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Abstract

Gradient potential theory for
nonlinear elliptic problems

Yeonghun Youn

Department of Mathematical Sciences
The Graduate School

Seoul National University

The objective of this thesis is to provide a sharp gradient potential es-
timate for nonlinear elliptic problems under non-standard growth assump-
tions. The estimates have been found from the attempts to develop a unified
method for the purpose of obtaining sharp pointwise bounds of the gradient
of solutions.

First, we obtain gradient potential estimates, by using linearization tech-
niques along with an exit time argument, for two non-autonomous elliptic
measure data problems with superquadratic growth. One is variable expo-
nent case and the other is mild phase transition case. In gradient potential
theory for measure data problems, a unified method is still unknown, that
covers both superquadratic and subquadratic cases, because of the difficulty
stemming from the absence of energy solutions to such problems.

However, once we take energy solutions into account, we devise a new
unified method to deal with superquadratic and subquadratic cases simul-
taneously. In particular, we show partial regularity of the gradient of solu-
tions to subquadratic elliptic systems without the quasi-diagonal structure
via Riesz potentials, when the given data belong to suitable Lebesgue spaces
to ensure the existence of weak solutions.

In the process of a further research on developing a unified method for
measure data problems, we establish global Calderón-Zygmund estimates for
such problems with general growth via fractional maximal functions.

Key words: Measure data, Potential theory, Non-standard growth, Lin-
earization technique, Harmonic approximation
Student Number: 2015-30968
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Chapter 1

Introduction

This thesis is devoted to gradient potential theory for non-autonomous el-
liptic equations with measure data and elliptic systems without the quasi-
diagonal structure. It also aims at presenting global regularity results for
measure data problems with general growth by using the fractional maximal
function of order 1.

Gradient potential theory is a newborn area in the regularity theory for
partial differential equations, and it has attracted much attention because of
its difficulties and applications.

For examples, C1-regularity criteria and gradient Hölder continuity can be
described via potentials, and Calderón-Zygmund type results can be derived
by applying embedding properties of the potentials to the gradient potential
estimates.

One of the difficulties in gradient potential theory stems from a couple
of facts that weak solutions are not suitable for measure data problems and
that the problems lose their certain monotonicity property when both sub-
quadratic and superquadratic growth are considered simultaneously, and so
no applicable method has yet been developed to cover both cases simultane-
ously.

However, when the given data under consideration belong to suitable
Lebesgue spaces to ensure the existence of weak solutions, we present a uni-
fied method in Chapter 4. Later on, we show Calderón-Zygmund type esti-
mates for problems with general growth, which we discover in the process of
trying to develop such a unified method for measure data problems.
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CHAPTER 1. INTRODUCTION

1.1 Measure data problems with polynomial

growth

Let us consider the following p-Laplace equation with measure data:

− div(a(x)|Du|p−2Du) = µ in Ω (1.1)

for p ∈ (1,∞), where Ω ⊂ Rn is a bounded domain with n ≥ 2, µ is a
Radon measure with finite total mass and a : Ω→ R+ is a measurable func-
tion satisfying 0 < ν ≤ a(x) ≤ L for some constants ν and L. If p > n or
µ ∈ L[p∗]′(Ω) for p < n with [p∗]′ = np

np−n+p
, then there exists a unique weak

solution to such an equation by the monotone operator theory, see [99]. On
the other hand, the notion of weak solution is not appropriate if p ≤ n and
µ merely belongs to Mb(Ω) which is the space of bounded Radon measures
in Ω. For this reason, several concepts of solutions have been suggested to
measure data problems, see for instance [18,19,37]. In [18], the authors con-
sidered p-Laplacian type equations for p ∈ (2 − 1/n,∞) and introduced a
class of distributional solutions called Solutions Obtained by Limits of Ap-
proximations (SOLAs for short) which we are taking into account in Chapter
3 and Chapter 5.

There are several research areas regarding the regularity theory for (1.1).
See for instance [8, 13, 88] for fractional differentiability, [53, 70, 71, 81, 90]
for potential estimates and [26,94] for Calderón-Zygmund estimates. In [88],
differentiability estimates for SOLAs to (1.1) were obtained in fractional
Sobolev spaces when µ is a merely bounded Radon measure and a(·) is Lips-
chitz continuous. Moreover, if µ satisfies some density conditions, then there
hold Morrey type regularity and BMO regularity for the gradient of SOLAs.
In the recent paper [8], similar results were obtained in a completely lin-
earized form by combining the difference quotient method and the technique
used in [76], when a(·) is a positive constant.

This so-called linearization technique has an important role also in the
gradient potential estimates. It is worth mentioning that pointwise estimates
for SOLAs to (1.1) were first suggested in [70, 71] by means of Wolff poten-
tials and then developed in [9,20,85,100,101]. Wolff potentials are nonlinear
potentials, and it is well known that Wolff potential estimates for SOLAs
are optimal in the sense that there are no pointwise estimates via any other
potentials that are sharper than Wolff potentials. Later in [90], potential

2



CHAPTER 1. INTRODUCTION

estimates were upgraded to the gradient level for nonlinear equations with
quadratic growth (p = 2). Surprisingly enough, even for the nonlinear equa-
tion (1.1) with Dini-continuous coefficient a(·) and p ∈ (2−1/n,∞), in light of
the linearization technique, the gradient of SOLAs can be estimated by Riesz
potentials that are originally designed for linear equations, see [53,76,77] and
cf. [54]. For superquadratic growth case (p ≥ 2), Riesz potential estimates
given in [76, 77] are sharper than Wolff potential estimates given in [54] in
the following sense:

Iµ1 (x,R) =

ˆ R

0

|µ|(B(x, ρ))

ρn−1

dρ

ρ

≤ c(p)

[ ˆ 2R

0

(
|µ|(B(x, ρ))

ρn−1

) 1
p−1 dρ

ρ

]p−1

= c(p)
[
W µ

1/p,p(x, 2R)
]p−1

, (1.2)

where Iµ1 is the (truncated) Riesz potential and W µ
1/p,p is the nonlinear Wolff

potential. Note that Dini-continuity on a(·) is known as the optimal assump-
tion to obtain C1-regularity of solutions, see (2.10) for Dini-continuity and
see [52,76,78] for C1-regularity results, respectively.

We would like to mention [77, Section 9] in which several regularity re-
sults were achieved by the gradient potential estimates. A local Calderón-
Zygmund type result also can be obtained by using embedding properties
of the Riesz potentials given in [6, 64]. As a matter of fact, even the global
Calderón-Zygmund estimates still hold under weaker regularity assumptions
on a(·) and Ω than those for potential estimates, see [26, 94]. We note that
such regularity results via fractional maximal functions of µ were originally
suggested in [89]. Moreover, their main results are written in terms of the
fractional maximal function of order 1, M1(µ), which satisfies

M1(µ)(x) = sup
r>0

r
|µ|(Br(x))

|Br(x)|
≤ c(n)

ˆ
Rn

d|µ|(y)

|x− y|n−1
= c(n)I1(µ)(x), (1.3)

where I1(µ) is the Riesz potential of µ. In this regard, the fractional maximal
function estimates would be sharper than potential estimates.

Our main interests are to find optimal regularity assumptions on the
structures and to develop a unified method to establish potential theory and

3



CHAPTER 1. INTRODUCTION

the global Calderón-Zygmund theory to nonlinear elliptic problems.

1.2 Gradient potential theory for non-standard

growth problems

We now consider the following model equation

− div

(
g(x, |Du|)
|Du|

Du

)
= µ in Ω, (1.4)

where g(x, t) = ∂tG(x, t) with a generalized N -function G : Ω × R+ → R+,
see Section 2.2 for the generalized N -function. There are typical examples of
G(·) which will be investigated later in the next chapters:

• Polynomial case:

G(x, t) = G1(t) = (t2 + s2)
p−2

2 t2 for p ∈ (1,∞), s ∈ [0, 1]. (P)

• Variable exponent case:

G(x, t) = G2(x, t) = (t2 + s2)
p(x)−2

2 t2, (PX)

where 1 < inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) <∞.

• Mild phase transition case:

G(x, t) = G3(x, t) = tp + a(x) log(e+ t)tp (PT)

for p ∈ (1,∞) and a ∈ C(Ω;R+).

• Double phase case:

G(x, t) = G4(x, t) = tp + a(x)tq (DPT)

for 1 < p ≤ q <∞ and a ∈ Cα(Ω;R+) for some α ∈ (0, 1].

