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Abstract

Gradient potential theory for
nonlinear elliptic problems

Yeonghun Youn

Department of Mathematical Sciences
The Graduate School
Seoul National University

The objective of this thesis is to provide a sharp gradient potential es-
timate for nonlinear elliptic problems under non-standard growth assump-
tions. The estimates have been found from the attempts to develop a unified
method for the purpose of obtaining sharp pointwise bounds of the gradient
of solutions.

First, we obtain gradient potential estimates, by using linearization tech-
niques along with an exit time argument, for two non-autonomous elliptic
measure data problems with superquadratic growth. One is variable expo-
nent case and the other is mild phase transition case. In gradient potential
theory for measure data problems, a unified method is still unknown, that
covers both superquadratic and subquadratic cases, because of the difficulty
stemming from the absence of energy solutions to such problems.

However, once we take energy solutions into account, we devise a new
unified method to deal with superquadratic and subquadratic cases simul-
taneously. In particular, we show partial regularity of the gradient of solu-
tions to subquadratic elliptic systems without the quasi-diagonal structure
via Riesz potentials, when the given data belong to suitable Lebesgue spaces
to ensure the existence of weak solutions.

In the process of a further research on developing a unified method for
measure data problems, we establish global Calderén-Zygmund estimates for
such problems with general growth via fractional maximal functions.

Key words: Measure data, Potential theory, Non-standard growth, Lin-
earization technique, Harmonic approximation
Student Number: 2015-30968
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Chapter 1

Introduction

This thesis is devoted to gradient potential theory for non-autonomous el-
liptic equations with measure data and elliptic systems without the quasi-
diagonal structure. It also aims at presenting global regularity results for
measure data problems with general growth by using the fractional maximal
function of order 1.

Gradient potential theory is a newborn area in the regularity theory for
partial differential equations, and it has attracted much attention because of
its difficulties and applications.

For examples, C'-regularity criteria and gradient Holder continuity can be
described via potentials, and Calderon-Zygmund type results can be derived
by applying embedding properties of the potentials to the gradient potential
estimates.

One of the difficulties in gradient potential theory stems from a couple
of facts that weak solutions are not suitable for measure data problems and
that the problems lose their certain monotonicity property when both sub-
quadratic and superquadratic growth are considered simultaneously, and so
no applicable method has yet been developed to cover both cases simultane-
ously.

However, when the given data under consideration belong to suitable
Lebesgue spaces to ensure the existence of weak solutions, we present a uni-
fied method in Chapter 4. Later on, we show Calderén-Zygmund type esti-
mates for problems with general growth, which we discover in the process of
trying to develop such a unified method for measure data problems.
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1.1 Measure data problems with polynomial
growth

Let us consider the following p-Laplace equation with measure data:
—div(a(z)|Du[’">Du) = in Q (1.1)

for p € (1,00), where Q@ C R™ is a bounded domain with n > 2, p is a
Radon measure with finite total mass and a : Q — R™ is a measurable func-
tion satisfying 0 < v < a(x) < L for some constants v and L. If p > n or
p € LIPT(Q) for p < n with [p*]’ = npf£+p, then there exists a unique weak
solution to such an equation by the monotone operator theory, see [99]. On
the other hand, the notion of weak solution is not appropriate if p < n and
i merely belongs to M, (€2) which is the space of bounded Radon measures
in 2. For this reason, several concepts of solutions have been suggested to
measure data problems, see for instance [18,19,37]. In [18], the authors con-
sidered p-Laplacian type equations for p € (2 — 1/n,00) and introduced a
class of distributional solutions called Solutions Obtained by Limits of Ap-
proximations (SOLAs for short) which we are taking into account in Chapter
3 and Chapter 5.

There are several research areas regarding the regularity theory for (1.1).
See for instance [8,13,88] for fractional differentiability, [53, 70,71, 81, 90]
for potential estimates and [26,94] for Calderén-Zygmund estimates. In [88],
differentiability estimates for SOLAs to (1.1) were obtained in fractional
Sobolev spaces when p is a merely bounded Radon measure and a(-) is Lips-
chitz continuous. Moreover, if i satisfies some density conditions, then there
hold Morrey type regularity and BMO regularity for the gradient of SOLAs.
In the recent paper [8], similar results were obtained in a completely lin-
earized form by combining the difference quotient method and the technique
used in [76], when a(-) is a positive constant.

This so-called linearization technique has an important role also in the
gradient potential estimates. It is worth mentioning that pointwise estimates
for SOLAs to (1.1) were first suggested in [70,71] by means of Wolff poten-
tials and then developed in [9,20,85,100,101]. Wolff potentials are nonlinear
potentials, and it is well known that Wolff potential estimates for SOLAs
are optimal in the sense that there are no pointwise estimates via any other
potentials that are sharper than Wolff potentials. Later in [90], potential
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estimates were upgraded to the gradient level for nonlinear equations with
quadratic growth (p = 2). Surprisingly enough, even for the nonlinear equa-
tion (1.1) with Dini-continuous coefficient a(-) and p € (2—1/n, 00), in light of
the linearization technique, the gradient of SOLAs can be estimated by Riesz
potentials that are originally designed for linear equations, see [53,76,77] and
cf. [54]. For superquadratic growth case (p > 2), Riesz potential estimates
given in [76,77] are sharper than Wolff potential estimates given in [54] in
the following sense:

wwmzlﬂﬂ%@m%

gmdﬂﬁcw?QM)ﬁ%r
= cp) [, (2. 2R)r_1, (1.2)

where " is the (truncated) Riesz potential and WY, is the nonlinear Wolff
potential. Note that Dini-continuity on a(-) is known as the optimal assump-
tion to obtain C'-regularity of solutions, see (2.10) for Dini-continuity and
see [52,76, 78] for C'-regularity results, respectively.

We would like to mention [77, Section 9] in which several regularity re-
sults were achieved by the gradient potential estimates. A local Calderéon-
Zygmund type result also can be obtained by using embedding properties
of the Riesz potentials given in [6,64]. As a matter of fact, even the global
Calderén-Zygmund estimates still hold under weaker regularity assumptions
on a(-) and © than those for potential estimates, see [26,94]. We note that
such regularity results via fractional maximal functions of u were originally
suggested in [89]. Moreover, their main results are written in terms of the
fractional maximal function of order 1, M;(u), which satisfies

= c(n)hi(p)(z), (1.3)

where I (p) is the Riesz potential of u. In this regard, the fractional maximal
function estimates would be sharper than potential estimates.

Our main interests are to find optimal regularity assumptions on the
structures and to develop a unified method to establish potential theory and
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the global Calderén-Zygmund theory to nonlinear elliptic problems.

1.2 Gradient potential theory for non-standard
growth problems

We now consider the following model equation

D
— div (% Du) =p in €, (1.4)

where g(z,t) = 0,G(x,t) with a generalized N-function G : Q x RT — R*,
see Section 2.2 for the generalized N-function. There are typical examples of
G(+) which will be investigated later in the next chapters:

e Polynomial case:
Gz, t) =Gi(t) = (B + )72 forpe (1,00),s€[0,1. (P)

e Variable exponent case:

Gla,t) = Gala,t) = (2 + 52) "7 12, (PX)
where 1 < inf p(z) < p(z) < supp(z) < oo.
zeQ €N
e Mild phase transition case:
G(z,t) = Gs(z,t) =t + a(z) log(e + t)t? (PT)

for p € (1,00) and a € C(Q; RY).
e Double phase case:
G(x,t) = Gy(z, t) = t* + a(x)t? (DPT)
for 1 <p <g<ooandaeCR") for some a € (0,1].

e N-function case: G does not depends on the first variable. In other
words, we can denote as follows: for any = € €2

G(z,t) = G5(t). (0)

4
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As we mentioned earlier, (1.4) with (P) is well known as p-Laplacian type
equations with measure data. The case (O) is called general growth and is a
natural generalization of (P). Later in this chapter, we will revisit (P) to dis-
cuss elliptic systems and (O) to study both subquadratic and superquadratic
growth at the same time.

We now move on to non-autonomous cases (PX) and (PT), which has
been studied extensively in the past 20 years. Non-autonomous equations
were firstly investigated in [74,103-105] by Russian mathematicians, notably
by Zhikov. These problems are of importance in that they naturally appear
from the modeling of electrorheological fluids in [97,98] and image restoration
in [1,31]. To simplify our discussion, we always assume that p(-),a(-) in
(PX), (PT) are log-Holder continuous. Here, we say that p(-) is log-Holder
continuous if there holds

sup w(p) log (%) < 00 (1.5)

0<p<r

for some r > 0, where w(-) is a modulus of continuity of p(-) that means
Ip(z) — p(y)| < w(]z —y|) for any =,y € R™. Note that the log-Hdlder conti-
nuity assumption ensures that W>°(Q) is dense in Musielak-Orlicz-Sobolev
spaces W19(Q) for each (PX) and (PT), see [3,105] and [45, Chapter 9].

In Chapter 3, we present gradient potential theory for (1.4) for (PT),
which is announced in [30], and we also present a similar result for (PX),
which is announced in [29]. In the same manner as in the case of (1.1), ex-
istence of weak solutions is not guaranteed for measure data problems in
general. Hence, we consider SOLAs. In particular, we say that a distribution
solution u € W(Q) to (1.4) is SOLA if there exists a sequence of weak solu-
tions {uyte>1 C WHE(Q) to (1.4) with p = py € L=(Q) and wuy, converges to
w in WHH(Q). For (PX), Bogelein and Habermann [21] studied the existence
of SOLAs for p(-) with 2 — 1/n < p(-) < co. On other hand, we refer to [30]
for the proof of the existence of SOLAs for (PT) with 2 —1/n < p < oco.

Gradient potential estimates for the case (PX) were first investigated
by Bogelein and Habermann in [21] using non-standard Wolff potential for
2 < p(+) < oo, and similar estimates were obtained by Baroni and Habermann
to the whole range 2 — 1/n < p(-) < oo via a mixed potential in [14]. In
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Chapter 3, for 2 < p(+) < 0o, we show

g (z,|Du(z)|) < clf(z,R) + cg <:1:,][B ]Du\dy) , (1.6)

Rr()

whenever Br(z) € 2 and R > 0 is sufficiently small. In light of (1.2), the
estimate (1.6) covers the results given in [21]. We further show that (1.6)
holds for (PT) with 2 < p < co. We refer to [29] and [30] for more details.

We would like to briefly mention that the associated ellipticity and growth
conditions to (DPT) has significant changes depending on the point, and
therefore, a stronger assumption than the one in (PT) should be made on the
modulating coefficient a(-) in (DPT). For this reason, regularity results for
double phase problems have been obtained only very recently in [11,38-40].

We close this section by mentioning that in a small region, the energy
functional for (PX) is very close to the one for (PT), and so the same reg-
ularity results hold under the same regularity assumptions on p(-) and af(+),
respectively. For examples, whenever p = 0, if p(-) and a(-) are log-Holder
continuous, then a weak solution u to (1.4) is Holder continuous, and if p(-)
and a(-) are Holder continuous, then Du is Holder continuous, see [12]. Nev-
ertheless, from the point of view of a perturbation argument, they should
be treated differently because the associated reference problems are different
each other.

1.3 Partial regularity via Riesz potentials

As previously stated, an increasing amount of attention has been given to
gradient potential theory. In particular, the theory extended in the several
directions. For instances, we refer to [76] for parabolic equations, [25, 72]
for general nonlinearities, [10, 14,29, 30] for non-standard growth problems,
and [22,52,80,81] for elliptic systems.

Let us focus on p-Laplacian type systems with the quasi-diagonal struc-
ture, in which one can obtain full regularity results for the systems, see for
instance [102]. Gradient potential estimates for p-Laplace systems were first
studied by Duzaar and Mingione in [52] when p > n. Later on, partial regu-
larity for nonlinear elliptic systems without the quasi-diagonal structure was
obtained, as a consequence of nonlinear potential estimates in [80], under the
assumption that the associated data belong to suitable Lebesgue spaces to
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ensure the existence of weak solutions. On the other hand, the full regularity
for the p-Laplace systems with measure data problems were achieved in [81].
In [80,81], superquadratic growth is considered, and harmonic approximation
lemmas played an important role in their proofs. Meanwhile, sharp maximal
function estimates were obtained in [22] for the nonlinear elliptic systems
with data in divergence form.

In Chapter 4, we show gradient potential estimates for p-Laplacian type
systems with subquadratic growth by using e-regularity criteria, almost ev-
erywhere in 2. We assume that our data belong to suitable Lebesgue spaces.
Note that if elliptic systems without the quasi-diagonal structure have data
which do not belong to the dual space of the energy space, then no exis-
tence results are known so far. In addition, even for homogeneous elliptic
systems without the quasi-diagonal structure, Holder regularity of solutions
holds almost everywhere in 2. In what follows, we call the systems without
the quasi-diagonal structure to be general systems.

As we do not assume the quasi-diagonal structure, in which one can obtain
full regularity results for the systems given in [102], there hold only partial
regularity results for general systems, except for subtle higher integrability.
Note that De Giorgi found discontinuous solutions to general systems in [62].

To deal with such general systems, we assume that our systems are asymp-
totically close to p-Laplace systems at the origin. Our approach is mainly
based on harmonic approximation lemmas, which allow us to use perturba-
tion arguments. In the process, we use shifted N-function techniques and
higher integrability in order to apply harmonic approximation lemmas in a
concise form. The main difficulty in our proof arises from the interaction
between subquadratic growth and the associated data in the non-divergence
form. Note that for the problems with subquadratic growth, in [53, Lemma
4.1 and Lemma 4.2], the local average of the gradient of solutions on the
right-hand side of the comparison estimates can not be removed. Therefore,
it does not hold for the problems with subquadratic growth that if the ex-
cess functional is small enough for some radius, then the excess functional is
small enough for every small enough radii, which is in general true for the
problems with superquadratic growth, see [80, Proposition 5.1]. To overcome
this difficulty, we consider several alternatives in the proof of Lemma 4.5.1.

The argument that we use in Chapter 4 also can be applied to su-
perquadratic systems. However, this argument only works for weak solu-
tions, that is, any linearization technique covering both subquadratic and
superquadratic growth for measure data problems is unknown. In the next

7
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section, we study elliptic equations with measure data covering both sub-
quadratic and superquadratic growth.

1.4 Elliptic measure data problems with gen-
eral growth

Turning back to (1.4) with (O), we first assume that G5 € C?(0, 00)NC[0, o)
is an N-function satisfying

tgs(t)
95(75)

for some constants 1,72 > 1, where g5(t) = G5(t). If (1.7) is satisfied, then

0<m—1< <v—1<o0 (1.7)

G5 and 65 satisfy As-condition, see Chapter 2 for more details.

The goal of Chapter 5 is to develop a method to obtain the existence and
regularity results for measure data problems with general growth, which is
announced in [23]. As previously mentioned, the existence of weak solutions
to measure data problems is not guaranteed, in general. Under (1.7), so-called
approximable solutions, which are weaker than SOLAs, are introduced in the
interesting paper [37], which is a natural extension of [17] to general growth,
see Definition 5.2.1.

Note that every SOLAs are approximable solutions and both of the so-
lutions are limits of weak solutions to regular problems. The only difference
between SOLAs and approximable solutions is that an approximable solution
only requires that the sequence of the gradient of regular solutions converges
almost everywhere to the gradient of the approximable solution, while a
SOLA requires that the sequence converges to the gradient of the SOLA in
L'. In Section 5.2, we show that approximable solutions are indeed SOLAs
when Gj;(-) satisfies (5.12). In fact, to establish Calderén-Zygmund theory,
we take SOLAs into account instead of approximable solutions, because al-
most everywhere convergence of the sequence is insufficient, as far as we are
concerned.

We refer to [10] where the measure data problem with general growth
was first treated. To obtain Riesz potential estimates, Baroni considered su-
perquadratic growth, that is, 2 < v; < 75 < oo in (1.7), because there is no
unified method to obtain gradient potential estimates covering subquadratic
and superquadratic growth simultaneously. To overcome the difficulties aris-
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ing from dealing with SOLAs, several auxiliary N-functions and Sobolev-
Poincaré type inequalities are introduced.

Note that, only in [37], a regularity result is obtained for measure data
problems with general growth which covers subquadratic and superquadratic
growth simultaneously. As a first step to develop a unified method for gra-
dient potential estimates, we study Calderén-Zygmund type estimates via
the fractional maximal functions of order 1, under the assumption (1.7) with
2—1/n < v < 7 < oo which covers the whole region of p for SOLAs to
p-Laplacian type measure data problems. We further show Lorentz-Sobolev
type estimates by employing the mapping properties of Riesz potentials and
the inequality between fractional maximal functions and Riesz potentials.
These Lorentz-Sobolev type estimates refine the classical result [19, Theo-
rem 3].

The rest part of Chapter 5 is devoted to Calderén-Zygmund type result for
spherical quasi-minimizers to the following functionals with variable exponent
growth:

F(u,) = /Qf(x, Du) — |FP®=2F . Dudz, (1.8)

where Q C R™ (n > 2) is a bounded domain and F' € LP0)(Q). This result is
announced in [27].

Let us recall quasi-minimizers and spherical quasi-minimizers for the func-
tional regarding (P). A quasi-minimizer is a weak type of the minimizer. For
example, let h: Q x R™ — R satisfy |£[P < h(z,€) S [P+ 1 and U a subset
of € to consider

H(v,U) ::/Uh(x,Dv)dx.

Then we say u € VV&f(Q) is a local quasi-minimizer or a QQ-minimizer of H
provided

H(u,supp @) < QH(u + @, supp @)

for each ball B € Q and ¢ € W,?(B) and for some Q > 1. Of course,
if @ = 1, then u is a local minimizer of H. On the other hand, we say
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u € VVlif(Q) is a local spherical quasi-minimizer of H provided
H(u, B) = / h(xz, Du) dx < Q/ h(z, Du+ Dy)dxr = QH(u+ ¢, B)
B B

for each B € Q and ¢ € W, ?(B) and for some Q > 1.

The concept of quasi-minimizers was first introduced by Giaquinta and
Giusti in [59,60]. The advantage of the use of quasi-minimizers is that they are
Hoélder continuous, see [59], as the De Giorgi argument still holds for the case.
On the other hand, one can construct a functional and an associated spherical
quasi-minimizer that is locally unbounded. However, it turns out that if ()
is sufficiently close to 1, then we can still obtain the Hélder continuity of a
spherical quasi-minimizer, as follows from [63].

As mentioned before, we present a global Calderén-Zygmund type result
for spherical quasi-minimizers to (1.8) under possibly the weakest assump-
tions on the domain €2 and the functional f.

10



Chapter 2

Preliminaries

2.1 Notations
The followings are standard notations, which will be used in what follows.
(1) z = (2',2,) € R" for 2’/ = (21, -+ ,2,_1) € R" L.

(2) By(x) ={y € R": |z —y| < r} is the ball centered at x with radius r > 0
and BT (x)t is the upper half ball. If there is no confusion, we write
B, = B,(x).

(3) Q1is a bounded domain of R",n > 2, and 0% is the boundary of Q.

(4) Q.(x) =QN B,(z) and Q, = QN B,.

(5) dist(z,U) = inf {|Jz — y| : y € U} is the distance from z to a set U.

(6)

6) For each set U C R", |U| is the n-dimensional Lebesgue measure of U,
and diam(U) is the diameter of U.

(7) For every k € N, we define truncation operators Ty, % : R — R by

Ty(t) = min{k, max{—k,t}} and Ty(¢t)=T1(t — Ti(t)).

(8) For f € L} (R™), (f)v stands for the integral average of f over a bounded

loc
open set U C R™ with positive measure, that is,

(f)U:][Uf(x)dx:ﬁ/Uf(x)dx.

11
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(9) For each problems, we use the abbreviation data to specify the depen-
dence of constants and denote ¢ > 1 by a generic constant depending
only on data, which may vary from line to line.

(10) We denote A < B when there exists a generic constant ¢ such that
A < ¢B. If ¢ depends also on y which does not belong to data, then
we write A <, B instead. Moreover, the notation A ~ B shall mean
¢ 1B < A < ¢B for some generic constant c.

(11) For any constant p > 1, p/ = p%l is the conjugate exponent of p. We call

p* = n”—_’;) by Sobolev exponent for p € [1,n).

2.2 Musielak-Orlicz spaces

A real valued function ® : Q x Rt — RT is called a generalized Young
function, if ®(x,-) is a convex function that satisfies

®(2,0) =0 for a.e. z € Q, tlim O(z,t) = oo for ae. x € Q
—00

and ®(-, 1) is Lebesgue measurable for all ¢ > 0. We define ® : Q x RT — Rt
by
O(x,t) ;= sup{st — ®(z,t)},

t>0

which is called the complementary function of ®. By the definition of com-
plementary function, we see

st < ®(z,t) + Bz, s),

whenever s,t € RT and a.e. z € Q. Moreover, for any ¢ > 0 it holds that

(10 <00 < (120, o

t

A generalized N-function ® : Q x Rt — R* is a generalized Young
function such that ®(z,t) > 0 for all t > 0,

O(x,t)

O(x.t
lim (z,%) =0 ae.ze and lim

=00 a.e. x €.
t—0 t t—00

12



CHAPTER 2. PRELIMINARIES

Additionally, we assume that ®(z,-) € C%(0,00) for a.e. z € Q and satisfies

tO}(x, t)
D<y —1< 222 <y — 1 2.2
T =00 (x,t) "2 (2:2)
for some positive constants 1 < v < 7y, for t > 0 and a.e. € ). In this

section, we define data = {71,792, n}.
We readily check that (2.2) implies

tatq)(l', t)

O(x, at)
ns O(x,t)

®(z,1)
for t,a0 > 0 and a.e. x € ). If the last inequalities is satisfied, then we say

that ® and ® satisfy Ag-condition. It is also well known that for any n € [0, 1]
and s > 0 (2.2) implies

<72, min{a™, a”} < <max{a™,a™} (2.3)

mRO(t) < B(nt) <y @(t) and () < O*(nt) < RP(H).  (2.4)

For more details, we refer to [95] and [84, Lemma 1.1].

Since ®(x,-) is monotone increasing for a.e. x € €, we can define a func-
tion @71 : O x RT — RT by & !(z,®(z,t)) = P(x,® ' (z,t)) = ¢ for all
t € R*. From (2.3), one can derive

!z, at) 1

min {Oﬂl CW2} < W < max {an,a% } (2.5)

for t,a > 0 and a.e. © € €, see [10, Section 3]. Throughout this section,
we assume that every generalized N-function satisfies (2.2). It is well known

that
& (x y”é’”) ~ (1) (2.6)

for every t > 0 and a.e. z € ().
The Musielak-Orlicz space L*(€2) is the set of Lebesgue measurable func-
tions f : (2 — R satisfying

/@(m,|f|)dm<oo
Q

13



CHAPTER 2. PRELIMINARIES

with the following Luxemberg norm

[ fllzo@) = inf{)\ >0: / ) (m,m) de < 1},
Q A

and the Musielak-Orlicz-Sobolev space is

Whe(Q) = {f € L?(): /ch(x, IDf|)dx < oo}

with the norm

‘|f|‘leq’(Q):inf{>\>0:/Qq)(33'7’_?) d:l:+/ﬂ¢>(a:,@) dxgl}.

If (2.2) and inf,eq ®(z,1) > 0 are satisfied, then they are Banach spaces,
see [92, Theorem 10.2].
Similarly, we call a real valued function ¥ : R™ — R* an N-function, if
U is a nondecreasing convex function that satisfies ¥(0) = 0, ¥(¢) > 0 for
all t > 0,
limw =0 and lim w = 00

t—0 ¢ t—oo

Then we recall the Orlicz space

1) = {7 e @) [ wnf)dr < oo}

and the Orlicz-Sobolev space

WY (Q) = {f € L¥(Q) /Q\If(|Df|)dx < oo} |

One can find basic ingredients of Orlicz spaces and Musielak-Orlicz spaces
in [43,66,92,95] and references therein. Note that these spaces corresponds
to the case (O).

Recall the examples given in Section 1.2. It is well known that the func-
tion spaces W1P(Q) and LP(Q) regarding (P) are called simply Sobolev space
and Lebesgue space, respectively. For (PX), we denote the Musielak-Orlicz
space by LPO)(Q) and the Musielak-Orlicz-Sobolev space by W'P()(Q) and

14



CHAPTER 2. PRELIMINARIES

call them simply the variable exponent spaces. As mentioned in Chapter
1, these spaces are naturally appeared in the modeling of electrorheological
fluids and image restoration. For further discussions about some important
properties including reflexivity, separability, and Sobolev embeddings on vari-
able exponent spaces, we refer to [42,45,55,57,58,105] and references therein.

We end this subsection with Sobolev type inequalities. Let ¥ be an N-
function satisfying (2.2). First, we introduce a condition on ¥ corresponding
to the case 1 < p < n for (P). We say that ¥ grows slowly if

/O(ﬁ)"lldxoo and /m<ﬁ)nlld,§:oo, (27)

We now define

n—1

Ho(t) = (/Ot [q}fs)} - ds) T ad W)= (Fo H)). (28

The Sobolev embedding theorem for 1 < p < n was extended to Orlicz spaces
in [34, Theorem 3], which we now state.

Lemma 2.2.1. Let Q0 C R",n > 2, be a bounded domain and let ¥ be an
N-function satisfying (2.7). Let W,, be the function defined by (2.8). Then for
every u € Wy (Q) there holds

|ul
/\p ( TR dm)i>d:c§/gllf(]Du|)da:

where ¢, is the measure of the n-dimensional unit ball.

Next, we introduce an embedding theorem [33, Theorem 1al, correspond-
ing to ¥ growing fast, that is,

/OO (Wfs)> 7 ds < oco. (2.9)

Lemma 2.2.2. Let Q) be as in Lemma 2.2.1 and let U satisfy (2.2) and (2.9).
Then there exists a constant ¢ depending only on 7, ||, n such that for every
u e Wh¥(Q)

[ull () < el Dul[Lw @)

15



CHAPTER 2. PRELIMINARIES

We introduce another Sobolev embedding theorem, [10, Proposition 3.5].
Lemma 2.2.3. Let ¥ € CY(R") be a positive N-function such that

U(1)
W(t)

7 S S Y2, fO?" t> 0, with 1 S Y1 S Y2.

Then there exists a constant ¢ depending only on n,p, such that

]iRm (%)&dx§c<]{3R\Il(|Du|)dx>&

for every u € W)V (Bg).

2.3 Auxiliary results

2.3.1 log-Holder continuity

The modulus of continuity of a continuous function p : 2 — R is the nonde-
creasing concave function wy.) : [0,00) — [0, 00) defined by

wp(y(p) == sup{[p(z) — p(y)| : z,y € Q, |x — y| < p}.

We say that p is Dini continuous if

d
/0 wp(.)(m?” < o0. (2.10)

As we mentioned before, Dini-continuity assumption on the coefficient af(-)
in (1.1) is the sharp one to obtain C'-regularity of solutions.
Additionally, we say that p is log-Dini continuous if

/pr<~>(p) log G) % < 00. (2.11)

Note that the log-Dini continuity (2.11) on p(:) implies the strong log-
Holder continuity

1
lim sup wy(.)(p) log (—) =0,
[N P

16



CHAPTER 2. PRELIMINARIES

which implies the log-Hélder continuity given in (1.5). Indeed, (1.5) implies
that there exist constants Ry, L > 0 such that

w(p)log (%) <r (2.12)

for every 0 < p < Rj. In the localization procedures of Chapter 3 and
Chapter 5, for any function p(-) satisfying (2.12), the following estimates are
often used: for any 0 < R < R; and 0 < & < wp()(R) we have

R™“ < ¢(L) (2.13)
whenever 0 < R < Ry and 0 < & < wp(y(R), and

AO’

IN

c(L,a)(A+ R*)7t (2.14)

for any o, « > 0, whenever A > 0.
We now introduce an estimate for Llog L functions given in [4, (28)]
and [68, Lemma 5.2]. For any ¢, 5 > 1 and f € L%(Q), we have

(eafis)osanfre)
]{Zflog < e dx < c(q, B ][\f| der | . (2.15)

In Chapter 3, we further use the following estimates: For any ¢1,t, €
0, 00), we see

log(e + t1ta) < log(e + t1) + log(e + t2). (2.16)
Moreover, if t; > 1, then we have
log(e + t1ta) < tylog(e + to).

2.3.2 Monotonicity of vector field A(-).

Let us consider the following continuous vector field A : Q x RV — R”
with 0A = 0:A(-) being Carathéodory regular and satisfying the following

17
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ellipticity and growth assumptions

|A(z, )]+ |0A(z, O)|(|€]* + %)% < Lg(x,|€])

,ﬂ(ﬁ’glg') nl? < (B Az, €)n, 1),

where x € Q, {,n € R", 0 < v < L and g(z,t) = 0,G(x,t) for some general-
ized N-function G satisfying (2.2) with & = G.
We now define an auxiliary vector field V' : 2 x R” — R" by

Vio.E) = (g(l[’g:f'))%ﬁ

for every x € Q and £ € R". The monotonicity of A(-) can be written as
follows

(2.17)

QNQ(xa|§1|+|§2|) RE
V. m) = Vi)~ T - 6

5 <A(I7£1) - A(I7€2)7§1 - §2> (218>

for every 21,20 € R" and = € , see [44, Lemma 3] and [65]. In case t —
g(x,t)/t is increasing for a.e. x € 2, we further discover

G(z,|z1 — z|) < |21 — 2% (2.19)

2.3.3 Regularity results for limiting equations

In this subsection, we present known decay estimate for limiting equations.
For A : R* — R" satisfying (2.17) with some N-function G, let v be the
weak solution to the frozen equation:

(2.20)

—div (A(Dv)) =0 in Bg,
V=W on 0OBgp,

where w € WH%(Bg). The following local Lipschitz regularity and excess
decay estimates can be found in [10, Lemma 4.1] and [84, Lemma 5.1].

18
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Lemma 2.3.1. Let w € WYY (Bg) be the weak solution to (2.20) under
(2.17). Then the following estimate holds:

sup |Dv| < cl][ |Dv| dzx.
Bgr

Br/2

Moreover v € CL°

loc
estimate holds:

B
][ |Dv — (Dv)p,|dr < cg (B> ][ |Dv — (Dv)p,|dx
B, r By

(Bgr) for some B € (0,1) and the following excess decay

and
AN
osc Dv < ¢g <—) | Do| dz
By r B,

forO0<p<r< é, where the constants ¢;, cg and the exponent B depending
only on n,m,7v2,v, L.

Global Lipschitz regularity of solutions to equations with general growth
has been actively investigated, see for instance [15,35,36,84]. In particular,
we mention [40, Theorem 2.2] and [32, Theorem 4.1] for boundary Lipschitz
regularity for the weak solution v to

{_div(A(Dv))=0 in By, (2.21)

_ +
v =w on 0By,

where A : R"™ — R" satisfies the same assumptions in (2.20) and w €
WLC (B}) satisfies w =0 on T = {x € Bg : z, = 0}

Lemma 2.3.2. Let v € WHS(B}) be the weak solution to (2.21). Then there

exists a constant ¢; = ¢;(n,y1,72,v, L) > 1 such that

sup G(|Dv]) < cl][ G(|Dvl) dx.
+

B:r BQT

Recall that (P) is the typical example of (O) in Section 1.2. Therefore,
Lemma 2.3.1 and Lemma 2.3.2 hold for the case (P) with constants ¢;, cg and
[ depending on p instead of v; and .

