vi) = det(p(g)Vi, Vi) # 0 (recall the equation (4.2.4])). It
is equivalent to the condition that Vj is not an eigenvector of p(g). Similarly, for
an edge z of 7 that joins p to itself, we conclude that ¢(z) # 0 if and only if W

is not an eigenvector of p(g).

Figure 4.9: Local configuration of a lifting.

Let us sum up the required conditions. To be precise, we enumerate the
Wirtinger generators by g1, - -, g;. A desired decoration should satisfy (i) det(W, V;) #
0; (ii) W is not an eigenvector of p(g;); (iii) V; is not an eigenvector of p(g;) for
all 1 <j<mand1 <7</ Since we can choose W and one of V;’s freely, such

a decoration exists. See, for instance, Lemma 2.1 in [Chol6a]. See also Examples

[4.3.1] and 4.3.2

4.3 Complex volume formula

We devote this section to prove Theorem For convenience of the reader,
let us recall the theorem.

We fix a meridian p; and let \; be the canonical longitude of each component
of a link L. For k = (r1,s1,- - ,7p, ) we denote by M, the manifold obtained

from M by Dehn-filling that kills the curve r;u; + s;\; on each boundary torus
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¥;, where (7, s;) is either a pair of coprime integers or the symbol o0 meaning
that we do not fill the corresponding boundary torus.

Let p : m(M,) — PSL(2,C) be a representation. If M, has non-empty
boundary, we assume that p is a (PSL(2, C), P)-representation so that the vol-
ume and Chern-Simons invariant of p are well-defined. Regarding p as a rep-
resentation from 71 (M) by compositing the inclusion 71 (M) — m(M,), we
have

tr(p(pi)) = £2, tr(p(Ai)) = £2 for (ri,s;) = o0

(4.3.5)
p(pii\;) = +1 for (r;, s;) # o

where r; and s; are coprime integers. If we assume that p : w1 (M) — PSL(2,C)
admits a SL(2, C)-lifting and p(u;) # +I for all 1 < i < h, then there exists a
point (w, m) such that pw m = p up to conjugation where m; is an eigenvalue
of p(y1;). Recall Corollary [4.2.1] and Theorem It follows from the equation
- ) that for k; # o0 we have m*lJ" = +1 and thus r;logm; + s;logl; = 0
in modulo 7i where [; is an eigenvalue p()\;). From coprimeness of (r;, s;), there

exists integers u; and v; satisfying
rilogm; + s;logl; + mi(ryu; + sjv;) = 0. (4.3.6)

Theorem 4.3.1 (Theorem [1.2.3). The complex volume of p : m(M;) —
PSL(2,C) is given by

iVolc(p) = Wo(w, m) mod 7°Z

where the function Wy (w1, - -+ ,wy, my, -+ ,my) is defined by

Wo := W(wy,- -+ ,wp,my, -+ ,m Z(w]a )logwj

oW
- E iv— ) (log m; + wymi) — — (log my + uimi)? | .
{<m 0mi> (logm; + u;mi) (logm; + u;mi) }

5
(ri,8:)#0 ’
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4.3.1 Proof of Theorem [4.3.1]

We assign a vertex-ordering of each tetrahedron A of 7 as in Figure Note
that these orderings agree on the common faces, so we may orient every edge of
J with respect to this vertex-ordering. We say that A is positively oriented if the
orientation of A induced from the vertex-ordering agrees with the orientation
of N, and A is negatively oriented, otherwise. We let ea = +1 according to this
orientation of A.

Let p: m1(N) — SL(2,C) be a lifting of p and o : dN' — C* be a cocycle
assoicated to p which is trivial on the sphere components. From the equation

(4.3.5) we have

o(pi) = £1, a(N;) = £1 for (ry,8;) = ©

a(pi'A;') = £1 for (14, s;) # o0

Recall Proposition that there exists a cocycle a : ON' — C such that
(i) a(e) = logo(e) in modulo 7iZ for all e € ON'; (ii) a is trivial on the sphere

components; (iii) the induced homomorphism @ satisfies

a(p;) =a(N) =0 for (r;,8;) = ©

a(p;) = loga(ui) + u;wi and a(A;) = loga(\;) + vy for (1, 8;) # ©

The equation (4.3.6|) tells us that r;a(u;) + s;a(N\;) = 0 for all k; # 0. On the
other hand, by Theorem there exists a o-deformed Ptolemy assignment
c:J' — C* such that p. = p up to conjugation. We let

(w,m) = (C(el)ﬂ o 7C(€n)76(ﬂl)a T 75(,uh))

as in Proposition [£.2.1]
For each ideal tetrahedron A (with edges denoted as in Figure of 7, we
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let

(7(812)0(845) c(ll)c(l4)
o(s24)0(s51) c(l2)e(ls)

pri = (a(s12) + a(s45) — a(s24) — a(ss1)
+ logc(ly) + logc(ly) — logc(l2) — loge(ls) — log =
qmi = a(ss3) + a(s26) — a(s32) — a(ses)

+logc(la) + loge(ls) — log c(l3) — loge(lg) + log (1 — 2)

ifen =1 and

_ o(s24)0o(s51) c(l2)e(ls)
o(s12)0(s45) c(l1)e(ly)

pri = a(s24) + a(ss1) — a(si2) — a(sas)
+ log c(l2) + logc(ls) — loge(ly) — loge(ls) — log =
qmi = a(s43) + a(s16) — a(ses) — a(s31)
+ logc(ly) + logc(ly) — loge(ls) — loge(lg) + log (1 — z)

if en = —1. We let R(A) := R(z;p,q) where R is the extended Rogers diloga-
rithm given by
2

) 1
R(z;p,q) = Lia(2) + %(plog(l —2)+qlogz) + ilog(l —z)logz — %

Theorem [3.3.1] gives that

iVolg(p) = Y |eaR(A)  mod 7°Z (4.3.7)
A

where the sum is over all tetrahedra A of 7. We refer to Chapter [3] for details.
Therefore, it is enough to show that the right-hand side of the equation (4.3.7))

is equal to Wo(w, m) in modulo 72Z.
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Let us first consdier a crossing of L as in Figure [£.1f(a). At this crossing, we
denote edges of J as in Figure (a). We also denote by Al the tetrahedron
corresponding to the edge h! as in Figure and denote similarly for k3, h°, hy,
and hsz. It is not hard to check that ex1 = €ex5 = €a, = 1 and exs = ea, = —1.