• N -function case: G does not depends on the first variable. In other
words, we can denote as follows: for any x ∈ Ω

G(x, t) = G5(t). (O)

4



CHAPTER 1. INTRODUCTION

As we mentioned earlier, (1.4) with (P) is well known as p-Laplacian type
equations with measure data. The case (O) is called general growth and is a
natural generalization of (P). Later in this chapter, we will revisit (P) to dis-
cuss elliptic systems and (O) to study both subquadratic and superquadratic
growth at the same time.

We now move on to non-autonomous cases (PX) and (PT), which has
been studied extensively in the past 20 years. Non-autonomous equations
were firstly investigated in [74,103–105] by Russian mathematicians, notably
by Zhikov. These problems are of importance in that they naturally appear
from the modeling of electrorheological fluids in [97,98] and image restoration
in [1, 31]. To simplify our discussion, we always assume that p(·), a(·) in
(PX), (PT) are log-Hölder continuous. Here, we say that p(·) is log-Hölder
continuous if there holds

sup
0<ρ≤r

ω(ρ) log

(
1

ρ

)
<∞ (1.5)

for some r > 0, where ω(·) is a modulus of continuity of p(·) that means
|p(x)− p(y)| ≤ ω(|x− y|) for any x, y ∈ Rn. Note that the log-Hölder conti-
nuity assumption ensures that W 1,∞(Ω) is dense in Musielak-Orlicz-Sobolev
spaces W 1,G(Ω) for each (PX) and (PT), see [3, 105] and [45, Chapter 9].

In Chapter 3, we present gradient potential theory for (1.4) for (PT),
which is announced in [30], and we also present a similar result for (PX),
which is announced in [29]. In the same manner as in the case of (1.1), ex-
istence of weak solutions is not guaranteed for measure data problems in
general. Hence, we consider SOLAs. In particular, we say that a distribution
solution u ∈ W 1,1(Ω) to (1.4) is SOLA if there exists a sequence of weak solu-
tions {uk}k≥1 ⊂ W 1,G(Ω) to (1.4) with µ = µk ∈ L∞(Ω) and uk converges to
u in W 1,1(Ω). For (PX), Bögelein and Habermann [21] studied the existence
of SOLAs for p(·) with 2− 1/n < p(·) <∞. On other hand, we refer to [30]
for the proof of the existence of SOLAs for (PT) with 2− 1/n < p <∞.

Gradient potential estimates for the case (PX) were first investigated
by Bögelein and Habermann in [21] using non-standard Wolff potential for
2 ≤ p(·) <∞, and similar estimates were obtained by Baroni and Habermann
to the whole range 2 − 1/n < p(·) < ∞ via a mixed potential in [14]. In

5



CHAPTER 1. INTRODUCTION

Chapter 3, for 2 ≤ p(·) <∞, we show

g (x, |Du(x)|) ≤ cIµ1 (x,R) + cg

(
x,

ˆ
BR(x)

|Du|dy
)
, (1.6)

whenever BR(x) b Ω and R > 0 is sufficiently small. In light of (1.2), the
estimate (1.6) covers the results given in [21]. We further show that (1.6)
holds for (PT) with 2 ≤ p <∞. We refer to [29] and [30] for more details.

We would like to briefly mention that the associated ellipticity and growth
conditions to (DPT) has significant changes depending on the point, and
therefore, a stronger assumption than the one in (PT) should be made on the
modulating coefficient a(·) in (DPT). For this reason, regularity results for
double phase problems have been obtained only very recently in [11,38–40].

We close this section by mentioning that in a small region, the energy
functional for (PX) is very close to the one for (PT), and so the same reg-
ularity results hold under the same regularity assumptions on p(·) and a(·),
respectively. For examples, whenever µ = 0, if p(·) and a(·) are log-Hölder
continuous, then a weak solution u to (1.4) is Hölder continuous, and if p(·)
and a(·) are Hölder continuous, then Du is Hölder continuous, see [12]. Nev-
ertheless, from the point of view of a perturbation argument, they should
be treated differently because the associated reference problems are different
each other.

1.3 Partial regularity via Riesz potentials

As previously stated, an increasing amount of attention has been given to
gradient potential theory. In particular, the theory extended in the several
directions. For instances, we refer to [76] for parabolic equations, [25, 72]
for general nonlinearities, [10, 14, 29, 30] for non-standard growth problems,
and [22,52,80,81] for elliptic systems.

Let us focus on p-Laplacian type systems with the quasi-diagonal struc-
ture, in which one can obtain full regularity results for the systems, see for
instance [102]. Gradient potential estimates for p-Laplace systems were first
studied by Duzaar and Mingione in [52] when p > n. Later on, partial regu-
larity for nonlinear elliptic systems without the quasi-diagonal structure was
obtained, as a consequence of nonlinear potential estimates in [80], under the
assumption that the associated data belong to suitable Lebesgue spaces to

6



CHAPTER 1. INTRODUCTION

ensure the existence of weak solutions. On the other hand, the full regularity
for the p-Laplace systems with measure data problems were achieved in [81].
In [80,81], superquadratic growth is considered, and harmonic approximation
lemmas played an important role in their proofs. Meanwhile, sharp maximal
function estimates were obtained in [22] for the nonlinear elliptic systems
with data in divergence form.

In Chapter 4, we show gradient potential estimates for p-Laplacian type
systems with subquadratic growth by using ε-regularity criteria, almost ev-
erywhere in Ω. We assume that our data belong to suitable Lebesgue spaces.
Note that if elliptic systems without the quasi-diagonal structure have data
which do not belong to the dual space of the energy space, then no exis-
tence results are known so far. In addition, even for homogeneous elliptic
systems without the quasi-diagonal structure, Hölder regularity of solutions
holds almost everywhere in Ω. In what follows, we call the systems without
the quasi-diagonal structure to be general systems.

As we do not assume the quasi-diagonal structure, in which one can obtain
full regularity results for the systems given in [102], there hold only partial
regularity results for general systems, except for subtle higher integrability.
Note that De Giorgi found discontinuous solutions to general systems in [62].

To deal with such general systems, we assume that our systems are asymp-
totically close to p-Laplace systems at the origin. Our approach is mainly
based on harmonic approximation lemmas, which allow us to use perturba-
tion arguments. In the process, we use shifted N -function techniques and
higher integrability in order to apply harmonic approximation lemmas in a
concise form. The main difficulty in our proof arises from the interaction
between subquadratic growth and the associated data in the non-divergence
form. Note that for the problems with subquadratic growth, in [53, Lemma
4.1 and Lemma 4.2], the local average of the gradient of solutions on the
right-hand side of the comparison estimates can not be removed. Therefore,
it does not hold for the problems with subquadratic growth that if the ex-
cess functional is small enough for some radius, then the excess functional is
small enough for every small enough radii, which is in general true for the
problems with superquadratic growth, see [80, Proposition 5.1]. To overcome
this difficulty, we consider several alternatives in the proof of Lemma 4.5.1.

The argument that we use in Chapter 4 also can be applied to su-
perquadratic systems. However, this argument only works for weak solu-
tions, that is, any linearization technique covering both subquadratic and
superquadratic growth for measure data problems is unknown. In the next

7



CHAPTER 1. INTRODUCTION

section, we study elliptic equations with measure data covering both sub-
quadratic and superquadratic growth.

1.4 Elliptic measure data problems with gen-

eral growth

Turning back to (1.4) with (O), we first assume thatG5 ∈ C2(0,∞)∩C1[0,∞)
is an N -function satisfying

0 < γ1 − 1 ≤ tg′5(t)

g5(t)
≤ γ2 − 1 <∞ (1.7)

for some constants γ1, γ2 > 1, where g5(t) = G′5(t). If (1.7) is satisfied, then

G5 and G̃5 satisfy ∆2-condition, see Chapter 2 for more details.
The goal of Chapter 5 is to develop a method to obtain the existence and

regularity results for measure data problems with general growth, which is
announced in [23]. As previously mentioned, the existence of weak solutions
to measure data problems is not guaranteed, in general. Under (1.7), so-called
approximable solutions, which are weaker than SOLAs, are introduced in the
interesting paper [37], which is a natural extension of [17] to general growth,
see Definition 5.2.1.