19
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Chapter 3

Non-autonomous equations

3.1 Main results

We devote this chapter to gradient potential estimates for non-autonomous
measure data problems regarding (PT) and (PX). Let us consider the follow-
ing equation

—div (y(z)A(z, Du)) = p in Q, (3.1)

where 4 is a finite Borel measure defined on a bounded domain 2 C R", n > 2
and the coefficient function v : {2 — R satisfy the following boundedness

v<~(zr) <L < o0. (3.2)

We further assume Dini-continuity assumption on 7 as in (2.10) with
modulus of continuity w,(.) to obtain pointwise estimates for the gradient of
solution. Note that Dini-continuity is known as the optimal assumption on
the coefficient to derive C''-regularity for homogeneous elliptic equations as
we mentioned in Section 1.1. Moreover, this continuity assumption has an
important role in measuring the decay rate of oscillation of the gradient.

The mapping A : QxR™ — R™ is assumed to be C*-regular in the gradient
variable £, with 0A(+) being Carathéodory regular. In order to study elliptic
equations generalized from (1.4) with (PT) or (PX), we are going to consider
two types of assumptions, (GPT) and (GPX). It is readily checked that (1.4)
satisfies (GPT) (resp. (GPX)) when (PT) (resp. (PX)) is considered.
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CHAPTER 3. NON-AUTONOMOUS EQUATIONS

We first consider the following growth, ellipticity and continuity on A(-):

A, &) + |0A(, §)I€] < L[|~ + a(x) log(e + [€])|g]"]
v [[€FP7* + a(x) log(e + [€DIE]"] Inl* < (9A(x, E)n,m) (GPT)
|[A(x,€) — Ao, §)| < Lwa(y (| — wo]) log(e + [€]) €7

for every x,zo €  and &, n € R", where 0 < v < L are fixed and 2 < p.
On the other hand, we also consider the following set of assumptions:

p(l) 1

(|A(z, )| + [0A(, |1 + 57)2 < L(EP + )
<u<15\2+s>1’“” > < (DA(z, &), m) o
A, €) — Ao, )| < Lwyy (|2 — o)) [(|g|2+32)%

p(zg)

(g + )4 | 1+ | og(l€l + 5]

\

for every x,x9 € 2 and &, n € R", where 0 < v < L and s € [0, 1] are fixed.

In addition, the variable exponent function p : {2 — R and the modulating
coefficient a : 2 — R are assumed to be log-Dini continuous as in (2.11) and
satisfy the following boundedness

2<p(x)<v<oo and 0<a(x) < |allpe@) < oo (3.3)

In this chapter, we assume 2 < p and (3.3) to restrict our discussion to
superquadratic growth case.

Remark that in the region {z € Q : a(x) = 0}, (3.1) with (GPT) is
reduced to be p-Laplace type equation, while in the remaining region, it
is reduced to LPlog L type equation. For this reason, it is called a non-
autonomous problem and so does the case (PX), see (1.2) for more details.

Throughout this chapter, data stands for the set of constants {n, p,v, L}
if (GPT) are considered, while it stands for {n,~,,v, L} if (GPX) are con-
sidered. We define g3 and g by

g3(z,t) ="~ +a(x)log(e + )P ~ 0,Gs(x,t)

and
go(z,t) = @)=L o 0:Gy(w,t),

where G3 and G9 are given in Section 1.2. If it there is no confusion, we omit
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CHAPTER 3. NON-AUTONOMOUS EQUATIONS

the subscripts 3 and 5. We also write

wlt) = s (2) + i (8) oge + )
(resp. w(t) = wyy(t) + wpy(t) log(e + 1))

if (GPT) (resp. (GPX)) are taken into account.

As mentioned in Section 1.2, we consider (3.1) under (GPT) or (GPX)
with the right-hand side measure p which does not necessarily belong to the
dual space of W1 (Q). Therefore, we consider the notion of SOLAs that is
introduced by Boccardo and Gallouét in [18]. Indeed, for (3.1) with (GPX),
Bogelein and Habermann proved the existence of SOLA in [21].

Definition 3.1.1 (SOLA). A function u € W' (Q) is a SOLA to (3.1) under
(GPX) if and only if there are a sequence {py }reny C L(€2) converges to u
weakly in measure and a corresponding sequence of weak solutions {ug }ren C
WaP(Q) to the equation

(3.4)

—div(y(z)A(x, Dug)) = py,  in Q
u, =0 on 0f,

such that uy — u in WH(Q,)(y) for every z € Q, r > 0 with

< . : : _nl
1 < ¢ < min { mlenﬂfrp(x), — xlengfr(p(a:) 1)}

Note that weakly convergence in measure implies

lim sup || (U) < |ul (D) (3.5)

k—o0

for every measurable set U C € and its closure U, see [56, Theorem 1.9.1].

On the other hand, the proof of the existence of SOLAs to (3.1) under
(GPT) in [30, Lemma 2.5] is quite similar to the one in [18] since the logarith-
mic perturbation does not affect the approximation procedure given in [18].
Now we define a SOLAs to (3.1) under (GPT):

Definition 3.1.2. We say that a function v € W, (Q) is a local SOLA
to (3.1) under éGPT) if there exists a sequence of local weak solutions
{urlren € Wy©(Q) to (3.4) with {u}ren € L®(Q) such that p, — p

weakly in measure, and u; — u in WH4(Q) for any 1 < ¢ < min{p, %}
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We first obtain a priori estimates, Theorem 3.1.4 below, for weak solu-
tions, and then justify that the estimates also holds true for the SOLA by an
appropriate approximation procedure, which will be made under the a priori
assumption that L'-norm of Du is uniformly bounded as

/ |Du|dz =: M < . (3.6)
Q

Henceforth, we assume p € L®(2) and u € Wh%(Q), until Section 3.4.
We now state our first main result:

Theorem 3.1.3. Let u € WVY(Q) be a weak solution to (3.1) under (GPT).
Assume a(-) is log-Dini continuous and y(-) is Dini continuous. Then there
exist constants ¢ = c(data) > 1 and Ry = Ry(data,w, M, |u|(Q)) satisfying
g(xo, | Du(zo)]) < elf(xo, R) + cg (mo,][ | Du dx) (3.7)
B

r(20)

for every Lebesgue point xoy of Du, whenever Br(xg) C Q with R < Ry and
the right-hand side s finite.

Analogously, we have the following estimates for (GPX):

Theorem 3.1.4. Let u € WHY(Q) be a weak solution to (3.1) under (GPX).
Assume p(-) is log-Dini continuous and ~y(+) is Dini continuous. Then there

exist constants ¢ = c¢(data) > 1 and Ry = Ro(data,w, M, |u|(S2)) satisfying

g(xo, |Du(xg)|) < eIt (zo, R) + cg (xo,]{g (|Du| + s+ R) dx) (3.8)

r(z0)

for every Lebesque point xoy of Du, whenever Br(xo) C 2 with R < Ry and
the right-hand side is finite.

Remark 3.1.5. Recalling (1.2) for the case that p(z¢) > 2, one can obtain
the result of [21] as a consequence of Theorem 3.1.4, with the weaker conti-

nuity assumption (2.11) on the variable exponent function p(-) than the one
used in [21].

Remark 3.1.6. Applying some embedding properties of Riesz potential to
Theorem 3.1.4, one can prove Calderéon-Zygmund type estimates. We refer
to [6,64] for a classical result of Riesz potential embedding in Lebesgue spaces,
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[7,42] in variable exponent spaces, and [91, Theorem 1.2] in weighted variable
exponent spaces, respectively. Calderén-Zygmund type estimates for (3.1)
under (GPX) are recently obtained in [26]. Indeed, for any weak log-Hélder
continuous function ¢ : 2 — R such that

1 <infq(z) <supq(z) < n,
Q Q
[7, Theorem 4.3] shows the implication:
nq(-)

na()
where w-L T )01 (€2) is the variable exponent weak space defined in [7,
Definition 3.1]. See (2.12) for the definition of weak log-Holder continuity.

As another direct consequence of Theorem 3.1.3 and Theorem 3.1.4, we
see that

I'(-,R) € L2.(Q2) for some R>0 = Due€ Ly.(Q,R").

Then later in Proposition 3.5.1, we prove a local VMO-regularity of Du.
Once we have Proposition 3.5.1, the gradient continuity criteria follow from
the same spirit used as in the proof of [76, Theorem 1.5], as we now state
without its proof.

Theorem 3.1.7. Under the assumptions of Theorem 5.1.3, if

Il{in%) I'(z,R) =0 locally uniformly in Q w.r.t x, (3.9)
—

then Du is continuous in Q. This C'-reqularity criteria also hold under the
assumptions of Theorem 3.1.4.

Remark 3.1.8. Recall the Lorentz space

L@ = {1 € @) [ 111> )

e
La()

for 1 <p < ooand 1 < ¢ < oo, and [76, Corollary 1.6] to discover that if
the right-hand side measure p belongs to L(n, 1), then (3.9) holds and Du is
continuous. Consequently, our result of Theorem 3.1.7 complements [78] for
the p-Laplacian problems to the non-autonomous problems.
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We now conclude this introduction with the following Riesz potential
estimates for SOLA.

Theorem 3.1.9. The statements of Theorem 3.1.3, Theorem 3.1.4 and The-
orem 8.1.7 continue to hold for SOLAs to (3.1) under the same assumptions
of each theorems.

Before ending this section, we mention the very fine paper [75] where
oscillation estimates are obtained in terms of the Riesz potentials of the
measure g for nonlinear degenerate elliptic equation of the p-Laplacian type.
After the pointwise estimate have been obtained in Theorem 3.1.3, it seems
possible to find a correct version of the oscillation estimate [75, Theorem 1.1].

3.2 Comparison estimates

From the assumption (2.11), when we consider (GPT), we can take a positive
constant
1
<
1/() + [ Dufl ey +1

Ry = Ri(w, | (), ]| Dul| 11 @)

such that . |
. o (1)1 - < , 3.10
wy() (1) + wa(y (1) log (T) < To0mp (3.10)
for every 0 < r < Ry, which implies
rwa() (1) = g=Wa() (M) log(r) < (3.11)

and
(|M‘<Q) + HDUHLl(Q) + 1)“)“(‘)(7‘) S rfwa()(r) S c

whenever 0 < r < R;. We point out that the upper bound in (3.10) is chosen
in order to handle some technical issues such as in (3.45) and (3.69).
On the other hand, in case of (GPX), we assume

1 1
wv(.)(r) + wp(.)(r) log <;) < 100m9y " (3.12)

These inequalities will be used often in next sections. Throughout this chap-
ter, we always assume 0 < R < R;. To proceed further, we recall (2.13) and
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(2.14) which will be used without mentioning them.

For any measurable set U C R™ with positive Lebesgue measure and an
integrable function f : U — R* with some positive integer k, we denote the
excess functional of f by

E(f,U) = ][U 1~ (ol de. (3.13)

We now consider the following reference problems. As mentioned in af-
ter (3.6), we assume p € L>®(Q) and u € WHY(Q) till Section 3.4. Then
there exists w € WhY(Bg(z)) the unique weak solution to the homoge-
neous Dirichlet problem

14
w=wu on JBg(xg), (3.14)

{—div (y(z)A(z, Dw)) =0 in Bp(xo)
where Bgr(xo) C €. Indeed, there is a higher integrability result of w in
Lemma 3.2.7 for (GPT) and Lemma 3.2.10 for (GPX).

With a suitable assumption on R, we then let v € WLG(“)(BR/Q(IQ) be
the unique weak solution to the homogeneous Dirichlet problem

{—div(A(:El,DU)):O i Bpy(r1) (3.15)

v=w on 0JBp,(z1),

whenever 0 < R < R and Bx(x1) C Bg(wo), see Remark 3.2.12.

As we mentioned in Section 1.2, each energy functional regarding (GPT)
and (GPX) are similar in local. Moreover, the proofs of Theorem 3.1.3 and
Theorem 3.1.4 are parallel after certain comparison estimates. Therefore, in
what follows, we focus on the proof of Theorem 3.1.3 to emphasize the differ-
ence between (GPT) and (GPX) by introducing only comparison estimates
for Theorem 3.1.4.

3.2.1 Basic comparison estimates for (GPT)

Through this subsection, we assume that A(-) satisfies (GPT).
Before starting to discover comparison estimates, we introduce some aux-
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iliary functions and their properties. For Br(x(), we denote

mRrzy = I0f a(z), ampe, = sup a(z) and ap = a(x).
Br(zo) Br(zo)

For y > —1, 2z € Q and t € R", we define

gm,R,xo(t) = lnf g(fl),t), gM,R,xo (t) = Ssup g(fE,t), gO(t) = g(Io,t>,

Br(zo) Br(o)
o (t 1+x ; 14
gvayxo,X(t) = (gT()> t, gM,R,xg,X@) = (—th( )) t,
G (t) = nf G(r,8) and Go(t) = Glo, ). (3.16)
r(z0

If no confusion arises, then we omit the subscripts R,z in the notations,
that is, we simply write a,,, g,, and so on.
A direct calculation yields

oG dG,,

@ g, S0~ galt) G(a:,t)%/og(x,s)ds

and

Gult) = [ guloris

for every x € Q and t € R™. Furthermore, ¢t — £ (f’t) is increasing function
for a.e x € Q) i.e.,

g(m,tl) < g(l‘,tg)

3.17
) o £80) (3.17)

whenever 0 < t; < t, € RT.
Here, we provide some properties of the function G(-) for p > 2. Differ-
entiating G(-) with respect to ¢t > 0, we have

tp

0,G(z,t) = pt (1 + a(x) log(e + t)) + a(x)e Tt

and

0FG(5,1) = plp — D1 (1 + ala)logle + 1) + 20(olp— — ale) o
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for every x € Q. To find the constant 7, and 7, in (2.2), we estimate

el a(@)(p+ 1) — ale) o

0,G(t) sp- +10(1 +a(z)log(e +t)) + a(x )eit' (3.18)

p—1<

If t > e(e—1), then p > 2 implies

WP+ Vs oW ale)p+ 1)
p(1 +a(x)logle + 1)) +a(x) 27 ~ p(1 + 2a(z)) + a(z)
a(z)(p+1)
~ 2a(z)p+alx)+p

e+t

<

O‘!IOJ

(3.19)

On the other hand, the concavity of log function implies

t
> 14+ —
e(e—1) — +26

log(e +1t) > 1+

for 0 <t < e(e—1), and so we have

3p(1 + a(z) log(e + 1)) + 249° — 4a(z)(p + 1)L + da(z) L

>3p(1+a(x )+%> — (da(z)p + a(x)) 77

>3p(1+ 3a($)> eit (4a(x)p + a)e—+t > 0.

2
(e+t)?

Therefore, for every 0 < ¢t < e(e — 1), we have

a(x )(p+1)e—+t—a($)& .3

- <
p(1+a(x )log(e+t))+€(—+1 4

(3.20)

Combining (3.18)-(3.20) and applying (2.3), we obtain

tG" (x,t)

G'(x,t)
1< —= < 1 21
) <p-+ (3.21)

G(z,t)

for every t > 0 and = € ). Therefore, applying (2.5) with « € (0, 1), we have

¢
<p—- and p<

1
4
arp M (x,t) < ¢ M (z,0t) < aFiTp (1) (3.22)
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for every x € Q2 and t € RT.
For the fixed ball Bg, G,,(-) also satisfies (3.21) and we have

(G = Sime@)s%‘lam

and

j—; (Gult)%) = Gl 52C 1) (i 14 M)

8p " 8p G (1)?
< LG () F G (1) (i 1+ 2 %) <0.
8p 3p P

Therefore, Gm(~)§ is concave and then it follows from Jensen’s inequality

that 5
( Gm(|f|)81pdx) sc:m(][ |f|dx) (3.23)
Br Br

for every f € L'(Bg).
Recall the estimates in Section 2.3 which will be used frequently later in.
For every a € (0,00) and t > 1, logt < éta. Then we have

9u(t) < gm(t) + wa(y (R) log(e + )17

.24
< gult) + (e + (0P < g0y + oo B2

We now set a constant
ul (B
MRz, = 90_1 (—| I R(mo))) > 0.

If there is nothing to be confused, we write M = Mpg,,. By (3.24) and
(3.11), we see

L (1BRY < el(Br) |y [ lul(Br) )T
9o \ 9m Rnr—1 ~ Rn-1 +gm Rnr—1

< lulBr) Pm(BR)T*‘?f—’? - lul(Br)

~  Rn-— 1 Rn— 1 ~  Rn-— 1 -
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CHAPTER 3. NON-AUTONOMOUS EQUATIONS

Since gy (t) < g;;1(t) for t > 0, we see

M”WCM%O' 5

Rn—l

The next lemma shows a comparison estimate between (3.1) and (3.14)
under (GPT). To do this, we reduce these equations to certain problems with
general growth in the proof of Lemma 3.2.1 to apply known estimates in [10].

Lemma 3.2.1. Let u € WY(Q) be a weak solution to (3.1) and w €
WYC(BgR) be the weak solution to (3.14). Then for any

ve {_l’mm{pil’(p—lﬁn—l)})’ (3:26)

there exists a constant ¢ depending only on data and x such that

][ Imx(|[Du — Dw|) dx < g\ (M).
Bgr

Proof. The main idea is to rescale (3.1), (3.14) and reduce them to general
growth problems. Without loss of generality, one can assume M > 0. If not,
then the uniqueness of weak solutions implies u = w in Bg and there is
nothing to prove. We rescale (3.1) and (3.14) as follows:

.+ u(zg+Rx)  _  w(xg+ Ra)
_  A(xo+ Rrx,Mz) _ = _u(xo+ Rr)
Az, z) == I (M) , Hlz)=R Im(M)
and Re. Mt
g(x,t) == 90 + Rz, )

gm(M) 7
for x € B1(0) and z € R™. It then follows from (3.25) that |i|(B1(0)) ~ 1.
We further note that

(0. A, ) > I D e

2|
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and

(0~ 1, 1) < t5(r.1) < po(e. 1

for all € By(0) and t > 0. Subtracting (3.14) from (3.1), we discover
— div [A(z, D@) — A(z, D@)] = a(z)  in Bi(0). (3.27)

Based on Lemma 2.2.1 and Lemma 2.2.2, we consider two cases p < n and
p > n. Let us first consider the case p < n which implies the second condition
in (2.7). The first condition in (2.7) holds for every p < n, excluding p = n.
For this reason, we define

0 t=0,
f(t) :={ Gmy (1)t fort € (0,1),
Gy (1) for t € [1, 00).

By testing (3.27) with

U — W

Cn </Bl f(|Du — Dw|)dx)

U — W
=:T; ( o F ) S WOI’G(Bl) N LOO(Bl)

1
n

and using (2.18) and (2.19), we find

1
Cnf Ch

Go(|Dit — D) da < / (A(z, D) — A(z, Dib), D) da
o (3.28)
S/AMM§h
B1

where ¢, is the constant given in Lemma 2.2.1,

¢ _
Gm(t) ::/0 gm(s)ds and Cjy := {x € B : [@ — ] < k:}
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We have used |fi|(B1) ~ 1 in (3.28). Now using

U —Ww
e m (P58) ewein sy

as a test function to (3.27), we obtain

/ Gm(|Dt — Dw|)dx < F, (3.29)
Dy,
where -
Dy, = {xGBl:k< |2 — ol §k+1}.
CnF

The estimates (3.28) and (3.29) corresponds to [10, (5.17) in the proof of
Lemma 5.1]. Once (3.28) and (3.29) are obtained with g,,(1) = 1, then we
discover

][ G (|Dii — D) da < ¢ (3.30)
By

by following the calculations after [10, (5.17) in Step 2.1 of Lemma 5.1],
where ¢ depends only on data and Y.

We now assume p > n. In this case, v and v are locally bounded in By
by Lemma 2.2.2. Thus we use & —w € Wy"%(By) N L>®(By) as a test function
in (3.27) to see

| Gulipa - Daldo <c [ (@ w)d < el w]ica,
By

B1
S CHD'EL — DwHLG_m(Bl)

Following the calculations [10, Step 2.2 in Lemma 5.1], we obtain
][ Gm(|Du — Dw|)dz <, (3.31)
By

where ¢ depends only on data and y. By (3.30) and (3.31), we conclude that

1 ][
—_— Im(|Du — Dw|) do = ][ Imx(|Du — Dwl|)dz < c.
Qm,x(M> Bgr X(| ) B X(| Y
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Applying Lemma 3.2.1 with y = —1 and (3.25), we see

B
]{9 |Du — Dw|dx < c1g5* (mjgn_f)) ) (3.32)

where ¢; = ¢(data).
To proceed further, we define a function Ay, , : RT — RT by

0= [250] < 250

Corollary 3.2.2. Let u € WY9(Q) be a weak solution to (3.1) and w €
WLC(Bg) be the weak solution to (3.14). Then for every x satisfying (3.26),
there exists a constant ¢ depending on data and x such that

][ By (| Du — Dwl) dz < chyp,  (M).
Br

Proof. We refer to the proof of [10, Corollary 5.2]. O

In the proof of next lemma, we follows similar procedures in that of
Lemma 3.2.1.

Lemma 3.2.3. Let u € WH%(Q) be a weak solution to (3.1) and w €
WLC (Bg) be the weak solution to (3.14). Then for every & € [1, min {pﬂ e

T’ n—1
there exists a constant ¢ depending on data and & such that

]iR gm(|Du — Dwl)* dx < ¢ Pulf'z(ff)r |

Proof. As in the proof of Lemma 3.2.1, we assume M > 0 and we use the
same scaling in there. We begin with the case p < n. We define
0 t=0,
f(t) == ¢ gm(1)5t  fort e (0,1), and F = <
Gm(t)* for ¢ € [1, 00)

i|Di — D)) dx) ’

B1
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We test (3.27) with

uU—w
o= Tk( = ) e W% (By) N L®(By)

to see

Gw(|Di — Dw|)dz < kF, where Cj = {:1: ep, _]_7;”| < k;} .
Cn

C

Here, we have used (2.18) and (2.19). Similarly, take

U — W
o=m (P22) cwio iy

as a test function to (3.27) to see

| — |

Gn(|Di—Dw|)dz < F, where Dy, := {x €B; k<

Dk Cn

Then by the same reasoning as in the proof of [10, Lemma 5.3|, we discover
][ Gm(|Dt — Dw|)* dz < c(data, &).
B

On the other hand for case p > n, we make the similar estimate as in
Lemma 3.2.1 to discover

][ Gm(|Dt — Dw|)® dz < c(data, &).
By
Consequently

1
———— 1 gm(|Du— Duw ﬁdx:][ gm(|Du — Diw|)*dx < c.
o o e = gu )¥d <

O

We remark that Lemma 3.2.1, Lemma 3.2.3 and Corollary 3.2.2 are the
natural extensions of [77, Lemma 2] to the setting of Musielak-Orlicz spaces.
Next lemma shows a kind of weighted comparison estimate.
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CHAPTER 3. NON-AUTONOMOUS EQUATIONS

Lemma 3.2.4. Let u € WH9(Q) be a weak solution to (3.1) and w €
WLE(Bg) be the weak solution to (3.14). Then for any o > 0 and & > 1,
there exits a constant ¢ depending only on data such that
/ |V (z, Du) — V(z, Dw)|? alt
Br

dr <
(o + [u — w))E =%

|1l (Br)

Proof. Testing n* := a!™% — (a + (u — w)+)™¢ € WY (Bg) N L*®(Bg) to
(3.1) and (3.14), we discover

dx

R

/ v(x)nidu‘ < Lo |u|(Bp).
Br

Then (2.18) imply the following inequality:

|V (z, Du) — V(x, Dw)|?
€= ”/BR (o +Ju—wl)

dr < c(|L] + |I_]) < ca’ <[] (Bg).
]

3.2.2 Basic comparison estimates for (GPX)

Through this subsection, we assume that A(-) satisfies (GPX).

In this subsection, we derive comparison estimates for (GPX), which are
analogous results to lemmas in Subsection 3.2.1. However, instead of using
scaling and normalization, we use Lemma 3.2.5 to prove Lemma 3.2.6.

For simplicity, we denote

po=p(xo), p1:= inf p(z) and p;:= sup p(z). (3.33)
Br(zo) Bp(zo)

As usual, all given balls are assumed to be centered at g, unless otherwise
stated.

Lemma 3.2.5. Given a weak solutionu € WP0)(Q) to (3.1), w € WP (Bpg)
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be the weak solution to (3.14). Then

dr <c

(h+ [u— w|)® £ 711l (Br) (3.34)

/ |V (x, Du) — V(x, Dw)|? ht=¢
Br

holds whenever h > 0 and § > 1, where ¢ = c¢(data) > 1.

Proof. Test ¥ := h'=¢ — (h+ (u— w)1) "¢ € WP (Bg) N L=(Bg) to (3.1)
under (GPX). Then we have

(a(z, Du) — a(z, Dw), D(u — w)4)
fo 7 (it (u—w)a)t o

/ v(x)nidu\ < L1'5|u|(Bp).
Br

] =(§ = 1)

Now (2.18) and (2.18) imply the following inequality:

|V (z, Du) — V(x, Dw)|? -
<5—1>/BR et e < e + 1) < cLb (B

[
From now on, we assume

0<R<R, (3.35)

where R; is the constant given in (3.10).

Lemma 3.2.6. Let u € WP0)(Q) be a weak solution to (3.1) under (GPX)
and w € WHPO(Bg) be the weak solution to (3.14). Then we have

B o1
][ |Du — Dw|*dz < ¢ (PIL]L(”—];)} + Rp°1> ’ : (3.36)
Br
whenever
) 1 3(p; — 1
1<qg<qy forq ::mln{pl—z,pl—l—l—%}. (3.37)

Proof. Once we obtain (3.36) with ¢ = ¢, it then follows from Hélder’s
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inequality that

2

][ |Du — Dw|?dx < <][ |Du — Dw\qoda:> "
Br Br

o([E] )™

for every 1 < ¢ < qo. Therefore we shall prove for ¢ = g9. We first consider
the case p; < n. To apply Sobolev embedding theorem and Lemma 3.2.5,

we choose £ = "(51_—;;10) < n < oo, satisfying (pfzoqo) = ¢ with the Sobolev
conjugate qj of qo, and £ > % > 1. We set
s B )
h=R v +R |Du— Dw|®dx | >0 with a = — 1 (3.38)
Br P11 —

Applying (2.19), (2.14) and Hélder’s inequality, we obtain
][ |Du — Dw|® dx
Br

Du — Dw|® £a0.
-f D= Pl ju = ) da
BR(

€ag

h+ |u — wl|)?@

(h+ [u — w|)"® dz

£aqq

2qqg
— p(x)
< c][ |V (xz, Du) — V(x, Dw)|
Bg (h+ |u — w|)r@

q0

2py P1
— p(x)
< ][ |V (xz, Du) — V(z, Dw)| s
Br

3
(h+ Ju — w])r®
p1—40

£40pP1 Pl
. (][ (h + |u — w]) 5 d:c)
Br
a0

_ 2 PN

§C<][ |V (z, Du) — V(x, Dw)| dx+R<;0£>)1
pe (i Ju—w)p

P1—490

£ag £ag £(a+tqq) Pl
. (][ <|u — w|Pi—9% 4 hri-9% 4 R Pi-% > dx) ) (3.39)
Br
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With the help of Sobolev embedding and (3.38), we have

[0) [0) £(atqg)
’u _ w’m—fm + hri—90 + Rri—e0 |dx
Br
Pl

&ag o a0 flatap) \ 1T
<c|Rmn (][ |Du — Dw|® dx +hn + R 7
Br

0]

< chm-w, (3.40)

where ¢ depends only on n, pg, p1 and gg. By enlarging the constant ¢, the
dependence on pg, p; and ¢y can be replaced by 7, and n, since gy < p; — i <
n — 1. Combining (3.39) with (3.40) and applying (3.34), then we find that

g0

€y V(z, Du) — V(x, Dw)|? a1 =9\ P
][ |Du — Dw|® dx < ch e (][ |V (z, Du) (x, Dw)| de + R - ) 1
BR BR

(h+ u — w|)
£ (1-¢) B " (r1-8)
<o (h = [l ¥ )

IN

90 10 3
h\ 7 [|u(Bg)|]™ AN
(&) '] (7)) 7
1 (h\® u|(Br) 7T
< — | — o'
S 5w (R) +c<{ Tn 1 ] + R

- 92 Rn—l

On the other hand, we observe that for some constant ¢ depending only on
Y2, and L, it holds that

_4g0 a0 _ao0(po—p1) _qo
l(Br) 1771 _ [l (Br) |0 o vmen_flul (Br) | 70
Rn—1 - Rrn—1 - Rrn—1 )

as 0 < R < min{Ry, (M + |u|(©) + 1)~1}. This completes the proof for the
case p; < n.
Next, we consider the case n < p;, which implies gy = p; — 1/4. Let
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E=n <4p1_2>, then we have

4p1—1
6 dyy — 2
1<—n§§§mm{n(,y2 ),qo} and $do =&
7 4y, —1 P1— Qo
Then (3.40) holds true and the proof of Lemma 3.2.6 is finished. O

According to (3.10) and the choice of ¢y, we have

. 1 3(pr— 1)
go = Min {pl 27171 + in=1) )~ Po

Hence, we can always take ¢ = pg — 1 to the Lemma 3.2.6.

3.2.3 Higher integrability and further comparison es-
timates for (GPT)

Through this subsection, we assume that A(-) satisfies (GPT).

Lemma 3.2.7. Let w € WYY (Bg) be the weak solution to (3.14), 0 < p < R,
0 € (0,1) and q € (0,1]. Then there ezists a constant o = o(data) such that

1

T 1
<][ G(z,|Dw|)** dm) <c <][ G(z,|Dwl|)? d:p) (3.41)
BGp(Z) BP(Z)

for some constant ¢ depending only on data,6 and q, whenever B,(z) C Bg.

Proof. One can find a higher integrability results for (3.14) in [12, Theorem
4.2], where the constants in the estimates depend on LP norm of Dw. To
consider measure data problems, we need to eliminate such a dependence on
the constants, otherwise no limiting process for SOLA can be made here. We
start with employing [12, Lemma 4.1], a Caccioppoli type estimates:

][ G(z,|Dw|)dz < ][ G (.CE, w) dzx, (3.42)
Br/Q(y) Br(y) r

where ¢ = c¢(data).
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Applying (3.24) and the Poincaré inequality for Orlicz spaces in [44, The-

orem 7 and Remark 8], there exists a constant d; = d;(p) such that

][ a (:1:, w> dx
Br(y) r

di
S ( Gm (|Dwl|)® dx) —l-][
Br(y) Br(y)

w— (w)BT(y) PFwa(y(r)

r

We apply (3.32) and (3.11) to see

Wa(y(T)
(][ | Dw| dx)
Br(y)
Wa(y () Wa(.) (R)
(][ \Dw\dx) < (][ \Dw\dm) +1
Br Br

<

~J

<

~J

-1
0

B wa(.)(R) wa(_)(R)
(|M|(_f)> + <][ |Du|d:z:> +1<e
R" Br

dzx.

(3.43)

(3.44)

From the assumption (3.10), there exist a constant dy > 1 depending only
on n, p such that

np L
n—(n—1we)(r) = den—p’

(3.45)

when p < n. On the other hand, if p > n, then we take do = 2. By the
Sobolev-Poincaré inequality, we have

][BT ()

<

IN

(£,

Ptwa(y ()
dx

w — (w>Br(y)

r

(n=1)wy(y(7)

et n
dx
n—(n—1)w (. (r)

Doy ) "
a() dw)
Wa(y(T) ) ds
(][ |Dw|dx) (][ | Dw |z dx)
Br(y) Br(y)

41
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do
S (][ G(z, |Dw|)d2dx) :
Br(y)

Combining (3.42), (3.43) with (3.46), we have

d
][ G(x, Dw)dx < <][ G(z, |Dw|)clid:v> ,
By/2(v) Br(y)

(3.46)

where d = min{d, d>}. Applying Gehring’s Lemma, [63, Section 6.4], we find

the conclusion of the lemma.