A straightforward computation gives

R(AY) = Lia(z + $(log wy, — logw; — a(s15)) log(1 — 7224)

mewwy)

&
+ %(10g w; — log c(h®) + log c(h?) — log c(h!) + a(s*!) + log(1 — —m))log %.

mpw;

Since log —“m— = log wy, — logw; — a(pg) in modulo 27,

R(AY) = Lig(42-) — % + (log wy, — logw; — a(pg)) log(1 — 72-)
°)

+ 2(logw; — log ¢(h®) + log c(h?) — log c(ht) + a(s*!)) (log wy, — logw; — a(pug))

in modulo 72Z. We similarly compute the Rogers dilogarithm terms for other

tetrahedra and obtain :

R(AY) — R(A%) + R(A1) — R(A3) + R(A®)
= Lip(-% ) + Lig (5,2

2

)~ Lie(rgir) + Lia(gg,) — %

mﬁw ) LlQ(mbk

(logw; — log c(h®) + log ¢(h?) — logc hl) + a(sM)) (log wy, — logw; — @(ug))

+ (log wy, —logw; —a(pg))log(1 — mbJ)
+ (log wy, — logw; + @(pg)) log(1 W)
+ (logwy, —logw; — @(a)) log(1 m)
+ (log wp, — logw; + @(ue)) log(1 mawm)
+

+

+

1

3 (

+(logwy, — log c(h®) + log c(h?) —log c(h?) + a(s*3))(logwy, — logw; + @(us))
3(logw; —loge(hs) + log e(hg) —logc(hn) + a(sa1))(logwy, — log wj — @(pa))
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(log wy, —

N[—= D=

(log wy + logwy, —

log c¢(hs) + logc(hg)
log c¢(h®)

—logc(hs) + a(sa3))(log wm,
— logc(hs))(logw; + log w;

—logw; + @(pa))

— log wy, — log wyy,)

Rearranging the last five lines appropriately, we obtain

R(AY) —

Lig( ng(

maw; ) - mbk
+ (log wy, —
+ (log wy, — logw; + a(u
+ (log wg, — logw; — a(p
+ —logw; + a(p
+ (log w; + log w;

(
(
(
(log w,
(
(

— (log wy,

R(A%) + R(Aq) —

) + Lis (50

logw; —a(pg))log(1 —

5))log(1 —
o)) log(1
o))

log(1 —

W)

mB wj

mﬁwk )

r‘;”iuj )

maw'm

— log wy, — log wy, ) log(1 —

R(A3) + R(As)

L12 (

)

)

w;w
w;:wfn)

—logw; —a(ug))(logwy, —logw; — a(fta))

N

+ %log c(h?) (log wy, + logwy, — logw; —

+ %log c(hg) (log wy, + logwy, — logw; —

— logw; —a(up))

h3) (log wy, — logw; + a(ug))

log c(h1

( log wy, — log w;
(

)
)
log c(ht)
(h?)
) — a(Ha)
)

(

(
-3 (log wm,
— 2log c(h?) (
—3 ( )
— zloge(hs) ( —logw; + @(pa))

za(s')

log wyy,

log wy, —

(
(

+ a(321) log wy, — logw;) + 5&(323)(10gwm

log w;)

logw;)

Y

r B-

L) 4 Lig(pdL)

el
WgWm 6

> A-part

part

logw;) + 2a(s*®)(logwy, — logw;)

C-part

— logwy)

Fa(pa)alus) — Sa(s™)a(us) — Sa(ss)a(ua) |} D-part

—I—%E(,ua)(log wy, — logwy) + %E(uﬁ)(log w; — logwy) }E—part

Note that in the above computation, log c¢(h’)- and log c(hs)-terms vanish, and
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we replace a(s41) and a(sa3) by @(pa) + a(s21) and @(uq) + a(s23), respectively.
We compute similarly for a crossing as in Figure (b) and obtain:

— R(AY) + R(A%) — R(Aq) + R(A3) — R(AY)

_ —LlQ(mﬂ m) —|—L12( ) LlQ(mawk) +L12(mawl) Ll (UJJ’wl )+ w2

W Wm, F

— (log wy, — logw; + E(Mﬁ)) log(1 — "42)
— (log wy, — log w; — a(pg)) log(1 — “2=)
— (log wy, — logw; + @(tta)) log(1 — maiz_vk) r A-part

)
— (log wy, — logwy — @(pa)) log(1 — 7t )
w4 Wy
o)

— (logw; + log w; — log wy, — log wyy,) log(1 —

+ (log wy, —logw; + a(pp))(log wy — logw; + @(pa))

N

%log c(h?) (log wy, + logwy — logw;, — logw;)
- %log c(ha) (log wy, + log wy, —logw; — log w;)
+ 3log ¢(hy) (log wp, — logw; + a(ug))

» B-part

+ 3log c(h3) (log wy, — logw; — @(pug))
+ 3log c(h!) (logwy, — logw; + a(pa))
+ 2log c(h3) (log wy, — logw; — a(ta)) )
— 2a(s*) (log wy, — logw;) — 2a(s*3)(logwy, — logw,)

C-part
— 3a(s21)(log wy, — logw;) — %a(323)(10g wy — log wy,)

~a(pa)a(pp) — ba(s*)alua) — Salss)alus) | D-part

+3a(pup)(logw; — logwy) + 2a(ua)(log wy, — log wy) }E—part

As one can see, we divide the Rogers dilogarithm terms coming from a crossing
into 5 parts: A, B, C, D, and E-parts.
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Let us first consider A-parts. If we use the equality

—(logwy, — logw; — @(pa))(logwy, —logw; —a(ug))
— (logwy —logw; — @(pa) — log "%~ )(log Wy, — logw; —a(ug))

— log k- (1og Wy, — logw; —a(pg))

= — (logwy, — logwj — (o) — log - )log o

—log mw’;vj (log wy, — logw; —a(ug)) (mod 727Z),

then one can directly check that the sum of A-parts over all crossings is equal
to .
n
oW oW _
W(w, m) — Z<w]8w]> logw; — Z<mzamz> a(p).
]:1 i=1
For D-parts, the sum of —1a(s*")a(u;)-terms along the i-th component of
L results in —1a(A;pr)a(p;), where A;py is the blackboard framed longitude of
the i-th component. Similarly, the sum of —%a(s;ﬂ)bi(ui)-terms also results in
—3a(Nips)a(ps). The remaining terms +a(y;)a(g;) revise the framing appropri-

ately and so the sum of D-parts over all crossings is equal to

h
ZE (ui)a
Lemma 4.3.1. The sum of B-parts over all crossings vanishes.