Note that every SOLAs are approximable solutions and both of the so-
lutions are limits of weak solutions to regular problems. The only difference
between SOLAs and approximable solutions is that an approximable solution
only requires that the sequence of the gradient of regular solutions converges
almost everywhere to the gradient of the approximable solution, while a
SOLA requires that the sequence converges to the gradient of the SOLA in
L1. In Section 5.2, we show that approximable solutions are indeed SOLAs
when G5(·) satisfies (5.12). In fact, to establish Calderón-Zygmund theory,
we take SOLAs into account instead of approximable solutions, because al-
most everywhere convergence of the sequence is insufficient, as far as we are
concerned.

We refer to [10] where the measure data problem with general growth
was first treated. To obtain Riesz potential estimates, Baroni considered su-
perquadratic growth, that is, 2 ≤ γ1 ≤ γ2 < ∞ in (1.7), because there is no
unified method to obtain gradient potential estimates covering subquadratic
and superquadratic growth simultaneously. To overcome the difficulties aris-

8



CHAPTER 1. INTRODUCTION

ing from dealing with SOLAs, several auxiliary N -functions and Sobolev-
Poincaré type inequalities are introduced.

Note that, only in [37], a regularity result is obtained for measure data
problems with general growth which covers subquadratic and superquadratic
growth simultaneously. As a first step to develop a unified method for gra-
dient potential estimates, we study Calderón-Zygmund type estimates via
the fractional maximal functions of order 1, under the assumption (1.7) with
2 − 1/n < γ1 ≤ γ2 < ∞ which covers the whole region of p for SOLAs to
p-Laplacian type measure data problems. We further show Lorentz-Sobolev
type estimates by employing the mapping properties of Riesz potentials and
the inequality between fractional maximal functions and Riesz potentials.
These Lorentz-Sobolev type estimates refine the classical result [19, Theo-
rem 3].

The rest part of Chapter 5 is devoted to Calderón-Zygmund type result for
spherical quasi-minimizers to the following functionals with variable exponent
growth:

F(u,Ω) :=

ˆ
Ω

f(x,Du)− |F |p(x)−2F ·Dudx, (1.8)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain and F ∈ Lp(·)(Ω). This result is
announced in [27].

Let us recall quasi-minimizers and spherical quasi-minimizers for the func-
tional regarding (P). A quasi-minimizer is a weak type of the minimizer. For
example, let h : Ω× Rn → R satisfy |ξ|p . h(x, ξ) . |ξ|p + 1 and U a subset
of Ω to consider

H(v, U) :=

ˆ
U

h(x,Dv) dx.

Then we say u ∈ W 1,p
loc (Ω) is a local quasi-minimizer or a Q-minimizer of H

provided

H(u, suppϕ) ≤ QH(u+ ϕ, suppϕ)

for each ball B b Ω and ϕ ∈ W 1,p
0 (B) and for some Q ≥ 1. Of course,

if Q = 1, then u is a local minimizer of H. On the other hand, we say

9
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u ∈ W 1,p
loc (Ω) is a local spherical quasi-minimizer of H provided

H(u,B) =

ˆ
B

h(x,Du) dx ≤ Q

ˆ
B

h(x,Du+Dϕ) dx = QH(u+ ϕ,B)

for each B b Ω and ϕ ∈ W 1,p
0 (B) and for some Q ≥ 1.

The concept of quasi-minimizers was first introduced by Giaquinta and
Giusti in [59,60]. The advantage of the use of quasi-minimizers is that they are
Hölder continuous, see [59], as the De Giorgi argument still holds for the case.
On the other hand, one can construct a functional and an associated spherical
quasi-minimizer that is locally unbounded. However, it turns out that if Q
is sufficiently close to 1, then we can still obtain the Hölder continuity of a
spherical quasi-minimizer, as follows from [63].

As mentioned before, we present a global Calderón-Zygmund type result
for spherical quasi-minimizers to (1.8) under possibly the weakest assump-
tions on the domain Ω and the functional f .

10



Chapter 2

Preliminaries

2.1 Notations

The followings are standard notations, which will be used in what follows.

(1) x = (x′, xn) ∈ Rn for x′ = (x1, · · · , xn−1) ∈ Rn−1.

(2) Br(x) = {y ∈ Rn : |x− y| < r} is the ball centered at x with radius r > 0
and B+

r (x)t is the upper half ball. If there is no confusion, we write
Br = Br(x).

(3) Ω is a bounded domain of Rn, n ≥ 2, and ∂Ω is the boundary of Ω.

(4) Ωr(x) = Ω ∩Br(x) and Ωr = Ω ∩Br.

(5) dist(x, U) = inf {|x− y| : y ∈ U} is the distance from x to a set U .

(6) For each set U ⊂ Rn, |U | is the n-dimensional Lebesgue measure of U ,
and diam(U) is the diameter of U .

(7) For every k ∈ N, we define truncation operators Tk,Tk : R→ R by

Tk(t) = min{k,max{−k, t}} and Tk(t) = T1(t− Tk(t)).

(8) For f ∈ L1
loc(Rn), (f)U stands for the integral average of f over a bounded

open set U ⊂ Rn with positive measure, that is,

(f)U =

ˆ
U

f(x) dx =
1

|U |

ˆ
U

f(x) dx.

11
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(9) For each problems, we use the abbreviation data to specify the depen-
dence of constants and denote c ≥ 1 by a generic constant depending
only on data, which may vary from line to line.

(10) We denote A . B when there exists a generic constant c such that
A ≤ cB. If c depends also on χ which does not belong to data, then
we write A .χ B instead. Moreover, the notation A ≈ B shall mean
c−1B ≤ A ≤ cB for some generic constant c.

(11) For any constant p ≥ 1, p′ = p
p−1

is the conjugate exponent of p. We call

p∗ = np
n−p by Sobolev exponent for p ∈ [1, n).

2.2 Musielak-Orlicz spaces

A real valued function Φ : Ω × R+ → R+ is called a generalized Young
function, if Φ(x, ·) is a convex function that satisfies

Φ(x, 0) = 0 for a.e. x ∈ Ω, lim
t→∞

Φ(x, t) =∞ for a.e. x ∈ Ω

and Φ(·, t) is Lebesgue measurable for all t > 0. We define Φ̃ : Ω×R+ → R+

by
Φ̃(x, t) := sup

t≥0
{st− Φ(x, t)},

which is called the complementary function of Φ. By the definition of com-
plementary function, we see

st ≤ Φ(x, t) + Φ̃(x, s),

whenever s, t ∈ R+ and a.e. x ∈ Ω. Moreover, for any t ≥ 0 it holds that

Φ∗
(

Φ(t)

t

)
≤ Φ(t) ≤ Φ∗

(
Φ(2t)

t

)
. (2.1)

A generalized N -function Φ : Ω × R+ → R+ is a generalized Young
function such that Φ(x, t) > 0 for all t > 0,

lim
t→0

Φ(x, t)

t
= 0 a.e. x ∈ Ω and lim

t→∞

Φ(x, t)

t
=∞ a.e. x ∈ Ω.

12
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Additionally, we assume that Φ(x, ·) ∈ C2(0,∞) for a.e. x ∈ Ω and satisfies

0 < γ1 − 1 ≤ t∂2
t Φ(x, t)

∂tΦ(x, t)
≤ γ2 − 1 (2.2)

for some positive constants 1 < γ1 ≤ γ2, for t > 0 and a.e. x ∈ Ω. In this
section, we define data = {γ1, γ2, n}.