[]

Note that the constant ¢ in Lemma 3.2.7 goes to infinity, when 6 — 1.
Theorem 3.2.7 implies that v € Wl’p(1+")(BgR/4) C Wl’G(xl)(BgRM) for any
x1 € Bgr. Hence, we see that v — w € WOI’G(M)(BR/Q(:Q)), where w is the
solution to (3.15). Thanks to the higher integrability result of v, one can

obtain a comparison estimate between (3.14) and (3.15).

Lemma 3.2.8. Let w € WYY (Bg) be the weak solution to (3.14) and v €

Wl’G(xl)(BR/Q(xl)) be the weak solution to (3.15). Then we have

][ \V(z1, Dw) — V (21, Dv)|* dz < cw(R)Q][ G(z,|Dw|) dz.
BR/2($1)

B5R/8($1)

Proof. In this proof, we denote B = Bp(x;) for simplicity. We test v — w to

both (3.14) and (3.15), to discover that
][ g(@1, [Dw| + |Dv|)

15 |Dwl+ D]

2

|Dw — Dv|? dz

< ][13 v(z1)(A(x1, Dw) — A(z1, Dv), Dw — Dv) dx

2

B

— 4@ = 1) Alar, Du). Dw = Do) d

+][ v(z)(A(z1, Dw) — A(x, Dw), Dw — Dv) dx =: I + Is.
1B

2

42
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Here, we have used (2.18). Using (GPT) and (3.17), we estimate [; as

wy(y(R)g(x1, | Dwl|)|Dw — Dv| dx
B

S~

IA

o
o

1
. D 2
s )6, [Du (S D - Do
B | Dl

g(z1, | Dw| + | Dvl)
g |Dw|+|Dv|

|Dw — Dv|? dz

IN
[
i

+ c(e)wy(.)(é)Q][ G(z1, |Dw|) dz (3.48)

1
5B

for some € > 0. By a direct calculation, we see

][ G(z1, |Dw|) dx < ][ G(z,|Dw|) dz
iB 1B

+ wty(R) ][ Dwllogle + [Dw|)dr  (3.49)

2

Similarly, we estimate Iy as

I < cwa(y(R) ][13 log(e + | Dw|)|Dw[P~|Dw — Dv| dx

2

< e][ |Dw[P~?|Dw — Dv|* dx

2

+ efe)uagy (R)? ][ |Dwl log(e + | Dw|) da

1B
D D
Se][ g<x17‘ w‘+| vD|Dw—DU|2dZL‘
\5  1Du|+|Dd]
+ c(e)wa(.)(ﬁ)z][ | Dw|P log*(e + | Dw|) da. (3.50)
B

2

Combining (3.47)-(3.50) and taking e small enough, we see

][ g(x1, | Dw| + | Dv|)

|Dw — Dv|? dw
43
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S (R ][ G(z,|Dw|)d

+wa(.)(R)2][1 | Dw[? log®(e + | Dw|) d

2

J/

-~

I3

+ wv(.)(R)Qwa(.)(é) ][1 | Dw|?log(e + | Dw|) dz .

2

[ J/

-~

14
By (2.16), we see

I3 5][ |Dw|Plog? (e + |Dwl?) dx
1B

2

Duwl?
§][ | Dw|? log? e+% dx
ip ||Dw||Lp(%B)

2

2

+logt (e IDullf, ) £, |DuPds = Byt o
iB
2

Applying (2.15) and Lemma 3.2.7, we discover

1

140
I, < (][ ]Dw]p(H")dx)
ip

2

T4
< (][ G(m,|Dw])1+"dx> 5][ G(x,|Dwl) dz
iB 5B

(3.51)

(3.52)

(3.53)

where o is the constant defined in Lemma 3.2.7. We apply Lemma 3.2.7,

(3.32) and (3.11) to discover

2

2p
][ |Dw|pdm<][ G(z, |Duw|) dz < <][ Gla |Dw|)2pdx)

2p
(][ |Dw\dm) < (][ |Dw—Du|dx—i-][ |Du|dm>
B B

R2p(n+1)
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Now we estimate I35 as follows:

1 1
I35 < log? <T> ][ |Dw|Pdx < log® <—~) ][ G(z,|Dw|)dz.  (3.54)
R/ JiB R/ J2B

Combining (3.52)-(3.54), we have

1
I 5][ G(z, | Dw|) dz + log? (—)][ G(z, | Duw|) dz (3.55)
i &) Jis

Similarly, one can obtain

1
L 5][ G(z, | Duw|) dz + log (—)][ G(z, | Duw|) dz (3.56)
e i) Jes

Combining (3.51), (3.55) and (3.56), it follows from (2.19) that

D D
f drdDul Dy, g
wa [Dul+]Di]

2

S0P £ GloDul) do + (R og? (;) ngG(x,erDdx

2

+w7(.)(1fi)2wa( log( )][ G(z,|Dwl|)d

5%(.)(}?)2]{BG(3;,\Dw|)d:c+wa(( log( )][ Glz,|Dwl) d

where we have used (3.10) for the last estimate above. [

Remark 3.2.9. To obtain Riesz potential estimates for u, we need to obtain
L' comparison estimates from Lemma 3.2.8. In this remark, we denote G !
as the inverse function of G(z1,-). In the light of Jensen’s inequality, (2.19)
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and Lemma 3.2.8, we discover that for B = Bj(x)

2 2

][ |Dw — Dv|dz < G} ][ G(xl,]Dw—Dv])d:L’>
ip ip

<Gl w(]%)Q][ G(z,|Dw|) dx)
B

8

8p
< (}’;11 w(f{)Q <ZZ G(z, \Dw\)filpdx>
3B

4

8

1 =N 2 1 ptw(R) .

S Gy | w(f) Gn([Dw|)® + [Dw| & dx
3B

4

We have used Lemma 3.2.7 in the third estimate. It then follows from (3.23)
and (3.44) that

1 p+w(R) *
][ G (|Dwl|)® + |Dw| 3 dx
3B

4

pFw(R)
< G <][ | Dw| da:) + <][ ]Dw|da:’> <G (xl,][ ]Dw]d:c) .
3B 3B 5B

Therefore, there exists a constant ¢y = cy(data) such that

][ |Dw — Dov|dz < G} (w(}?)ZG <x1,][ | Dw| dm))
iB 3B

2 4

< cow(R)7i ][ |Dw| dz. (3.57)
B
Here, we have used (2.5) and (3.21).

3.2.4 Higher integrability and further comparison es-
timates for (GPX)

Through this subsection, we assume that A(-) satisfies (GPX).
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Higher integrability result for (3.14) under (GPX) is already obtained
n [21, Lemma 3.2]. By minor modifications with the choice of R in (3.10),

one can see that the constant ¢ in the following lemma does not depend on
M and |p|(2).

Lemma 3.2.10. Let u € W'P0)(Q) be a weak solution to (3.1) under (GPX)
and w € WHPO)(Bg) be the weak solution to (3.14). Then for any 6 € (0, 1),
there exist constants oy = og(data) € (0,1] and ¢ = ¢(data,0) > 1 such that
|Dw[P) € L;17°(Bg) with the estimate:

1+to
][ (|Dw| + 5)3FP@ dy < c][ (|Dw| + s 4 p)*™ du,
BGp(y) Bp(y)

whenever B,(y) C Bg.

Remark 3.2.11. With the help of Lemma 3.2.6 with ¢ = 1, (2.14) and [63
Remark 6.12], for 0 < 6, < 0 < 1, we can deduce

<][ (|Dw| + 5)P@ dx)
Bo, r(y)
pw | \P2CER
Sc(][ (|[Dw|+ s+ R) 2. da:)
Br(y)

paw(2R)
Sc(][ (\Dw|+s+R)dx)
Br(y)

| |B 1 v p2w(2R)
([“ R} +—+s+R> < (3.58)

w(2R)

Rn— 1 Rn

and

][ (|Dw| + 5)P@) da
By, r(Y)

(@) P1
<c ][ (|lDw| + s+ R) »2 dx
Bo,r

p2—P1

P2
: ][ (|Dw| + s + R)P™ dx
By, r(Y)
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p1

<ec : (3.59)

][ (|Dw|+ s+ R) dx
Bo,r(Y)

where ¢ = c¢(data, 01, 65) is increasing to infinity as Z—f — 0.

Remark 3.2.12. In what follows, we assume that the number R; given in
(3.12) further satisfies

1 (o))
) log [ =) < . 3.60
wp((p) log ( p) =~ 100n7, (3.60)

It then follows from Lemma 3.2.10 that
P2 < p1+wp)(2R) < (14 09)p(z) for x € Bp,
and so

w e W1,(1+ao)p(~)(BR/2(x1)) C WLW(BR/Q(xl)) - Wl’p(“)(BR/z(m)),

which ensures the existence of the weak solution v € W@ (Bg so(21)) to
the homogeneous problem (3.15) with p(z,) growth.

Lemma 3.2.13. Let w € W'PO)(Bg(x)) be the weak solution to (3.14) and
v E Wl’p(xl)(BR/Q(xl)) be the weak solution to (3.15). Then we have

][ \V (21, Dw) — V (1, Dv)|* dx
BR/2($1)

< cw(R)’ (3.61)

][ (|Dw| + 5)P@ dz 4 RP(V
B

51%/8(9”1)

and

][ |Dw — Dv|dx < cw(]%)f?o][ (|IDw| + s+ R)dz.  (3.62)
B y(@1) Bsp,a(x1)

Proof. From the monotonicity property of a(-), (2.18), we have

p(zy

)-2 )
> |Dw — Dv|” dx

][ (|Dw|* + | Dv|? + s*)
Bé/z(xl)
48
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< C][ v(z1)(a(z1, Dw) — a(x1, Dv), Dw — Dv) dx
BR/Q(arl)

= C][ (v(x1)a(xq, Dw) — y(z1)a(z, Dw), Dw — Dv) dx
B (1)

+ c][ (v(z1) — v(x))(a(z, Dw), Dw — Dv) dx
BR/Q(zl)
= ]1 + _[2.

For the estimate of I;, we refer to [21, Lemma 3.4]:

L] <c {wpc) (R> log (%)] 2

On the other hand, by (GPX) and Hélder’s inequality, we deduce

][ (|Dw| 4 s)P®) dx + RP | .
Bypys(@1)

~ p(x)
Bl <o) f (Dol + )
Bé/z(ml)

p(z)—2

~(|Dw|* + |Dv]* + s*) 1 |Dw — Dv|dx

p(z)—2

< 6][ (|Dw* + |Dv]* +s) 2 |Dw — Dv|*dx
BR/Q(xl)

+ ¢(e) [w,y(.) <R>]2]{9 (|Dw| + 5)P@ d. (3.63)

R/2(m1)

Absorbing the first term in right-hand side of (3.63), we obtain (3.61). In
view of (3.59) with 6; = 2,6, = 3,(3.61) and (2.14), we estimate as follows

][ |Dw — Dv|dx
Bﬁ/z(xl)

Ee)
< ][ |Dw — Dv[P™) dz
BR/Z(xl)

(1

P )—2 p(z1)
§c<][ (|Dw|? + |Dv|* +s?) 2 |Dw — Dvf’ dm)
Bﬁx’,/z(m)

1
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<c (w(R)Q ]{B

< cw(ﬁi)?éﬂ][ (|Dw| + s + R) dx.

BSR/4(331)

1

p(xq)
(|Dw| + s)p(w) dx + Rp°>

51?,/8(“”1)

This completes the proof. n

3.2.5 Sequence of comparison estimates for (GPT)

Through this subsection, we assume that A(-) satisfies (GPT) and set u as a
weak solution to (3.1).
For some ¢ € (0, %), we define a sequence of shrinking balls

B; = B,,(r9) and r;=46R (i=0,1,---). (3.64)

Let v; € WLY(B;) be the weak solution to (3.14) with Bp replaced by B;.
Moreover, let w; € WG (1B;) be the weak solution to the following equa-
tion:

2

{—diV(A<1717DUi)>:O i 5By (1), (3.65)

w; = v; on G%Bri (x1).

For the functions defined in (3.16), we denote gn,; = Gmri» M = IMri
Gmin = Ymri and so on. Recall (3.25). For any y € (—1,00), we define
functions h[), hmﬂ', hM,i, hgyx, hm,i,xa hM,i,X7 9o, : RT — R* by

oty = 20 g = 20 = 20y = i)
harin(t) = gMZTX(t) and  go(t) = <g0t(t>>l+x t.

In addition, we write M; = M,, ,, for each ¢ € N.

Lemma 3.2.14. Assume
Mii<A  and % <|Dwia|<HN inBi  (3.66)

for a constant H > 1. Then there exists a constant cz3 = c3(data,d, H) such

50
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that

B;_
][ |Du — Dw;|dx < c3 lC 1)} :
B;

90(>‘>{ 7’?:11
Proof. We set

n = and E:=1+2n.

By the assumption (3.66),

h in(|Dw;_
][ |Du — Dw;|dx Sy ][ Mhn<| u; 1|)|Du—Dwi|dx
B; B; M/La"]( )

<][ hM,i,n(|Dwi_Dwi—1|>
~ JB hain(A)

h i D )
N ][ PavinUDON) by py e = AL+ Ay, (3.67)
B’L

|Du — Dw;| dx

hy ,im()‘)

Since g,y is a Young function, we apply Young’s inequality and (2.6) to see
that

hM,i,n()\>A1

_ garin(|Dw; — Dw;_4|) ][
< i d . (|Du— Dw:|) d
N][BZ gm, N ( |Dwz—Dw2_1] T + 5, gm, ,7]<| u w |) €T

,S ][B ngm(|Dwi — Dwi_1|) dlL‘ + ][ gM7i,77(|DU — DU}ZD de

k3 Bz

< ][ drtin(IDu = Dws 1)) da + ][ rtin(|Du = Duwy)) de (3.68)
B; B;

Note that (3.10) implies 2 e CoNAEL gy, { Bt %} By (3.24),

Lemma 3.2.1, Lemma 3.2.3 and (3.11), we discover

][ min(|Du — Dw;_4|) dx
B;

Sﬁ ][ gm,ifl,n(‘DU - D’LUZ;1|) dx
B4

n ][ Dt — Dy =2 (D041 g
B;_1
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(P—2+wy(y(ri—1))(1+m)+1

{ Jul(Biy)
(

1
||B)M
:uil‘| Pt
= go.n(Mi1) + go(Mir) o1, (3.69)

In the same manner, we find

][ ngivn(|Du - le|) dx 5 gO,n(Mz’) + go(J\/li)H%”

(3

p—2
o go,n(Mi—l) + go(Mi—l)Hp*ln- (3.70)
Combining (3.68), (3.69) and (3.70), we apply (3.66) to discover that

1 p=2
< e — . ) 1+p—1n

)\ Mi— Al"r’l] s >\ Bi_
:ZQZ%MI) Oy S0 Miz) TS PM( )
n

In the last inequality, we have used

p—

%GV%M%J go(N)7T

AT =2n AT (go(Mz‘—1)> =

Applying (3.24), we have

Pia Az S F il Dal)| D = Dl da

2

+][ | Dw;|P=2+<a0) )0 Dy — Dapy| da
B;
=: By + Bs. (3.72)

For any a > 0 to be chosen, Lemma 3.2.4 and (2.18) yield

h(zx,|Dw;| + |D 3
B g ][ [ (&, | Do 1 u’)|Du — Dwi|2}
B L (a+]u—wvl)
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[N]72%

[l ([Dwi) (o + [u — wy])]
( |V (x, Du V(x, Dwi)]2d$>2

(o + |u — )¢
. (]{Eg o i (| Dwil) (e + [ — v4])]* dx)

< (P“‘?f—f)} al—ﬁ)% (ﬁ (B (| D) (0 + [ — ] dx) L (373)

By a similar calculation, we have

dx

N|=

: [|Dw,-|(p’2)§+°v(oz +Ju—v])t]? do

(| ) (£ 100 (D2t ju =] )’
(8]) o)

- <][B (B s(| D) (@ + [ — vi])] 5 dx) | (3.74)

N

N

1-w

where @ = 2w,()(1;)(1 4+ 7). Using (3.32) and (3.11), we see

(][ \Dwi|dx> ,S(][ |Dwi—Du]da:> —1—(][ |Du|dx>

B;)] %D Dullpen1¢
s [l 7 1P

n— n
i T

(3.75)

Combining (3.72)-(3.75) gives

S v ([ off)é
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(]f - dx> .

For any constant 7 € (0,1), we take

_ <][ [hm,i(|Dwi|)|u_Ui|r°°dx>€ + 7. (3.76)
B, L hari(A)
Then we find that
o3 Bi1)]? hoi([Dwi)]75 ) 7
VoY [sz“l 1)} o (]{3 { fiAil,M) D} d‘”)
_ [ o ]5 {mu&_nr
Tio1 ho(\) 7

1-©
1 g
e (][ T dx) ‘ 377
hMﬂ}%—l()‘) B, @ 1(| |) ( )

We assert that the last term above can be bounded by some constant ¢
depending only on data, H and ¢. To prove this, we apply (3.66) to have

1-@

2
(£ hseatipui o)
B; v

S_;H (][ hm7i7g~_1(]Dwi—Dwi_1|)dx) +hmi§—1()\)'
B; T—® "2

1-&

In addition, (3.24) and Corollary 3.2.2 imply

2
( hmz 3 _1(|Dwi — le_1|)dl’>
;Bi D12
S (][ h, . e 1(|Dwi—Du\)dx)
B; [
1—w

l 2
< hm,i,i_—l(u:u sz—ll)d$>
B; 1=
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1—&

s h 7i7§_1(M2‘)+ <][ h ie1 g~_1(|Du—Dwi_1|)dx)
2 Bi*l ’ 11—
1-w

+ <][ |Du — Dwi_1|(p2+wa(‘)(”1))(1€@1)dx) ’
B; 1

<5 hm,z‘,g—1(Mz‘—1) + <][ |Du — Dwi_1|(p2+wa(~)(ri1))1£wd$)
B; 1

—w

It then follows from Hoélder’s inequality, Corollary 3.2.2, (3.32) and (3.11)

that

1-w

(][ |Du — Dwi_1|(p2+wa(‘)(”1))1€@dac) ’
Bi 1

< (][ hmviil’ﬁiquu — Dwi,l\) dl')
Bi—l WTWa () \Ti—1

wa(A)(Ti—l)f
3
. (][ |Du — Dw;_| dx)
B4

yMi1) Shy, e (M),

~Y m}z,ﬁ—

Sh

~ myi-1,5—

and this is the assertion. Similarly, one can show

3
e B, )] ™%
]{9 Gm.i(|Dw;—1 — Dw;|) =% dx So,H [M} .

Ti 1

k3

Thus, for any € € (0, 1), we further estimate (3.77) as

As <o { alr {!u!(B“)F _ oA {’M|£B“)} L

o] = gV

Combining (3.67), (3.71), (3.79) gives

B; go(A) r

n
i i1 Ti—1

n
i—1 Ti—1
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From (3.76), we find

e
B;

= Il + [2 + ho()\)T

We note 5= < —- from the assumption (3.10). We estimate I, as

&1

5-

ﬁ — ][ Gm.i(|Dwi—1 — Dw;|) |u — v;| | T2 o 3
T B; |Dwi71 - DU}Z‘ T

11—

D Dw\ 7=\ ¢
< ][gmi gmz<| Wi—1 — wz|) de
~ B, ’ |Dwi_1 — le|
&

Here, we have used Young’s inequality, (2.6), Lemma 2.2.3 and (3.78).
Applying (3.66) and Sobolev embedding theorem, we discover

ok (]i

1-&

= €
1-w
dx) < ][ |Du — Dw;|dzx.
B;

u— v;

T

o6

(3.83)

&
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Combining (3.80)-(3.83), we have

0, H,e)\ B;_
][ |Du — Dw;|dz < (0. H,e) P/ﬂ — 1>] —|—ce][ |Du — Dw;|dx + .
B; 90()‘) i1 B; Ti—1
We choose € small enough and let 7 — 0, to conclude that
][ |Du — Dw;|dx < c3 A [|,u| nB_Zl_l)} :
B; 9o(N) Tiq
O

Next, we obtain a sequence of comparison estimates between (3.1) and
(3.65).

Lemma 3.2.15. Assume

M1 <A, sup |Dw;| < H\ and

3
1Bi

T >

for a constant H > 1 and X\ > 0. Then there exists a constant ¢y, = c4(data, o, H)
such that

A I/LI(B“)]
Du— Du;ldx <c + cqw(r;)A.
£ < euz oy [ et

Proof. From Lemma 3.2.7 and (3.24), we have

][ G(z,|Dw;|) dx < <][
3B, 3B

8 1D

1 PFwe () (T5) 2p
S ][ Gu.i(|Dw;|)?» + |Dw;|” 2 dx
3B.
4 1

ptwa(y (i)
<u Gm,i()\)+<][3 ]Dwi\dq:) (385)
7B.

4 3

2p
G(z, | Dw,|)> dx)

where we have used (3.84) and Holder’s inequality for the last inequality. By

o7
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(3.32), (3.84) and (3.11), we find

ptwa(y (i) 1 wa(y(r:)
Bi p—1 M
(f umwm) 5<PMLP] +~7) v
).

A < Go(A

N
s
A

(3.86)

Combining Lemma 3.2.8, (3.85) and (3.86) gives

][ h0(|Dvi|—|—|Dwi|)|Dwi—Dvi|2dx < w(ri)2][ G(z,|Dw;|)dx < w(ri)2G0()\).
i i

(3.87)

We define an auxiliary function G1(t) = Gy (t%) for t € R*. By a direct
calculation, we discover

1
aotp

p(e—i—t%)

G (t)
dt

:1+a010g<e+t%>+ > 0,

and so the derivative of G is increasing, i.e., G;' is concave. It then follows
from Jensen’s inequality, (2.19) and (3.87) that

Qf mw—Dw%mgG#<f GMW%—DMDM>
lp 1p.

2 270

On the other hand, we apply (3.24) and Lemma 3.2.3 to discover

][ go(lle — Dwi_1|) dzx
B

7

< ][ go(|Dw; — Dul) dx + ][ 9o(|Du — Dw;_1]|) dz
B; B

7

<s ][ Gm.i(|Dw; — Dul|) + |Dw; — Du|p_1+“’a<‘)(”) dx
B.

7

+ ][ gm,ifl(|DU - Dwi,1|) + |Du — Dwiil‘Pflera(‘)(mﬂ) dr
B;_

i—1

o8
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a() Ti—

/\J

[pl(Bi-1) |l (Bi-1)
[ ]

i—1

[wBl >] )

-1

Applying (3.84), we see

1
Y

D
][ |Dv; — Dw;|dx Sy ][ <M> |Dv; — Dw;| dz
1B, lBi gO(A)

2 2

D l
5][ (—go(l w")) |Du; — Duw;| dz
$B; go(A)
1
Dw; — Dw;_ v
+][ (go(| o o 1|)) | Dv; — Dw;| dx
1B; 900\)
=1+ L. (3.90)

1
Since 1 < p’ <2, we see t¥ < Ht> for every t € [0, H] and

e
I < ][ gollDwi) | Dv; — Dw;|dx
3B go(A)

N|=

1
S T ][ ho(|Dv;| + | Dwi|)| Dw; — Duil?dz | < w(r)X. (3.91)
hO(/\)2 %Bi

Here, we have used (3.84) and (3.87).

It only remains to estimate I. Applying (3.89), (3.88) and (3.22), we

obtain

]25(][ go(| D )\)le 1‘) ) <][ |Dv; — le|pdx>
B; 9o

2p

1)] + w(ry) PN, (3.92)
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Combining (3.90)-(3.92) yields

A 11| (Bi—1)
Dv; — Dw;|dx Ss i [ — + w(r) A\
][;Bi | | 9o(N) Ti—ll )
This estimate and Lemma 3.2.14 complete the proof. O

3.2.6 Iterative comparison estimates for (GPX)

Through this subsection, we assume that A(-) satisfies (GPT) and set u as a
weak solution to (3.1).

Given a number 0 < § < %, let ws € W0 (Bsg) be the weak solution
to the following Dirichlet problem under the assumptions (GPX):

{—div (v(z)A(z, Dws)) =0 in  Bsp(xo) (3.93)
ws =u on 0Bsgr(xg).
Lemma 3.2.16. Let A > 0 and assume that
( %—L_}f)} + RP0—1> SRSt (3.94)
We further assume that
% <|Dw| < HX in Bysgp (3.95)

holds for some constant H > 1. Then there exists a constant c; = c3(data, 0, H) >
1 such that

B
][ |Du — Dws| dx < csX* 77 ({M} + Rp°1> : (3.96)
Bsr Rr-
Proof. We fix parameters n and & as
1
ni= §=1+2n,

4(n+1)(po — 1)
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w

A

ws

and introduce w = ¥ and ws = 5. We shall use exponents ¢ such that

Loye Sm=1 1

&= |
~ 1 —wy)(20R) (po * 2(n + 1)) 1 — wy()(20R) < qo, (3.97)

where ¢q is given in (3.37). Note

§ n .
< =1
1-— cup(.)(éR) “—n-—1 ’

(3.98)

from (3.60). We start with estimating the lefr-hand side of (3.96), by applying
(3.95) and (2.14):

][ |Du — Dws| dz < HPo=21+0)¢ ][ | Dw|Po=20+M| Dy — Duw;| da:
Bsgr Bsr
<c ][ |Diws — Dw| P~ | Dy, — Duw;| da
Bsr
+c ][ | Diws|Po=24M)| Dy, — Duws| der. (3.99)
Bsr
For any ¢ satisfying (3.97), we apply Lemma 3.2.6, to deduce that
][ |D”J)5 — Dw|‘1 dx
Bsr

< c)\q][ | Du — Dws|? dz + c)\q][ |Du — Dw|* dx
Bsgr Bsr

ul(B o1 B
<! ( %} + Rpo_l) T peae |‘B5];|| - |Du — Dw|* dx
L R

q

M} - Rp°1> RS ([M} n Rpol)poq—l

( L (OR)" ! Rn—1
(

_ " B - p(;%
%—_ﬂ + RP 1) , (3.100)

where ¢ = ¢(data, ¢, ¢). Using Holder’s inequality, (3.36), (3.100) and (3.94),
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we have

][ |Dws — Dw| P02+ | Dy, — Dws| da
Bsr

Po—2

< (][ |Dws — Dw| P~ D0+ dx) o
Bsr

1
-1 po—!
. |Du — Dws [P dx
Bsr
(Pg—2)(A+n)+1

< AT (Po=2)(A+n)—1 ({—w}’éff)] 4 R%l) o=t

< AT m qulﬁf)} + Rpol) , (3.101)

with ¢ = ¢(data, d), where we have used the fact that

1.

(Po—2)(1+n)+1 S
po—1 -

We combine (3.99) with (3.101) to discover

][ |Du — Dws| dx
Bsr

B
< c][ |D1I;5|(p°_2)(1+’7)|Du — Dws| dx +cA\¥P <{M] + Rpo—1>
Bsr R

S

~~

=11

(3.102)

with ¢ = ¢(data, ). We use (2.19) to estimate [; as follows: for any h > 0

x)—2 %
I, = A2-Po)(1+n) ][ [ Duwgl | Du — Duw;|?
Bsr (h—|r|u—w5|)g

1
. (’Dwd(po%)é*(p(w)*po) (h + |u _ w5])5> 2 dx
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D=

p(x)—2

—p D 2 D 2 2 5
< C)\220 ][ (| U| +| ’LU6| +S£) |Du_Dw5|2
Basr (h—i—’u—wéb

(h+ \u—wmﬁ) i

\po—2)¢

2—pg _ 2 %
< e\ ][ |V (2, Du) V(x,lzw(;)]
Bsr (h + |u — ws|)

( (|Dw5| + R) (Po—2)§+w(20R)

( |Dw5 | (Po—2)€—(p(x)—po)

[SIES

\(po—2)é (h =+ |u — w5|)5> dz.

We use Holder’s inequality and (3.34) to deduce that

1
L, B , .
L <eA3® ][ |V (@, Du) = V(x, Duy)*
Bsr

(h+ |u — ws|)¢

wp() (20R)

: (]im<'Dw5' +R) dx) ’

e
' (][ (QDU_}é‘ + 1) (bt |u— w5|)) (I=wp() 20R) dw)
Bsr

wp(,)(QéR)

< e (hlf {%Dé : (]{BMODW +R) da:) ’

¢ 1mep() 201
T, (o5 P) 2
. (][ <(|Dw5| + 1)) (h+ Ju — w6|)> Tomy dm)

Bsr

1) 208
2

We employ (3.58) to estimate I; as follows

1
L <en 2" (hl—e [W\ij)D 2

1mwp() (20R)
2

&
. (][ <(|D1D5| + 1)(?0*2) (h + |u o w5|)> T—w,()(20R) d$)
Bsr
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1
p B b3 17wp('>(25R)
— A <h15 [%—”R)D L . (3.103)

Now, for any small 77 € (0,1), we fix h by

1-w,,(.)(26R)

£
h = <][ <(|Dw5| +1)®) |y — w5|> TR d:(:) +177. (3.104)
Bsr

Then it follows that
1-w,,(.)(25R)
2

2
1-w,, () (26R)
2

(Pg—2)& ¢
( ][ (|Dws| + 1) 0™ dx) + ch?. (3.105)
Bsr

Nl

< ch
Applying (3.100), (3.94) and (3.95), we find that
(pp—2)¢
][ (]Du’}(;\ + 1) 1—wy,(.)(29R) dzr
Bsr

(g =2)¢ (rg=2)¢
< c][ | Dws — Dw|'~r0) ™ dg + c][ | Dw|'~r0O P g 4 ¢
Bsr Bsgr

<e (3.106)

Combining (3.103), (3.105) with (3.106), for any € € (0,1), we conclude with
1
o b [ul(Br)|\? _ eh “po | 114[(Br)
2 2
]1 S ()\ POE [W S E + C(E))\ po W s (3107)

where ¢ = c¢(data, 0, H). It finally remains to estimate h, which is defined in
(3.104). According to (3.95), we have

lpr(')(QéR)
& - ¢
h<c <][ (|DU_J5 — Du_)|(p0_2)|u _ w5|) T=w,(.y(25R) dx)
Bsr

1—w, ) (20R)

¢
+c (][ (|D1D](”°_2)|u — wg|) O dx)
Bsr
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lpr(» (26R)

& - &
+c <][ lu — ws| o dx) + 17
Bsgr

I3
<c < ][ (D@5 — D]~y — ws) =0 da:)
Bsr

1—wp,.)(26R)

¢ €
+c <][ lu — ws| " or0 dx) +n=:I3+ I, +7. (3.108)
Bsgr

17(*);)(») (26R)
3

We use Sobolev embedding, (3.100) and (3.36) to estimate I3 as follows:
(1=w, () (25R)) (pp—2)
&=l __ €po—1)
I;<c (][ | Diws — Dw| ') dx)
Bsr

1-w,(.y(26R)

é(po—l()S €(po—1)
. ][ U — ws| " or0
Bsr

—2

< CR)\pro (|:|M|(BR):| +Rp01)l’0—1

Rn—l

l—wp<‘)(25R)

_ &=l €(po—1)
X f |DU _ D'UJ5| l—wp(')(QéR)
Bsr

< cR\YP (l'“KBR)} + R”O‘l) . (3.109)

Rn—l

According to (3.98), (3.95) and (3.101), we have

n—1

Iy <c <][ |u—w5|nz1dx) '
Bsr

< CR][ | Dw| P~ 20+ Dy, — D | dax
Bsr
<cR ][ | Dig| P20+ Dy, — Dws| dx
Bsr
+cR | Divs — Dw| P~ Dy, — Duw;| da

Bsr

< CR][ | Dig| P24 | Dy, — Duws| da
Bsr
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+ cR\*™P0 ({%—Bﬂ + Rpo—l) : (3.110)

We finally combine (3.108), (3.109) and (3.110) to discover

h

—< c][ | Dw|Po=2 0| Dy — Dws| da
R Bsr

2—po |/’L’(BR) po—1 ﬁ
+cA ([—Rnl +R + 7

where ¢ depends on data,d and H. Plugging the inequality in (3.107) and
choosing € = &, we have

2
I < X2 ({%@} + Rp01> +% (3.111)

for any 77 € (0,1). Letting 7 — 0 and combining (3.102) with (3.111) com-
pletes the proof.
[

We now compare u € W0 (Q) to vs € W0 (Bsp/s), the weak solution
to the following reference problem:

—div (a(xo, Dvs)) =0 in  Bsgys
vs =ws on O0Bsg/s.