Proof. Let e be an over edge of I with the corresponding over-arc of L as in
Figure (a). Note that the edge e appears as h; at the initial crossing, as hs
at the terminal crossing, and as h? = h? at the intermediate crossings. Then, in
the sum of B-parts, logc(e)-terms appear exactly at these crossings and their

sum is given by
Jloge(e)| (~loguwy, + loguwy, — (1))
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+ (logwj, —logwj, —logw;, + logw;,) + ---
+ (IOg Wiam—1 — log Wiam — log Wigpmi1 T log wj2m+2)

+ (log wj2m+1 - lOg wj2m+2 + a(l‘l’z))] = 0

Note that changing orientations that are not specified in the local diagram dose
not change the computation. We compute similarly for an under edge of 7, and

complete the proof. O

We omit a proof the fact that the sum of D-parts and E-parts are respectively
zero, since it can be checked combinatorially as in Lemma [4.3.1

Recall that we have a(u;) = 0 for k; = o0 and r;a(u;) + s;a(A;) = 0 for
k; # 0. It thus follows that the sum of A- and D-parts over all crossings is
equal to Wo(w, m). This completes the proof, since the sums of B-, C-, and

E-parts are all zero.

Example 4.3.1. We consider a diagram of the figure-eight knot and denote the
Wirtinger generators by g1, -, g4 as in Figure It is known that
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determine a -representation p of the knot group if

—m* +3m? — 1 +vVm8® —2mb —m* —2m?2 + 1
2m? '

y:

The canonical longitude A of the knot is given by go g4_1 9oy L g1, so an eignvalue

[ of p(\) is given by

m8 —mb +2m* —m? + 1+ (m* — D)vm8 —2mb —m?* —2m2 + 1

] —
2m4

If we consider the %—Dehn filling, then we require m € C* satisfying m?[3 = 1;

using the Mathematica, we have
(m,1) = (—1.30664 + 0.0498758:, —0.436423 + 0.7133713).

We remark that the representation p is in fact (a lifting of) the geometric rep-

resentation for the %—ﬁlled manifold M 2 obtained from the figure-eight knot

exterior. We let (u,v) = (—2,0) so that
2logm + 3logl + mi(2u + 3v) = 0.

We now consider the vectors V;’s, each of which corresponds to a region, as

in Section Recall that these vectors satisfy the condition
Vi = plgr)”'Vi

at each arc as in Figure (cf. region coloring in [CKS01), [Chol6a].) Note

that they are well-determined whenever an initial vector is chosen arbitrarily.
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For instance, if we choose Vg = (1), then we have

Vi — ( —0.847954 — 1.60327: ) ) — ( 1.04988 + 1.306644 )
—0.448632 — 0.0566798: )’ 0.589028 + 0.0516843: )’

Vi — <—0.784704 + O.372425i> Vi— <0.61054 — 0.261719i>
—0.392082 — 1.12719: )’ 1.12129 + 1.96967: )’

Ve _  —0-764207 — 1.020177 v (1
57\ 20.0498758 — 1.306645 )7 ¢~ \i )

We also choose another vector W almost arbitrarily; for instance, we let W =
@) Then we have w = (w1, -+ ,wg) by w; = det(W, Vj):

wy = —0.0493091 + 1.489917, w9 = 0.12818 — 1.203273,
w3 = 0.000538775 — 2.62681:, wy = 1.63204 + 4.201074,
ws = 0.664455 — 1.584114, we = —1 + 24.

Figure 4.11: Rule for a region coloring.

Plugging the above non-degenerate solution (w,m) = (wy,---,wg, m) to

Theorem we obtain

iVol@(M%) = —3.33835687 + 1.73712388:.

Note that changing choices for Vg and Vy may give a different non-degenerate

solution but it results in the same volume and Chern-Simons invariant.

Example 4.3.2. Let us consider a diagram of the Whitehead link as in Figure
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412 One can check that

mi 1 . mao 0

determine a -representation of the link group if

mama(mi —1)(m3 — 1) + ((mim3 + 1)(mi — 1)(m3 — 1) + 2mim3)y

+ (2 — m} — m3 + 2m2m3)mimay® + mim3y3 = 0.

The longitude of the circular component is given by g5gy L and that of the other

Figure 4.12: The Whitehead link.

component is given by gag; ! gggil. We obtain

= g [ mAma(m3 = 1) + mi(m3 = 1)(2m3(y* + 1) - 1)y
+mi(=m3y? + m3(y* + 5y* + 1) — 3may?)
= may(mi(m3 +1) = 2m3(y? + 1) + 1) — ma(m3 — 1)y?|,
Iy = @ [mj‘m%y +m} (—m3y? + may® + my)

+ m% (—m%y3 — Zm%y + y) + mimse (m% — 2) y2 + (m% — 1) y]

68
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CHAPTER 4. POTENTIAL FUNCTIONS
Let us consider k = (-5, —%) filling; using Mathematica, one can check that

(m1, 1) = (0.6043082 + 1.35916778i, 6.31524591 — 3.624622341)
(ma, ly) = (1.4324890 + 1.08046977i, —4.30814400 — 0.192957814)

satisfies (numerically) m;'lJ* = 1 for ¢ = 1,2. We let (u1,v1) = (0,2) and
(ug,v2) = (—1,—1) so that the equation (4.3.6]) holds for i =1, 2.

Choosing an initial vector V; = (1) and W = (?), we obtain :

wy; = —1 + 24, wg = 1.93846759 — 5.78498860¢,
ws = —3.05190667 — 3.603417097, w4 = 0.62430373 — 1.81290671s,
ws = —0.59085068 — 0.747572287, we = —1.23298500 + 2.38516959¢,
wy = —4.06836742 — 1.29382141¢

Plugging the above non-degenerate solution (w,m) = (wy,--- , w7, m1,m2) to

Theorem we obtain

iVolc(M,) = 1.185202630500 + 0.942707362517:.
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Chapter 5

Cluster variables

Given a braid presentation D of a hyperbolic knot, Hikami and Inoue consider
a system of polynomial equations arising from a sequence of cluster mutations
determined by D. They show that any solution gives rise to shape parameters
and thus determines a boundary-parabolic PSL(2, C)-representation of the knot
group. They conjecture the existence of a solution corresponding to the geomet-
ric representation. In this paper, we show that a boundary-parabolic represen-
tation p arises from a solution if and only if the length of D modulo 2 equals the
obstruction to lifting p to a boundary-parabolic -representation (as an element
in Zs). In particular, the Hikami-Inoue conjecture holds if and only if the length
of D is odd.