We readily check that (2.2) implies

γ1 ≤
t∂tΦ(x, t)

Φ(x, t)
≤ γ2, min{αγ1 , αγ2} ≤ Φ(x, αt)

Φ(x, t)
≤ max{αγ1 , αγ2} (2.3)

for t, α ≥ 0 and a.e. x ∈ Ω. If the last inequalities is satisfied, then we say
that Φ and Φ̃ satisfy ∆2-condition. It is also well known that for any η ∈ [0, 1]
and s ≥ 0 (2.2) implies

ηγ2Φ(t) ≤ Φ(ηt) ≤ ηγ1Φ(t) and ηγ
′
1Φ∗(t) ≤ Φ∗(ηt) ≤ ηγ

′
2Φ∗(t). (2.4)

For more details, we refer to [95] and [84, Lemma 1.1].
Since Φ(x, ·) is monotone increasing for a.e. x ∈ Ω, we can define a func-

tion Φ−1 : Ω × R+ → R+ by Φ−1(x,Φ(x, t)) = Φ(x,Φ−1(x, t)) = t for all
t ∈ R+. From (2.3), one can derive

min
{
α

1
γ1 , α

1
γ2

}
≤ Φ−1(x, αt)

Φ−1(x, t)
≤ max

{
α

1
γ1 , α

1
γ2

}
(2.5)

for t, α ≥ 0 and a.e. x ∈ Ω, see [10, Section 3]. Throughout this section,
we assume that every generalized N -function satisfies (2.2). It is well known
that

Φ̃

(
x,

Φ(x, t)

t

)
≈ Φ(x, t) (2.6)

for every t > 0 and a.e. x ∈ Ω.
The Musielak-Orlicz space LΦ(Ω) is the set of Lebesgue measurable func-

tions f : Ω→ R satisfying

ˆ
Ω

Φ(x, |f |) dx <∞

13
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with the following Luxemberg norm

‖f‖LΦ(Ω) = inf

{
λ > 0 :

ˆ
Ω

Φ

(
x,
|f |
λ

)
dx ≤ 1

}
,

and the Musielak-Orlicz-Sobolev space is

W 1,Φ(Ω) =

{
f ∈ LΦ(Ω) :

ˆ
Ω

Φ(x, |Df |) dx <∞
}

with the norm

‖f‖W 1,Φ(Ω) = inf

{
λ > 0 :

ˆ
Ω

Φ

(
x,
|f |
λ

)
dx+

ˆ
Ω

Φ

(
x,
|Df |
λ

)
dx ≤ 1

}
.

If (2.2) and infx∈Ω Φ(x, 1) > 0 are satisfied, then they are Banach spaces,
see [92, Theorem 10.2].

Similarly, we call a real valued function Ψ : R+ → R+ an N -function, if
Ψ is a nondecreasing convex function that satisfies Ψ(0) = 0, Ψ(t) > 0 for
all t > 0,

lim
t→0

Ψ(t)

t
= 0 and lim

t→∞

Ψ(t)

t
=∞.

Then we recall the Orlicz space

LΨ(Ω) :=

{
f ∈ L1(Ω) :

ˆ
Ω

Ψ(|Df |) dx <∞
}

and the Orlicz-Sobolev space

W 1,Ψ(Ω) :=

{
f ∈ LΨ(Ω) :

ˆ
Ω

Ψ(|Df |) dx <∞
}
.

One can find basic ingredients of Orlicz spaces and Musielak-Orlicz spaces
in [43, 66, 92, 95] and references therein. Note that these spaces corresponds
to the case (O).

Recall the examples given in Section 1.2. It is well known that the func-
tion spaces W 1,p(Ω) and Lp(Ω) regarding (P) are called simply Sobolev space
and Lebesgue space, respectively. For (PX), we denote the Musielak-Orlicz
space by Lp(·)(Ω) and the Musielak-Orlicz-Sobolev space by W 1,p(·)(Ω) and

14
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call them simply the variable exponent spaces. As mentioned in Chapter
1, these spaces are naturally appeared in the modeling of electrorheological
fluids and image restoration. For further discussions about some important
properties including reflexivity, separability, and Sobolev embeddings on vari-
able exponent spaces, we refer to [42,45,55,57,58,105] and references therein.

We end this subsection with Sobolev type inequalities. Let Ψ be an N -
function satisfying (2.2). First, we introduce a condition on Ψ corresponding
to the case 1 < p ≤ n for (P). We say that Ψ grows slowly if

ˆ
0

(
s

Ψ(s)

) 1
n−1

ds <∞ and

ˆ ∞( s

Ψ(s)

) 1
n−1

ds =∞. (2.7)

We now define

Hn(t) :=

(ˆ t

0

[
s

Ψ(s)

] 1
n−1

ds

)n−1
n

and Ψn(t) := (Ψ ◦H−1
n )(t). (2.8)

The Sobolev embedding theorem for 1 < p < n was extended to Orlicz spaces
in [34, Theorem 3], which we now state.

Lemma 2.2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain and let Ψ be an
N-function satisfying (2.7). Let Ψn be the function defined by (2.8). Then for
every u ∈ W 1,Ψ

0 (Ω) there holds

ˆ
Ω

Ψn

(
|u|

cn(
´

Ω
Ψ(|Du|) dx)

1
n

)
dx ≤

ˆ
Ω

Ψ(|Du|) dx,

where cn is the measure of the n-dimensional unit ball.

Next, we introduce an embedding theorem [33, Theorem 1a], correspond-
ing to Ψ growing fast, that is,

ˆ ∞( s

Ψ(s)

) 1
n−1

ds <∞. (2.9)

Lemma 2.2.2. Let Ω be as in Lemma 2.2.1 and let Ψ satisfy (2.2) and (2.9).
Then there exists a constant c depending only on γ2, |Ω|, n such that for every
u ∈ W 1,Ψ(Ω)

‖u‖L∞(Ω) ≤ c‖Du‖LΨ(Ω).

15
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We introduce another Sobolev embedding theorem, [10, Proposition 3.5].

Lemma 2.2.3. Let Ψ ∈ C1(R+) be a positive N-function such that

γ1 ≤
tΨ′(t)

Ψ(t)
≤ γ2, for t > 0, with 1 ≤ γ1 ≤ γ2.

Then there exists a constant c depending only on n, p1 such that

ˆ
BR

Ψ

(
|u|
R

) n
n−1

dx ≤ c

(ˆ
BR

Ψ(|Du|) dx
) n

n−1

for every u ∈ W 1,Ψ
0 (BR).

2.3 Auxiliary results

2.3.1 log-Hölder continuity

The modulus of continuity of a continuous function p : Ω→ R is the nonde-
creasing concave function ωp(·) : [0,∞)→ [0,∞) defined by

ωp(·)(ρ) := sup{|p(x)− p(y)| : x, y ∈ Ω, |x− y| ≤ ρ}.

We say that p is Dini continuous if

ˆ
0

ωp(·)(ρ)
dρ

ρ
<∞. (2.10)

As we mentioned before, Dini-continuity assumption on the coefficient a(·)
in (1.1) is the sharp one to obtain C1-regularity of solutions.

Additionally, we say that p is log-Dini continuous if

ˆ
0

ωp(·)(ρ) log

(
1

ρ

)
dρ

ρ
<∞. (2.11)

Note that the log-Dini continuity (2.11) on p(·) implies the strong log-
Hölder continuity

lim sup
ρ↘0

ωp(·)(ρ) log

(
1

ρ

)
= 0,

16
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which implies the log-Hölder continuity given in (1.5). Indeed, (1.5) implies
that there exist constants R1, L > 0 such that

ω(ρ) log

(
1

ρ

)
≤ L (2.12)

for every 0 < ρ ≤ R1. In the localization procedures of Chapter 3 and
Chapter 5, for any function p(·) satisfying (2.12), the following estimates are
often used: for any 0 < R ≤ R1 and 0 ≤ ω̃ ≤ ωp(·)(R) we have

R−ω̃ ≤ c(L) (2.13)

whenever 0 < R ≤ R1 and 0 ≤ ω̃ ≤ ωp(·)(R), and

Aσ ≤ c(L, α)(A+Rα)σ+ω̃ (2.14)

for any σ, α > 0, whenever A ≥ 0.
We now introduce an estimate for L logL functions given in [4, (28)]

and [68, Lemma 5.2]. For any q, β > 1 and f ∈ Lq(Ω), we have

ˆ
Ω

f logβ
(
e+

|f |
‖f‖L1(Ω)

)
dx ≤ c(q, β)

(ˆ
Ω

|f |q dx
) 1

q

. (2.15)

In Chapter 3, we further use the following estimates: For any t1, t2 ∈
[0,∞), we see

log(e+ t1t2) ≤ log(e+ t1) + log(e+ t2). (2.16)

Moreover, if t1 ≥ 1, then we have

log(e+ t1t2) ≤ t1 log(e+ t2).

2.3.2 Monotonicity of vector field A(·).
Let us consider the following continuous vector field A : Ω × RN → Rn

with ∂A = ∂ξA(·) being Carathéodory regular and satisfying the following

17
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ellipticity and growth assumptions
|A(x, ξ)|+ |∂A(x, ξ)|(|ξ|2 + s2)

1
2 ≤ Lg(x, |ξ|)

ν
g(x, |ξ|)
|ξ|

|η|2 ≤ 〈∂ξA(x, ξ)η, η〉,
(2.17)

where x ∈ Ω, ξ, η ∈ Rn, 0 < ν ≤ L and g(x, t) = ∂tG(x, t) for some general-
ized N -function G satisfying (2.2) with Φ = G.