We present the last comparison estimates of this section.

Lemma 3.2.17. Assume that

()

Rnr—1
sup (|Dws| + s + R) < HA (3.112)
Bssr
4
A .
— < |Dw| < HX in Bsg
\ H

for some 1 < H and every X > 0. Then there exists a constant ¢4, =
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cs(data,d, H) > 1 such that

B
Bsgry/2

Proof. Applying (3.61) with x1 = xo, and (3.112), we have

][ | Dws — Dus|™ dx
Bsgry/2

po—2
< c][ (|Dws|* + | Dvs|* + s°) E | Dws — Dus|* dx
Bsr/2

< cw (6R)? ][ (|Dws| + s + R dx + RPo
Bssr

8

yat

< cw (0R)? ][ (|Dws| + s+ R)dz| < cw (6R)* NP, (3.113)
Basn
where ¢ = c(data, H, ). Here, we have used (3.59) with 6, = 2 and 6, = 3,
and (2.14), in the last inequality. Now (3.112) implies
po=2
][ | Dws — Duvs| dz gc][ |Dw| *o |Dws — Duvs| dx
Bsr)2 Bsr)2
Po—2
gc][ |Dws| * |Dws — Dvs| dx
Bsgry2
Po—2
+C][ ’Du_}(s—DU_J| ?0 |Dw5—Dv5|dm.
Bsry2
(3.114)

Since pj < 2, it follows from (3.112) and (3.113) that

o2
][ | Dws| 7o |Dws — Duvs| dx
Bsgry2

< C][ |D’LI)5|
Bsr/2

po—2

> |Dws — Dus| dx
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2—pg

po—2
<el2 ][ (|Dws|* + [Dvs)* + s*) * |Dws — Dus| da
Bsry2

< cw (0R) \. (3.115)
Furthermore, we see from Lemma 3.2.6 with ¢ = py — 2, and (3.113) that

Po—2
][ |Dws — Dw| *o |Dws — Dvs| dx
Bsgry2

1

2*/170 y
<cA "o ][ |Dws — Dw|P°~? dx
Bsr)2

1

PO
: <][ | Dws — Duvg|P° dx)
Bsry2

po—2

<exn ({M} +Rp01) " wER)w

<cw(6R) A+ ci:o ({M} + Rpo—l) : (3.116)

Rn—1
Combining (3.114), (3.115) with (3.116), we find that

B
[ oDttt (5 )
Bsr/2

We recall Lemma 3.2.16 and combine with the last estimate to finish the
proof.
O]

3.3 Regularity results for homogeneous equa-
tion

The remaining parts of the proof of Theorem 3.1.3 are very similar to the
one of Theorem 3.1.4. Therefore, from now on, we present only the proof of
Theorem 3.1.3.

Our main purpose of this section is to show local C"! regularity of (3.14).

Let @1 € Bsgy. For some 6 € (O, %) to be determined and for any r €
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(0 L R], we define

16

B; = By, (1) and 7 =687 (i=0,1,---). (3.117)
Thus 1 )
- C 531 C Bl C §BO C 230 C B = BR(.T()).

Note that {B;}icn is the sequence of balls centered at x;, while By, is the ball
centered at xy. For simplicity, we denote hy(-) = h(zy,-) and G1(-) = G(x1,-)
in this subsection. With the weak solution v € W%(Bg) to (3.14), let w; €
W@ (1 B;) be the weak solution to (3.15) with Bj(z1) replaced by 1B;.

Lemma 3.3.1. Assume that

A _
][ Deldr <HA and 5 <|Dii|<HN inB (3.1
Bi1

for a constant H > 1, a number A > 0 and any index i > 1. Then there
exists a constant c; = cs(data, 0, H) > 1 such that

][ |D’U — D?DZ'_1| dz S CrWw (Fi—l) A
B;

Proof. By (3.118) and Lemma 3.2.8, we have

hi(|Dw,a]) ) 2 )
][\Dv—Dw, 1|d:17NH][ (M) |Dv — Dw;_1| dx

sl

1
2

lO

M\H\'\J

hi(|Dv| + | Dw;_1|) |Dv — Diw; 4| dx)

x,|Dv|)d ) :

and Lemma 3.2.7 that

’L

00\01\'\

l
2

It then follows from (3.24),

][ G(z,|Dv|) dz
5Bi1
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< <][ G(x
5Bia

4

8p
,\Dvwépdz)
8p
S|4 GuriDehias)
%Bifl

< G ][ (Dol dz | + ][
3B, 1 3B

4

1Bi—1

Ptwe ) (Ti—1)
][ Dol
QBZ 1

Ptwa()(Fiz1)
Su Gor(A) + (][3 | Dv| dx)
3Bi—1

4

By (3.32) and (3.11), we discover

'

Ptwa(y(Ti—1)
| Dv| dx)

3Bi1
wa(.)(ﬁ_ﬂ
(][ ]Dv]d:c) <][ |Dv|d:c)
Br

8p
da:)

2p
p+wa( ) (Fi—1)
| Do d:p)

P Wa()(R)
]Dv|dx) (][ |Du — Dv| + |Du|dx+1)
Br

lu|(Br) |7 |Dullzr(9
< AR L 7
Sua A ({ -1 + Ton +

Merging all the estimates above, we complete the proof.

Wa()(R)
1) < ).

O

We first need to establish local Lipschitz regularity for (3.14). We will use
an exit time argument in the proof of next theorem.

Theorem 3.3.2. Let v € WHY(Bg) be the weak solution to (3.14). Then

there exist positive constants Ry =

ce(data) such that

whenever 0 < R < Rs.

||DU||L°°(B3R/4) < 66][

Br
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Proof. Our proof consists of three parts. At first, we define some significant
constants and an exit time index. Next, we show some excess decay estimates
for v. In the last part, we prove the Lipschitz regularity of v. We assume x;
is a Lebesgue point of Dv and take r = 0 R.

Step 1: Basic setup.

We choose positive constants H and ¢ < 3 Such that

1

H=1 52n+2 d 2n+2 56 <
0 c an cs 1105

(3.119)

where 3, ¢;, cg are the constants given in Lemma 2.3.1. Then there exists an
integer k > 2 such that
2c50™ < 5" (3.120)

Note that the constants H,d, k depend only on data. Recalling (2.10) and
(2.11), one can find a positive constant Ry < R; such that

52n
5 (7) 7T 4+ 6 / (3.121)

- 2”+31060502c5

for every 0 < 7 < Ry, where ¢y and ¢5 are the constants given in (3.57) and
Lemma 3.3.1, respectively. Assume 0 < R < R,. Direct calculations give

1 1 1
dwa() (Tit1) log (77“) < dlog (5) Wa() (Ti+1) log (f_)

_ 1
< Wa(y(Tiy1) log (7;)

[

and

- . 1 dp 270 dp
_ wa(y(p) log (_)—+/ Wa()(p )10%( )
;/’f‘iJrl P/ P " o
> log [+ iw (i) 10g = ) + (log 2)way (7o) Tog =
=08 \5) Lol s\ D
o0 B 1 log 2 _ 1
>3 way(7i) log (;) + 7y (7o) log (f_o)

i=1 ¢
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> 5 () log (%) . (3.122)

=0
It then follows from (3.121) that
o 279 d §52n
s p
) <o e 2
;wOﬁ) - /0 w(p) p — 2n3100¢cscqcs

We now take

A= Hl][ |Dv|dx with H; =10°5°"
Br

and set

C; = Z ][ |Dv| dx + 25~ ][ |Dv — (Dv)g,|dx, Yi€N. (3.123)
z+m

m=—1
Since r =1y = 0R, we see

65-3n A
O, < 663" Dol dx < )\ < .
L= ][BR| vl dz < H, = 1000

If there exists an infinite sequence {7;};enx C N such that C;; < for every

J € N, then

1000

|Du(z4)| = hm][ | Dv| dz < T000°

Hence, it suffices to assume that there exits an exit time index 7, > 1 such
that

Cie < m and C; > —— V’L. > 1.

Recalling (3.13), we denote

E;:= E(Dv,B;) and a;:=|(Dv)g,|.

For i > i., we say that “Ind(i) holds” if and only if

][ |Dv| dz < .
Bi_q
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Step 2: Excess decay estimate.
First, we assume that Ind(z) holds for some i > i.. It then follows from

(3.57) and (3.121) that

][ |Dv — Dw;_4| dx < cgw(ﬁ-,l)z’% ][ | Dv| dz
L

Bi—l Bz’—l

6(k+2)n

106

2

< cow(Tiq) P I <

Al (3.124)

and

][ |Dw; 4| dx < ][ | Dv| dx+][ |Dv — Dw;_4]| dx
13171 7Bi,1 *Bifl

2 2 2
(k+2)n

< 2"\ + A< 2mH)

106

Applying Lemma 2.3.1 and (3.119), we see

|1 D@1l 25, ) < cl][ Dy |dx < 27N (3.125)
1B, 1
2 K2
and
i 8 i n+2 . sp8 A
osc | Dw;_1| < 2¢p6 |Dw; 1| dx < 2" PcpdP A < —. (3.126)
B; §Bi71 10

Using Lemma 2.3.1, (3.124), (3.126) and (3.120), we discover

2 _ 2 _
—E(DU, B'L+k) S 5_”][ ’DU — (Dwi,l)g“rk] dx

Btk
2 _ - 2 _
S < (Dwi_l, Bz+l<:) + n |DU — Dwi_1| dx
0 0" J B,
2Cﬁ(5k6 _ — 2 _
S on E(Dw,»_l,Bi) + m ][1 - |DU - DU)Z’_1| dx
20—

< A+ — .
— 1054 +105 — 2000

2055k’3 2 A
<
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we find from (3.123) that

A
Since Cjyp > —— 1000°

Z][ |Dv|dx > —— A
2000

m=—1 z+k+m

Combining (3.124) and (3.127), we discover

A\ 0
= Z ]1 | Du| da
O — 'L+m+k

(3.127)

—2 —
= §k+1)n ][IB |DU - Dwz 1| dzr + g ][ |DU}Z‘_1| dx
5B8i—

m=—1 7,+m+k

2
< = 06 —|—28up|DwZ 1]

and therefore
A A Dt
—— — — <su i
10° = 4000 106 = g0 !

From (3.125), (3.126), (3.128) and (3.119), we observe

A _

(3.128)

Therefore, we are under the hypothesis of Lemma 3.3.1, which give us the

following excess decay estimate:

E(DU, Bi-ﬁ-l) S E(Dwi_l, Bi—i—l) + ][ ’DU — D’LUi_l‘ dx

By

S C/B(SﬁE(DQDZ‘_l, Bz) + 5—n][ |DU — Dwi_1| dx
B;

< g0’ E(Dv, B;) + 205(5”][ |Dv — Dw;_4| dx
B.

—_

< —E(Dwv, B;) + 2cscs0"w(Fi_1) .

W

Step 3: Final induction.
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We now assert

a; +E; <X, Yi>i,. (3.130)
Since Cj, < &5, (3.130) holds for ¢ = .. We now assume that (3.130) holds
for every j € {ic,i. + 1, -+ ,i} for some i > i.. Consequently, Ind(7) holds

for every j € {ic,i. +1,--- ,i}. We apply (3.129) iteratively to discover

i+1

2
LTI SIORE) g ERs
J=te J le J=te
deges L oA
< 2Eze + 5 Z;W(Tj))\ S %

On the other hand, we have

Ait1 = Qi + Z(%’H - a;)

j_ie
1 < A
<ale+z |Dv—(Dv)]dx<Cle+5nZEj§m.
J=te J+1 j=ie

By induction, (3.130) holds for every i > i.. Consequently, we obtain
|Dv(zq)] = lim |a;] < A
1— 00
O

Theorem 3.3.3. Let v € WHC(Bg) be the weak solution to (3.14). Assume
that

sup |Dv| < HA (3.131)

Bry2

for a constant H > 1 and a number A\ > 0. Then for any o1 € (0, 1), there
exist constants R3 = Rs(data,H,o1,w, |[u|(Q), || Dullpi) > 0 and 6, =
61 (data, H,01) € (0, %) such that

osc Dv < o1,
01BR

I6)
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whenever 0 < R < Rs.

Proof. Step 1: Basic setup.

Let z; € iBR be any Lebesgue point of Dv. Let € > 0 be a small constant,
which will be chosen later in this proof. We take positive constants H. and
0, < % such that

2n+7
= G and  2c50"H <

H,:
€ € = ont7’

(3.132)

where (3, ¢g, ¢; are given in Lemma 2.3.1. We set § = 6, in (3.117) and take a
positive constant R; . < Ry such that

Y T d 5271
W) +5g2/ w(p)? < €
0

whenever 0 < 7 < Ry .. Here, ¢co = c2(n,v, L,p) and ¢5 = c¢5(data, He, )
are the constants given in (3.57) and Lemma 3.3.1, respectively. Assume
0 < R < Ry, By (3.122), we see

o0 270 2n
> w(m) < 652/ W(p)@ <0 (3.134)
0

P p — 2n+1002657_['
For ¢ > 1, we set

A
C’i:]g|DU|dx, Ez{iéN:C}ﬁ#} and i, =minL. (3.135)

If £ is empty, then we define 7,, = cc.

Step 2: VMO estimate.

First, we assume that ¢ > 1 is an integer such that i+1 ¢ L. Using (3.57),
(3.131) and (3.133), we have

][ |D7I}i_1| dx 2 Ci+1 - 56—271][ |DU - Dwi_1| dx
Bi+1 lB’L*l

5Bi

where we have used the assumption i +1 ¢ L.
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Likewise, we have

][ D 1| de < ][ |Dv|d:v+][ D, — Du| da
lBi—l lBi—l lBz’—l

2 2 2

< HN + 20 "w(Fig) P HA < 2HA.
It then follows from Lemma 2.3.1 and (3.132) that

€A
Qn+T7 ’

[ D1 | oo (3.137)

1
1

B,y < HA and  osc|Dw; 4| <
1 Bz

Combining (3.136) and (3.137), we find

A P,
<

7 S o7 <|Dw;_1| < HA in B;.

Therefore, we can apply Lemma 3.3.1 to discover

][_ |DU — D’lI)i_1| dx S CrW (771'_1) A

k3

Following the calculations as in (3.129) with (3.133) and (3.131), we have
_ €

E(Dv, B;11) <

On the other hand, if i + 1 € £, then we have

E(DU, Bz) -+ 4055?”&)(771‘_1))\ S EA. (3138)

_ A
E(Dv, Biy1) < 2Ci1 < ‘

< gt (3.139)

For any positive constant p < §2R, there exist m > 2 and r € (§*R, 0 R]
such that p = ¢"r. It then follows from (3.138) and (3.139) that

sup sup FE(Dv,B,(x1)) < e (3.140)

x1€iBR 0<p<8iR

Step 3: Proof of Theorem 3.3.3. )
The estimate (3.140) shows that there exist positive constants 0 and Rj

7
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such that

o oA
sup sup E(Dv,B,(x1)) < ;1n+18 ,
w16iBR 0<p<éR

(3.141)

whenever 0 < R < R3. We now fix the constant € = oy with § = d,, in Step
1 and r = §R. Recall (3.135) in order to prove that

|(Dv)g, — (Dv)p,| < 55 forevery 2 <k <h. (3.142)
Case 1: k < h < i,. By the definition of i,, in (3.135), C;;; > 2",}—;\5 holds

for every i € {k — 1,k,--- ,h — 2}. Applying (3.138) iteratively, it follows
from (3.141) and (3.134) that

h—1 h—2 h—2
E(Dv, B;) < E(Dv, By) + % E(Dv, Bi) + Y 4es8, w(mi1)A
=k i=k i=k
n h=2 (5210'1)\
< QE(DU Bk +8C55 A Z w ’I”Z 1 = W (3143)
1=k—1
Consequently, we obtain
h—1
[(Dv)g, — (Dv)g,| < ) _|(Dv)g, — (Dv)g,,,|
i=k
h—1 o\
n D, 1
<4, E(Dv, B;) < 56 (3.144)
i=k

Case 2 : i, < k < h. In this case, (3.142) is immediately obtained by the
following estimates.

)\ 0'1)\
and |(Dv)g,| < T

(3.145)

If h € L, then the first inequality of (3.145) holds. We now assume h ¢ L.
Then there exists i, € L such that {i, + 1,i, +2,--- ,h} N L = &. The
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calculations as in (3.143) give

h—2
n (Sg 0'1)\
ZE ) < 2E(Dv, B;,) ) + 8cs6,, )\Zwrll < 21”+6 )
i=ip, i=k—1
Similarly to (3.144), we find
0'1)\
(D)5, < (Do) D) < 22

i=ip

as i, € L. One can obtain the second estimate of (3.145) by the same argu-
ment.

Case 3 : k < i, < h. We assert that (3.145) also holds in this case. One
can apply the calculations as in Clase 2 to obtain the first estimate of (3.145).
To prove the second one of (3.145), we recall (3.135) and (3.143) to estimate
as follows:

tm—1
0'1)\
|<DU)B|<|DU |+Z|DU ) z+1|<2n+4‘

Consequently, these three cases show that (3.142) holds for every 2 < k <
h.

We now consider any 0 < p1,p2 < 625R. Then there exist two integers
k,h > 2 such that rp1 < p; <1 and 141 < pg < 1. Applying (3.141), we
have

(Dv)g, — (DV) g, ool < ][ v
p1\ %1

< 6;"E(Dv, By) < ;jfs
and
(D)3, — (Do) o] < %
It then follows from (3.142) that
o1\

|(DU>BP1(331) - (DU)Bp2($2)| < on+2’
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Consequently, we conclude that

[Du(y) — Du()]
< |Dv(y) - (DU)B%lR(y)' + |(Dv)3261R(y) - (Dv)BmlR(z)’
+ ’(DU)BMIR(Z) — Du(z)]

o1\
<224 f Do (Do)l do
Bas, r(Y)
A
S % + QnE(DU, B451R(Z)) S 0'1)\.
for any vy, z € By, with §; = 024. O

3.4 Proof of Theorem 3.1.3

We are now all set in proving Theorem 3.1.3. A main technique of our proof
is based on a double step induction argument as in [79).

Proof of Theorem 3.1.3. Let xy € €2 be a Lebesgue point of Du and Bag(zg) C
Q). We take the concentric balls given in (3.64) and the corresponding weak
solutions v; and w;.

Step 1: Basic setup.

Keeping Lemma 3.2.14, Lemma 3.2.15 and Theorem 3.3.3 in mind, we
select

1 \7
H :=1000"""¢;c, o01:=107" and dp:= (m) ;

where (3, ¢;, cg are the constants given in Lemma 2.3.1 and ¢g is the constant
given in Theorem 3.3.2. By replacing H in Theorem 3.3.3 by H, we can find
a constant d; = d1(n, v, L, p) given there. We note that the constants in this
section depend only on data and w. We further take § € (0,15) and the
smallest integer k > 2 satisfying

1

5= min 4 69, 6y, o, (— )" nq onese 5k5<5—n (3.146)
. 0,91, ) 16”(1"*‘1)0/3 ] ~ 106 .

Recall the constants ¢; and ¢4 from (3.32) and Lemma 3.2.15, respectively.
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We then define a positive number Ry < min{ Ry, Ry, R3} depending only on
data, wa(.), Wy, |1] (), [[Dul| L1y such that

2T dp
20,8~ " n(k+6) p+1 5 (2n+1) / 3.14
&2 " Ou(r)7H + ¢, e < g D
for every 0 < 7 < Ry.
We now set
2R
B d
A= Hl][ | Dul dx + Hagy' (/ M—p), (3.148)
Bor(z0) 0 P P
where
Hy := 27100711006~ F+0n .= 97109 Heyeqo~ O (3.149)

and R=ry € (O, %} By a direct calculation, we find

2T0 | 21”0
1| (B dp |1l(By,) dp |1l(By) dp
/0 n 1 Z/ n 1 n T o1
Ti41 T

0 P

n—1 W z+1 10g2 |M|(BO>
bg()z (B, 52 (1A

1

Mg
3
DJl

i—0 i

Thus (3.148) and (2.5) implies

Hyd% g5t <Z |“|£Ei>> <\ (3.150)

and

[ Hl(B) glkrom
< A
o (Z T | = 005 Here

Note that (3.150) shows the first assumption in Lemma 3.2.15 for ¢ > 1.

___;rx_-l! E CI.'II

1_'_] |
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Recalling (3.122) and (3.147), we discover

0 2n
—n(k+4) pil . —5
2090 w(re) P+ + 04;w(r1) < 5106 (3.151)
For simplicity, we denote
E; .= E(Du,B;) and a;:=|(Dv)g,|. (3.152)

Step 2: Exit time argument and induction scheme.
For each i > 1, we define

Z][ \Dul d + 25~ ][]Du—(Du)Bde.
z+m

m=—1

By (3.148) and (3.149), it follows that

C, <6572 4 |Duld
L= BO' uldz < 7505

If there exists an infinite sequence {7;};cnx C N such that C;; < 1000 for every
J € N, then we see

A
| Du(xg)| = hm][ | Du| dx < 1000"

and we are done. Therefore, we only consider the case that there exists an
exit time index 1 < i, satisfying

A
Ci>% for ie{ic+1,ic+2,---} and C;, < ——. (3.153)
We say that “Ind;(¢) holds”, if

ai_1+ai—][ \Du|dx—|-][ |Dul|dz < X (i > i)
B;_1 B;
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and say that “Indy (i) holds”, if

i i—1

1 2¢y 204 A ’M(B]) o
B, < - E. + |
jzinrl ' 2; o )\Z W) + 5 g0(\) Zl Eal (1 > i)

Our aim is to show that Ind; (i) holds for every i > 4., which implies that
| Du(xo)| = lim ][ |Du|dz < \. (3.154)
1—00 Bz

Our proof will proceed as follows:

Indy(i.) = Indy(i.+ 1), (3.155)
Ind;(i) and Indy(i) = Indy(i+1), Yi>i, (3.156)
Ind;(s) and Indy(i+1) = Indi(i+1), Yi>i.. (3.157)

We note that Cj, < &4 directly implies Ind; (i.).

Step 3: Estimates obtained by Ind,(i).

Assuming that Ind,(7) holds for ¢ > i., we shall obtain the assumptions
in Lemma 3.2.15. At first, we are going to find upper bounds of |Dv;| and

|Dv;—41| in Lemma 3.2.15. Applying (3.32) and (3.150), we discover
][ |Du — Dv; 1| dz < 5_”1][ |Du — Dv;_1| dz
Bi_144 B; 1

B;_1) gt
< 5—7’Ll —1 ’lLL|( i—1 < )\ 1
< 90 ( e = Sn106 (3 58)

and similarly,
dn

)
Du — Dv;|dx < ——\, )
]{3M| u v;| dx 5100 (3.159)

whenever [ € {0,1,...,k 4+ 1}. Ind;(¢) and 3.158 with { = 0 implies

][ |D |d <54n/\+][ |Du| dx < 2\
. ! 27106 Jp
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It then follows from Theorem 3.3.2 and Theorem 3.3.3 that

A
sup |Dv;_q| < 206][ |Dv;q|dz < HX and osc Dv; 1 < —, (3.160)
%Bi,1 Bi1 B 10

where we have used (3.146) and (3.160).
Similarly, one can obtain the following estimates for Duv;:

][ |Dv;|dx <2\ and sup|Dv;| < HA. (3.161)
B; 3B;

Next, we want to show a lower bound of |Duv;|. Applying (3.57), (3.151)
and (3.161), we discover

][ |Dv; — Dw;| dx < cow (n)# ][ | Dv;| dx
1B

3P %B’L
) 9 5n(k+6)
< 2" )P A < A,
< cow (1) < e
and
][ il A (3.162)
Dv; — Dw;|dx < —, .
Bini | | 106

whenever [ € {1,...,k+1}. Forany [ € {1,...,k+ 1}, we combine (3.159) and
(3.162) to see

n

J
|Du — Dw;| dx < —\. (3.163)
f,. i

For this reason, Ind;(7) implies

][ |Dwi|d17§][ |Du|dx+][ |Du — Dw;| dx
1p, 1p, 1ip,

2 2 2

< 2"+ A < 2nH (3.164)

It then follows from Lemma 2.3.1 that

sup | Dw;| < cl][ | Dw;| dz < HA.
1,

1
1B, B
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At this time, we apply the second estimates of Lemma 2.3.1 to see

Bz+k

4
< 8cpd T E

1
Dw;, =B;) + —\
(wz,2 z)—i—loﬁ
4
< 16 5’“5“7[ Duw;| d A
< 16¢p %B\ wy| x—|—106

1
< eI 4 2y <
“ 0 S 10

where we have used (3.163), (3.164) and (3.146).
Since Cjyp >

—\,

1000 for i, <1, we discover

A A A
Z ][ |Du|dx > >

> . (3.165)
m=—1" Bitm+k 1000 105 = 2000
In addition, (3.158) with [ =k, k + 1 gives

Z ][ | Du| dx
m=—1

z+m+k

m=—1 Bi+M+k Bitm+k

~ 106 + Z ][ |Dvi,1]d1:

A
— —1-281,1p|DvZ 1]-

(3.166)
m=—1 z+m+k 10
Combining (3.165), (3.166) and (3.160), we have
A < A | Dv;_4| |Dv;_1| = f|D |. 3.167
— — — <su v;_1| — osc |Dv;_;| = inf | Dv,_ )
7 5000 100 =P o ! ! (3.167)

Hence, (3.150), (3.160), (3.161) and (3.167) allow us to apply Lemma 3.2.15
Step 4: Verification of Inds(i. + 1) and Indy(: + 1).

According to Lemma 2.3.1, Lemma 3.2.15 and the assumption (3.146)
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we find
1
< 2_2”_5][ |Du — (Du)g,| dz + 2_2”_5][ |Du — Dw;| dz
5 5
< 1E + : |Du — Dw;| d
<7 1 5 U w;| dx
1 A [lul(Bizy)
_E + T >\ + )
< g et e L

but then it follows from Lemma 3.2.15 that
Bi+1 Bi+1

1 264 204 A |[L|(BZ_1)
5E + s w(r MJF&_”go(M{ : ] (3.168)

risy
This estimate (3.168) with ¢ = i, shows that Inds(i. 4+ 1) holds.
To prove (3.156), we assume that Ind; (¢) and Indy(7) hold. Consequently,
(3.168) and Inds(7) yields

i+1 i—1 i—1 =1 r
1 264 264 A |[L|(B )
B, <=5 B+ 22 )+ =4 E;
2 By LB A el Gy 2 [T B
J=te+1 J=te J=te J=te
1< 24 . o 2 A < |u|(B )
<= E;+—A\ w(rj) + — . (3.169
2 jzie J 571 jzie ( ]) 571 QOO\) = 11 ( )

Step 5: Verification of Ind; (i + 1).
It remains to show (3.157). We assume that Ind; (7) and Indy(i 4 1) hold
for some i > i.. Then, for all [ € {i,,...,i}, we see

E,

1
al+1—al§][ |Du — (Du)p,|dx < — 4 |Du— (Du)p,|de = —
Bt By o"

5n
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and

I+1 I+1

a1 < a;, + Z][ |Du — (Du)g,| dz = a;, + 5 ZE (3.170)
7,+1

1=le

Continuously applying (3.169), (3.150) and (3.151) give

S B <n LY B Y SN I
le TJ n n—1
J=te j =te+1 J=te 5 go()\)j =fte Tj—l
l
4ey 464 |,u| (B
<2FE; + —/\ T
]Zze J 671 gO Z 1
D A
<2F;, +—<0" — A71
R TE <O +105> (3.171)

for every [ € {ic, ...,i}. Combining (3.153), (3.170) and (3.171),

A A

<20, + = < =
o = 20 965 = 1o

for alll € {ic,...,i}. The last inequality directly implies that Ind; (i+1) holds.
Therefore, (3.155), (3.156) and (3.157) hold, which implies the claim (3.154).
This completes the proof. O

3.5 Gradient continuity via Riesz potentials

In this section, we prove Theorem 3.1.7 and Theorem 3.1.9. To this end, we
assume that the nonhomogeneous term p satisfies that

|1l (B-(x))

lim —

=0 locally uniformly in 2 w.r.t. z. (3.172)
7—0 T

Then according to Theorem 3.1.3, Du is locally bounded. Therefore, for any
open subsets ' € Q' & (), we can define

)\ = HDUHLOO(Q//) and d = diSt(Ql, aQ//) > O (3173)
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Recall (3.64) and (3.152) with the corresponding solutions v; and w;. Once we
obtain the following proposition, then the proof of Theorem 3.1.7 is verbatim
repetition of that of [76, Theorem 1.5].

Proposition 3.5.1. Under the assumption (3.172), Du is locally VMO-
reqular in . More precisely, for any € € (0, 1), there exists a small constant
e = Te(€,1,p, v, Ly A, wa(y, wa(), [1(), [ Dull 1)) < d such that

f‘ | Du — (D) g, ()| dz < €A,
Bﬂ(v"?O)

whenever p € (0,7, and z € V.
Proof. Keeping Theorem 3.3.3 in mind, we take H and o, as follows:

. 4006166 and o1 — €
- 1

H : = —
€ 400’

where the constants ¢; is given in (3.32) and c¢g is given in Theorem 3.3.2,
respectively. From this we can find a constant §; = 1 (n, p, v, L,w) for which
Theorem 3.3.3 holds.

We now choose the ratio of the shrinking balls in (3.64). Let § < min {15, 1 }
be a small constant such that
€

2n+10
27" %W§2M

(3.174)

where the constants cg and 8 are given in Lemma 2.3.1. From the assumption
(3.172), there exists 0 < R, < min{ Ry, Ry, R3, d} such that

Sy (pl(B-(2)) 6%"e
< A 3.175
21613 OSBSI)RE 90 ( -1 = 27+2400cs¢1 ¢4 ( )
and
(<
sup w ,
0<7-§pR6 o 800501

where ¢4 is the constant given in Lemma 3.2.15.
Take R = ry € (0R,, R¢] in (3.64) and fix any ¢ > 1, then we want to
show
Eiyo = E(Du, B;12) < €. (3.176)
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If a; 10 < ==\, then (3.176) is trivial, and so we consider the case a; 19 > ==\

100
We now assert that

€
21

8cge
Ei—f—l + —éi 4w (7”1) )\ +

B < 8cper A men} |

r.
By (3.32) and (3.175), we discover that

1

sup |Dv;| > ]{9 | Dv;| dx
142

Bit1
> ][ |Du|d:v—][ |Du — Dv;| dx
Bit2 Bit2

B
> N5 gy ('“K ’)) >

= 100 L] =200

Likewise, it follows from Theorem 3.3.2 and (3.32) that

[1Dvi| oo 25,y < Cﬁ][B | Du;| dz < cgA

B;
+ clcﬁgal (“15_1 )) < 2cg\

%

and
HDUiJrl "LW(%Bi+1) S 266)\-

In addition, Theorem 3.3.3 and (3.179) imply

€
Du; < — .
T

We combine (3.178), (3.179) and (3.181) to discover

A € :
E S 4—00/\ S |DUZ| S 206)\ S H)\ in Bi—&—l‘

Hence, (3.180) and (3.182) allow us to apply Lemma 3.2.15, so that

B
][ |Du — Dw;y 1| do < cqw (1) A+ ¢4 A Pul,gf)} .
%Bhul gO()\) T

7
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We apply Lemma 2.3.1 and (3.183) to conclude that

Ei+2 S 2E(Dwi+1, BZ‘J’_Q) + 2][ |DU — Dwi+1| dx

Bit2

2
S 2655BE(Dwi+17 Bi—i—l) + 5_71,][ |Du — Dwi+1| dx
%BiJrl

8
< 4cs0” E(Du, Biy1) + ] ][13 |Du — Dw;tq| dz
3Bit1

on
€ 8cpey 8cgea A [[ul(By)
< p » :
L TR L TR { i

2

This show the assertion (3.177).