5.1 The Hikami-Inoue cluster variables

5.1.1 The octahedral decomposition

Let K = S? be a knot and let v(K U {p,q}) denote a tubular neigborhood of
the union of K with two points p # ¢ € S not in K. Whenever we choose
a knot diagram representing K, we have a decomposition of the space M =

S3\v (K U {p,q}) into blocks each of which is a cube with two cylinders (whose

70



CHAPTER 5. CLUSTER VARIABLES

core is the knot) removed. See Figure Note that M is a 3-manifold with 3
boundary components (two spheres and a torus) whose interior is homeomorphic
to S3\(K U {p,q}). Now consider two quadrilaterals Q; and @3 in each block
as in Figure [5.1] and collapse them horizontally so that their vertical edges are

respectively identified. We call the resulting object a pinched block.

Figure 5.1: A pinched block

On the other hand, a pinched block can also be obtained from a truncated
octahedron by identifying two pairs of edges as in Figure (right). Therefore,
one can obtain M by gluing truncated octahedra, and it thus follows that the
interior of M can be decomposed into ideal octahedra (one per crossing). We

denote this octahedral decomposition of S3\(K U {p, ¢}) by ©. It is due to Dylan

Thuston [Thu99] (see also [Wee05]).

5.1.2 The Hikami-Inoue cluster variables

An ideal octahedron as in Figure has 12 edges each of which corresponds to a

vertical edge of a cube in Figure[5.1] We may label those edges by z1, - ,z7, %1, - -

as in Figure [5.3| with the obvious identifications x1 = 7 and x7 = Z7. As indi-
cated in Figure (left) we shall regard the edges x; as being above a crossing,
and the edges Z; as below the crossing.

Assigning a complex-valued variable to each of the edges 1, - -+, x7, T1, -+, T7
with the same label as the edge itself, Hikami and Inoue §2.2] consider the
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Figure 5.2: A truncated octahedron

equation (%1, --,37) = R¥ (w1, -+ ,27) where RT is a certain operator defined
by rational polynomial equations. As we shall see in Section these equa-

tions are equivalent to Ptolemy relations for a particular obstruction cocycle.

Figure 5.3: Edges of an octahedron at a crossing

Now suppose the knot diagram is given by a braid D with presentation
0']?1 e O']?:L. (Here oy, is the standard generator of the m-braid group and ¢; €

{£1}.) Similar to the edge-labeling described in the previous paragraph, we label
72
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the oriented edges of the octahedral decomposition © as follows:

1. Draw n + 1 imaginary horizontal lines on the braid D so that there is only

a single crossing between two consecutive lines (see Figures and |5.11)).

2. As in Figure5.3] (left), whenever a horizontal line meets the braid D there
are two corresponding edges, and whenever a horizontal line meets a region
of (the closure of) D, there is one corresponding edge. Since each of the
horizontal lines meets the braid m times and the regions m + 1 times, it

corresponds to 3m + 1 edges of ©.

3. For the i-th horizontal line we orient the corresponding edges and denote

them by «%,--- 2%, ., asin Figure and let x* = (zf,- -+, 2%, 1)

. 7
i Tag+1

] T3k—2 T3k T3k+3 Ty y T
3k
Xt T ............. I ......... tv/ .................... I .............. T .....
i+1 R AR i+l il i+1
xy =2 wgp Ty vl Tak42 L3k+4 Ty

3k+1

Figure 5.4: Edges of © around the i-th level of a braid

Note that there are many overlapped labelings; for instance, in Figure [5.4] we
have 1‘; =$§+1 forj=1,---,3k—2and j =3k +4,---,3m + 1.

We again assign a complex-valued variable to each oriented edge of © and
denote the variable by the same as the edge itself. Hikami and Inoue [HI14]
relate the cluster variables x* = (z%,--- ,2%,,.,) and x**1 = (2™, .- [ 2tl )
by the equation

Xi+1 _ RZZ (XZ)
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for 1 <7 < n. Recall that the operator R;f is defined by

R];i('xla e ax3m+l) = (mla o 7Ri(x3k‘—27 e ax3k+4)a'r3k:+5a e >x3m+1)-

Note that R,f only affects the variables above and below the k-th crossing.

n+1

An initial variable x! is called a solution if x! = x”t!. Whenever we have a

solution x! € C*™*+1 we shall define the set map
e O - C

by assigning the variable x; to the oriented edge of © labeled by the same
name. The fact that this assignment respects the face identifications in © follows

directly from the definitions of R,:—r and R*.

5.1.3 The obstruction cocycle

Let  be the ideal triangulation of S3\(K U {p,q}) obtained by decomposing
each octahedron of © into 5 ideal tetrahedra as in Figure (left). As explained
earlier this induces a triangulation of the boundary of M. We now define a
cocycle € € ZY(0M;{+1}) on OM by assigning signs to the short edges of the
truncated tetrahedra. Note that each short edge either lies in the top/bottom of a
truncated octahedron, or on one of the sides. We shall call the edges top/bottom-
edges or side-edges accordingly. We assign signs to the top/bottom edges as
indicated in Figure |5.5| and assign +1 do all of the side edges. This is clearly
a cocycle, which respects the face pairings and thus gives rise to a cocycle in
e € ZY(0M;{+£1}) as desired. We stress that ¢ depends on the decomposition of
M, in particular the choice of a braid D representing K.

The cocycle € is illustrated in where p and Apy denote the meridian
and black-board framed longitude of the knot K, respectively. In particular, €
induces the homomorphism € : 71 (v(K)) — {#+1} that maps p to —1 and Apy to
1.
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0_~ms Ma 0
%fﬁ ARG
Al e h2 hi el hl
+2 fromeenenonmaenes\ -2 -2 VARG +2
h5 h5
€m A Y ek EmyY ACL
hs
-1 > +1 +1 -1
(a) Positive crossing (a) Negative crossing
Figure 5.5: An ideal octahedron at a crossing
——: 1
——1
Abf
Figure 5.6: Configuration of € on the boundary torus
5.1.4 Proof of Theorem [1.3.2]
Let us consider an octahedron of ©. We index the vertices by {0,--- ,5} and de-

note the oriented edges as in Figure Let us compute the e-deformed Ptolemy
equation. For example, the tetrahedron with vertices {0,3,4, 5} in Figure [5.5(a)
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gives xoy1 = T3T4 + x1x3. Similar computations give:

{07 3? 4? 5}

{1,2,3,5} :
(2,3,4,5) :
{0,2,4,5} :
{1,2,3,4} :

for Figure [5.5(a) and

{0,2,4,5} :
(1,2,3,4) :
(2,3,4,5) :
(0,3,4,5} :

{]‘7 2? 3? 5}

toxayn =
TeY2 =
154.%4 =
Tsyr =

Tayp =

yrs =
T3Yy2 =
33‘4.%4 =
Toyr =

P TeY2 =

xr3x4 + X173
T5X7 + X425
T1T7 + Y192
T334 + X377

T5T4 + T125

T4Te + Ty
X129 + X224
Y1y2 + T127
Ty + T1T6

Tox7 + Ty

for Figure (b) Considering 1, -- ,x7 as given variables, we have

(y1,92) = <

x3(x1 + x4)

x5(xg + 27)

T2

r1X3T5 + T3T4T5 + T1T2T6

9

T6

)

L2Xy

(5.1.1)

T1X3L4%5 + l‘gazixg) + X123T5T7 + T3T4T5T7 + T1T2TET7

(%3, 3’:4, 3~35) =

for Figure [5.5{a) and

(y1,92) = <

T2T4T6

XT3X4T5 + T3T5L7 + ToXgXy

xe(Tq + 27)

L4Ze

xo(x1 + x4)

Zs

76
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T1X3T5 + T1T2X6 + ToTaTe T

Tr3X4

T1T2X4X6 + LL’Q%EZEG + 123T5L7 + T1X2TEL7 + ToT4TELT7

(T2, T4, T6) =
T3X4T5

ToX4xe + T3T5L7 + ToXeXy

T4T5
for Figure [5.5(b).

Letting Z; = z1, To = w5, T¢ = 3, Ty = x7 for Figure |5.5(a) and ; =
X1, T3 = xg, T5 = T2, Ty = x7 for Figure (b), we obtain

T
~ T T T
1 T
~ X
i) 5 T2
T1TI3T5+T3T4T5+T1T2T6
I3 T2T4 xs
2
~ T1T3TAT5+TITZT5+T1XT3T5L7+T3TAT5LT+T1T2L6TT
Ty | = ooz ioe =R |24 (5.1.3)
€5 T3T4T5+TIT5T7+T2TETT T5
T4Te
Tg Tg
xs3
T7 x7
x7

77



CHAPTER 5. CLUSTER VARIABLES

for Figure [5.5(a) and

~ T I T
Tl Tl
N T1T3T5+T1T2T6+T2T4T6
1‘2 xr3T4 ;L‘2
T3 Z6 T3
2

~ T1T224T6+T2T5T6+T1L3T5L7+T1T2X6L7+T2L4L6TT ~1
Ty | = TaTads =R | 24 (5.1.4)
Is T Is
Ze TIT5TT+T2T4T6+TITETT T6

T4Ts
T7 x7

X

for Figure [5.5(b). The equations (5.1.3) and (5.1.4) exactly coincide with the
definition of the operators R* in [HI15]. See [HI15, Equation (2.17)].

Now let D be a braid of length n and width m. Let c,a : O — C be the
set map induced from a solution x! € C3*! as in Section Recall that 7
has two additional edges per crossing compared to ©. We extend the set map
to ¢yt : 1 — C by defining the values on the added edges using the equations
(5.1.1) and (5.1.2). We say that a solution x! is non-degenerate if

cxi(e) #0

for all e € 71. One can easily check from the equations (5.1.1)) and (5.1.2) that

this is equivalent to the following.

Definition 5.1.1. A solution x! is said to be non-degenerate if every cluster
variable x' = (2f,--- 2%, ) satisfies 2% # 0 for all 1 < j < 3m + 1 and
xéjﬂ # —a:éjﬂ forall1 <j <m.

The previous computation in this section tells us that the set map ¢, : 7' —

1

C\{0} induced from a non-degenerated solution x* is a point of the e-deformed
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Ptolemy variety P.(J). We have thus proven (recall Proposition [2.2.1)):

Proposition 5.1.1. A non-degenerate solution x! induces a (PSL(2,C), P)-
representation py1 : 71 (S3\K) = 71 (M) — PSL(2,C) (up to conjugation) whose
obstruction class is €p(A\) € {£1} ~ H?(M,0M;{+1}), where ) is the canonical
longitude.

Proposition 5.1.2. Let D be a braid of length n representing a knot. Then
€p(A) is (=1)™ under the isomorphism H?(M,0M;{+1}) ~ {£1}.

Proof. Recall Section that we have €p(p) = —1 and €p(Ayy) = 1 for the
meridian p and blackboard framed longitude );r. We thus obtain

Here w(D) denotes the writhe of the closure of D which is congruent to the

length n in modulo 2. O

5.2 The existence of a non-degenerate solution

Let M be the universal cover of M = S3\v(K U {p,q}) and M be the space
obtained from M by collapsing each boundary component to a point. We denote

~

by I(M) the set of these points. Note that 1 (M) acts on I(M)

Definition 5.2.1. For a (PSL(2,C), P)-representation p : w1 (M) — PSL(2,C),
a decoration D : I(]Vf) — PSL(2,C)/P is a p-equivalent assignment, i.e., D (7 -

~

v) = p(y)D(v) for all v € w1 (M) and v e I(M).

Recall that PSL(2,C)/P denotes the (left) P-coset space where P is the
subgroup of PSL(2, C) consisting of upper triangular matrices with ones on the
diagonal. We may identify a P-coset gP with a vector g((l)) which is well-defined
up to sign. In particular, by det(gP, hP) we mean det (g ((1)), h((l))) e C/{x1}.

79



CHAPTER 5. CLUSTER VARIABLES

We now fix a braid presentation D of a knot K and let  be the ideal
triangulation of S3\(K U {p,q}) given as in Section For any decoration @
we define an assignment c: 7' — C/{£1} by

c(e) = det (D (vy), D (v2))

for e € 7! where vy and vy € I(M) are endpoints of a lift of e. Note that c(e)

does not depend on the choice of a lift of e, since @ is p-equivariant.

Proposition 5.2.1. For a non-trivial (PSL(2, C), P)-representation p : w1 (M) —
PSL(2,C), there exists a decoration @ such that the induced assignment c sat-
isfies c(e) # 0 for all e€ T

The proof of Proposition relies on the following basic facts: (i) every
edge of 7 are connected to either p or g; (ii) a decoration on the lifts of p and
g can be chosen freely and independently (respecting p-equivalence only). The
observation that (i) and (ii) implies Proposition[5.2.1] was first pointed out to the
authors by Seonhwa Kim. We also note that there are edges connecting p (or q)
to itself and this is the reason why we can not detect the trivial representation.
Namely, these edges become generators in the Wirtinger representation (see
Figure (left)) and thus the image of the generators under p must be non-

trivial.