We now define an auxiliary vector field V : Ω× Rn → Rn by

V (x, ξ) =

(
g(x, |ξ|)
|ξ|

) 1
2

ξ

for every x ∈ Ω and ξ ∈ Rn. The monotonicity of A(·) can be written as
follows

|V (x, z1)− V (x, z2)|2 ≈ g(x, |ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2

. 〈A(x, ξ1)− A(x, ξ2), ξ1 − ξ2〉 (2.18)

for every z1, z2 ∈ Rn and x ∈ Ω, see [44, Lemma 3] and [65]. In case t 7→
g(x, t)/t is increasing for a.e. x ∈ Ω, we further discover

G(x, |z1 − z2|) ≤
g(x, |z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2. (2.19)

2.3.3 Regularity results for limiting equations

In this subsection, we present known decay estimate for limiting equations.
For A : Rn → Rn satisfying (2.17) with some N -function G, let v be the
weak solution to the frozen equation:{

−div (A(Dv)) = 0 in BR,

v = w on ∂BR,
(2.20)

where w ∈ W 1,G(BR). The following local Lipschitz regularity and excess
decay estimates can be found in [10, Lemma 4.1] and [84, Lemma 5.1].

18
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Lemma 2.3.1. Let w ∈ W 1,G(BR) be the weak solution to (2.20) under
(2.17). Then the following estimate holds:

sup
BR/2

|Dv| ≤ cl

ˆ
BR

|Dv| dx.

Moreover v ∈ C1,β
loc (BR) for some β ∈ (0, 1) and the following excess decay

estimate holds:ˆ
Bρ

|Dv − (Dv)Bρ| dx ≤ cβ

(ρ
r

)β ˆ
Br

|Dv − (Dv)Br | dx

and

osc
Bρ
Dv ≤ cβ

(ρ
r

)β ˆ
Br

|Dv| dx

for 0 < ρ < r ≤ R̃, where the constants cl, cβ and the exponent β depending
only on n, γ1, γ2, ν, L.

Global Lipschitz regularity of solutions to equations with general growth
has been actively investigated, see for instance [15, 35, 36, 84]. In particular,
we mention [40, Theorem 2.2] and [32, Theorem 4.1] for boundary Lipschitz
regularity for the weak solution v to{

−div (A(Dv)) = 0 in B+
R ,

v = w on ∂B+
R ,

(2.21)

where A : Rn → Rn satisfies the same assumptions in (2.20) and w ∈
W 1,G(B+

R) satisfies w = 0 on TR = {x ∈ BR : xn = 0}.

Lemma 2.3.2. Let v ∈ W 1,G(B+
R) be the weak solution to (2.21). Then there

exists a constant cl = cl(n, γ1, γ2, ν, L) ≥ 1 such that

sup
B+
r

G(|Dv|) ≤ cl

ˆ
B+

2r

G(|Dv|) dx.

Recall that (P) is the typical example of (O) in Section 1.2. Therefore,
Lemma 2.3.1 and Lemma 2.3.2 hold for the case (P) with constants cl, cβ and
β depending on p instead of γ1 and γ2.
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Chapter 3

Non-autonomous equations

3.1 Main results

We devote this chapter to gradient potential estimates for non-autonomous
measure data problems regarding (PT) and (PX). Let us consider the follow-
ing equation

−div (γ(x)A(x,Du)) = µ in Ω, (3.1)

where µ is a finite Borel measure defined on a bounded domain Ω ⊂ Rn, n ≥ 2
and the coefficient function γ : Ω→ R satisfy the following boundedness

ν ≤ γ(x) ≤ L <∞. (3.2)

We further assume Dini-continuity assumption on γ as in (2.10) with
modulus of continuity ωγ(·) to obtain pointwise estimates for the gradient of
solution. Note that Dini-continuity is known as the optimal assumption on
the coefficient to derive C1-regularity for homogeneous elliptic equations as
we mentioned in Section 1.1. Moreover, this continuity assumption has an
important role in measuring the decay rate of oscillation of the gradient.

The mapping A : Ω×Rn → Rn is assumed to be C1-regular in the gradient
variable ξ, with ∂A(·) being Carathéodory regular. In order to study elliptic
equations generalized from (1.4) with (PT) or (PX), we are going to consider
two types of assumptions, (GPT) and (GPX). It is readily checked that (1.4)
satisfies (GPT) (resp. (GPX)) when (PT) (resp. (PX)) is considered.
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We first consider the following growth, ellipticity and continuity on A(·):
|A(x, ξ)|+ |∂A(x, ξ)||ξ| ≤ L

[
|ξ|p−1 + a(x) log(e+ |ξ|)|ξ|p−1

]
ν
[
|ξ|p−2 + a(x) log(e+ |ξ|)|ξ|p−2

]
|η|2 ≤ 〈∂A(x, ξ)η, η〉

|A(x, ξ)− A(x0, ξ)| ≤ Lωa(·)(|x− x0|) log(e+ |ξ|)|ξ|p−1

(GPT)

for every x, x0 ∈ Ω and ξ, η ∈ Rn, where 0 < ν ≤ L are fixed and 2 ≤ p.
On the other hand, we also consider the following set of assumptions:

|A(x, ξ)|+ |∂A(x, ξ)|(|ξ|2 + s2)
1
2 ≤ L(|ξ|2 + s2)

p(x)−1
2

ν(|ξ|2 + s2)
p(x)−2

2 |η|2 ≤ 〈∂A(x, ξ)η, η〉

|A(x, ξ)− A(x0, ξ)| ≤ Lωp(·)(|x− x0|)
[
(|ξ|2 + s2)

p(x)−1
2

+(|ξ|2 + s2)
p(x0)−1

2

] [
1 + | log(|ξ|2 + s2)|

]
(GPX)

for every x, x0 ∈ Ω and ξ, η ∈ Rn, where 0 < ν ≤ L and s ∈ [0, 1] are fixed.
In addition, the variable exponent function p : Ω→ R and the modulating

coefficient a : Ω→ R are assumed to be log-Dini continuous as in (2.11) and
satisfy the following boundedness

2 ≤ p(x) ≤ γ2 <∞ and 0 ≤ a(x) ≤ ‖a‖L∞(Ω) <∞. (3.3)

In this chapter, we assume 2 ≤ p and (3.3) to restrict our discussion to
superquadratic growth case.

Remark that in the region {x ∈ Ω : a(x) = 0}, (3.1) with (GPT) is
reduced to be p-Laplace type equation, while in the remaining region, it
is reduced to Lp logL type equation. For this reason, it is called a non-
autonomous problem and so does the case (PX), see (1.2) for more details.

Throughout this chapter, data stands for the set of constants {n, p, ν, L}
if (GPT) are considered, while it stands for {n, γ2, ν, L} if (GPX) are con-
sidered. We define g3 and g2 by

g3(x, t) = tp−1 + a(x) log(e+ t)tp−1 ≈ ∂tG3(x, t)

and
g2(x, t) = tp(x)−1 ≈ ∂tG2(x, t),

where G3 and G2 are given in Section 1.2. If it there is no confusion, we omit
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the subscripts 3 and 2. We also write

ω(t) = ωγ(·)(t) + ωa(·)(t) log(e+ t)

(resp. ω(t) = ωγ(·)(t) + ωp(·)(t) log(e+ t))

if (GPT) (resp. (GPX)) are taken into account.
As mentioned in Section 1.2, we consider (3.1) under (GPT) or (GPX)

with the right-hand side measure µ which does not necessarily belong to the
dual space of W 1,G(Ω). Therefore, we consider the notion of SOLAs that is
introduced by Boccardo and Gallouët in [18]. Indeed, for (3.1) with (GPX),
Bögelein and Habermann proved the existence of SOLA in [21].

Definition 3.1.1 (SOLA). A function u ∈ W 1,1
0 (Ω) is a SOLA to (3.1) under

(GPX) if and only if there are a sequence {µk}k∈N ⊂ L∞(Ω) converges to µ
weakly in measure and a corresponding sequence of weak solutions {uk}k∈N ⊂
W

1,p(·)
0 (Ω) to the equation{

−div(γ(x)A(x,Duk)) = µk in Ω

uk = 0 on ∂Ω,
(3.4)

such that uk → u in W 1,q(Ωr)(y) for every x ∈ Ω, r > 0 with

1 ≤ q < min
{

inf
x∈Ωr

p(x),
n

n− 1
inf
x∈Ωr

(p(x)− 1)
}
.