Taking into account (3.173), (3.174), (3.175) and (3.177), we see that
the claim (3.176) holds uniformly with respect to the point zy € ' and to
the initial radius R € (0R., R.]. We then take r. := §*R, to observe that
there exists a positive integer m > 3 such that 0™"'R < p < §™R for each
p € (0,7]. Consequently, (3.176) holds with p = 0™r for some r € (0R, R].
This completes the proof. O

Actually, we assumed p € L*(£2), so that the solution u to (3.1) belongs
to WL (Q) in Theorem 3.1.3, Theorem 3.1.4 and Theorem 3.1.7. To com-
plete Theorem 3.1.9, we need to consider a bounded Borel measure y and a
corresponding SOLA .

Proof of Theorem 3.1.9. Let {uy}ren € WHY(2) be a sequence of weak so-
lutions to (3.1) with right-hand side data p; € L>(€2) as in Definition 3.1.2.
Let v, € WYY (Bg) be the weak solution to

—div (y(xz)A(z, Dug)) =0 in Bg
vy =ur on OBpg,

for each & € N. Then Lemma 3.2.1, Lemma 3.2.3, Lemma 3.2.4 and Corollary
3.2.2 holds for every k € N. Recall Lemma 3.2.3 and limsup;_, ., |u|(Br) <
|| (Br). Then for any sufficiently large k, we have

1
|| (BR)] e

][BR g (1D = DU’“DH"% dr < c { Rn—1

90



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

Bp)1
< 2 l%—_f)] : (3.184)

whenever 0 < R < R;. By the uniform boundedness of ||ug|/w19(5,) and
(3.24), we discover that ||vg||w1s(p,) is uniformly bounded. Hence, there ex-
ists v € W19(Bg) such that v, — v in W'9(Bg). Applying Theorem 3.3.2
and Theorem 3.3.3 along with a standard covering argument, we find that
| Dug|| oo (o) < (@) and { Dy} is equicontinuous in B, g for each o € (0,1).
We now apply Arzela-Ascoli theorem, so that v € C} (Bg) and Duy(z) con-
verges to Dv(x) a.e. x € Bpg, up to a not relabeled subsequence. Conse-
quently, (3.184) and the almost everywhere convergence imply vy — v in

Wh9(Bg). By Fatou’s Lemma, v solves

—div (y(xz)A(z,Dv)) =0 in Bg
v=u on O0Bg,

In addition, Lemma 3.2.1 holds for v and v with x satisfying (3.26):
][ Gmx(|[Du — Dv|)dx = ][ lim inf g,,, ., (| Duy, — Dvgl) dz
BR BR k—o0

o |kl (Br) |1 (Br)
S liminf g, (T S gn\ Tt |-

Similarly, Lemma 3.2.3, Lemma 3.2.4 and Corollary 3.2.2 also holds for u
and v. We remark that Lemma 3.2.3, Lemma 3.2.4 and Corollary 3.2.2 we
have used |u|(Bg), while we use instead |u|(Bg) here. Since the remaining
parts of the proof are still valid, we finish the proof. m
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Chapter 4

Subquadratic systems without
the quasi-diagonal structure

4.1 Main results

The goal of Chapter 4 is to obtain sharp potential bounds for the gradient of
solutions to general nonlinear elliptic systems with subquadratic growth in
terms of modified Riesz potentials, which provides a complimentary nonlinear
potential theory to those with superquadratic growth in [80]. We refer to
Section 1.3 for remarks about gradient potential theory for elliptic systems.
In this chapter, we consider general p-Laplace type systems of the form

—div (A(x,Du)) = f inQ (4.1)

where p € (1,2], Q is a bounded domain in R™, u : Q — RY with n, N > 2.

The continuous vector field A : Q x R¥" — RN is assumed to be C'-
regular in the second variable with 0A being Carathéodory regular, and to
satisfy the following growth, ellipticity and continuity assumptions:

Az, €)| + [0A(x, €)||¢] < Llg!

vIE[P2|z]2 < (0A(x, )z, 2)

|A(Ia g) - A(y,ﬁ)! < Lw<|fL’ — y|)|€|P*1

|8A(9U,§2) - 8A($,f1)| < LM(I?\—T—\%H) |§1|p72|€2|p72(|§1| + |§2|)27p

(4.2)

for every £ € RV \ {0}, &,& € RY™ (except for & = & = 0), x,y € Q
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and z € RY" where 0 < v < L are fixed constants and OA stands for the
derivative of A with respect to the second variable. Two moduli of continuity
w, i RY — [0, 1] are concave, nondecreasing, bounded functions satisfying
w(0) = p(0) = 0. Observe from (4.2), and concavity of y(-) that we have the
following locally Lipschitz continuity of A away from the origin:

0A(z, 20) — OA(z, 21)| < e(p, L) (%) |22 [P 2 (4.3)

for every z;, 2y € RN™ with |21] > 2|2 — 2.
We further assume Dini-continuity of the following partial map

Alz,€)
e

X —

in the sense that for any r > 0

/Orw(p) — =:d(r) < oc. (4.4)

This partial map can be regarded as coefficients. When dealing with C*-
regularity of solutions to nonlinear p-Laplace equations with coefficients,
Dini-continuity is known to be an optimal regularity assumption for the co-
efficients, see for instance [76, 78]. It is known in [69] that weak solutions to
elliptic equations with continuous coefficient are not Lipschitz continuous in
general. Under (4.4), we have partial C'-regularity criteria in terms of Riesz
potentials, see Theorem 4.1.3.

In this chapter, we do not assume quasi-diagonal structure, in which one
can obtain full regularity results for the systems, see for instance [102]. On
the other hand, for the systems without quasi-diagonal structure, only partial
regularity results are available, except for subtle higher integrability. Indeed,
De Giorgi constructed discontinuous solutions to general systems in [62]. To
establish partial regularity, we assume that there exists 1 : (0,00) — (0, 00)
and a : Q — [v, L] such that

€] < n(s) = |A(2,€) — a(@)[¢[~2] < sl¢f~ (4.5)

for every £ € RV, x € Q and s > 0. In other words, A(z,-) is asymptotically
close to p-Laplace operator with the coefficient a(x) at the origin, uniformly
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with respect to x € Q.
To guarantee the existence of weak solution to (4.1), we assume that
f € L), where q € (q,00) with

' = —pr ] if p<mn,
_ np —(n —
gi= b b (4.6)

3
3 iftp=n=2.

One can easily see that g € (1,n).
The approach that we will use through this chapter is the so-called e-
regularity criteria which mean that the point x € ) satisfying

E(Du, B,(x)) = (][B " |V (Du) — V((DU)BQ(I))‘zdy)Q <e (4.7)

is a regular point of u, where the bijection map V : R¥® — R¥" is given
by V(&) = |§|pz;2§. Here, we call E(Du, B,(z)) as the excess functional of
Du. Indeed, it is also reasonable to use e-regularity criteria to the following
modified Riesz potential

R %d
)= [ (o f ipac) 49
0 By (z0) P

from the presence of f € L9(Q) in (4.1). We refer to [2, 16,47, 61, 86, 87]
for further discussion about e-regularity criteria regarding partial regularity
results for the systems.

Through this chapter data stands for the set of constants {n, N, p, q,v, L}.
We now state our main result.

Theorem 4.1.1. Let u € W'P(Q;RY) be a weak solution to (4.1) under
(4.2), (4.4) and (4.5). There exists a constant e, = e.(data, u(-),n(-)) > 0
and a radius R, = R.(data,d(-)) such that if

[E(Du, Br(xo))]” + [I{ (o, R)} T <, (4.9)
holds for some Bgr(xo) C Q with R € (0, R,], then we have the limits

ﬁl)i_r}r(l)(Du)Bp(mO) = Du(zg) and lim (V(Du)) o= V(Du)(xg), (4.10)

p—0 By(z
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with the equality
V(Du)(zo) = V (Du(zy)). (4.11)

Moreover, for any p € (0, R], we have

V(Du)(wo) = V (D), w0

< ¢ B(Du, By(wo)) + ¢ [, (w0, 0)| 7

—i—c(][ \Du|d:c) I{fq(xo,p)jtcd(p)][ | Du| dz, (4.12)
By(z0) By(z0)

where ¢ depends only on data and pu(-).

Note that if I{i ,(7, R) is bounded for some radius R > 0, then one can

take I { ,(7, p) as small as one want, by taking p small enough. Hence, roughly
speaking, (4.9) is not much more restrictive than (4.7) once Riesz potential
is bounded.

The last term on the right hand side of (4.12) arises in the process of han-
dling the coefficients. In addition, the second to the last term naturally arises
from the interaction between lack of degeneracy for the problem with sub-
quadratic growth and the data on the right hand side in non-divergence form,
see [53] for such interaction and cf. [80] for the problem with superquadratic
growth.

Our second main result is VMO-regularity.

Theorem 4.1.2. Under the assumptions of Theorem 4.1.1, Du is VMO-
reqular at xo € 2, i.e.,

lim E(Du, B,(x)) = 0. (4.13)

p—0

Moreover, if we replace the assumption (4.9) by

swp [ w0, p)| 77 < 5 (4.14)
B,CQ
and if
1
; q q L
ilir(l) <p N |f] dm) =0 (4.15)
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holds locally uniformly in 2, then Du is locally VMO-reqular in the set
Q, = {J; € Q: B,(z) CC Q with p < R, satisfying E(Du, By)) < i},

which is an open subset of ), satisfying |\ Q,| = 0.

One of the most important consequence of the gradient potential theory
is C'l-regularity criteria in terms of potentials, see for instance [52,76]. Since
the proof of Theorem 4.1.3 is routine after obtaining Theorem 4.1.2, we now
state C'l-regularity criteria without its proof.

Theorem 4.1.3. Let u € WYP(Q;RY) be a weak solutions to (4.1) under
the assumptions (4.2), (4.4) and (4.5). If

lim [1{ q(Io,p)] 0 _ ) (4.16)
p—0 ’

locally uniformly in €, then Du is continuous in the set §2,,, which is given in
Theorem 4.1.2. Consequently, Du is continuous in ), whenever f € L(n,1)
that implies (4.16).

4.2 Preliminaries

We refer to Section 2.2 for the basic ingredients regarding N-functions and
Orlicz spaces.

We first recall a equivalent definition of excess functional given in 4.7. By
denoting

E(g,0) = (]{9 V(g() - (V(g))ofdx)é

for any g € LP(O; RN™), there exists a constant ¢; = ¢;(n, N, p) satisfying

see for instance [61, (2.6)] and see also [46, Lemma A.2] for more general
cases.
Moreover, we have

V((9)s,) = V((9)5,)
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+’ (V<9))B - (V@))B;

r

+|(V(9) ;. — V((9)5,)

T

1

3
2 dx)
(4.17)

< 3T :E(g. By), (4.18)

whenever g € LP(B,;R¥), r > 0, T € (0,1) and 7 € [tr,7]. We use this
estimate in Section 4.5, when g = Du in order to deal with excess decay
estimates for Du.

As we mentioned earlier, there are several types of Sobolev-Poincaré in-
equality according to N-functions, see for instance Lemma 2.2.1, Lemma
2.2.2 and Lemma 2.2.3. The next lemma shows another Sobolev-Poincaré
type inequality for N-functions.

Lemma 4.2.1. Let ¢ € C'0,00) be a N-function satisfying (2.2) for any
1 < <7 < o0o. Then for any v € WH¥(B,;RY) there exist constants
v > 1 and ¢ > 1, both depending only on n, N, vy, V2, such that

][Tw( )dxﬁc[][r[l/)(mumidxr,

where B, s the ball with radius r > 0 in R™ .

u— (u)p,

Proof. This lemma is a consequence of Lemma 2.2.3.
Set v = min {“T“, -1 € (1,7), and define a C*(0, 0o) function

o(t) = /Dt Llwlhs

T

Using (2.4), one can discover that v is also an N-function. By a straightfor-
ward calculation, we find that for every ¢ > 0

—!
— ty (T t'(t —
0<71 VS @_b/(): 1/)()_1§72 7<OO
v D) @) v
and 1 is an N-function satisfying
—
pen Wl e
voow@) Ty

X ! _kl.'ll_ -l_-]i
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Note that 1(-) is equivalent to [1/1()]%, i.e., there exists ¢ = ¢(72) > 1 such

that ()7 < B(t) < cfib(t)]7 for every t > 0. Indeed, by the definition
of v, we discover

Applying [10, Proposition 3.5] with 1, we find

A (e IE FA
<l [°(

<e| f Wouyad]
< c:]{gzp(munidxr.

y(n—1)

STCEy n
)]

n y(n—1)

I

u— (u)p u—(u)p

u—(u)p

In the first line, we have used the fact that #_1) > 1 to use Holder’s in-

equality. This completes the proof. O
Let us consider a set of N-functions {1, }s>0 C C1[0, 00)NC?(0, 00), where
Ualt) = (£ + 57T, (4.19)

Then we have
22|y ()P < sy ()P < 227, ()2, (4.20)

whenever 0 < %sz < 51 < 2s59. We further see that there exists a constant
¢ =c(n,N,p) > 1 such that

e (16 = &) < V(&) = V(R < cyey (€1 — &) (4.21)

for any £;,& € RY" see [44, Lemma 3]. Indeed, this set of N-functions
are used in the context of partial differential equations with general growth,
see [47,48] and Section 5.
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We remark that (2.2) holds with 1 = p and 75 = 2, for every 5 uniformly
with respect to s > 0. Furthermore, constant ¢ in Lemma 4.2.1 does not
depend on s, when applying s to the lemma, later in this chapter.

4.2.1 Approximation lemmas.

Our analysis relies on A-harmonic approximation lemma, and p-harmonic
approximation lemma. We first look at A-harmonic approximation lemma,
which will be used later in Section 4.4.1 to discuss the non-singular case. Let
A RV¥" x RN 5 R be a bilinear form satisfying

Al <L and v|¢]* < A €) for every € € RY™, (4.22)

We say that h € WLP(B,; RY) is A-harmonic if and only if

A(Dh,Dyp)dx =0

B
holds for every o € Wy (B,; RY).

Lemma 4.2.2 (A-harmonic approximation lemma, see [47], Theorem 14).
Let A be a bilinear form on RN™ satisfying (4.22) and ¥ be an N-function
satisfying (2.2). For anye,0 > 0, there exists 6 = §(n, N,v1, %2, L,v,0,¢) > 0
such that the following statement holds: Assume that v € WHY(B,;RY) is
approzimately A-harmonic i.e., v satisfies

][ A(Dv, Do) dz < 5][ | Dv| dx || De|| oo (B,
B'r/2 Br

for all p € C3°(B,;RY). Then there exists a unique A-harmonic map h €
v+ Wy (B RY) satisfying

]{BT/Q U (|Dv — Dhl)dx < 6([]{%2 [w(|Du])]" ™" da:} " + ][T U(|Dv) dx),

whenever the right-hand side is finite.

From the classical theory of elliptic partial differential equations, A-
harmonic function is locally smooth. Recall the following excess decay type
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estimate of A-harmonic map: Let h € W'?(B,; R") be A-harmonic function
and 0 < 7 < r/2. Then we have

£ 1ot = D)o < = f 10— (DR
B~

7 " J B,

For any N-function W satisfying (2.2), Lipschitz regularity for Dh further
yields

f

]{Bf U (|Dh — (Dh)g,|) dz < ( )”1 ][T U(|Dh — (Dh)g,|) dz,  (4.23)

r

as follows from [47, Proposition 27].

Now, turn our attention to p-harmonic approximation lemma which is first
introduced by Duzaar and Mingione in [50, Lemma 1]. If h € WP(B,;RY)
satisfies

/ |Dh|[P">Dh - Dpdz = 0

for every ¢ € C5°(B,; RY), then we call h a p-harmonic map. We now present
a modified version of p-harmonic approximation lemma, see [49,50].

Lemma 4.2.3 (p-harmonic approximation lemma). For any e > 0 and p; €
(0,2], there ezists § = d(n, N, p,p1,€) > 0 such that the following statement
holds: Assume that v € WYP(B,;RYN) is approxvimately p-harmonic i.e., v
satisfies

P

Dol (D0, D de < 5( £ Do) " 1Dl

By

for all ¢ € C°(B,;RYN). Then there erists a unique p-harmonic map h €
v+ WP (B RN satisfying

2
( V(Dv) — V(D) da:) "< 5][ | Dol dx.
By By

Excess decay estimates for p-harmonic maps were shown by Giaquinta
and Modica for p > 2 in [61], and by Acerbi and Fusco for 1 < p < 2
in [2, Proposition 2.11]. By virtue of (4.17), for any p-harmonic function
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h € WHP(B,) and any 0 < 7 < r, there are two constants o € (0,1) and
¢ > 1 both depending only on n, N, p such that

E(Dh, B;) < c<;) aE(Dh, B,). (4.24)

It is enough to assume a < p/2 to simplify the notations in later sections.

As mentioned earlier, our proof relies on Lemma 4.2.2 and Lemma 4.2.3
to deal with the condition (4.5), instead of Uhlenbeck condition on the vector
field A(+). For interested readers, we refer to [51], which summarized affluent
results on harmonic approximation lemmas.

We are going to show some higher integrability results in Section 4.3,
which will play a key role in approximation lemmas. We will apply Lemma
4.2.2 to obtain excess decay estimates for the non-singular case in Section
4.4.1. On the other hand, we apply Lemma 4.2.3 to establish excess decay
estimates for the singular case in Section 4.4.4.

4.3 higher integrability

We start this section with the following higher integrability result.

Lemma 4.3.1. Let u € WHP(Q) be a weak solution to (4.1) with (4.2). There
ezist two constants ¢ = c(data) > 1 and 0, = 0,(data) € (0, 1], such that

oy i)
( ][ |Du|p(1+"9)dx> <c ][ \Du|pdx+c(rq ][ |f|qu) (4.25)
Br/2 s Br

for every ball B, C Q, with (14 0,) < g <n.

Proof. For the sake of completeness, we sketch its proof. We refer to [63,
Section 6] and [87, Section 4.1] for the detailed proof.

Fix a ball Br := Bx(y) C B, and test ¢ = (*(u — (u)p,) to (4.1), where
¢ € CX(By) is a cutoff function satisfying 0 < ¢ < 1, ( = 1 on Bjy,
and |D(| < 4/7. Using (4.2) and Hélder’s inequality, we have the following
Caccioppoli type estimate:

_ P
][ | DuP dx < c][ <w) dx
Bi /2 By r
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ce(rrf ras) (f (Bnd)" )",

where ¢ = [p*]’. For any € > 0, we now apply Sobolev-Poincaré inequality to
discover

][ |Du|pdx§€][ |Du\pdx+c<][ |Du|p*dx>p*+c(s)K][ 1|7 de,
Bi /o B Bi B;

where
AN =)t
Ps = P <p and Kz(/ |f|qda:> :

n+p .

Applying Gehring’s lemma (see [63, Corollary 6.1]) for sufficiently small & >
0, we complete the proof. O

We next establish a modified version of the above higher integrability
result. It will play the central role in the proof of excess decay estimates for
the non-singular case, (4.32). We recall the notation (4.19) and simply denote
Y := 1)y. Note that  dependence of the vector field A with (4.2), is a natural
generalization of p-Laplace systems.

Lemma 4.3.2. Let u € W'P(Q) be a weak solution to (4.1) with (4.2). Then
there exist constants 0 = o(data) € (0,0,) and ¢ = c(data) such that the
estimate

( £ www-vigrer d:c) w
B2

<cd [V(Du) = V(O de + cw(r)? ][ (IDu] + JE])" de

B B

Q_Tp % q(pzll)
+c( £ (ou+ ey das) ( |f|%za:) +( |f|de)
I B B,

holds for any & € RN™ and ball B, C ), where o, > 0 is the constant
determined in Lemma 4.5.1.

Proof. Take any ball B = B;(y) C B,, and set
l:=(u)p, +&(xr — ).

103



CHAPTER 4. SUBQUADRATIC SYSTEMS WITHOUT THE
QUASI-DIAGONAL STRUCTURE

Define a test function ¢ = ¢*(u —[), where ¢ € C§°(B;) is a cutoff function
such that 0 < ¢ <1, ¢ =1 on B;p and |D(| < 4/7. Applying ¢ to (4.1), we
see

I —][ / 8A :v JE+ Du—f)t)(Du—&),D@dtd:v
- 4 (A, D0 - A28, Do) o
:][ <A($0,£)—A($,£),Dg0>daj—|—][ f(ﬂdﬁz IQ‘|—I?,.
B: B
We first estimate I; as
L (> 1/][ / |€ + (Du — P2 dt |Du — £*C? dx

—2L][ / 1€+ (Du — P2 dt |Du — £||u — 1| DC|¢ da
—1][ V(Du) — V(€)[2C da

e ][ (161 + 1D — €)#| Du — €l ju — 1] DCIC d.

7

We now have

][ |V (Du) — V(&) ]2 da

<o/ YalDu=g)

—1I||DC|Cd I 1. 4.26
= 5. ’DU—S’ |u || C|C T+ cly+cly ( )

Using Young’s inequality with £ € (0,1), (2.1), (2.4) and Lemma 4.2.1
with 9)¢), we discover

][ C%ﬁs;ll)ljujﬂﬂ ‘“ _l’d

S ] a5
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(][ IV (Du) — V(&) dx)w. (4.27)

Here, we have used (4.21) in the last line, and v = ~(data) € (0,1) is the
constant determined in Lemma 4.2.1.
We now estimate I, and I3. By (4.2), and Sobolev’s inequality, we discover

L] < e ][ Du - €| da
< cw(F ][ V(Du) — V(O)|(|Du| + [¢])? da
<5][ WV (Du) — V(O dz + c(B)w(i)? ][ (1Du| + |e)P v, (4.28)

Bj

Recalling (4.6) and performing some standard manipulations leads to

I] < o (][ ]f|‘7dx)q(][ |Du—§]pdx>p. (4.29)
Bz By

We now estimate second term in (4.29) as

][ |Du — &|P dx

<c][ V(D) — VIEP(Dul + |g) ™5 da

2—p

(][ V(Du) >|2dx)p(]{35<|m|+|s|>pdx) "

in order to discover

Bl <ef V(DW= VO ds

+c(5)<][BT(|Du|—I—|§|”dx> ( ][ |f|qu) . (4.30)
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Combining (4.26)-(4.28) and (4.30), we obtain
][ |V (Du) — V(&)]* dx
) v
<5][ [V(Du) = V(§)|* dz + c(&) (][ [V (Du) — (§)|wdx)

+c<é>(]{gr<|Du|+|§|de) ( L |fwdac)3

+ e(E)w()? ][ (|Dul + [€]) da. (4.31)

Recalling the definition of ¢ given in (4.6) and writing

p

K= (/T('D“' ¥ de)%(/r |f|qda:)31,

we further estimate (4.31) as

][ V(Du) — V(©)[2 do

<g][ \V(Du) — V(&) dx + c() (f \V(Du) — (g)|3azg:)7

(@)K ][ |l + e(@)w(r)? ][ (1Du] + JE))" de.

7

From Lemma 4.3.1, we know that |Du| € L'™9¢(B,). Therefore, we apply
Gehring’s lemma and use (4.25) to deduce the desired result. ]

We remark that if there is no x dependence on A, then one can obtain
Lemma 4.3.2 without Lemma 4.3.1.

4.4 Excess decay estimates

Throughout the rest of this chapter, we denote by v € W'?(Q) to mean a
weak solution to (4.1) satisfying (4.2) and (4.5). In this section, we study two
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cases, the non-singular case and the singular case, via A-harmonic approxi-
mation lemma, Lemma 4.2.2, and p-harmonic approximation lemma, Lemma
4.2.3, respectively.

4.4.1 The non-singular case

Here we deal with the non-singular case which is characterized by the as-
sumption that

(Du)s” > - [E(Du. B)]* (4.32)

for some fixed B, € €2, while the constant 6; € (0, 1) will be selected later in
Lemma 4.4.3. For the sake of readability, we use the short notation

& = (Du)p, :][ Dudx € RY".

We start with the following useful lemma.

Lemma 4.4.1. If (4.32) holds, then there exists a constant ¢ = c¢(data) > 1
such that

]{3 |DulP dx < c|& | (4.33)
Proof. By a direct calculation,r we see
| DulP do < 2°71 [][ |Du — & |P dx + |§1|p} :
By r
To estimate the first term on the right-hand side, we divide B, into
B+ ={re B, |Dulx) 6] > 5[ IDutx)| + faul]}

and B~ := B, \ B™. In B7, it holds that |Du(x) — & | < 2|&], so

1
|B| /-

|Du — & |P dx < 2P|&]P.

On the other hand in BT, we estimate

1 | P 227p
Du — &P dx <
|B:| Jp+ |B| Jp+

(1Dl + [&1])"~*| Du — &1 dx

107



CHAPTER 4. SUBQUADRATIC SYSTEMS WITHOUT THE
QUASI-DIAGONAL STRUCTURE

< c|[E(Du, B,)]*.

Finally, (4.33) follows from (4.32). O

4.4.2 Large measure or oscillatory coefficient

For any constant 6, € (0, 1) to be chosen, we call

<rq | f|ng;>q > 0,]¢1)"% E(Du, B,) (4.34)
B'r

as large measure condition. In this case, we find from (4.17), (4.32) and (4.34)
that for every T € (0,1)

de

By

[E(Du, B,)]” < c][ V(Du) — (V(Du))

< c][ ‘V(Du) —V((Du)g,) ‘2 dx
< = [E(Du, B,)]’
c\/_

1] E(Du, B,)

< 90; & (Rq AL dcc) . (4:35)

where ¢, depends only on data. In a similar way, if |§;] < A for any A > 0,
then we have

[E(Du, B,))* < S [E(Du, B,)]’

IN

T%AQ"’I&IP‘Q [E(Du, B,))”

22 \2-p <Rq £ dx) " (4.36)

= 2
9’(" B,

We next consider oscillatory coefficient condition

w(r)|& | > 65[E(Du, B,)]
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for another constant 63 € (0,1) to be chosen. Then we have

[B(Du, B )] < gl (4:37)

Here, we have abused the notation ¢, since the dependence of the constants

is the same as in (4.35), (4.36) and (4.37).

4.4.3 Small measure and stable coefficient

We now deal with the case that (4.32),

(rq / |f|"dx)q < 0,B(Du, B,)|¢)| "%

and
w(r)|& P < 63[B(Du, B,)]” (4.38)

hold. As a direct consequence of (4.32) and (4.38),, we have

ﬁ _2-p  _p_
(Rq ][ \ f|qu> < 60;"V037" [E(Du, BR)}Q. (4.39)
Br

To establish excess decay estimate of Du, we are going to use A-harmonic
approximation lemma with the following bilinear form

.: (9A(x0, 51)
A= Tl

which is strongly elliptic and has linear growth:

N22
c RV,

VAP <AMNA) and A< L
for any A € RY¥™ by (4.2). We define a normalized function v € WH?(£; RY)
by

v(z) = % [u(z) — (u)p, — &12], (4.40)

which is indeed approximately A-harmonic, as we now have

Lemma 4.4.2. Assume (4.32) and (4.38). For any & > 0 there exist 6, =
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01(data, u(+),0), and 02,05 depending on data and & such that for every
p € CX(B;RY)

A(Dv, Dg) dx < 6|[Depl| Loe(5,)
B,

whenever 0 < 0.

Proof. Fix a test function ¢ € C®(B,;RY). Taking into account (4.1), we
have

(0A(9,&)(Du — &1), D) dx:

B,

= ][ /O ([0A(0,&) — OA(wo, & + t(Du — &))] (Du — &), D) dt da

(A(wg, Du) — A(z, Du), Do) dz — fodx

B By

= I+ 1I—- f-pdx. (4.41)
B,

Denoting BT := {x € B, : [&| > 2|Du(z) —&|} C B, and B~ = B, \ BT,

we estimate [ as
51 (56'0, fl,t)} (DU - 51)

7 < 1P¢l=e) Dl Lo (B,) {/ /
B e
::Il

8A (w0, &1) — 0A(z0, &1 t)} (Du — &)

dt dx

7

dt dx} : (4.42)

/

::Ig

where we have used the abbreviation & ; := & +t(Du—¢&) for every t € [0, 1].

Note that |Du(x)|+ [&1] < 3|&1| and t|Du(z) — & | < |&i|/2 for all t € [0, 1]
in BT. On the other hand, concavity of x(-) implies that we have u(ct) < cu(t)
for any ¢ > 1 and t > 0. Taking these into account, we discover

(4.3) Du —
I, < 0]51]”_2/ L |—£l| |Du — & | dx
B+ [31
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<dal® [ w( P vpn - vie)as

6]?
= [V (Du) - vm)? )5
< 2 d
_C|§1| (/B'*‘M( |§1|% €z
- ( V(Du) V(§1)|2dx> y (4.43)
Br
By Jensen’s inequality and (4.32), we have
1 VOO VI, ¢ ¢ [ (VB0 -ViEN),
Bl /s ( &3 "B & '
<cp (M) < cp(07).  (4.44)
€12
We combine (4.43) and (4.44) to obtain
| h < (o) |67 E(Du, B). (4.45)

On the other hand in B~, |Du(x) — & | + |&1| < 3|Du(z) — & | holds, and
we estimate I as follows:

1
pe e f [|§1|H+ / |§1+t<Du—51>|p—2dt}|Du—fl|dx
B~ 0

IN
o

/B &P~ + (|&] + [Du — &[)P?]|[Du — & | dx
Si/ {|Du—§1lp—1+ |Du — & ‘§1|]|Du—§1|d$
.

|€1] & + [Du — &|
< | |V(Du) - V(&)| da. (4.46)
(SIS

Combining (4.42), (4.45) and (4.46), we obtain

cl[Do|| L= (s,)

I<
| B

65165 B(Du. B,) +
€l
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We now use Lemma 4.4.1 and (4.38), to estimate /1 as

(4.2) B
IT < cw(R)|| Do re(B,) <][ | Dul|? dx)
B,
< o0} 1Dyl 6115 E(Du, By). (1.45)

Merging (4.41), (4.47) and (4.48), and dividing the resulting estimate by
’51’1)_27 we find

][ (A(Du — &), Dg) da

(4.40) E(Du, B, 1
< ¢ [u(& —[ ( |£u|’p ) + 03
1 2

! :
+ p— qu f de) Dgp (B,
‘€1|TQE<Du,BT) ( B, |l I Iz (By)

1 1 1
< e (u(07) + 07 + 02 + 03 ) | D[ oo,

[l VI

)+

for some ¢, = c.(data) > 1. In the last line, we also have used (4.32) and
(4.38). Taking

§1=min{<4i*>2, [M_1<4i*>r}, 9224(; and O3 = (4(;)27

we complete the proof. O

Lemma 4.4.3. Assume (4.32) and (4.38). For any T € (0,1/2] there exist
0, = 01(data, u(-), ) < T2 and 0,03 depending on data and T such that

[E(Du, By,)]” < ¢s0® [E(Du, B,)]?, (4.49)
where the constant c3 depends only on data.