Remark 5.2.1. In order for fact (i) above to hold, it is essential that each
octahedron is subdivided into five tetrahedra instead of four. If we use the
four tetrahedra per crossing (as in [HI15]) Proposition may not hold; in

particular, it does not hold whenever the closure of D has a kink.

Proposition [5.2.1] implies the existence of a non-degenerate solution desired
as in Theorem More precisely, the following holds.

Theorem 5.2.1. Let op € Z2(M,0M; {£1}) be the cocycle given as in Section
If a non-trivial (PSL(2,C), P)-representation p has the obstruction class
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[op] € H?(M,0M;{£1}), then there exists a point ¢ € P°P(J) such that p.

coincides with p up to conjugation.

Proof. Let @ be a decoration as in Proposition Whenever one chooses
a sign of each c(e), it is known that ¢ : 71 — C\{0} is a point of P?(J) for
some o € Z?(M,0M;{+1}) such that p. = p up to conjugation. In particular,
the obstruction class of p is [0] € H?>(M,0M;{+1}). Then the theorem follows
from the fact that if oo and o1 € Z2(M,0M; {£1}) satisfy [09] = [01], then two

varieties P?9(J) and P?'(J) are canonically isomorphic. O

As we computed in Section the class [op] viewed as an element of {+1}

coincides with (—1)" where n is the length of D. We therefore obtain Theorem

as a consequence of Theorem

5.2.1 Proof of Proposition

We first consider edges, say ey, - ,en, of I that join p and q. We orient these
edges from ¢ to p. We choose a lift €; of each e; so that their terminal points
agree as in Figure We denote by p the terminal point and by ¢; the initial

point of €;. From p-equivariance of @, we have

D(q;) = p(9)D(qr)

for some g € 7 (M). From elementary covering theory one can check that if
ej U e, wraps an arc of K as in Figure then the loop g should be the
Wirtinger generator corresponding to the arc. Note that c(ex) # 0 if and only
if det(D(p), D(qx)) # 0.

We then consider edges of I that are connected to the knot K; for example,
edges = and y as in Figure We consider an ideal triangle in S3\(K U {p, ¢})
with edges x, y, ex as in Figure and its lift so that p corresponds to the point
p. We denote the edges of the lift by Z, ¥, €. Since the terminal point, 7, of T

81

&1



CHAPTER 5. CLUSTER VARIABLES

Figure 5.7: Local configuration of a lift.

(or g) is fixed by the Wirtinger generator g, we obtain

D7) = D(g-7) = p(g)D (7).

Since tr(p(g)) = £2 and p(g) # Id, otherwise p should be a trivial repre-
sentation, p(g) has a unique eigenvector up to scaling. It thus follows that
c(x) = det(D(p), D(T)) # 0 if and only if D(p) is not an eigenvector of p(g).
Similarly, ¢(y) # 0 if and only if D (g;) is not an eigenvector of p(g).

We finally consider edges of 7 joining ¢ (or p) to itself; for example, an edge
x as in Figure We consider an ideal triangle in S3\(K U {p, q}) with edges
ej, ek, T as in Figure and its lift so that p corresponds to the point p. We
denote the edges of the lift by €;, €, 2. It directly follows that c¢(z) # 0 if and
only if

det(D()), D)) = det(p(g)D(@), D(@)) # 0.

Again, this is equivalent to the condition that @(gx) is not an eigenvector of

p(9)-
Let us sum up the conditions. To be precise, we enumerate the Wirtinger
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Figure 5.8: Local configuration of a lift.

generators by g1, -, g;. Our desired decoration as in Proposition [5.2.1] should
satisfy (i) det(D(p),D(g;)) # 0; (ii) D(p) is not an eigenvector of p(g;); (iii)
D(q;) is not an eigenvector of p(g;) for all 1 < j < m and 1 < i < [. Since we

can choose D (p) and one of @D(q;)’s freely, such a decoration exists.

5.2.2 Explicit computation from a representation

Let D be a braid presentation of a knot K and let p : 71 (S3\K) — PSL(2,C)
be a non-trivial (PSL(2, C), P)-representation whose obstruction class is (—1)",
where n is the length of D. We devote this subsection to present an explicit
formula for computing a solution.

Let p be an -lift of p satisfying

oo (70 Y L and o< [CD
p(u)—<0 _1>¢ Id and p(A) <0 (_1)n>

(recall Proposition [2.2.1]). We index the regions of the closure of D by 1 < j <

n + 2 and the arcs by 1 < i < n. We then assign a non-zero column vector V; to
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the j-th region so that these vectors satisfy
Vi, = plgi) 'V (5.2.5)

for Figure (left) where m; is the Wirtinger generator corresponding to the
i-th arc. The region-colorings are well-determined whenever an initial vector is
chosen arbitrarily. Remark that V; corresponds to @(g;) in Section m
We also assign a non-zero column vector H; to the i-th arc so that these
vectors satisfy p(g;)H; = —H; for 1 < i < m (recall that the eigenvalue of p(g;)
is —1) and
H;, = p(gi,) H; (5.2.6)

for Figure (right). We remark that the fact that the eigenvalue of p(Ayy) is
1 (equivalently, the eigenvalue of p(A) is (—1)") is required here.

Figure 5.9: Rules for region- and arc-colorings.

Recall that the octahedral decomposition © has 3n + 2 edges; (i) n of them,
called over-edges, stand above the knot; (ii) other n of them, called under-edges,
stand below the knot; (iii) last n + 2 of them, called regional edges, stand on the
regions. See Figure We choose an additional non-zero column vector W
(which corresponds to @D (p) in Section and define the set map ¢ : O — C

as follows.
(i) c(e) = det(H;, W) if e is the over-edge standing over the i-th arc;

(ii) c(e) = det(V}, H;) if e is the under-edge standing below the i-th arc whose
left-side region is indexed by j;

(ili) c(e) = det(V;, W) if e is the regional edge corresponding the j-th region.
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Here we oriented the edge e as in Figure [5.10
over-edge : det(H;, W)

1
regional edge : det(V;, W)

under-edge : det(V;, H;)
Figure 5.10: Edges of © with c-values.