Note that weakly convergence in measure implies

lim sup
k→∞

|µk|(U) ≤ |µ|(Ū) (3.5)

for every measurable set U ⊂ Ω and its closure Ū , see [56, Theorem 1.9.1].
On the other hand, the proof of the existence of SOLAs to (3.1) under

(GPT) in [30, Lemma 2.5] is quite similar to the one in [18] since the logarith-
mic perturbation does not affect the approximation procedure given in [18].
Now we define a SOLAs to (3.1) under (GPT):

Definition 3.1.2. We say that a function u ∈ W 1,1
0 (Ω) is a local SOLA

to (3.1) under (GPT) if there exists a sequence of local weak solutions
{uk}k∈N ⊂ W 1,G

0 (Ω) to (3.4) with {µk}k∈N ⊂ L∞(Ω) such that µk ⇀ µ

weakly in measure, and uk → u in W 1,q(Ω) for any 1 ≤ q < min{p, n(p−1)
n−1
}.
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We first obtain a priori estimates, Theorem 3.1.4 below, for weak solu-
tions, and then justify that the estimates also holds true for the SOLA by an
appropriate approximation procedure, which will be made under the a priori
assumption that L1-norm of Du is uniformly bounded as

ˆ
Ω

|Du| dx =: M <∞. (3.6)

Henceforth, we assume µ ∈ L∞(Ω) and u ∈ W 1,G(Ω), until Section 3.4.
We now state our first main result:

Theorem 3.1.3. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) under (GPT).
Assume a(·) is log-Dini continuous and γ(·) is Dini continuous. Then there
exist constants c = c(data) > 1 and R0 = R0(data, ω,M, |µ|(Ω)) satisfying

g(x0, |Du(x0)|) ≤ cIµ1 (x0, R) + cg

(
x0,

ˆ
BR(x0)

|Du| dx
)

(3.7)

for every Lebesgue point x0 of Du, whenever BR(x0) ⊂ Ω with R ≤ R0 and
the right-hand side is finite.

Analogously, we have the following estimates for (GPX):

Theorem 3.1.4. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) under (GPX).
Assume p(·) is log-Dini continuous and γ(·) is Dini continuous. Then there
exist constants c = c(data) > 1 and R0 = R0(data, ω,M, |µ|(Ω)) satisfying

g(x0, |Du(x0)|) ≤ cIµ1 (x0, R) + cg

(
x0,

ˆ
BR(x0)

(|Du|+ s+R) dx

)
(3.8)

for every Lebesgue point x0 of Du, whenever BR(x0) ⊂ Ω with R ≤ R0 and
the right-hand side is finite.

Remark 3.1.5. Recalling (1.2) for the case that p(x0) ≥ 2, one can obtain
the result of [21] as a consequence of Theorem 3.1.4, with the weaker conti-
nuity assumption (2.11) on the variable exponent function p(·) than the one
used in [21].

Remark 3.1.6. Applying some embedding properties of Riesz potential to
Theorem 3.1.4, one can prove Calderón-Zygmund type estimates. We refer
to [6,64] for a classical result of Riesz potential embedding in Lebesgue spaces,
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[7,42] in variable exponent spaces, and [91, Theorem 1.2] in weighted variable
exponent spaces, respectively. Calderón-Zygmund type estimates for (3.1)
under (GPX) are recently obtained in [26]. Indeed, for any weak log-Hölder
continuous function q : Ω→ R such that

1 < inf
Ω
q(x) ≤ sup

Ω
q(x) < n,

[7, Theorem 4.3] shows the implication:

µ ∈ Lq(·)(Ω)⇒ Du ∈ w-L
nq(·)

(n−q(·))(p(·)−1) (Ω),

where w-L
nq(·)

(n−q(·))(p(·)−1) (Ω) is the variable exponent weak space defined in [7,
Definition 3.1]. See (2.12) for the definition of weak log-Hölder continuity.

As another direct consequence of Theorem 3.1.3 and Theorem 3.1.4, we
see that

Iµ1 (·, R) ∈ L∞loc(Ω) for some R > 0 ⇒ Du ∈ L∞loc(Ω, Rn).

Then later in Proposition 3.5.1, we prove a local VMO-regularity of Du.
Once we have Proposition 3.5.1, the gradient continuity criteria follow from
the same spirit used as in the proof of [76, Theorem 1.5], as we now state
without its proof.

Theorem 3.1.7. Under the assumptions of Theorem 3.1.3, if

lim
R→0

Iµ1 (x,R) = 0 locally uniformly in Ω w.r.t x, (3.9)

then Du is continuous in Ω. This C1-regularity criteria also hold under the
assumptions of Theorem 3.1.4.

Remark 3.1.8. Recall the Lorentz space

L(p, q)(Ω) :=

{
f ∈ L1(Ω) :

∥∥∥ρ| {|f | > ρ} |
1
p

∥∥∥
Lq( dρ

ρ
)
<∞

}
for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, and [76, Corollary 1.6] to discover that if
the right-hand side measure µ belongs to L(n, 1), then (3.9) holds and Du is
continuous. Consequently, our result of Theorem 3.1.7 complements [78] for
the p-Laplacian problems to the non-autonomous problems.
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We now conclude this introduction with the following Riesz potential
estimates for SOLA.

Theorem 3.1.9. The statements of Theorem 3.1.3, Theorem 3.1.4 and The-
orem 3.1.7 continue to hold for SOLAs to (3.1) under the same assumptions
of each theorems.

Before ending this section, we mention the very fine paper [75] where
oscillation estimates are obtained in terms of the Riesz potentials of the
measure µ for nonlinear degenerate elliptic equation of the p-Laplacian type.
After the pointwise estimate have been obtained in Theorem 3.1.3, it seems
possible to find a correct version of the oscillation estimate [75, Theorem 1.1].

3.2 Comparison estimates

From the assumption (2.11), when we consider (GPT), we can take a positive
constant

R1 = R1(ω, |µ|(Ω), ‖Du‖L1(Ω)) ≤
1

|µ|(Ω) + ‖Du‖L1(Ω) + 1

such that

ωγ(·)(r) + ωa(·)(r) log

(
1

r

)
≤ 1

100np
, (3.10)

for every 0 < r ≤ R1, which implies

r−ωa(·)(r) = e−ωa(·)(r) log(r) ≤ c (3.11)

and (
|µ|(Ω) + ‖Du‖L1(Ω) + 1

)ωa(·)(r) ≤ r−ωa(·)(r) ≤ c

whenever 0 < r ≤ R1. We point out that the upper bound in (3.10) is chosen
in order to handle some technical issues such as in (3.45) and (3.69).

On the other hand, in case of (GPX), we assume

ωγ(·)(r) + ωp(·)(r) log

(
1

r

)
≤ 1

100nγ2

. (3.12)

These inequalities will be used often in next sections. Throughout this chap-
ter, we always assume 0 < R ≤ R1. To proceed further, we recall (2.13) and
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(2.14) which will be used without mentioning them.
For any measurable set U ⊂ Rn with positive Lebesgue measure and an

integrable function f : U → Rk with some positive integer k, we denote the
excess functional of f by

E(f, U) :=

ˆ
U

|f − (f)U | dx. (3.13)

We now consider the following reference problems. As mentioned in af-
ter (3.6), we assume µ ∈ L∞(Ω) and u ∈ W 1,G(Ω) till Section 3.4. Then
there exists w ∈ W 1,G(BR(x0)) the unique weak solution to the homoge-
neous Dirichlet problem{

−div (γ(x)A(x,Dw)) = 0 in BR(x0)

w = u on ∂BR(x0),
(3.14)

where BR(x0) ⊂ Ω. Indeed, there is a higher integrability result of w in
Lemma 3.2.7 for (GPT) and Lemma 3.2.10 for (GPX).

With a suitable assumption on R, we then let v ∈ W 1,G(x1)(BR̃/2(x1)) be
the unique weak solution to the homogeneous Dirichlet problem{

−div (A(x1, Dv)) = 0 in BR̃/2(x1)

v = w on ∂BR̃/2(x1),
(3.15)

whenever 0 < R̃ ≤ R and BR̃(x1) ⊂ BR(x0), see Remark 3.2.12.
As we mentioned in Section 1.2, each energy functional regarding (GPT)

and (GPX) are similar in local. Moreover, the proofs of Theorem 3.1.3 and
Theorem 3.1.4 are parallel after certain comparison estimates. Therefore, in
what follows, we focus on the proof of Theorem 3.1.3 to emphasize the differ-
ence between (GPT) and (GPX) by introducing only comparison estimates
for Theorem 3.1.4.