Proof. Recall (4.19) and (4.40). We are going to use A-harmonic approxima-
tion lemma with an N-function

1 E(Du, B,)
‘Ij(t)_[E(Du,BT)]i’w'&( & t)’ 20
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Then we have

It then follows from Lemma 4.3.2, Lemma 4.3.1 and Lemma 4.4.1 that

[E(Du, B»P( f iy dx) -

- (]{gw [¢|€1|(!DU—§1|)T+" dl’)lig

< [E(Du, B, + cléy ( / |f|de)q ()l
B,

y
(p—1)
—|—c<rq |f]qu>qp ,
B,

where o > 0 is the number given in Lemma 4.3.2. Dividing this estimate by
[E(Du, B,)]? and using (4.32), (4.38) and (4.39), we discover

1
T+o 2-p  p_
(][ U (|Dv|)t*e dm) < c<1 + 03 + 05 + ef@—”eg*) <c  (4.50)
B'r/2

Apparently, we also have

][ U(|Dv|)dx < c. (4.51)

r

In light of Lemma 4.4.2, one can apply Lemma 4.2.2 to see that for any
e > 0 there exists A-harmonic function h € v + W'¥(B, 5) such that

][ U(|Dv — Dh|)dz < ¢, (4.52)
B'r/2

where we also have used (4.50) and (4.51). Using the notation

E(Du, B,)

V& P2

h(z) := h(z),
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(4.52) can be written as follows:

. ve(1Du— Dhl)de < B (Du. B

(4.53)

So far we have shown comparison estimates between u and A-harmonic
function h. To proceed further, let 7 > 0, and set & = (Du)p,,. Then we

have

& =&l <c <][ |DU—€1|pd$)p

i( - VD) = V)P (| Dul + &)

LSAT

<

)

Tr
(432) &,

9 [l

where ¢, depends only on data. Taking

2n

T?r _
— i +2
01 = min {T” * 462’91}’

*

we see 1]&] < [&] < 2/&|, and (4.20) follows.
Using Jensen’s inequality, we have

£, velDh = O, ) i

<c][ Yie,|(|Dh — Dul) dx+c][ Ve, |([Du — & |) dx
7’/2 7‘/2

+ e (16 — (Du)p, ,|) + et (|(Du)s, , — (D)5, ,|)
<cf veilDh=Du)dr e veiDu- gl

Similarly, we also have

[E(Du, B,,)]”

(4.21)

< ¢t Y (|Du—Dhl)dr+cF e (|Dh — (Dh)p,,|) dz.

Brr By
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It then follows from (4.20) and (4.23) that
[E(Du, B.,)]?

C
<c { g (Dh = (Dh)a ) do+ 5 by (1Du - Dbl do
BT/Q Br/2

1
e f weipu-gharte(er L) £ veipu- pipas

B’V‘/Z
(4.53) c
< o+ =) [B(Du, B

Taking ¢ < T2 in the above estimate yields the desired result. O

4.4.4 The singular case

In this section, we consider the case complementary to (4.32), that is

|(Du)p,

P < Qi[E(Du, B (4.54)

1

The following lemma is the singular counterpart of Lemma 4.4.1.

Lemma 4.4.4. Assume that (4.54) holds. There exists a constant ¢ = c¢(p) >
1 such that

1

][ |Dul? dz < QE[E(Du,BT)]Q.
Proof. This lemma can be proved by applying (4.54) instead of (4.32) in the
very last part of the proof of Lemma 4.4.1. O]

We are now able to obtain excess decay estimates for the singular case
(4.54). We refer to [80, Proposition 4.1] for analogous estimates in case of
p =2

Lemma 4.4.5. Assume (4.54). For any T € (0,1), there exists €1 depending
only on data,6,n(-) and T such that if

[E(Du, B,)]” <e, (4.55)
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then we have
2 2 2 ﬁ
[E(Du, By,)]” < e3® [E(Du, B,)]” + a9 | f]* d :

where c3 = c3(data) and cy = c4(data, b0y, 7T) are greater than or equal to 1,
and o € (0,1] is the constant determined in (4.24).

Proof. Fix any ¢ € Cj(B,), then by (4.1) we have

][ a(x)|Dul|P~? (Du, Dy) dx

T

<

][ (A(z, Du) — a(z)|DuP~>Du, D) dx

T

—I—‘][Tgofdx

= ]1 + ]2. (456)
We now use (4.2), (4.5) and Lemma 4.4.4 to estimate [;. For any s > 0, it
holds
L | Dul?
|B:| J B,0fiDujsnes)r M(8)

Ls _
— | DulP~! dz|| Dep| < (5,
| Bl J B, n{Dul<n(s)}

I <

dz||Dep|| L~ (B,)

& CS 2(p—1)
g[ [E(Du, B,)]> + —[E(Du, B,)] " }||D¢||Loo(3r). (4.57)
0177(8) elp

On the other hand, Holder’s and Sobolev’s inequalities yield

1
o < Dm0 f Irtra) (1.59)
B,
Define
2 1
E(Du, B (1 W
w(z) ;:@ with A;:M+<Z_J[ |f|qu)
07 15,
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for k1 > 0 to be chosen shortly. According to Lemma 4.4.4

][ |Dw|P dz < c.
We now combine (4.56)-(4.58) and use (4.55) to obtain
1
{
1
077(s)

where ¢, > 1 depends only on data. For any ¢ € (0,1), we derive

1
|Dw[P™*(Dw, D) dx < . ( +s Hf) D¢l o (5,

B

£ 1Dl (Du.Dg) do < 81D¢l .
Br

by taking s < %, thereby 7(s), and then

7 g q
61§(591—n(8)) and MS((S).
3¢, 3¢,

Set ke = 011" > 0 and p; = p} := (24 20,)’ for the constant o, > 0
in Lemma 4.3.1. Taking § = d(data, p1, ke) = d(data,d;,T) > 0 sufficiently
small, one can apply Lemma 4.2.3, so that there exists p-harmonic map
h € W'P(B,;RY) with h = w on dB, such that

2
P1

( V(D) - V(Dh)» dx) < K.

From the choice of 4, we note that £; depends only on data, f;,T and n(-).
Scaling back the last estimate with h(§) = AR(€), we find

2

( ][ V(Du) — V(Dh)|P* dx) "o c§ [E(Du, B,)]”

- 1

rd q(pzil)
+ cKa (— ][ | f|? dx) . (4.59)
K1 -

Higher integrability (see for instance [63, Section 6]) and energy minimiz-
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ing property of p-harmonic map yield

_ Tiog _
<][ | Dh[P(+o0) dm) < c][ |Dh|P dz < c][ |Dw? dz.
BT‘/2 T T

It then follows from the equalities | Dh[P(+99) = |V (Dh)|?0+79) = |V (Dh)|P2
and Lemma 4.4.4 that

(]{% [V (Dh)[? dx) Y< c][Br |Dul? dx < ¢[E(Du, B,)]*.  (4.60)

By Lemma 4.3.1 and Lemma 4.4.4, we further have

(][ |V (Du)|P? dx> ” < ¢[E(Du, B,q)]2 + c(rq I£]? d:z:) m. (4.61)
B, /2

B

We combine (4.59), (4.60) and (4.61) to discover

][ \V(Du) — V(Dh)|* dx
B;.)2

1 1

(f V(Du) — V(Dh)[" dx) h <][ V(Du) — V(DR d:c) h
B;./2 B2

< et [E(Du, B,)] >+ e(k) (rq | f|? d:L‘) m. (4.62)

By

IN

In the last line, we have used ky = ;72" 4,

We now estimate the excess of Du by using (4.17) and (4.24) as follows:

de

[B(Du.Bo)]* < e f [V(Dw) = (V(Dw),,,

2

dx

<cf VDw - (vDm),,

r

< ¢[E(Dh, B,)]” + c][ [V (Du) — V(Dh)|* dz
< ¢t [E(Dh, B,s)]” + m—”][ |V (Du) — V(Dh)|* dz

BT‘/Z
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< cq2e [E(Du, Br/z):|2 + CT_"][ ‘V(Du) — V(Dh)|2 dx.

B'r/2
Consequently, (4.62) gives the desired estimate. O

We recall Lemma 4.4.3 to see that 6, depends on data, u(-) and T. There-
fore, 1 depends on data, p(-),7(-) and T, while ¢4 depends only on data, u(-)
and T.

4.5 Proof of Theorem 4.1.1

We divide the proof of Theorem 4.1.1 into three steps. In step 1, we construct
a sequence of concentric balls and revisit some well known properties of Riesz
potentials. In step 2, we prove some iterative lemmas including Lemma 4.5.1,
which insures that at least one of the estimates in Section 4.4 is still valid for
each concentric balls. Finally in step 3, we complete the proof of Theorem
4.1.1.

4.5.1 Basic settings

We fix constants 0 < p < R < R,, where R, will be chosen shortly. Let us
take a small constant T € (0, 1/2] satisfying

st < %, (4.63)
where ¢; is determined in (4.17), and c¢3 is determined in Lemma 4.4.3 and
Lemma 4.4.5. Recall the constants 01, 05, 03, 1, ¢4 and ¢y given in Section 4.4
and their dependence. Notice that we have chosen 6, € (0,1) in Lemma 4.4.3
to satisfy

0, < T, (4.64)

For every i € {0,1,2,---}, we set a sequence of concentric balls
B; = Bri = Bri (f()) with T, = Ti+1R’

and write
5 and E; = E(Du, B;).
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Recall (4.8) and the basic property of ]{q from [80, (6.6)]

~ 1oy
Z<rg]{9 |f|qu> gw. (4.65)

=0 ?

Since p/2(p — 1) > 1, we have

iad won (I (o, R)\ D
> <7"3][ \f!qd:v) < <—1’Q<i° >> . (4.66)
i=0 Bi ™

Moreover, (4.65) readily implies
1
i I (z0,R
sup (pq Fik dm) < M and lim p? |f|9dx =0. (4.67)
0<p<tR B, T p—0 B,
Dini continuity of coefficient, (4.4) allow us to take R.(data,d(-)) > 0

satisfying
R 11,
< dp _ 0F0ith
aR) = [ < BT
0 P 100cic3

Similarly to (4.65), we discover

Sers e[+ 5 o)
0

i=0 v Ti+1

< d(R) < - (4.68)

4.5.2 Iterative lemmas

To begin with, let us remark about counterpart of Lemma 4.5.1 for the case
p > 2 shown by Kuusi and Mingione in [80, Section 5]. They showed that E;
is sufficiently small for every ¢ > 0 when FEj is small enough. However, this
fails when p < 2, because of lack of degeneracy. More precisely,

& — &P < V(&) = V(L) (&4,6 e RY™)
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does not holds in general, for instance, see [53, Lemma 4.2] and [80]. There-
fore, it is not clear that Lemma 4.4.5 is applicable to the singular case (4.54).
Nevertheless, we can show that if (4.54) holds at some 7 > 0, then FE; is small
enough, as we now state and prove.

Lemma 4.5.1. There exists a constant Hy = Hy(data, u(-),T) > 1 such that
for the constant €1 given in Lemma 4.4.5, if

q(pp*1)
E? + Hysup (7“?][ |f|qu) < ey, (4.69)
j=0 B;
then 1
E?<¢e or G_EZQ <k} (4.70)
1

holds for every ¢ > 0.

Proof. We prove by induction. For ¢ = 0, (4.70), holds true by the assumption
(4.69). We now assume that (4.70) holds for some i > 0. We write

2p—1
) 16¢c \ 71
H; = min {464,4<H%—Ti) } (4.71)

Case 1) (4.70), fails.
In this case, we assume not only (4.70),, but also z-EF > k7. It then
follows from Lemma 4.4.5, (4.63) and (4.71) that

9 9 9 q(pp—l)
E7 | < 2c31E; 4 2¢4 7";-1][ |f|? dx <ey.
B;

Case 2) (4.70), holds.
We now suppose that (4.70), holds. Taking (4.18) and (4.70) into account,
we see )
ki < kipr + 3T 2E; < kiyy + 3c,7 202k,

Accordingly, (4.63) and (4.64) yield

ki < 2k (4.72)
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Next, we consider the following alternatives: Either

1 q(pp—l)

K2 > _<rg ][ | f|qu> (4.73)
0, B;
1 q(pp—l)

k? < —(rf][ ]f|qd1;) (4.74)
0. B,

for some 6, € (0,1) to be chosen shortly. For the case (4.73), we combine
(4.35), (4.37) and (4.49) to discover

or

2 ¢
Eirl < 062 kr (rf][ |f\qdm) ecinw(ri)Qk‘f + 3T E?
3

—1

< w(r; 3T | k7.
- |: 92’(” 93’(” ( ) + 3 LM
Taking 0, = (911?3—1?) pzl, the estimate

- 2

0, —Ei g < ki,

follows from (4.63), (4.68) and (4.72).
The only case left to be considered is that (4.70), holds with (4.74). If we
assume

7 p=2
(r? ][ |f|qd95) < 6Bk and  w(r,)’k} < 03E7,
B;

then Lemma 4.4.3 and (4.72) yield

1 3T (4.63)
g Bt < ——E < 16k3§k3+1

On the contrary, when

(T;I][ |f|qd$) > 92Eik¢% or w(r;)’k} > O3 E7
B;
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holds, then (4.35), (4.37), (4.68), (4.74) and the choice of 0, yield

B < gl (11 f 1f1an) "+ St
0 B; 3T

Co q(PIll) Co Q(pzil)
< q q d . 2 q q d
< g (1) et (st f )

G
§Hl(r§][ |f|qda:> )
B;

Recalling (4.69), we obtain E? ; < e;. This finishes the proof.

O

Remark 4.5.2. Assume (4.69). Consequently, in light of Lemma 4.5.1, we

can apply Lemma 4.4.5, Lemma 4.4.3, (4.36) and (4.37) to obtain

1 2‘1(10 1)
Ei < 4E +ci < ][ \f]qu)

(memd)*”*mMi
92 : 0372

(4.75)

whenever k7 < AP for any ¢ > 0. Here, we also have used (4.63), (4.65) and

(4.66).

Lemma 4.5.3. Under the assumption (4.69), if

0 Az
k 2 <
LT RS 10
and -
N , 100cic2c?
H2[1f7q(12077’1> < AP ! with H2 = TS&?’LLI

holds for some [ > 0, then for every 0 < p < r; we have
|<DU)BP| S A

Proof. Firstly, we prove
AP

B2 < —
T2
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for every i > [ by induction and by using the estimate (4.75). The case i = [
follows directly from (4.76).

We now assume that (4.79) holds for every i € {l,l + 1,...,m}. Using
(4.75) repeatedly, we have

m m—1 m—1 P
1 1 2q(p—1)
1 1 1 m—1

2 2pm 4 c3 P
A7) !flqu) + A2y w(r)
9212 i= l< ][ 93 : i=

m—1 __p
1 2q(p—1)
<2E; + 2¢} (r ][ | f]? dx)
! B;

1=

1

1 1
2 - @ 22
62 22?2 (r ][ |f|qu>q + 162 A2 w(ry).
i=l Bi

02’(5

It then follows from (4.65), (4.66), (4.68) and (4.79) that

m f [ —
11 (xo,17)\ 20D
N B <2B +2 (%)

1=l

22 sy I (zo,m) 202 L
L2 e (o) 3 Aézw(mgﬂm_ (4.80)

For the last inequality, we have used the definition of Hs given in (4.77) and
the fact that p/2(p — 1) > 1. It then follows from (4.18) that

A3
Kems < ko + 2T QZE <22

i=l

This shows (4.79).
We next prove (4.78). For any 0 < p < r;, there exists an integer m > I
such that p € (ry,41, 7). Using again (4.18), we discover

|(Du)p,|? < 2T 2 By + k.

Now, (4.78) is a direct consequence of (4.79) and (4.80). O
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For each zy € 2, we write

A2 = A(x)?
e : ; 0
= 2007 2 {(][ | Dul|? dx) + (Hg]lyq(:vo,’tR)> ] (4.81)
Brr(z0)

The assumptions, (4.76) and (4.77) for [ = 0, immediately hold with above
A.

Remark 4.5.4. A consequence of Lemma 4.5.1 and Lemma 4.5.3 is pointwise
BMO-regularity for Du under (4.69). In light of Lemma 4.5.1, for every i > 0,
we have

Ef S €1+ Qlkg

For any p € (0, ro], there exists j > 0 such that p € (r;41,r;]. Using (4.17),
we obtain

E(Du,B,) < ¢;E(Du, B,) < T 3 E; < eyt 3 (14 k). (4.82)

On the other hand, Lemma 4.5.3 implies that k; < A%. Consequently,
E(Du, B,) is uniformly bounded with respect to p € (0, 79| with ry = TR.

We are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Set e, = 1"¢1/Hy, where T, Hy,¢; are the given con-
stants in (4.63), Lemma 4.5.1 and Lemma 4.4.5. Then (4.69) holds. Therefore,
Lemma 4.5.1 holds, and also Lemma 4.5.3 holds for the constant A given in
(4.81) and [ =0 .

Our first goal is to prove that for any small constant s > 0, there exists
is € N such that

sup E(Du, B,(xg)) < s, (4.83)
0<p<is

which is equivalent to (4.13). We now fix a small constant s > 0. Taking
(4.67) and (4.68) into account, there exists iy such that

- WD s
Ho(1 + A7) sup <r;][ | f|qu) < (4.84)
i>io o 3
and n
How(ri, )A% < Tis. (4.85)
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Fix any p € (0, r;y+1], then there exists j > 4o+ 1 such that p € (41, 7],
and so
E(Du, B,(z0)) < T 2 E. (4.86)

Applying (4.75) iteratively and using (4.84) and (4.85), we find

p

1 =T
E; < mEzo + Hysup (7“:-1][ |f|qu)
B;

12190

[S]s]

+ H A s;;p (Tg][ | £|9 dm) a + How(riy) A
1210 B;
T2 s

E;, + R

< —

— 4%
where we also have used the fact p/2(p—1) > 1. We now combine (4.86) and
(4.82) to discover

1+ A
E(Du, B,(0)) < % +2
Consequently, there exists i; = i5(T,A) > iy such that (4.83) holds. This
shows (4.13).

We now turn our attention to local VMO-regularity. Assume (4.14) and
(4.15), and take a point zg € €2,. Note that (4.14) and continuity property
of integral imply the uniform boundedness of map z — A(x), where A(-) is
defined in (4.81).

For a fixed constant s > 0, (4.15) and uniform boundedness of A(-) allow
us to take a neighborhood of z¢(denote by O), such that there exists g
satisfying (4.84) for every points in O. In light of (4.68), we can further
assume that (4.85) holds for every = € O. Then the same proof as above
gives

E(Du, B,(z)) < 0+t AG) | s

—  andi—io 2
for every x € O. Consequently, uniform boundedness of z — A(x) in O yields
that E(Du, B,(x)) — 0 uniformly in O. This completes the proof. O
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4.5.3 Proof of Theorem 4.1.1

We first prove that every point zy € € satisfying (4.9) is a Lebesgue point of
Du. Recall that the choice of ¢, given in the proof of Theorem 4.1.2 implies
(4.69), and so Lemma 4.5.1 is available.

Proof of (4.10) and (4.11). For any ¢ > 0, (4.18) implies

V((Du)p,.,) — V((Du)p,)| < 3t 2 E,.
In light of (4.9), we can apply (4.80) for any 1 < m < [ to discover

V((Du)p,) = V((Du)s,,)|

< 3"['7% Z El
m<i<l—1

S 6T_%Em + H2 |:I{’q(l’0, Tm—l)] o=y
+ HQAQ;QPI{CI(ZE(), Tm—l) + HgAgd(’l“m_l). (487)

Recall (4.4) and (4.8) to observe that Ifq($o, Tm—1) and d(r,,_1) converges to

0, as m — oo. In addition, the right-hand side of (4.87) does not depend on

[, and it converges to 0 as m — oo by pointwise VMO regularity, (4.13).
On the other hand, using Lemma 4.5.3, we have

(Du)p, — (Du)p, | < AT |V ((Du)g,) — V((Du)p,)|-

Hence, {(Du)p, }i>1 is a Cauchy sequence, and denote the limit of the se-
quence by £ € RV ie.,
lim (Du)p, = L.
1—00
For any p € (0,7?r], there exists m > 1 such that p € (rp1,7m]. Again
(4.18) implies

[V ((Du)p, () — V ((Du)g,,)| < 31 2Ep,.
Therefore, we obtain
lim [£ — (Du),@y)| < lim |£ — (Du)p,,|
m—0o0

p—0

+ cA@P)/2 ij_% |V((Du)3m) - V((DU)BP(%))}
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< lim |[£ — (Du)g,,| + 3ct” SN2 lim B,

m—o0 m—r0o0

This completes the proof of (4.10).

=0.

A slight modification of the proof of (4.10), yields (4.10),. Hence we omit

the proof of (4.10),. For more details, we refer to [80, Lemma 6.4].

At this stage, the proof of (4.11) follows from (4.10) and the following

estimate

|(V(Du)) — V((Du)p,@y)| £ E(Du, By(x0))

Bﬂ(ﬂco)

for every p € (0, t>R)]. Specifically, we have

[V (Du) (o) = V(Du(wo))| < [V (Du)(wo) — (( u))

By (z0) |

+(V(D)) (o) = V(D) B, @)
+ |V((Du)Bp mo)) V(Du(xg))|-

Taking (4.10) and (4.13) into account, the right-hand side converges to 0 as

p goes to 0.

Proof of (4.12). First, we assume p € (0, TR]. There exists m, € {0, 1, 2,

such that p € (7,41, 7m,]. In this proof, we set

[SI4S)

A

A straightforward calculation shows

[NiS)

A

kmp1 + T 2Ep, 41 < T 2k, + T "E(Du, B,) < 00

and
Hgliq(xo, Tl) S Ap_l.

Therefore, Lemma 4.5.3 gives
[(Du)p,| < A
for every o € (0, m, + 1]. Moreover, similarly to (4.87), we have

|V((DU)BZ) - V((Du)Bmp+2) |
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< 61'_%Emp+2 + Hs I{q($0, Tmp—i-l)] e
+ HQAZ_TPI{,q(an Tmp-i-l) + HQAgd(rmp""l)

for any I > m, + 2.
Letting [ — oo in the previous estimates, we discover

|V (Du)(xo) — V((Du)Bmp+2)|
< 6T 3B, .o+ Hy [I{ (o, rmpﬂ)] D

+ HQA;%Z}I{Q(%, Trmp41) + H2A§d(rmp+1)
< 6T*37nE(Du, B,) + H, [I{q(xo, p)] T
+ HoAy? 1 (w0, p) + HaASd(p),

where we have used (4.10).
Again we have

[V ((Du)g,,..) = V((Du)g,)| < 3T "E(Du, B,).

(4.88)

(4.89)

Combining (4.88) and (4.89), we conclude that (4.12) holds for every p < TR.
We use (4.12) for tp > 0 to obtain (4.12) for p € (TR, R]. This completes

the proof.
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Chapter 5

Measure data problems with
general growth

In this chapter, we study Calderén-Zygmund type estimates for nonlinear
elliptic measure data problems in terms of the fractional maximal function
of order 1 and later, we investigate similar estimates for integral functionals
with p(z)-growth. Indeed, for the second problems, we take quasi-minimizers
into account and present only the proof of a comparison estimate which
essentially deals with controlling quasi-minimality, since the remaining parts
of the proofs are quite similar to the ones for former problems.

We remark that these researches delivered from the process of developing
a unified method in the gradient potential theory.

5.1 Main result

Let us consider the following measure data problem with general growth:

{_div(A(x, Du))=p in©, (5.1)

u=0 on 0f),
where 2 C R" is a bounded domain with n > 2 and p is a Radon measure

with finite mass. The given vector field A : 2 x R” — R"” is assumed to be
C'-regular in the second variable, with OA(-) = 9:A(-) being Carathéodory
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regular, and satisfy the following growth and ellipticity assumptions:

A, €)] + |0A(x, )I1€] < Lg([€]),
vIELIC? < (9A(x, )¢, Q)

for every &, € R™ and x € (), where 0 < v < L < oo. Here, g is the
derivative of an N-function G € C?(0,00) N C*[0, 00) satisfying

(5.2)

<Ay —1 <00 (5.3)

for some constants 71,7, > 1. Recall the definition of N-functions and cor-
responding function spaces given in Section 2.2.

For (5.1), we are going to prove the existence of a SOLA and the global
Calder6n-Zygmund estimates for (5.1) in terms of M;(u), under possibly the
weakest assumptions both on A(-) and €.

So far, there have been only a few regularity results for SOLAs to (5.1)
with general g(t) satisfying (5.3), while there are many research papers when
g(t) = t*71in (5.2). We refer to the very fine paper [10] which obtained Riesz
potential estimates for (5.1) with general growth. To avoid the difficulties
that arise from the lack of monotonicity of the map t — ¢'(t), it is assumed
in [10] that

2 <, (5.4)

in order to obtain gradient potential estimates. On the other hand, in the
spirit of Calderén-Zygmund estimates, (5.4) can be relaxed as

2—1/n <y <7y < o0, (5.5)

which covers the whole range of p € (2 —1/n, 00) for p-Laplacian type equa-
tions, see [94].

We would like to emphasize that comparison estimates between p-Laplacian

type measure data problem and the corresponding homogeneous problem
have different forms, stemming from (5.14), according to the range of p.
Roughly speaking, constructing some auxiliary functions, we can obtain de-
sired comparison estimates in the sense of L! without distinguishing p > 2
and p € (2 —1/n,2), see Lemma 5.3.5.

We now turn our attention to our assumptions on the couple (A(-), ).
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Definition 5.1.1. For some R > 0 and ¢ € (0,1/8), we say that (A(-), Q) is
(0, R)-vanishing, whenever the followings hold:

1. Denoting

O(U)(x) := (<2L)

sup

S
9(I€]) eern

for any measurable set U C R™ and x € U, we have

Az, €) — ][U Az, €) d=

sup sup ][T( )H(Br(y))(a:) dx < 0.

0<r<RyeR"

2. For each y € 092 and r € (0, R], there exists a coordinate system
{t1, -+ ,Un} with the origin at y satisfying

B, (0)N{y, > or} C B,(0)NQ C B, (0) N {y,, > —dr}.
We call such 2 as a (0, R)-Riefenberg flat domain.

We remark that a Riefenberg flat domain has its boundary trapped be-
tween two hyperplanes. Moreover, (0, R)-Riefenberg flatness guarantees the
measure density condition

srnaon® (0s) 2 (7)

f |2 ﬁBr(x)]2 1—-96 > 7 .
o<r<R | B,(x)] 2 16

€N

and

This condition will be used several times later, without referring to it. For a
further discussion on Riefenberg domains, we refer to [28,82,96].
We now state our main result.

Theorem 5.1.2. Under the assumptions (5.2) and (5.3), let u € Wy (Q)
be a SOLA to the problem (5.1). Suppose that g~ (M;(n)) € L*(Q) for some
N-function H € C?(0,00) N C[0, 00) with its derivative h satisfying

/ / /
0y 1t O O e

R S R SN e — b (5.6)
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Then there exists a small constant § = 6(n,y1,Y2, V3, V4, ¥, L) > 0 such that
if (A(+),Q) is (0, R)-vanishing, then Du € L*(Q) with the estimate

/Q H(|Dul)dx < c / Ho g™ (Mi()) dr. (5.7)

where ¢ depends only on n, 1, 72,73, V4, V, L and diam(Q2)/R.

As a consequence of Theorem 5.1.2, we find a sharp gradient estimate in
the frame of Lorentz spaces, see Remark 5.4.2.

Our main approach to the proof of Theorem 5.1.2 is based on the so-
called maximal function free technique which is introduced in [5] and revisited
by [27,32], along with the following observation

G i R AN G
< ][ 0 0nG0)dr, (5.8)

for any xy € Q and some constant ¢ = ¢(n, 71, 72). The main feature in this
chapter is that we are able to find a unified way working both the degenerate
and singular cases to prove (5.7).

5.2 Existence of SOLA

Until Section 5.5, we use the abbreviation
data := {n,v,v,v, L}

and set the auxiliary vector field V' : R® — R" by

V(e) = (%);s

for each £ € R". The monotonicity of A can be written simply in terms of V'
as in (2.18).

This section is devoted to introducing the so-called SOLAs to (5.1) and
proving its existence. Recall that the right-hand side datum p given in (5.1)
is a bounded Radon measure. As mentioned in Section 1.1, several notions
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of solutions were mentioned to deal with measure data problems. Before
introducing SOLAs, we first recall approximable solutions with the following
notation:

AYC = {u is measurable in Q : T}(u) € WH%(Q) for all ¢ > 0}.

Definition 5.2.1. We say that u € ALY is called an approximable solution
to (5.1), if u solves (5.1) in the distributional sense which means

/ (A(z, Du), D¢} dx = / bdu, Yo e WEE(Q),
Q Q

and the following statement holds: There exists a sequence of weak solutions
{wbken € Wy () to
—div(A(z, Dug)) = px  in (5.9)
up =0 on 0,

where p, € L*°(2) converges to p weakly in M, (2), such that vy — u almost
everywhere.

We now introduce SOLAs.

Definition 5.2.2. We say that u € W' (Q) is a SOLA to (5.1), if u is an ap-
proximable solution with a sequence of functions {uy }x>o, then uy converges
to u strongly in WH1(Q) up to a subsequence.

A main difference between the notion of SOLA and approximable solu-
tion is that an approximable solution u only requires Duy — Du almost
everywhere, while a SOLA requires Duy — Du strongly in L'. We point out
that the almost everywhere convergence is not enough in proving the desired
Calder6n-Zygmund estimate (5.7), as far as we are concerned. In this regard,
we need the strong convergence in L! for which we are dealing with SOLA
instead of approximable solution.

Except for this section where the existence of a SOLA is proved under
(5.12), we always assume y; > 2 — % but do not assume 7, < n. Instead, we
consider the following slow growth conditions
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Note that for the case G(t) = t*, (5.10), implies p < n. If (5.10), does not

hold, that is
1
oo t n—1
—_— dt <
/ (G(t)) >

then u € W, "“(Q) is continuous as follows from [33, Theorem 1la], which
ensures g € (W% (Q))* and the existence and uniqueness of a weak solution
to (5.1) follows from the monotone operator theory. Therefore (5.10), can be
regarded to be a natural generalization of p < n for the case of G(t) = 7.
On the other hand, assumption (5.10), is given for a technical reason. If
(5.10), does not hold, then we define G, a modification of G near 0, so that
G satisfies (5.10) and LY = L%, see [10, Section 5] and [37, Section 3].

Our proof of the existence of a SOLA to (5.1) is motivated from the pre-
vious paper [37]. Let us start with the introduction of the following functions

from [37]:

and

G,(t) == G(H ' (t)). (5.11)

Let us present important lemmas from [37]. Throughout this section we al-
ways assume that G satisfies (5.3).

Lemma 5.2.3. [37, Lemma 4.1] Let Q2 be a domain in R"™ such that || < oo
and u € W)°(). We assume that there exists M > 0 and to > 0 such that

/ G(|Dul)dx < Mt for t> t.
{lul<t}

Then there ezists ¢ = c(n) such that

Mt

[{lul >t} < W

fort Z tOv

where n' = 2.
n—1

By using the standard mollification, there exist a sequence {u}tren C

C>®(R™) with pp — pin measure, and a sequence of weak solutions {uy }reny C
Wy %(Q) to (5.9). In light of (5.3), u,, and Duy converge to u and Du in
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measure, respectively, see [37, Section 5]. As mentioned earlier, we need L'
convergence of Duy to Du in Definition 5.2.2. To show the existence of a

SOLA, we assume that
< dt
/ RO (5.12)

When G(t) = t?, ¥, (t) = t7-1?Y and (5.12) is equivalent to p > 2 — L In
this way we regard (5.12) to be a necessary assumption to the existence of a
SOLA to (5.1).