We again extend the above set map to ¢ : 7' — C by using the equations
(5.1.1) and (5.1.2]). As we showed in Section for a generic choice of W and
V;’s, we have c(e) # 0 for all e € TL.

Example 5.2.1 (The 4; knot with a kink). Let us consider a braid of the knot
4; as in Figure The geometric representation p lifts to an -representation

Figure 5.11: A braid presentation of the 4; knot.
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p such that

where A2 — A +1=0.
We enumerate the arcs and regions of the closure of the braid as in Figure
Choosing the vector H; = ((1)), the equation ([5.2.6) gives

Hy = plg2) ' Hy = (), Hs=plgs) "Ha= ()
Hy=pg2)Hs = (123),  Hs = plgs)'Ha = ().

Similarly, letting the vector Vi = (g) for some «, 8 € C, the equation ([5.2.5)
gives

Va = plgr)~ Vi = (T47), Vs = plg) Ve = (° )

Vi = plga) ' Vy = (a(l—A)+B(—1+2A))7 Vs = plgs) V5 = ( —a+28 )

—aA+B(1+2X) aX—B(1+2X)

~ _ a(—14+A 2—3A ~ — a(l—X —24+3X
Vo = Plgs) ™ Va = (“CPNESSY), Ve = Bles) TV = (CL )

Then finally, letting the vector W = (Y) for some v € C, we obtain the cluster

variables x!,--- ,x® as follows. We note that a generic choice for a, 3, and ~
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gives a non-degenerate solution. Here we abbreviate det(-,-) by |-, -|.

T
Vi, W|

|Va, H |
|Hy, W]
Vo, W|
V3, Ho|
| Ha, W
x! = | V3, W]
Vs, Hy
[Hy, W|
Ve, W|
|Vz, H3|
|Hs, W|
V7, W|

Vi, W]
|Va, Hy|
| Hy, W|
Vo, W|
Vs, H|
|Ha, W|
x* = | V3, W]
Vs, Hs|
|H3, W|
Vs, W|
|Vz, Hs|
|H5, W|
V7, W|

a— By
B
1
—a+ py+p
B
-1
a—p(y+2)
(A= 1)(a—38)
(v=1D(A-1)
a(= A+ A=1)+8BH-DA+v+2)
aX— B(2A + 1)
Y= A

a((y=DA+y+1)=B(2y(A+2)—31+2)

a— By

a—pB(y+2)
N2 (—(a - 28))
Y= A
BYA+7+2) —a(yA+1)
(A= 1)(a — 38)
—YA+A-1
al(y—DA+~v+1)—=B2y(A+2) =31+ 2)
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Vi, W|
|Va, Hy |
| Hy, W|
V2, W|
|V, Hy|
|Hy, W|
x* = | |V, W]
Vs, H|
|Ho, W]
Vs, W
|Vz, Hs|
|H5, W]
V7, W|

Vi, W|
|Va, Hy |
| Hy, W|
V2, W|
|Va, Hy|
|Hy, W|
xt= | vy, W
|V, Hs|
|H5, W|
Ve, W
V7, H|
|H3, W|
V7, W|

o —fy
B
1
—a+ By + B
(A —1)(~(a — 2))
(y=1(A—1)
(v=DAa—=28)+a—B(y+1)
aX—B(2A + 1)
-1
BRYA+ v+ 2) —a(yA +1)
(A= 1)(a - 35)
—YA+A-1
al(y=DA+v+1) = B(2y(A+2) =31+ 2)

a— Py
B
1
—a+py+p
(A= 1)(~(a — 2))
(y -1 -1
(v — DA(a — 28) + a — B(y + 1)
—B
YA+ A—-1
a(—y A+ A—=1)+ BBy —1DA+~v+2)
aX—[B(2A+1)
Y= A
a((y=DA+y+1)=B(2y(AN+2)—31+2)
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Vi, W|
|Va, Hy|
| Hy, W|
Vo, W|
Vs, Hi |
|Hy, W]
x* = | [V, W]
Ve, Hal
|Hy, W1
Ve, W|
|Vz, Hs|
|H3, W|
V7, W|

a—pB(y+2)
(A =1)(e = 3p)
(y-DA-1
a(=A+A =1+ BBy - DA +v+2)
aX— B2A+ 1)
Y= A
al(y—DA+~v+1) = B2y(A+2) =31+ 2)

89




Bibliography

[Cal06]

[CCGT94]

[Chol6a]

[Chol6b]

[CKS01]

[CM13]

[CS83]

Danny Calegari. Real places and torus bundles. Geometriae Dedi-
cata, 118(1):209-227, 2006.

Daryl Cooper, Marc Culler, Henri Gillet, Darren D Long, and Pe-
ter B Shalen. Plane curves associated to character varieties of 3-

manifolds. Inventiones mathematicae, 118(1):47-84, 1994.

Jinseok Cho. Optimistic limit of the colored Jones polynomial and
the existence of a solution. Proceedings of the American Mathemat-
ical Society, 144(4):1803-1814, 2016.

Jinseok Cho. Optimistic limits of the colored Jones polynomials and
the complex volumes of hyperbolic linkes. Journal of the Australian
Mathematical Society, 100(3):303-337, 2016.

J Scott Carter, Seiichi Kamada, and Masahico Saito. Geometric
interpretations of quandle homology. Journal of knot theory and its
ramifications, 10(03):345-386, 2001.

Jinseok Cho and Jun Murakami. Optimistic limits of the colored
Jones polynomials. J. Korean Math. Soc, 50(3):641-693, 2013.

Marc Culler and Peter B Shalen. Varieties of group representations

90



BIBLIOGRAPHY

[CYZ18]

[Dup87]

[Fra04]

[GGZ15]

[GTZ15]

[HI14]

[HI15]

[1K14]

[KKY16]

and splittings of 3-manifolds. Annals of Mathematics, pages 109-146,
1983.

Jinseok Cho, Seokbeom Yoon, and Christian K. Zickert. On the
Hikami-Inoue conjecture. preprint, arXiv:1801.08288, 2018.

Johan L Dupont. The dilogarithm as a characteristics class for flat
bundles. Journal of pure and applied algebra, 44(1-3):137-164, 1987.

Stefano Francaviglia. Hyperbolic volume of representations of fun-
damental groups of cusped 3-manifolds. International Mathematics
Research Notices, 2004(9):425-459, 2004.

Stavros Garoufalidis, Matthias Goerner, and Christian K. Zickert.
The Ptolemy field of 3-manifold representations. Algebraic & Geo-
metric Topology, 15(1):371-397, 2015.