3.2.1 Basic comparison estimates for (GPT)

Through this subsection, we assume that A(·) satisfies (GPT).
Before starting to discover comparison estimates, we introduce some aux-
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iliary functions and their properties. For BR(x0), we denote

am,R,x0 = inf
BR(x0)

a(x), aM,R,x0 = sup
BR(x0)

a(x) and a0 = a(x0).

For χ ≥ −1, x ∈ Ω and t ∈ R+, we define

gm,R,x0(t) = inf
BR(x0)

g(x, t), gM,R,x0(t) = sup
BR(x0)

g(x, t), g0(t) = g(x0, t),

gm,R,x0,χ(t) :=

(
gm(t)

t

)1+χ

t, gM,R,x0,χ(t) :=

(
gM(t)

t

)1+χ

t,

Gm,R,x0(t) = inf
BR(x0)

G(x, t) and G0(t) = G(x0, t). (3.16)

If no confusion arises, then we omit the subscripts R, x0 in the notations,
that is, we simply write am, gm and so on.

A direct calculation yields

∂G

∂t
(x, t) ≈ g(x, t),

dGm

dt
(t) ≈ gm(t), G(x, t) ≈

ˆ t

0

g(x, s) ds

and

Gm(t) ≈
ˆ t

0

gm(s)ds

for every x ∈ Ω and t ∈ R+. Furthermore, t 7→ g(x,t)
t

is increasing function
for a.e x ∈ Ω, i.e.,

g(x, t1)

t1
≤ g(x, t2)

t2
, (3.17)

whenever 0 < t1 < t2 ∈ R+.
Here, we provide some properties of the function G(·) for p ≥ 2. Differ-

entiating G(·) with respect to t > 0, we have

∂tG(x, t) = ptp−1(1 + a(x) log(e+ t)) + a(x)
tp

e+ t

and

∂2
tG(x, t) = p(p− 1)tp−2(1 + a(x) log(e+ t)) + 2a(x)p

tp−1

e+ t
− a(x)

tp

(e+ t)2
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for every x ∈ Ω. To find the constant γ1 and γ2 in (2.2), we estimate

p− 1 ≤ t∂2
tG(t)

∂tG(t)
≤ p− 1 +

a(x)(p+ 1) t
e+t
− a(x) t2

(e+t)2

p(1 + a(x) log(e+ t)) + a(x) t
e+t

. (3.18)

If t ≥ e(e− 1), then p ≥ 2 implies

a(x)(p+ 1) t
e+t
− a(x) t2

(e+t)2

p(1 + a(x) log(e+ t)) + a(x) t
e+t

≤
a(x)(p+ 1) t

e+t

p(1 + 2a(x)) + a(x) t
e+t

≤ a(x)(p+ 1)

2a(x)p+ a(x) + p
≤ 3

5
. (3.19)

On the other hand, the concavity of log function implies

log(e+ t) ≥ 1 +
t

e(e− 1)
≥ 1 +

t

2e

for 0 < t < e(e− 1), and so we have

3p(1 + a(x) log(e+ t)) + 3a(x)t
e+t
− 4a(x)(p+ 1) t

e+t
+ 4a(x) t2

(e+t)2

≥ 3p
(

1 + a(x) + a(x)t
2e

)
− (4a(x)p+ a(x)) t

e+t

≥ 3p
(

1 + 3a(x)
2

)
t
e+t
− (4a(x)p+ α) t

e+t
> 0.

Therefore, for every 0 < t < e(e− 1), we have

a(x)(p+ 1) t
e+t
− a(x) t2

(e+t)2

p(1 + a(x) log(e+ t)) + a(x)t
e+t

≤ 3

4
. (3.20)

Combining (3.18)-(3.20) and applying (2.3), we obtain

p− 1 ≤ tG′′(x, t)

G′(x, t)
≤ p− 1

4
and p ≤ tG′(x, t)

G(x, t)
≤ p+ 1 (3.21)

for every t > 0 and x ∈ Ω. Therefore, applying (2.5) with α ∈ (0, 1), we have

α
1
pϕ−1(x, t) ≤ ϕ−1(x, αt) ≤ α

1
p+1ϕ−1(x, t) (3.22)
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for every x ∈ Ω and t ∈ R+.
For the fixed ball BR, Gm(·) also satisfies (3.21) and we have

d

dt

(
Gm(t)

1
8p

)
=

1

8p
Gm(t)

1
8p
−1G′m(t)

and

d2

dt2

(
Gm(t)

1
8p

)
=

1

8p
Gm(t)

1
8p
−2G′m(t)2

(
1

8p
− 1 +

Gm(t)G′′m(t)

G′m(t)2

)
≤ 1

8p
Gm(t)

1
8p
−2G′m(t)2

(
1

8p
− 1 +

p− 1
4

p

)
≤ 0.

Therefore, Gm(·)
1
8p is concave and then it follows from Jensen’s inequality

that (ˆ
BR

Gm(|f |)
1
8pdx

)8p

≤ Gm

(ˆ
BR

|f |dx
)

(3.23)

for every f ∈ L1(BR).
Recall the estimates in Section 2.3 which will be used frequently later in.

For every α ∈ (0,∞) and t ≥ 1, log t ≤ 1
α
tα. Then we have

gM(t) ≤ gm(t) + ωa(·)(R) log(e+ t)tp−1

≤ gm(t) + (e+ t)ωa(·)(R)tp−1 . gm(t) + tp−1+ωa(·)(R).
(3.24)

We now set a constant

MR,x0 = g−1
0

(
|µ|(BR(x0))

Rn−1

)
≥ 0.

If there is nothing to be confused, we write M = MR,x0 . By (3.24) and
(3.11), we see

g0

(
g−1
m

(
|µ|(BR)

Rn−1

))
.
|µ|(BR)

Rn−1
+ g−1

m

(
|µ|(BR)

Rn−1

)p−1+ω(R)

.
|µ|(BR)

Rn−1
+

[
|µ|(BR)

Rn−1

]1+
ω(R)
p−1

.
|µ|(BR)

Rn−1
.
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Since g−1
0 (t) ≤ g−1

m (t) for t ≥ 0, we see

M≈ g−1
m

(
|µ|(BR)

Rn−1

)
. (3.25)

The next lemma shows a comparison estimate between (3.1) and (3.14)
under (GPT). To do this, we reduce these equations to certain problems with
general growth in the proof of Lemma 3.2.1 to apply known estimates in [10].

Lemma 3.2.1. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) and w ∈
W 1,G(BR) be the weak solution to (3.14). Then for any

χ ∈
[
−1,min

{
1

p− 1
,

p

(p− 1)(n− 1)

})
, (3.26)

there exists a constant c depending only on data and χ such that

ˆ
BR

gm,χ(|Du−Dw|) dx ≤ cgm,χ(M).

Proof. The main idea is to rescale (3.1), (3.14) and reduce them to general
growth problems. Without loss of generality, one can assumeM > 0. If not,
then the uniqueness of weak solutions implies u = w in BR and there is
nothing to prove. We rescale (3.1) and (3.14) as follows:

ū(x) :=
u(x0 +Rx)

MR
, w̄(x) :=

w(x0 +Rx)

MR
,

Ā(x, z) :=
A(x0 +Rx,Mz)

gm(M)
, µ̄(x) = R

µ(x0 +Rx)

gm(M)

and

ḡ(x, t) :=
g(x0 +Rx,Mt)

gm(M)
,

for x ∈ B1(0) and z ∈ Rn. It then follows from (3.25) that |µ̄|(B1(0)) ≈ 1.
We further note that

〈∂zĀ(x, z)λ, λ〉 ≥ ν
ḡ(x, |z|)
|z|

|λ|2
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and

(p− 1)ḡ(x, t) ≤ t
d

dt
ḡ(x, t) ≤ pḡ(x, t)

for all x ∈ B1(0) and t > 0. Subtracting (3.14) from (3.1), we discover

− div
[
Ā(x,Dū)− Ā(x,Dw̄)

]
= µ̄(x) in B1(0). (3.27)

Based on Lemma 2.2.1 and Lemma 2.2.2, we consider two cases p ≤ n and
p > n. Let us first consider the case p ≤ n which implies the second condition
in (2.7). The first condition in (2.7) holds for every p < n, excluding p = n.
For this reason, we define

f(t) :=


0 t = 0,

ḡm,χ(1)t for t ∈ (0, 1),

ḡm,χ(t) for t ∈ [1,∞).