Lemma 5.2.4. Let u be a weak solution to

(5.13)

—divA(xz, Du) = f in §,
u=2>0 on 052,

where [ € (W(}G(Q))* NLYQ). If || fll;r < M for some positive constant,
then there exists a constant ¢ = c¢(n,v, L, M) > 0 such that

{|Du| > t}|W,(t) < ¢ forallt>0.

Proof. By taking a test function ¢ = Tj(u) with { > 0 in (5.13) and using
(5.2), we find

1/ G(|Du|)dm§/ A(x, Du)Du dx
{lul<l}

¢ {lul<t}

= / fodr <1 fllpe < M,
0

where ¢ = ¢(v, L). Then according to Lemma 5.2.3, there exists ¢(n) such

that
cMl

Gn(c(n)lﬁ/M%)
for all ¢ > 0. Also, the following inequality holds:

{lul >3] <

1 Ml
{G(Dul)) > s, ]u| < t}] < —/ G (D)) dz < ML
S J{G(|Dul)>s,|u|<t} s

for all s > 0. Consequently, we have
{G(1Dul) > s}| < {G(|Dul) > s, [u] <1} + [{|u] > 1}|
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Ml Ml
< + 1 TN
s Glclv /M7)

Then taking | = (TZ)M%G;I(S))"/, we find
Mn/Ggl(S)n/

{G(|Dul) > s} < e——

where ¢ = ¢(c, v, L). We then select s = G(t) and recall (5.11) to have

Hn(t)”'_ c
G(t) — Uu(t)’

as required. O

{|Du| > t}] < ¢

We now prove L' convergence of Duy, where wuy, is a weak solution to
(5.9), using Lemma 5.2.4.

Theorem 5.2.5. Let G satisfy (5.3) and (5.12). If uy is a weak solution to
(5.9), then Duy, converges to Du strongly in L' up to a subsequence, where u

is an approzimable solution to (5.1). Therefore, any approzimable solutions
to (5.1) are SOLAs.

Proof. Out first step is to show that {Duy}x>1 is a Cauchy sequence in L.
To do this, we split domain of the following integral into three parts. For
some small € > 0 and large My > 0, we have

/ |Duk—Dum|dx:/ |Duy, — Duyy,| de
9] {|Dup,—Dum|<e}
+/ | Duy, — Duyy,| dx
{e<\Duk—Dum|§M0}

+/ |Duy, — Duyy,| dx
{|Dug,—Dum|>Mo}

= Il + IQ —|— 13
Clearly, we have

Il SS’Q’ and IQ §M0|{]Duk—Dum‘ >5}|
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From Lemma 5.2.4, we have

[{|Du — Dun| > t}] < [{[Du| + [Dum| > t}|
C

<1(1Du] > )+ 11Dl > 5} € g

Then we have

7, g/ {|Dug — Duya| > t}dt + Mo|{| Dug — Du| > Mo}|

My

e 1
gc*/ _dt + Mol {|Dug — Dup| > £},

where ¢* = ¢*(n,v, L, |u|(£2)). Choose M, large enough so that

o0 1
c* dt <
/MO v, (L)

which is possible by (5.12). Since Du,, is a Cauchy sequence in measure, see
the proof of [37, Theorem 3.8|, there exists a positive integer Ny such that
k,m > Ny implies

?

Wl M

Mo|{|Duy — Dun| > €}| < g

Consequently
/ |Duy, — Duy,| dx < e(|Q] + 1),
Q

whenever k, m > Ny, which proves that {Duy} is a Cauchy sequence in L.
Let Z = (Zy,--+ ,Z,) be a vector-valued function satisfying Duy, — Z
strongly in L'. Then u; converges to u almost everywhere, as shown in [37].
According to Definition 5.2.1, we are left to show that u € WH(Q) and
Du = Z. By Rellich-Kondrachov compactness theorem, we have u; — u
strongly in L*(12) for all 1 < s < 2. For any ¢ € C5°(Q), we have

/’LLDZ-¢ dx :klim up D;p dx
Q o0

- Q

k—o0

= — lim /Diukgzﬁdx
Q

139



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL

GROWTH
Q

which implies that Du = Z. This completes the proof. O]

5.3 Comparison estimates

This section is devoted to deriving the desired comparison estimates. To this
end, we divide it into three parts. In the first part, we define some N-functions
related to GG. Boundary estimates are in the second part, while interior case
is in the last part. Throughout this section, we assume that u € VVO1 G(Q)
is the weak solution to (5.1) with pu € L*™(€2). In addition, without lose of
generality, we assume (5.3), (5.5) and 71 < n, here and in the sequel.

5.3.1 Technical estimates

We want to remark that for G;(t) = t* and any £ > 0, we have

Vo(&1) = Vi(&)P? if p=>2,

p—2 ) (5.14)
e v [Vp(&) = V(&) +e(&f + &P if p <2,

Gi(l& — &) < {

where V,(€) = |¢|?P=2/2¢ for every £ € R™. As far as we know, there is not
a proper analogy of (5.14) for general N-functions, which makes it hard to
apply the argument given in [24, Lemma 3.4] to the measure data problem
(5.1). To overcome this difficulty, we construct some auxiliary functions in
the followings. In turn, we obtain L!-comparison estimates for Du in order
to prove Theorem 5.1.2.

Let us define an auxiliary function

tg-1(s) . 1+l 72
ULt ::/ g ds, where W l(t):= ( ) . 5.15
= [ 2= (S (.15

Then we have the following properties.

Lemma 5.3.1. The functions given in (5.15) are equivalent:

UL (E) ~ W),

g g

Moreover, \I/g_l has the inverse function WV, that is an N -function.
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Proof. Note that

v '(t) >0 and i\I/g_l(t) = Ll (% +1- tg <t)> >0 (5.16)
dt (72 + 2)t7272 9(t)

for t > 0, thus, \i/;l and W, are strictly increasing C'-functions on [0, c0).
Moreover, by a direct calculation, we discover that ‘11;1 has its continuous
second derivative on (0, 00) as follows:

eV - g (Htg’(t)) <0

g(t)

2 y2+3

(72 + 2)t+?

It also turns out that \Ilg_l is concave. We apply the inverse function theorem
to find ¥, € C*(0,00) which is convex and satisfies W, 0 W 1 (t) = t.

On the other hand, the first part of the lemma can be shown by using
(5.15), (5.16) and (5.3) as follows:

()T (1) < b (%) < Ul(h) (5.17)

and

~ . [t o _
\Ijgl(t) < Z\Ijgl (Qil) < C(’Yla%)qjgl(t)‘
i=1

To complete the proof, it remains to show that

v v
limﬁ =0 and lim # = o0. (5.18)

t—0 t t—00

Indeed, we use (5.3) to see

U)o 1 \mre 1\ e
lim —2 =lim [ —— > lim = 00.
t—0 t t—0 tg(t) t—0 'yQG(t)

It then follows from (5.17) that

Ut
lim —2 ®) = 00,
t—0 t
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or equivalently
W (t
lim ﬁ
t—0 ¢

=0.

Similarly, we can show (5.18),. This completes the proof.

O

Remark 5.3.2. Note that whenever ¢ — \i/;l(t) /t is decreasing and t —

\i/;l(t) is increasing, there are a few indirect ways to construct concave func-
tions like \I/g_l, which is neither a differentiable function nor an N-function.

See for instance [93, Lemma 2.7] and [67, Lemma 2.2].

For \Tlg, the complementary N-function of ¥,, we now claim that

v, (G(t)ﬁ> ~t.

Recalling Lemma 5.3.1 and (5.3), we have

: t
U (t) ~ W () = —
[G(t)] =+
and
e e tg'(t)
S T2 : W) 72+2(1+ g(t) ) =

This estimate implies

0< g
Ye+27 V) T pet2

and so we obtain

U (¢
Lo 2 g()<72+2

’72—’71+2_\I/g(t) - 2

and

St 1) gt
V2 U, (1) g
Here, we have used (2.4) and the fact that

1

[Ty ] 0 Wy(t) = 1/Ty(2).
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It then follows from (5.20) that

This estimate can be written as

Q

@QG@Wb)%E%%E;

At this stage the claim (5.19) is a direct consequence of (5.21).
We further note that from (5.21) there exists v = v(71,72) > 1 such that
for any € € (0,1] and s,t >0

st < eW(s) + e U(1). (5.22)

Remark 5.3.3. We define another auxiliary function

o e T s
G®_/L@L%zWWﬂ (5.23)
0 s
for every ¢ > 0. As in the proof of Lemma 5.3.1, we can show that for ¢ > 0,
t > [G(t)]"/" /t has non-negative derivative, and so G is convex.

5.3.2 Boundary comparison estimates

We recall first our assumption that (€2, A(+)) is (6, R)-vanishing. Take xy € Q
and r € (0, R/5] such that

Bg; C Q5r C Bs, N {fﬂn > —10(57°}, (524)

and consider the homogeneous Dirichlet problem

{—div(A(% Dw)) =0 in Qs (5.25)

w=1u on 0f)s,.

One can find a higher integrability result for (5.25) in [44, Theorem 9,
which we state as follows in view of [63, Remark 6.12].
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Lemma 5.3.4. Let w € WHY(Bs,) be the weak solution to (5.25). Then for
every q > 1, there exists o = o(data) € (0,1) such that

<][ el dx) : (]{2 G(|Dwl)? dx)q,

where ¢ = c¢(data, q).

We can see that ¢ — [G(1)] 1/2m /t is decreasing, by differentiating it. Sim-

ilarly to Lemma 5.3.1, the map t [G(t)} Vg comparable to some con-
cave function. Therefore, in light of Lemma 5.3.4 with ¢ = 2+, and Jensen’s
inequality, we have

( G(|Dw|)'** dx) < CG<][ \Dw|dm>, (5.26)
Q4r Q5r

where ¢ depends only on data.

We now move on to a L'-comparison estimate between (5.1) and (5.25).
The functions ¥, \II and G investigated in Subsection 5.3.1 are useful in
the following lemma.

Lemma 5.3.5. Let w € WH%(Qs,) be the weak solution to (5.25). For any
€ (0, 1], there exists § = d(data,c) > 0 such that if

][ \Dul d + 1][ o (M (1)) d < A (5.27)
Q5T 5 Q5’V‘

for some A > 0, then
][ |Du — Dw|dx < e.
Q57‘

Proof. We start with scaling and normalization arguments. For some con-
stants k € (0,1] and 6 > 1 to be chosen later, set

9)
M:n][ |Du|dx—i— —g~ ('“’( 5’”))20.
Q5r

franl

If |u|(25:) = 0, there is nothing to prove. So, without loss of generality,
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assume |p|(€25,) > 0, which implies M > 0. We now set

Alyg) = TS, = ST 00 = w4,
Git) = ((;;((1;\/—’4?5))7 ay) = u(l’?w-f;r?/)j y) = w(I?V; ry)
and  f(y) = T“(;C(Oj\;)ry) (5.28)
for y € Q5 := {y € R" : 2y 4 ry € Qs,}. It is readily seen that
1](€5) < kD8, ]{2 Dijde <kt Q1) =1 (5.29)
and
A = I e — 2L (530
Accordingly, once we have
/f2 Dit — D) d < ¢ (5.31)

5]

for some ¢ > 1, then

1
][ |Du—DU]dx§cm<][ \Du|d:c—|—1—+9][ gl<M1(,u))d:U),
Qs Qs . Qs

where we also have used (5.8). Taking k = ¢/c and § = k', we obtain the
desired estimate. Therefore, it is enough to verify (5.31).

From now on, for simplicity of notation, we omit ~ over characters. As
mentioned at the beginning of Subsection 5.3.1, there is no analogy of (5.14)
for general N-function. Instead, for any &, & € R™, Lemma 5.3.1 and (5.22)
yield

9(|§1| + |§2|)|§1 . §2|2)W\I/1(]§1| 4 ‘§2|)

'&‘fﬂgc( &l el
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<o (Meree — o) T s 6+ v

1 Lo (906l + 1) B
§§\€1—52\+/€\§1|+CF6 W((mlﬁ—&V) );

where v > 1 is the constant determined in (5.22). Here, we also have used
the concavity of ! Taking (5.19) and (5.23) into account, we discover

~ 1

U(t27) ~ G(1),
and we find

&1 — & < 2k|& |+ ck TG ( {Wﬁl — §2|2} ﬁ) . (5.32)

Recall the truncation operators given in Section 2.1, and denote

Cs:={x € Q5 : |Ju(x) —w(z)| < s}

and
Dy:={reQs:s<|u(z)—w(x) <s+1}

for every s € N. Testing Ti(u — w) and Ts(u — w) to both (5.1) and (5.25)
and using (5.30), we have

(1D + | Du) :
Du — Dw|*dx < Q
| D D = Duld < sl (6

and

oDl + | D) :
Du — Dw|” dx < Q5).
| iD= Duf dr < c (@)

Then applying Holder’s inequality, we find

1
o(|Dul + | Duw) e L
Du—D dr < 7] Q 71
/C( Il 21— Do) " < e )
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and

o(|Dul + | Du) 2
Du—D d
/Ds ( Du +Dw] | wit) e

_n_ 1—L
_1 1 uU—w|\" ! i 1
< | Dy ()% < e ( / (g) dx) ()%

It then follows from Sobolev-Poincaré’s inequality that for any so € N,

[ (ALt iDu )T,
o, \ [Dul+[Du

. / (g<|Du|+|Dw|>|D _Dw|2) .

|Du| + | Dw|

1
o(|Du] + |Du) 2
Du—D d
+2/ ( Du] +Dw] | wit) e

$>50

1 1
(Q5) n =50
< csol|,u\ 71 —|—CZ (l'u’m ‘;) ( : |lu — w|»-T1 da:)

$>50 § (n—-1)

1

1
(Qs5) \ " e
<6881|MI(Q5)”1+0< )" ([ o-ta)
S>805(n D

< s (@) + e{so) e (©3)7 </Q

5

Note that ¢(sg) < oo and ¢(sg) — 0 as so goes to oo, since 3 > 2 — 1.
By (5.32), we have

/ |Du — Dw|dx < 2/@/ | Dul| dz
95 Q5

: Du| + |D o
+ C/{_V/ G! {g(\ ul + | Dw)) |Du — Dw|2] dz
o | Dul + [Dw

<I+1I. (5.34)

It is readily checked that I <2 in (5.29).
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We now recall Remark 5.3.3 to see that G~ is concave. Then Jensen’s
inequality and (5.33) yield

T Telal+ &) ] d)
WIS cG (f{ al e el

(v1—1)
< G (solpl(©)) + G <c<so>%|u|<95> [ 10w Dulas] )
Qs

Note that 71 )i) < ngll)l) < 1, since 1 < n. In light of (5.3) and (5.29)s,

we discover that for any t > 0, a € (0,1) and any small & > 0,

n n(y—=1) n(1-1)
G—l <Oét (71 1 ) < G- ( ) max {t(nﬁlm 775(71171)«,2}
S C(nv V15 72)/*{—(110{(12 + Rta

where ¢; and ¢y depend only on data, which are introduced for simplicity of
notation. It then follows from (5.29) that

(v1—1)6

KT < cG Y so)k 2 +c(so)s V250 45 [ |Du— Dw|dz, (5.35)

Q5
where ¢(sg) — 0 as s¢ goes to oco.
Combining (5.34) and (5.35), we have
(1=1)6
|Du — Dw|dx <2+ G (so)s = '
Qs
+ ¢(so)s M V0RVET0 4 ¢ kTR | |Du — Duw)|da,

Qs

where we temporarily fix a constant ¢, depending only on data. We now take

k= %, and then take 6 large enough to satisfy

(=10 =772>0 and (y —1)fg2 =7 —7¢: > 0.
Consequently, we have (5.31) and this completes the proof. O

Remark 5.3.6. We note that a suitable modification of the proof of Lemma
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5.3.5 gives
][ |Du|dx < c][ g H(My(p)) da, (5.36)
0 Q

where ¢ depends only on data. We will use this estimate later in the proof
of Theorem 5.1.2.

Here, we give a sketch of the proof of (5.36). We denote d = diam(f2) and
take any Z € Q to see that Q C By(Z). We now set

M:m][ | Dul dz + 19—1<‘“|(Q)) >0
Q

/<;‘9 dnfl

for some constants k£ € (0,1] and 6 > 1. We use a scaling similar to (5.28) with
Z,d replacing xg, r, respectively. That is, for y € 2 :={y € R" : +dy € Q},

_u(@+dy) _ du(T +dy)

R ) Az + dy, M§)
u(y) = “Md iy) = W,

A(y,€) = 00

and so on. Testing Ty (u), T,(u) € We®(€) to (5.1) as in the proof of Lemma
5.3.5, we discover

][ | Dul| dz < CH][ | Du| dx + %][ g (M () da,
Q Q K™ Jao
where ¢ depends only on data. Taking x > 0 small enough, we obtain the

desired estimate (5.36).

We now consider the weak solution w € W1 (Q;,) to

(5.37)

—div(A(Dw)) =0 in Q,,
w=w on 0y,

where A : R" — R is given by

- 1

A(g) = BT e Az, §) dz.
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By (5.2), we have the following ellipticity and growth of A:

{|A( )| +10A()]IE] < Ly(l€]), (5.38)

2l |¢? < (DA(Q)¢, )

for every £, € R", where v, L are the constant given in (5.2). Apparently,
there holds that for any ¢ € w + Wy'%(Qy,)

/Q G(|Dwl|)dx < c/ G(|Dyl) dz. (5.39)

Qqr

In other words, w is a quasi-minimizer of the above functional.

Lemma 5.3.7. Let w € WY (Qy,) is the weak solution to (5.37). For any
€ (0,1], there ezists 6 = d(data,e) > 0 such that if (5.27) holds for some
A >0, then

Gt (]{2 |V (Dw) — V(Dw)? da:) <el (5.40)

G‘l(]{m G(|Dw|)dx) < c).

Proof. We give a brief sketch of the proof, since it is similar as in [32, Lemma
5.10]. By (5.38), we have

and

! ]{2 V(Dw) - V(Do) ds < §(A(Dw) - A(Da), Du - Da)do

Qqrr

= ][ (A(Dw) — A(x, Dw), Dw — Dw) dx
Qqrr

< 0(By)(@)g(|Dw|)|Dw — Dw| dx
Qg

=: 1.

Young’s inequality for any £ > 0 and Holder’s inequality yield

I< c(gs)]{2 0(B)(x)G(|Dwl) da + e][Q 0(B7.)(2)G(| D)) do

<) f, o)) ¥ @) " (£ cpupa) e
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+2:L 4 G(Dw|)dx

Q4'r

(5.39) . o\ THe ==
< ¢(8) <Lo 0(B))(z)dx+ L= ) ( G(|Dwl|)**e dx)
Qqr

+
B4'r

+cg G(|Dw|) dz
Qyqpr

< (c(8)675 + c2) (

1
+o

G(|Dw|)+ d:z:) 1

Q47‘
(5.26) .
< (c(e)dT + CE)G<][ | Dw| d:L’),
Q57'

where ¢ is the constant given in Lemma 5.3.4. Taking &, > 0 small enough
and employing Lemma 5.3.5, we have (5.40).
Moreover, we use (5.40), (5.26) and Lemma 5.3.5 to obtain

G™! ( ][ G(Dw) da:)
Qqrr
< cG_l(][ |V (Dw) — V(Dw)|2dx) + c][ |Dw| dx
947‘ Q5’I‘
gc)\—l—c][ |Du—Dw|dm+c][ | Du| dz < cA.
QSr Q5T

This completes the proof. O

In the next lemma, we construct a function defined on a flat boundary,
which is close enough to w. Note that it is also possible to construct such a
function by using compactness argument, see for instance [32, Lemma 5.8].

Here, we present a simple proof of the lemma by modifying the proof given
in [73, Lemma 2.5].

Lemma 5.3.8. For any ¢ € (0, 1], there exists 6 = 6(data,c) > 0 such that
the following statement holds: Let w € WS (Qy,) be the weak solution to
(5.37) and v € WHY(B3) be the weak solution to

2r

{—div(fl(Dv))ZU in By, (5.41)

v=nw on OB,

151



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL

GROWTH

where n = n(x,) € C*(R) satisfies

2
0<n<1, n=1lonlor,2r], n=0on(—o00,0] and |Dn|§6—.
r

We extend v to Qg by setting v =0 in Qg \ B;}. Then we have

and

][ |V (Dw) — V(Dv)|*dx < 5][ G(|Dw|) dx (5.42)
Qo Qar
]{2 .G(|DU|) drx < c]{2 'G(|D’LI}|) dx. (5.43)

Proof. We apply Lemma 5.3.4 to w and Holder’s inequality to estimate

1

’B3r| QzrN{zn<dr}

<c

(5.24) o
< cdTHe

< céu%a

( 1
N |B3T| Q3rN{zn<dr}

G(|D@|) dw

N do T Qs N A{x, <or =
G(|Dw|)t dm) (’ ? |{BS| H)
T
( G(|Du7|)1+"dx>
Q37‘
G(|Dwl) dz, (5.44)

Qqrr

where o = o(n, v, L, p) is the constant given in Lemma 5.3.4.
Moreover, we discover from the fact that {|z'| < 2r} x {|z,| < 2r} C Bs,
and w = 0 in B}, x {x, < —100r} that

/ G(|@||Dn)) da
QorN{z,<dr}

1 0
Sc/ G(— / —w(z',y ddex
QorN{zn<dér} or —106r ay ( )
or
< c/ G(][ |D1I)(:U’,y)|dy)dx
QorN{zn<ér} —1067r

or
<2 | cpat ) dyds
r QorN{zn<dér} J —106r
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< c/ G(|Dw) de. (5.45)
QzrN{xn<or}

Testing v — nw € Wy®(B) to (5.41) and using (5.45), we obtain (5.43)
as follows:

/B G(Delydr < / G(ID(w))) de

BS—T

< c/ G(|w||D77|)d:B+c/ G(|Dw|) dx
Bg’rﬂ{xngér} B;’T

< c/ G(|Dw|) dx. (5.46)
Q3r

To prove (5.42), we now test v —nw € Wy'“(B3.) for (5.37) and (5.41) to
discover

/ (A(Dv) — A(Dw)) - D(v — nw) dx = 0.
By,
It then follows from Young’s inequality that

][B+ (A(Dv) — A(Dw)) - D(v — ) da

- ][B+ (A(Dv) — A(Dw)) - D(nw — w) dz
2

(A(Dv) — A(Dw)) - (wDn + (n — 1)Dw) dx

Bl | By, | Bf n{z,<dr}

Se_][ G(|Dv|)dx+e‘][ G(|Dw|) d
B B

2r 2r
c(é
L <)

’BQT‘ B;rrﬂ{xngér}

G(|wl||Dn| + [Dw]) dx

for any £ > 0. Using (2.18), (5.43), (5.44), (5.45) and (5.46), we discover

1
][ \V(Dv) — V(Dw)|* dx = \V(Dw)|* dx
Qo ’QQT’ QQT\B;
1
+ — \V(Dv) — V(Dw)|* dx
€| By,
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g(cg—+c(g)5l+%) G(|Dw|) dx.
Q47‘

Taking €, 6 small enough, we finally obtain the desired estimates. O]

Remark 5.3.9. According to Lemma 5.3.8 and Lemma 5.3.7, we see that
for any € > 0 there exists a small 0 = d(data,e) > 0 such that

][ |V (Dw) — V(Dv)| dv < 5][ G(|Dw|) dx < ceG()N),
Qo Qur

whenever (5.27) holds for some A > 0.
Therefore, we combine this estimate and Lemma 2.3.2 to obtain

sup |Dv| < G_l(]{zw |V (Dw) — V(Dv)|2da:) + G—l(]é% G(|Dw)) dx)

BY

<A (5.47)

5.3.3 Interior comparison estimates

In this subsection, we study the interior counterparts of the comparison esti-
mates given in Section 5.3.2. In what follows, we state lemmas without their
proofs, as they are similar to those in Section 5.3.2.

Take any Bs,. C Q. Let w € WH%(Bs,) be the weak solution to

—div(A(z, Dw)) =0 in Bs,, (5.48)
w=1u on 0Bs,,
and v € W1Y(Qy,) be the weak solution to
—div(A(Dv)) =0 in By, (5.49)
v=w on 0By,

where the vector field A : R* — R” is defined by

- 1

A(é) = |B—2T| 5. A(Z‘,é-) dx 5 S R™.

Then the following lemma is an interior version of Lemma 5.3.5.
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Lemma 5.3.10. For any € € (0, 1], there exists § = d(data,c) > 0 such that

if
1
][ \Dul d + 5][ M (1) d < A
Q5r QST‘

for some A > 0, then
][ |Du — Dw|dx < ).
QST

For the interior case, the following comparison estimate and interior Lips-
chitz regularity are enough to prove Theorem 5.1.2 (cf. Lemma 5.3.8, Lemma
2.3.2 and Remark 5.3.9).

Lemma 5.3.11. Under the same assumptions as in Lemma 5.5.10, we have

G <]{2 V(Dw) — V(Dv)\zdx) < e\

and
sup | Dv| < ¢, (5.50)

T

where ¢; is the constant given in Lemma 2.3.2.

5.4 Proof of the main theorem

To prove regularity results for a SOLA given in Section 5.2, we consider a
sequence of measurable functions {uxreny € L®(£2) and a sequence of weak
solutions {ug }r>1 to

{—div(A(a:, Duy)) = e in Q, (5.51)

up =0 on 052,

where g, — p weakly in measure and u; — v in VVO1 1(Q). The convergence
of {ux} implies that for every € > 0, there exists ky > 0 such that

/ |Du — Dug| dz < eXg (5.52)
0

for every k > ko, where Ao > 0 will be determined later in (5.54).
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We recall here a property of weak convergence in measure from the classi-
cal measure theory. Extending {1 treny € L(€2) by 0 in R™\ Q, the sequence
can be regarded as a sequence of bounded Radon measures converging to
weakly in measure. Therefore, in light of [56, Theorem 1.3.1], we have

lim sup [11:/(0) < [11l(O),
k—o0
for every measurable subset O C (2. In other words, for each O C €, we can
take large enough ky € N such that for every k > ky the following inequality
holds:
|1kl (O) < 2[u|(O). (5.53)

Lemmas in Section 5.3 hold for uy € WH%(Q), the weak solutions to
(5.51), but do not hold for v € W'(Q2), a SOLA to (5.1). Accordingly, to
estimate integral quantities of Du, (5.52) and (5.53) have an important role
in our analysis.

We now denote super level sets of Du by

EX) ={x€Q:|Du(z)] > A}, A>0,

and write

Ao = ][ IDuldx% ][ g (My (1)) dz and A = (2000 : ‘Eam(m> , (5.54)
Q Q

where 0 is the constant given in Lemma 5.3.5 and Lemma 5.3.10.
The following is a Vitali type covering lemma, which can be obtained by
a modification of [27, Lemma 4.1].

Lemma 5.4.1. For any A\ > Ay, there exists a negligible set N and a
disjoint covering { By, (z%)}i>1 with center x; € Q and radii r; < R/500 such
that

EM\N C | Bs, (),

i>1

1
][ | Du| dx + —][ g (Mi(p)) do = X (5.55)
7 'rz(z )

and

1
][ |Du| dx + 5][ g (Mi(w)dz < X, pe(ry, Rl
Q, (o) 0, (ai)

156



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL
GROWTH

We are now ready to prove our main result.

Proof of Theorem 5.1.2. Throughout this proof, we denote by | Du|; = min{|Dul|, [}
for any | > KA\, where K = 2¢; with the constant ¢ given in (5.47) and
(5.50). A straightforward calculation yields

1K
/h(|Du|l)|Du|dx:K/ / | Dul dz I (K A) dA
Q 0 E(K\)

Ao
:K/ / | Dul dz B'(K ) dA
0 E(K\)

/K
+K / |Dul dx b (K\) dA
Axo JE(KN)

— T +11, (5.56)

where h is the derivative of H given in Theorem 5.1.2.
We first estimate [ as

I < h(KAN) / |Duldz < 75| Q|(K A" H(X). (5.57)
Q

On the other hand, we use the covering given in Lemma 5.4.1 to see

/K
IT<K) / | Du| dx ' (K \) d. (5.58)
=1 7 A JE(KN)NBs, (o)

We now distinguish two cases, Bas,, (') C Q and Bas,, (z') ¢ Q.
The first case Using (5.52) and (5.53), for any € > 0 and each i > 1,
there exists £ € N such that

£ iDu-Dul e ad (B () < 2l (B (559
Basr; (%)

Let w;) € up + WHY(Bas,,) be the weak solution to (5.48) with Bj, =
Bas,, (%) and u = ug, and v, € w; ), + WY (Byg,,) be the weak solution to
(5.49) with By, = By, (z') and w = w; .

It then follows from (5.50) that in E(K\)N Bs,,(z"), there holds | Dv; | <
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K\/2, and so

|Du| < |Du — Duy| + |Duy — Dw; x|
+ G|V (Dwi k) — V(Dui)]?) + [ Dvi g

1
+ G|V (Dw; i) — V(D) ?) + §|Du|
Hence, for any € > 0, Jensen’s inequality, Lemma 5.3.10, Lemma 5.3.11 and
(5.59) imply

1
57 | J E(KX)NBsy, (¢?)

< ][ |Du—Duk|da:+][ | Duy, — Dw; | dx
Bs” (xz) B .

51, ($Z)

+cGH (][ |V (Dw; ) — V(Dviyk)|2 dx)
Bsy,; (%)
< e, (5.60)

The second case In this case, we take a point y* € Bas,, (2') with a
coordinate system y = (y1,¥2, - - ., Yn) such that

Bioor, (¥") € Quoor, (') T Baoor, (¥") N {yn > —40007;}

and ' '
ly* — 2'| < 25r; + 40007; < 75r;.

Noting Buoor; (4") C Bsoor, (2"), we discover
1
][ | Dul| dx + —][ g (Mi(p)) dx < 5™\
Qao00r; (¥) 0 Baoor; (y%)

Moreover, similarly to The first case, using lemmas in Subsection 5.3.2
for Bs, = Buyoor, (y'), we discover

sup |Dvix| < sup  |[Dvig| < g
Qsr, () Qsor; (%)
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and
/ Duldz < ceA|Qs,. (27)]. (5.61)
E(K)\)NBsy, (1)

Here, we also have used the fact that Bs,, (') C Bsoy, (y°).
Combining (5.60) and (5.61), we have

/ Dul dz < ceA|, (). (5.62)
E(K)\)NBsy, (x7)

To estimate A|€2,.. (z*)] in the above inequality, we recall (5.55) to see either

A 1 A
][ |Duldx > — or —][ g (Mi(p) dx > <. (5.63)
In case of (5.63),, we estimate as follows:
A (2)] < 2/ | Dul dz + 2/ | Du| dz
Qr, (@)N{|Dul> 3} Qr, (@)N{| Dul< 3}

A .
< 2/ Dul dz + 210, (27)]. (5.64)
0 ()1 Dul> 3} 2
Similarly, we estimate (5.63), as

) A .
A (@) <2 g7 (M) d + 10, ()] (5.65)
Qr, ()N{g= 1 (M1(n))>2}

Applying (5.64) and (5.65) to (5.62), we obtain
/ |Du| dz < cs/ | Du| dz
E(KXN)NBsr, (1) Qr, (x)N{|Du|>3}
+ ca/ g (Mi(p)) dz.  (5.66)
Qp, (@) {g= (M1 (n)>3}

Since {B,,(z") }ien are mutually disjoint, we combine (5.58) and (5.66) to
discover

1K
1<K / / | Dul dz I (K X) dA
0 Qn{|Du|>2}
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1K
4 eeK / / g (M () da 1 (KA) d
o Jantgr ()2
T4 IV (5.67)

We estimate 11 directly as

—1 [
[IT < ce kM1 20—~ / / |Du| dz () dX
Y3 — 1 Jo Jongpu>a)

< 0(73,74)5/Qh(]Du\l)|Du|dx. (5.68)

Likewise, IV can be estimated as

IV < c(ys, 74)5/9}[ og ' (Mi(p)) dz. (5.69)

Combining (5.56),(5.57),(5.67),(5.68) and (5.69) and then taking € small
enough depending only on data, 3,74 and K, we discover

[ nDupIDulds < ¢ [ 1o g7 (M) de -+ 5al0U(K A7 H ).