Stavros Garoufalidis, Dylan P. Thurston, and Christian K. Zick-
ert. The complex volume of SL(n, C)-representations of 3-manifolds.
Duke Mathematical Journal, 164(11):2099-2160, 2015.

Kazuhiro Hikami and Rei Inoue. Cluster algebra and complex volume
of once-punctured torus bundles and 2-bridge links. Journal of Knot
Theory and Its Ramifications, 23(01):1450006, 2014.

Kazuhiro Hikami and Rei Inoue. Braids, complex volume and cluster
algebras. Algebraic & Geometric Topology, 15(4):2175-2194, 2015.

Ayumu Inoue and Yuichi Kabaya. Quandle homology and complex
volume. Geometriae Dedicata, 171(1):265-292, 2014.

Hyuk Kim, Seonhwa Kim, and Seokbeom Yoon. Octahedral de-
veloping of knot complement I: pseudo-hyperbolic structure. arXiv
preprint arXiww:1612.02928, 2016.

91



BIBLIOGRAPHY

[Mey86]

[MFP*12]

[Neu04]

[NZ85)]

[Thu78]

[Thu99)

[Wee05]

[Yok02]

[Zic09]

[Zic16]

Robert Meyerhoff. Density of the Chern-Simons invariant for hy-
perbolic 3-manifolds. Lowdimensional topology and Kleinian groups
(Coventry/Durham, 1984), pages 217-239, 1986.

Pere Menal-Ferrer, Joan Porti, et al. Twisted cohomology for hyper-
bolic three manifolds. Osaka Journal of Mathematics, 49(3):741-769,
2012.

Walter D Neumann. Extended Bloch group and the Cheeger—Chern—
Simons class. Geometry €& Topology, 8(1):413-474, 2004.

Walter D Neumann and Don Zagier. Volumes of hyperbolic three-
manifolds. Topology, 24(3):307-332, 1985.

William Thurston. The geometry and topology of 3-manifolds. Lec-
ture note, 1978.

Dylan Thurston. Hyperbolic volume and the jones polynomial. hand-

written note (Grenoble summer school), 1999.

Jeff Weeks. Computation of hyperbolic structures in knot theory. In
Handbook of knot theory, pages 461-480. Elsevier, 2005.

Yoshiyuki Yokota. On the potential functions for the hyperbolic
structures of a knot complement. Geometry € Topology Monographs,
4:303-311, 2002.

Christian K. Zickert. The volume and Chern-Simons invariant of a
representation. Duke Mathematical Journal, 150(3):489-532, 2009.

Christian K Zickert. Ptolemy coordinates, Dehn invariant and the
A-polynomial. Mathematische Zeitschrift, 283(1-2):515-537, 2016.

92



	1 Introduction
	1.1 Deformed Ptolemy assignments . . . . . . . . . . . . . . . . . . .
	1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .

	1.2 Potential functions . . . . . . . . . . . . . . . . . . . . . . . . . .
	1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .

	1.3 Cluster variables . . . . . . . . . . . . . . . . . . . . . . . . . . .
	1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .


	2 Preliminaries
	2.1 Cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.2 Obstruction classes . . . . . . . . . . . . . . . . . . . . . . . . . .

	3 Ptolemy varieties
	3.1 Formulas of Neumann . . . . . . . . . . . . . . . . . . . . . . . .
	3.2 Deformed Ptolemy varieties . . . . . . . . . . . . . . . . . . . . .
	3.2.1 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2.2 Pseudo-developing maps . . . . . . . . . . . . . . . . . . .

	3.3 Flattenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.3.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . .


	4 Potential functions
	4.1 Generalized potential functions . . . . . . . . . . . . . . . . . . .
	4.1.1 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . .

	4.2 Relation with a Ptolemy assignment . . . . . . . . . . . . . . . .
	4.2.1 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . .

	4.3 Complex volume formula . . . . . . . . . . . . . . . . . . . . . . .
	4.3.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . .


	5 Cluster variables
	5.1 The Hikami-Inoue cluster variables . . . . . . . . . . . . . . . . .
	5.1.1 The octahedral decomposition . . . . . . . . . . . . . . .
	5.1.2 The Hikami-Inoue cluster variables . . . . . . . . . . . . .
	5.1.3 The obstruction cocycle . . . . . . . . . . . . . . . . . . .
	5.1.4 Proof of Theorem 1.3.2 . . . . . . . . . . . . . . . . . . .

	5.2 The existence of a non-degenerate solution . . . . . . . . . . . . .
	5.2.1 Proof of Proposition 5.2.1 . . . . . . . . . . . . . . . . . .
	5.2.2 Explicit computation from a representation . . . . . . . .




<startpage>8
1 Introduction 1
 1.1 Deformed Ptolemy assignments . . . . . . . . . . . . . . . . . . . 1
  1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 1.2 Potential functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
  1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 1.3 Cluster variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
  1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Preliminaries 12
 2.1 Cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 2.2 Obstruction classes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Ptolemy varieties 16
 3.1 Formulas of Neumann . . . . . . . . . . . . . . . . . . . . . . . . 16
 3.2 Deformed Ptolemy varieties . . . . . . . . . . . . . . . . . . . . . 19
  3.2.1 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 23
  3.2.2 Pseudo-developing maps . . . . . . . . . . . . . . . . . . . 27
 3.3 Flattenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
  3.3.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Potential functions 43
 4.1 Generalized potential functions . . . . . . . . . . . . . . . . . . . 43
  4.1.1 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . 45
 4.2 Relation with a Ptolemy assignment . . . . . . . . . . . . . . . . 50
  4.2.1 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . 54
 4.3 Complex volume formula . . . . . . . . . . . . . . . . . . . . . . . 57
  4.3.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . 59
5 Cluster variables 70
 5.1 The Hikami-Inoue cluster variables . . . . . . . . . . . . . . . . . 70
  5.1.1 The octahedral decomposition . . . . . . . . . . . . . . . 70
  5.1.2 The Hikami-Inoue cluster variables . . . . . . . . . . . . . 71
  5.1.3 The obstruction cocycle . . . . . . . . . . . . . . . . . . . 74
  5.1.4 Proof of Theorem 1.3.2 . . . . . . . . . . . . . . . . . . . 75
 5.2 The existence of a non-degenerate solution . . . . . . . . . . . . . 79
  5.2.1 Proof of Proposition 5.2.1 . . . . . . . . . . . . . . . . . . 81
  5.2.2 Explicit computation from a representation . . . . . . . . 83
</body>