Then we take limit as [ goes to oo, use (5.54) and Jensen’s inequality, to
observe

/QH(|Du|)dx < C/QHog—l(Ml(u))dx+73|§2|(KA)W3—1H(]{2|Duydx).

Recalling (5.36) and using Jensen’s inequality, we finally derive the conclu-
sion. [

Remark 5.4.2. In this final remark, we present an mapping property of
Riesz potential to derive a direct consequence of Theorem 5.1.2. Recall the

mapping property
L : L(p,q) — L(np/(n —p),q) for 1 <p<mnandq>0,

where L(p, q) for p > 1 and ¢ > 0 is Lorentz space defined by
o adt
| @l et @l > )i <o
0
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see for instance [64,77]. If p = n"—fq for some ¢ > -+, then the mapping
property and (1.3) imply that
Ml(:u) € L(‘L q) = Lq7

whenever 4 € L(—%
Setting

e 4)-

H1

Hy(t) =g(t)? and Hy(t

we see that Hy is an N-function satisfying (5.6) 6 Moreover, similar calcula-
tions as in (5.17) show that H; ~ H,. Applying Theorem 5.1.2 with H = Ha,
we conclude that

/Q [9(|Du]))" dx < C/Q[M1(u)]qu.

This claims that p € L(n+q, q)

ing L(s,s*) C L(s,s) = L*, for every s > 1 we cover the fact which is given
in [19, Theorem 3] that u € L* implies g(|Du|) € L*.

implies g(|Du|) € LY for any ¢ > —"=. Recall-

5.5 Calderén-Zygmund theory for integral func-
tionals with p(z)-growth

In the rest of this chapter, we study spherical quasi-minimizers (or (Q-minimizers
with @ > 1), along with w-minimizers, of integral functionals with p(x)
growth of the type

F(u,Q) = /Q f(x, Du) — |F|PY2F . Dudx (5.70)

that is already introduces in (1.8), where @ C R™ (n > 2) is a bounded
domain. We assume that p(-) : R” — R satisfies

1<y <plx)<y<oo forzeR" (5.71)

for some constants 71,7, and it is logarithmic Hélder continuous with w,(-)
a modulus of continuity of p(-), see 1.5.
We are given a function F : Q — R”™ with |F|P®) € L' and the integral
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function

f=f(z,& R"xR" =R
satisfying the following growth and ellipticity conditions:

p(x) p(x)

v(IEf + )% <f(z,6) < L(IE° +5%) =

p(z)—2 p(z)—2

v([§* + )2 nl* <D*f(x,&)n-n < LEP +5%) = |nf?
for almost every z € R™, every £ € R", any s € [0,1] and some 0 < v <1 <
L < oo, where D*f = Dif (if s = 0 and p(x) < 2, then we do not consider
D?f(x,§) at £ = 0).
Now let us introduce various weak type minimizers for the functional
(5.70).

(5.72)

Definition 5.5.1. We say that u € W0)(Q) is a quasi-minimizer(briefly
()-minimizer) with @ > 1 of F in (5.70), if for any ball B,(y) with y € Q
and any ¢ € WP, (y)), we have

F(u,supp ) < QF (u+ @, supp p).

Definition 5.5.2. We say that v € W0 (Q) is an w-minimizer of the
functional F in (5.70), if there exists a concave nonnegative function w :
[0, 00) — [0, 00) with w(0) = 0 such that for any ball B,(y) with y €  and
any o € WP, (y)), we have

F(u, 2 (y) < (1L+w(r) Fu+ ¢, Q(y)-

Definition 5.5.3. We say that u € WP()(Q) is a spherical quasi-minimizer (briefly
spherical -minimizer) with @) > 1 of the functional F in (5.70), if for any

ball B,(y) with y € Q and any ¢ € Wol’p(')(Qr(y)), we have
F(u, 2(y)) < QF (u+ ¢, Q(y)). (5.73)

We point out some comments regarding the mentioned quasi-minimizers:
When Q = 1, a quasi-minimizer is the same as a minimizer. A w-minimizer
is a spherical Q-minimizer with @ = 1 4 w(diam(2)). A quasi-minimizer is a
spherical quasi-minimizer.

We now return to our main regularity assumptions and results.
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Definition 5.5.4. For any R > 0 and ¢ € (0, §), we say that (p(-), f(-), )
is (0, R)-vanishing provided the following conditions hold:

1. For the modulus of continuity function w,(-) of p(-), we have

1
sup w,(r)log (;) < 0.

0<r<R

2. For any measurable set U C R" and any x € U, we write

ACS N R (X Y

O(U)(z) := sup W - (€2 + s2)r)

£eRn

<2L. (5.74)

Then we have

sup sup ]{Br(y) 0(B,(y))(x)dx <.

0<r<RyeR"

3. Qis a (0, R)-Reifenberg flat domain. In other words, for each y € 02
and each r € (0, R], there exists a coordinate system {gy,- - , g, } with
the origin at y such that

B,(0) N {§n > 07} € B,(0)NQ C Bo(0) N {Gj > —or}.

We now state the main results.

Theorem 5.5.5. Assume |F|PY) € LI(Q) for 1 < q < co. Then there exists
6 = 6(n,v, Ly, 7,q) € (0,5) such that if (p(-), f(-),Q) is (3, R)-vanishing
for some R € (0,1] and 1 < Q < 1+ 0, then any spherical Q-minimizer
u € Wol’p(')(Q) of (5.70) satisfies | Du|P") € L9(Q) with the estimate

di 0 n(g—1)
/ | DulP®dz < ¢ <ML<)) / [|F|P® 1] da (5.75)
Q Ry Q

for some constants ¢ = c(n,v, L,y1,7%,q) > 1 and Ry = Ro(n,v, L,v1,72, ¢,
wy(+), R,my) > 1 is given in (5.94).

With the help of the so called maximal function free method introduced
in [5], our idea to the proof of Theorem 5.5.5 is based on a perturbation
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argument which was mainly developed in [4]. In particular, we regard the
integrand f as a perturbation of a function with standard growth in or-
der to utilize the Lipschitz regularity for the associated integral functional.
Knowing that we deal with quasi-minimizers of functionals, we need to make
comparison estimates for integral functional instead of equations as studied
in [4].

5.6 Proof of Theorem 5.5.5

As we mentioned, in the remaining part of this chapter, we only give the
comparison estimates for spherical ()-minimizers, since the remaining part of
the proofs are similar to the one in Section 5.4.

5.6.1 Auxiliary results for frozen functionals
Let 1 < p < oo and fy € C*(R™;R). We assume that

v([€)* + 5%)8 <fo(€) < LI + 5°)°
V(€2 + %) 2 <D*fo(€)n - n < LOEP + 57" |n)?

for every £,n € R", for some s € [0,1] and 0 < v < L < oo. Let w € WP(Q)
be a minimizer of the functional of

Folw, ) = /Q fo(Dw) da (5.76)

and write a(§) = Dg¢ fy. Then it is readily checked that

(al&) —al&) - (6 — &) > v{&P +]&P + 527 |6 - &)

and that w is a weak solution to

{ MM+MMO|§LMP+ﬁ%1 (5.77)

div a(Dw) =0 in Q.
Let us first state Lipschitz regularity for the frozen functional (5.76).

Lemma 5.6.1. (Lipschitz reqularity, see [41,83])
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1. Let w € WYP(B,) be a minimizer of the functional (5.76) with Q re-
placed by B,.. Then there holds

||Dw||poo(B$) <c ( | Dw|Pdx + 1>

B
for some ¢ = ¢(n,v, L,p) > 1.

2. (See for instance [83]) Let v € W'P(BF) with v =0 on T, be a mini-
mizer of (5.76) with Q replaced by B;. Then we have

DUl ey < (£, 1Dulas+1)

for some ¢ = c¢(n,v, L,p) > 1.

In the above lemma we have considered a weak solution with the zero
value on the flat boundary. We next consider a weak solution with the zero
value on the rough boundary. In this case we cannot obtain Lipschitz regu-
larity. Instead we make comparison estimates as in the next lemma.

Lemma 5.6.2. Let 0 < r,e < 1. Then there exists § = §(n,p,v,L,e) > 0
such that if w € WYP(Qg,) is a weak solution to

—div(a(Dw)) =0 in Qy,, (5.78)
w=0 on 0,0 = By NN
with
B;; C Q5. C Bs,. N {JTn > —105’/“},
and v € W'P(BY) is a weak solution to
—div(a(Dv)) =0 in B;;,Jr (5.79)
v=nw on 0B,

with n = n(z,) € C*(R) satisfying

0<n<1, n=1onlor,2r], n=0 on (—o0,0], |Dn| <2/(5r),
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then there holds

][ |Dw — DvlPdr < e (][ |Dwl? dx + 1) , (5.80)
Qo Qyr

where v 1s extended to B, by zero. Moreover, we also have

][ |Dv|Pdx < ¢ (][ |Dw|P dx + 1) : (5.81)
QQr 947"

Proof. We first observe from Hélder’s inequality and the higher integrability
of Dw that

/ |Dw|? dz
QazrN{zn<dor}

1
T .
<e < / | Du|1+) dx) Qo 1 {20 < 0r}| 75
Q3rN{x,<ér}

1
., Tio
< cdT+e |B3r| <][ |Dw|p(1+a) d.??)
Q3’V‘

< dThe (/ |Dw|P dz + 1) : (5.82)
Q47‘

for some positive constant o = o(n, v, L, p). From the fact that {|z| < 2r} x
{lzn] < 2r} C Bs, and w = 0in Bj, x {x, < —106r} and Holder’s inequality,
we find

0
/ Py [ Sty
QorN{zn<dér} QorN{zn<dr} —106r OY

or P
( / | Dyw(a’,y)l dy) dx
2rm{$n<67’} —100r

< — / |Dpw(x’,y)|P dy dx
(57“ QorN{xn<or} J —106r

/ \Dw(e’, )| da’ dy. (5.83)
Qgrﬂ{l‘n<§r}

p

dz

IN
o
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By standard energy estimate for (5.79), it follows from (5.83) that

/Bgt |DulPdx < ¢ (/B+ [|D(nw)|? + 1] da:)

2r

<c / | Dn|P|w|P dz: +/ |Dwl|? dz + | B3|
B n{zn<or} BF

2r

< c/ [|Dw|P + 1] dz, (5.84)
QS’/’

and so (5.81) is proved.

To prove (5.80), we first note that v — nw € Wy*(B3.). Define 7 €
W' (By,) by © = v in By, and © = 0 in Qy, \ By,. Then o — nw € W, ?(Qy,),
and by taking v —nw as a test function in both (5.78) and (5.79), we discover

/ (a(Dv) — a(Dw)) - D(v — nw) dz = 0.
QZT
To estimate the integral

I:= ]{B (a(Dv) — a(Dw)) - D(v — w) dz,

+
2r

we use the previous identity, the fact that v—nw = 0 in Oy, \ By, and Holder’s
inequality, to find

I = ]{9+ (a(Dv) — a(Dw)) - D(nw — w) dz
>

a ‘BQT ’ B n{zn<dr}

(a(Dv) — a(Dw)) - (wDn + (n — 1) Dw) dx

p—1

c P

< / [Dof? + [Duwl? + 1] da
|B27"| Bf n{zn<dr}

[ wkipap 4 1Dup) do
B n{z,<dr}

P
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Thus (5.82), (5.83) and (5.84) imply
I< 05(150)10][ [|Dw|P 4+ 1] dx
Q47‘
for some constant ¢ = ¢(n, v, L,p) > 1. Employing (5.77), we deduce

][ (|Dw|? + | Dv|?* + 52)¥|Dw — Dol dz < c5TFow ][ [|Dw|P + 1] dz.
QQT'

Qg

On one hand, if p > 2, then we have

][ \Dw — DufP < 5T ][ 1Dwl +1] da,
QQT Q4r

which implies (5.80) by taking sufficiently small § depending on € and the
other universal constants.

On the other hand, if 1 < p < 2, then by Young’s inequality and (5.84),
we have that for any « € (0,1),

][ |Dw — Dol < m][ (|Dw]? + | Dv|? 4 s?)? du
Qo

Qo

+ cm)][ (|Dw|? + | Dv|? + %)% |Dw — Dv|? da
QZT

< cm][ [|Dw|? + 1] dz 4 (k)5 ][ [|[Dw|P + 1] dz
QQT QQT
for some universal constants ¢y, co. We first select x so that ¢;x < €/2, and
§
then 0 so that co(k)dT+9?» < ¢/2. This proves assertion (5.80). O

5.6.2 Comparison estimates

Throughout this subsection, we assume that 6 € (O,%) is a sufficiently

small number depending on a given parameter ¢ and structure numbers like
n,v, L, p, while R > 0 is a given small number. We start with a self improving
property of the gradient of spherical quasi-minimizers under consideration.

Lemma 5.6.3. Let f satisfy the first condition in (5.72), and assume that
p(-) and Q satisfy (1) and (3) in Definition 5.5.4, respectively, and FP0) €
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L9(QY) for some q > 1. Suppose u € Wol’p(')(ﬂ) s a spherical Q-minimizer of
(5.70) for any @ > 1 and

/ |Du|P®dz +1 < m
Q
for some m > 1. Assume finally that yo € Q and Ry > 0 satisfy

. [R 1 /n+1
RO S min {g, R} and Cdp<2R0) S n — 1. (585)

Then there exists positive constants o1 = o1(n,v, L,v1,7%,Q,q) < q and
c=c(n,v, L,y1,72,Q) such that

1
T
(][ |Du|p(x)(1+") dx) < c][ |Du|p(x) dx
Q#(9) Qa7(9)

1
Tro
+ (][ [|FP)0+e) 4 1] dx) :
Qo7 (7)

whenever 0 < o < o1 and Qox(7) C Qg,(y) with g € Qg (y) and 0 < 7 <

By
Proof. 1t suffices to consider the boundary case Bg,(y) ¢ 2, as the inte-
rior case Bp,(y) C €2 can be handled in the same way. We now fix any
Bsi(y) C Bg,(y). For simplicity, we will omit the center § and denote
p1 = infocqy. p(), P2 = Sup,cq,, P(7).

We first assume By C Q. Let 7 < py < pp < 27 and n € C°(B,,) be
a cutoff function satisfying 0 < n < 1,7 = 1in B, and |Dn| < mfm. We
substitute ¢ = (u— (u)p,.)n € Wy (By;) into the right-hand side of (5.73).
By following the proof of [4, Theorem 5] under a suitable modification for
quasi-minimizers with [63, Theorem 7.1], we have the following Caccioppoli
type inequality

_ p2
][ | DufP™® do < C][ (%) dx
By Bar r

- c][ [|FP) +1] da. (5.86)
Qo7

According to (5.85), we have 1 < z—i < @/”TH =:t and py < (’%)*, where
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(%)* is the Sobolev conjugate of 2. By Sobolev-Poincdre inequality, we have

tpo

_ p2 - 1
][ (M) dwgc(][ |Du|tdx) , (5.87)
Bai r Bar

In the light of (5.85), we find

wp (167) wp(167) (D) 4, (47)
(][ |Du|"fdx) . gc(i) <o (589)
Boi rn r

Combining (5.86), (5.87) and (5.88), we have

t
][ | Du|P® dz < ¢ <][ (|Du| + 1)@ dx)
B: Bar

+ c][ [|FP) +1] da. (5.89)
Bar

On the other hand, if By ¢ Q and By N Q) # (), then one can find
g € 09 such that B; C Bs:(¢') and Ber(y') C Bsr. Let 37 < p; < py < 67
and n € C°(B,,) be a cutoff function satisfying 0 <7 <1,n=11in B,, and
|Dn| < —%2—. Taking ¢ = un € Wé’p(')(sz(gj’)) in (5.73), we discover

p2—p1°

P2
][ | DulP® dx < c][ <M) dxr + c][ [|F|p(x) +1] da.
Qa3 (7") Qr(@) \ T Qe7(7')

Using Sobolev-Poincare inequality, we discover with the same spirit as in
(5.88) and (5.89) that

t
][ |DulP®@ dz < ¢ (][ |Du|"(f) dm) + c][ [|F|p<a:> +1] du,
Q37(3") Q67 (7") Q67 (7")

which yields

¢
][ |DulP® dz < ¢ <][ |Du|@ dx) + c][ [|F|p<x) +1] dz.  (5.90)
By Bss Bgs

We see that (5.89) (5.90) holds for any Bs; C Bg,(y). Applying Gehring’s
lemma, see [63, Corollary 6.1], [4, Theorem 4], the conclusion follows. ]
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Remark 5.6.4. If Ry > 0 satisfies that

n+1
n

Ry < min {g, —} and wy(4Ry) < -1, (5.91)

4m0

where my > 1 is denoted by
mo == / | DulP®dz + 1.
0

Then we see that Qg,(y) satisfies the assumption in Lemma 5.6.3 for any
y € . Therefore we discover that u € WO U+e0) (B (7)) for any 0 < 7 < £o
and g € ().

We also need the following self improving property.

Lemma 5.6.5. Suppose 1 < p < 0o, s € [0,1], and fy : R" — R satisfies
v([E7 + 577 < fol€) < L&+ 5%)%.

Let w € wy + WyP(Q(y)), y € Q, be a minimizer of (5.76) with wy €
Wr+o)(Q, (y)) for some oy > 0. Then there exists a positive constant
o9 = oo(n, p,v, L,01) < o1 such that for any o € (0, 03], we have

1
THe
(][ | D[P+ dx) < c][ |Dw|? dx
Qr(y) Qar(y)

1
1+o
+ <][ [|Dw0]p(1+g) + 1} dx) ,
QQr(y)

where ¢ > 1 depends only on n,v, L,p. In particular, if v < p < g, then the
dependence p of oo and ¢ can be replaced by v1,s.

Proof. The proof is similar to that of Lemma 5.6.3 and so we use the same
notation. Let Bgsz(9) C Bar(y). If Bor(y) C Qo(y), then by taking a test
function ¢ = (w — (w)p,,.)n € Wol’p(')(Bg,:), we have

p

_ p e
][ |Dw|pdx§c][ <M) dﬁ—{—cgc(][ |pr*da:)p +c,
B; BQ,: r BQF
where p, := max{1, n”—fp )
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P dx) " c][ [|[Dwo|P + 1] dx
Bsi

If By ¢ Q but ByzNQ # 0, then we take ¢ = (w—wp)n € Wol’p(')(Qﬁ,:(gj’))
<c (][ |Dw — Duwy
Qer(7')
][ |DulP dx < ¢ (][ | Dw
Bs Bsj

in (5.73) to find
lw — wol \?
|DulP dx < ¢ = ) dx+ec
Q37(3') Q67 (') r
P dx) " +c
§c(][ | Dw|P* d:v> " +c][ | Dwol? + 1] dz.
Qer(7") Qer(7")
Therefore, we have
for any Bsz C Ba.(y), by putting Dw and Dwgy by 0 in B, (y) \ 2. Now
Gehring’s lemma gives the desired estimate. O
Remark 5.6.6. We define oy = o¢(n,v, L, 71,72, Q,q) > 0 by 09 in Lemma

5.6.5, where oy is the one determined in Lemma 5.6.3 and p € [y1,72]. Of
course, we have oy = 0y < 0.

From now on, we present boundary comparison estimates. Suppose (p(-), f(-), )
is (9, R)-vanishing for some R € (0,1), and let u € Wol’p(')(Q) be a spherical
@-minimizer of (5.70) with

1<@Q<1+0. (5.92)
We first denote m; > 0 by
my = /Q | DulP® dx —1—/9 [| P 0Fe0) 1] da + 1 > my, (5.93)
where g9 > 0 is determined in Remark 5.6.6. Then Ry > 0 is assumed to
satisfy
Ry < min {g, ﬁ} (5.94)
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and

1
wp(QRO) Smln{ nZ —1,%,m}

Note that Ry satisfies (5.91). Let us consider any boundary region s, (y)
withy € Qand 0 < r < % satisfying

B5r(y)+ C Q5r(y) C BSr(y) N {xn Z _105T} (595)
Finally, set
. p2—p(@)
pi= inf p(x), py= sup p(x), and h(z,&) = f(z, (| +57)
Qsr(y) Qs (y)

Then we have from (5.94) that

pa < p(x) <1 + %) < p(x)(1 + 09) (5.96)
and o
(1 + w,(10r)(1 + ZO) <1+ 0. (5.97)

We next construct a frozen functional relevant to F. We shall omit the
center y when no confusion arises in the context. According to [41, Proposi-
tion 2.32], it follows from (5.72) that

p(z)—1

IDf(x, ) < L(EP+ %) 2 (5.98)

gor some L = E(Wl,vg,L) > (. Define function A : R" x R®* — R" and
h:R" — R" by

B 8) 1= F@ R+ F and h©) = f hag)de
Then we have
AP +% < RO < Lt
LR+ )5 I < D0y < 2L(EP + 1)l

Indeed, it suffices to show that h satisfies (5.99) with h replaced by h. We
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first calculate D?h:
D?h(x,€)
= D2f(z, ) (1€ + 5)* 7 + (o — pl(x)) (€[> + 57) fla, &)1
+ (p2 — p(@) (€2 + %) F 7 [Df(2,6) ® € + £ ® Df(x,€)]
+ (p2 — p(2))(p2 — pla) = 2) (€2 + 1) F 72 f (2, )€ © ¢,

where [ is the n x n identity matrix. It then follows from (5.72), (5.98) and
(5.94) that

pa—p(x)
p2=p(@) 4

p2—2

v pa=2
SUEP +57)7 [0 < D’h(z, &)y -0 < 2L(Ef* + 5°) 75 [l

Notice that as a direct consequence of (5.99), there exists a constant ¢ > 1
such that

h(&) —h(&) —Dh(&) - (&—&) > ¢ H(|& P+ \52\2—1-82)?2772\51 — &) (5.100)

and
P2

IDRE)] < e(le” + 7).
In addition, for any = € Bj,, it follows from (5.74) that

\h(z, &) — h(€)] h(z,§) _][ Mdz|
B} (

p = Sup TN p
gern (€2 +52)7F  eern | (|2 +57)F 5 (62 + )7

= | L@O ][ 18
R ([E)P %) JBE (€7 +57)
— 0(B})(x). (5.101)

We now consider a minimizer w € u + Wy *?(,) of the functional

Fo(Dw) = /Q R(Dw) dz < /Q R(Dw + D) dz (5.102)
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for every o € Wy"?(Q,). Then w solves the following Dirichlet problem:

{—div (DR(Dw)) = 0

w=1u

It then follows from (5.96), (5.102) with ¢ = w — u and Lemma 5.6.3 that

in Q47~

on 0€y,.

1 1 _
][ |Dw|P?dx < — ][ h(Dw)dx < — ][ h(Du) dz
Q4r v Qur Qyr

<

Tlh

Qqrr

<of [
N Qqrr

1+
<c (][ | Du[P®) d:zc)
Q5r

e B
+ (][ UFlp(x)(1+cro) + 1:| dq;) 1+ o p1(1+09) .
Qs

Using (5.94), we estimate

wp (107) wp(107) (n+1)wp(107)
(F, wson) ()< ()
Q5T‘ 7"" r

and similarly,

wp(107)
< ][ [P +o 4 1] dx)
Q57‘

Combining (5.104), (5.105) and (5.106), we have

][ [|DulP? 4 1] dx

<c

<

(

L
][ Dw| dz < —][ (D™ +1] da
947‘ v Q4’l‘

< c][ | Du|P® dz:
Q5'r
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1
T+og
+c (][ [|Fpe)0te0) 4 1] dx) v (5.107)
Q5'r

Now we are ready to derive comparison estimates.

Lemma 5.6.7. For any small € > 0, there exists § = §(n,v, L,y1,72,€) > 0
such that the following statement holds: For any A > 1, if

1 Trep
][ [|Du|p(x) + 1] dr + = <][ |F|p(f‘)(1+‘70)d$) ’ <\, (5.108)
Qs 5 Qsrr

then we have

][ |Dw|P? dzx < ey A and ][ |Du — Dw|P? dz < e.
Q3 Q3
Proof. We first observe from (5.107) and (5.108) that

][ | DwP? dx < c][ |Dw | dz < e
Qg,,» Q47'

Moreover, using Lemma 5.6.5, Lemma 5.6.3, (5.97), (5.105), (5.106) and
(5.108), we discover

4

440

<][ ]Dw]pQ(H?)dx) e

Q3
4
a0 4+op
< c][ |Dw[P*dx + ¢ (][ |Du]p2(1+4)dx)
Q4r Q4'r

a0 ﬁ
<cAtc <][ |:|Du|P(a:)(1+wp(87‘)(1+T)) + 1] dx)
Qyr

1+wp(8r) T+og
<chfe ( ][ yDu|P<l“>dx) +c ( ][ [|Fp)0te0) 4] da:)
st‘ QE)T‘

_1

1+o

< c)\—i—c][ Duf@dz + ¢ (][ [| PP +on 4 1] d:c) ’
Qs Qs

< cA. (5.109)
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When py > 2, we see
|Du — Dw|P2 < (|Duf? + |Dw|? + )% | Du — Dw|?.

On the other hand, when py < 2, we see

p2(2—p2)+pa(p2—2)
4

|Du — Dw|P* = (|Du|? + | Dw|* + s?)
< & (|Du® + |Dw]* + 37
+e(e))(|Dul? + | Dw|? + $2) ™ |Du— Dwl*>  (5.110)

|Du — Dw|P?

for any ¢; > 0. In (5.110), ¢(¢;) > 1 depends only on n,v, v, v, L and e,
and it is stable as ps 7 2 for each ¢; > 0. Therefore, regardless of whether
P2 < 2 or not, we have

][ |Du — Dw|P? dx
937'
< 61][ (|Dul? + |Dw]* + $*) 7 da
937'
+cley) ][ (|Dul® + |Dw|? + s2)% | Du — Dw|? da
Qs
< cet A+ c(e) ][ (|Dul?® + | Dw|* + SQ)MT_Q|DU — Dwl|? dx.
QSr

To estimate further, recall that w solves (5.103). It then follows from (5.100)
that

][ (|Dul?® + |Dw|* + 32)10227_2|Du — Dw|*dz
QST

< c][ h(Du) — h(Dw) — Dh(Dw) - (Du — Dw) dz
Q3

= ][ (h(Du) — h(z, Du)) dx —I—][ (h(z, Du) — f(x, Du)) dz
Q3 Q3
+ ]{lsr(f(x, Du) — f(xz, Dw))dx + ]{hru(% Dw) — h(z, Dw)) dx

+ ][ (h(l‘, DU}) - l_z(Dw)) dr =: Il + IQ + ]3 + I4 + ]5.
937‘
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Estimates I and I5: Applying (5.101), Holder’s inequality and (5.109),
we estimate

'h**“ﬂfiﬁf 0(B;,) [(IDul +5%)% + (IDwf + )% | da
Q3T‘

_90
440 4+o
<c (][ 6(B}) & da:) A
Q3'r
o0

4 dt+aoq oo o0
<c| L O(B} )dx + L0 § A < cd*Feo )
B,

Here, we have used (2) in Definition 5.5.4, so that
£, omN@a<af 6B @) d <16
B (y) Bur(y)

and (5.95).
Estimates Iy and I,: The following estimates can be obtained by a direct
calculation.

1 —
LI<L ][ [ / P2 PO, 1o (| Duf? + 52)]
Qs LJo 2
p(x)

(|1Duf? + s2)ZF | (| Duf? + s2)"5 da

p2—p(x), M
ft‘f‘j

1
< cw, (10r log Du|? + $)|(|Du|? + s?
P 0o Jo
3r

2p(z) =71

(|Duf* +s*) " 1 dadt.

For any o« > 0 and 3 > 1 we see

¢ if 0<t<e,
t*logt| < § @

2t* log(e + tg) if e<t,

and for every t1,ts > 0 we have log(e + tit2) < log(e + t1) + log(e + to). It
then follows that

po—p(z), | ¥
22 t+1

T (|Dul?* + s%)

2p(z)—7p
4

[log(|Dul” + s*)|(|Dul* + 5%)
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4e2 2)—

< 2llog(e + (Dul + )H)(Dul + 1)F + Z—(|Duf + 575
1

P2

(|Dul?> +1)%
((|Dul? + 1) F)q,

T

< 2log (e—l— ) (|IDuf? +1)%

+ 2log (e + ((|Du|2 + 1)%2>Q

p(z)
+ c(7,72)(|Duf’ + 1) = .

) (Du + 1%

3r

Thus, (2.15), (5.94), (5.109) and (1) in Definition 5.5.4 yield

p2

Dul?2+1)7%
|| < cwp(lOr)][ log [ e+ ([Duf” + pz ’
Q. ([Dul? +1)7 )q,,

1 pr(lor)][ log (e + ((!Du‘2 + 1)%)9

Q3'r
+wmmf<mw+w@m

Q3

) (|Dul? +1)7 dz

) (IDu)? + 1) 7 da

3r

a4
o 440,
< cw,(107) (][ (|Du| + 1) (%) dx) ’
Q37‘
1
+ cw,(10r) log (—) ][ (|Dul + 1)P*dx
r Q37‘

+ cwp(lor)][ (|Dul| 4+ 1) dg
Qar

1 . Tiog
< cw,(10r) log <;> <][ (|Du| + 1)?2(1+7°) dgc)
Qs
< O

In the same spirit, we find

1 oo
14| < cwy(10r) log (m) (][ (|Dw] + 1) (1+%) d-I) "< N
Q3

Estimate I3. Using Young’s inequality and that u is quasi-minimizer of
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(5.70) with (5.92), we have

B1<@Q-Df fl.Du)dssf |PPOF - (Du-QDu)ds
Q3»,n QST‘

< L§][ (|Dw|* + 32)@ dx + ][ |FP@=Y Dy — Dw| da
Qgr QBr
+ 5][ PP Dup| da
QST‘
< 05][ (|Dw| + 1)P* dx + 62][ |Du — Dw|P* dx
Qgr 937"
+ 0(62)][ (|F| + 1)P@dz
QS‘!‘

for any e > 0. Taking (5.109) into account, we see

|I3] < c(ea)0N + 62][ | Du — Dw|™ dz.
QST’

Summing up the previous inequalities gives
][ |Du — Dw|?? dz
Q3’I‘
_og 1
< et A+ cler, €) <54+?’0 + w,(107) log (H)) A
r
+ 0(61)62][ |Du — Dw|P*dz.
Q3T‘

Taking €1, €5 and ¢ small enough, the desired results follows.

]

Finally using the previous lemma, Lemma 5.6.2 and (2) in Lemma 5.6.1,

we can deduce the following lemma.

Lemma 5.6.8. For any small € > 0, there exists § = §(n,v, L,y1,7y2,€) > 0

such that the following statement holds: For any A > 1, if

1 Theg
][ [|Dulf™ +1] dz + - <][ | F[p()(1+00) dx) T
957« 6 Q5r

180



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL
GROWTH

then there exists v € WHP(Qy,) N W12°(Q,.) with v = 0 on Ty, such that

][ |Du — Dv|P? dx < e\
927‘

and
sup || Dv||P* = sup || Dv||”? < ¢ (][ | Dv|P? dx + 1) < e,
QQT

Q B{f

for some ¢ = c(n,v, L,y1,72) > 1.

As we mentioned, the remaining part of the proof of Theorem 5.5.5 is
similar to the one for Theorem 5.1.2. Therefore, we end the proof here.
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