By testing (3.27) with

ϕ = Tk

 ū− w̄

cn

(ˆ
B1

f(|Dū−Dw̄|) dx
) 1

n


=: Tk

(
ū− w̄
cnF

)
∈ W 1,G

0 (B1) ∩ L∞(B1)

and using (2.18) and (2.19), we find

1

cnF

ˆ
Ck

Ḡm(|Dū−Dw̄|) dx .
ˆ
B1

〈Ā(x,Dū)− Ā(x,Dw̄), Dϕ〉 dx

≤
ˆ
B1

kd|µ̄| . k,

(3.28)

where cn is the constant given in Lemma 2.2.1,

Ḡm(t) :=

ˆ t

0

ḡm(s)ds and Ck :=

{
x ∈ B1 :

|ū− w̄|
cnF

≤ k

}
.
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We have used |µ̄|(B1) ≈ 1 in (3.28). Now using

ϕ := Tk

(
ū− w̄
cnF

)
∈ W 1,G

0 (B1) ∩ L∞(B1),

as a test function to (3.27), we obtain

ˆ
Dk

Ḡm(|Dū−Dw̄|) dx . F , (3.29)

where

Dk :=

{
x ∈ B1 : k <

|ū− w̄|
cnF

≤ k + 1

}
.

The estimates (3.28) and (3.29) corresponds to [10, (5.17) in the proof of
Lemma 5.1]. Once (3.28) and (3.29) are obtained with ḡm(1) = 1, then we
discover ˆ

B1

ḡm,χ(|Dū−Dw̄|) dx ≤ c (3.30)

by following the calculations after [10, (5.17) in Step 2.1 of Lemma 5.1],
where c depends only on data and χ.

We now assume p > n. In this case, u and v are locally bounded in BR

by Lemma 2.2.2. Thus we use ū− w̄ ∈ W 1,Ḡ
0 (B1)∩L∞(B1) as a test function

in (3.27) to see

ˆ
B1

Ḡm(|Dū−Dw̄|) dx ≤ c

ˆ
B1

(ū− w̄)dµ ≤ c‖ū− w̄‖L∞(B1)

≤ c‖Dū−Dw̄‖LḠm (B1).

Following the calculations [10, Step 2.2 in Lemma 5.1], we obtain

ˆ
B1

ḡm,χ(|Dū−Dw̄|) dx ≤ c, (3.31)

where c depends only on data and χ. By (3.30) and (3.31), we conclude that

1

gm,χ(M)

ˆ
BR

gm,χ(|Du−Dw|) dx =

ˆ
B1

ḡm,χ(|Dū−Dw̄|) dx ≤ c.
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Applying Lemma 3.2.1 with χ = −1 and (3.25), we see

ˆ
BR

|Du−Dw| dx ≤ c1g
−1
0

(
|µ|(BR)

Rn−1

)
, (3.32)

where c1 = c1(data).
To proceed further, we define a function hm,χ : R+ → R+ by

hm,χ(t) :=

[
gm(t)

t

]1+χ

=
gm,χ(t)

t
.

Corollary 3.2.2. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) and w ∈
W 1,G(BR) be the weak solution to (3.14). Then for every χ satisfying (3.26),
there exists a constant c depending on data and χ such that

ˆ
BR

hm,χ(|Du−Dw|) dx ≤ chm,χ(M).

Proof. We refer to the proof of [10, Corollary 5.2].

In the proof of next lemma, we follows similar procedures in that of
Lemma 3.2.1.

Lemma 3.2.3. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) and w ∈
W 1,G(BR) be the weak solution to (3.14). Then for every ξ ∈

[
1,min

{
p+1
p
, n
n−1

})
,

there exists a constant c depending on data and ξ such that

ˆ
BR

gm(|Du−Dw|)ξ dx ≤ c

[
|µ|(BR)

Rn−1

]ξ
.

Proof. As in the proof of Lemma 3.2.1, we assume M > 0 and we use the
same scaling in there. We begin with the case p ≤ n. We define

f(t) :=


0 t = 0,

gm(1)ξt for t ∈ (0, 1),

gm(t)ξ for t ∈ [1,∞)

and F =

(ˆ
B1

f(|Dū−Dw̄|) dx
) 1

n

.
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We test (3.27) with

ϕ = Tk

(
ū− w̄
cnF

)
∈ W 1,G

0 (B1) ∩ L∞(B1)

to see
ˆ
Ck

Ḡm(|Dū−Dw̄|) dx . kF , where Ck :=

{
x ∈ B1 :

|ū− w̄|
cnF

≤ k

}
.

Here, we have used (2.18) and (2.19). Similarly, take

ϕ = Tk

(
ū− w̄
cnF

)
∈ W 1,G

0 (B1) ∩ L∞(B1)

as a test function to (3.27) to see

ˆ
Dk

Ḡm(|Dū−Dw̄|) dx . F , where Dk :=

{
x ∈ B1 : k <

|ū− w̄|
cnF

≤ k + 1

}
.

Then by the same reasoning as in the proof of [10, Lemma 5.3], we discover

ˆ
B1

ḡm(|Dū−Dw̄|)ξ dx ≤ c(data, ξ).

On the other hand for case p > n, we make the similar estimate as in
Lemma 3.2.1 to discoverˆ

B1

ḡm(|Dū−Dw̄|)ξ dx ≤ c(data, ξ).

Consequently

1

gm(M)ξ

ˆ
BR

gm(|Du−Dw|)ξdx =

ˆ
B1

ḡm(|Dū−Dw̄|)ξdx ≤ c.

We remark that Lemma 3.2.1, Lemma 3.2.3 and Corollary 3.2.2 are the
natural extensions of [77, Lemma 2] to the setting of Musielak-Orlicz spaces.
Next lemma shows a kind of weighted comparison estimate.
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Lemma 3.2.4. Let u ∈ W 1,G(Ω) be a weak solution to (3.1) and w ∈
W 1,G(BR) be the weak solution to (3.14). Then for any α > 0 and ξ > 1,
there exits a constant c depending only on data such that

ˆ
BR

|V (x,Du)− V (x,Dw)|2

(α + |u− w|)ξ
dx ≤ c

α1−ξ

ξ − 1
|µ|(BR).

Proof. Testing η± := α1−ξ − (α + (u − w)±)1−ξ ∈ W 1,G(BR) ∩ L∞(BR) to
(3.1) and (3.14), we discover

|I±| :=
∣∣∣∣(ξ − 1)

ˆ
BR

γ(x)
〈A(x,Du)− A(x,Dw), D(u− w)±〉

(α + (u− w)±)ξ
dx

∣∣∣∣
=

∣∣∣∣ˆ
BR

γ(x)η±dµ

∣∣∣∣ ≤ Lα1−ξ|µ|(BR).

Then (2.18) imply the following inequality:

(ξ − 1)

ˆ
BR

|V (x,Du)− V (x,Dw)|2

(α + |u− w|)ξ
dx ≤ c(|I+|+ |I−|) ≤ cα1−ξ|µ|(BR).

3.2.2 Basic comparison estimates for (GPX)

Through this subsection, we assume that A(·) satisfies (GPX).
In this subsection, we derive comparison estimates for (GPX), which are

analogous results to lemmas in Subsection 3.2.1. However, instead of using
scaling and normalization, we use Lemma 3.2.5 to prove Lemma 3.2.6.

For simplicity, we denote

p0 = p(x0), p1 := inf
BR(x0)

p(x) and p2 := sup
BR(x0)

p(x). (3.33)

As usual, all given balls are assumed to be centered at x0, unless otherwise
stated.

Lemma 3.2.5. Given a weak solution u ∈ W 1,p(·)(Ω) to (3.1), w ∈ W 1,p(·)(BR)
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be the weak solution to (3.14). Then

ˆ
BR

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx ≤ c

h1−ξ

ξ − 1
|µ|(BR) (3.34)

holds whenever h > 0 and ξ > 1, where c = c(data) ≥ 1.

Proof. Test η± := h1−ξ − (h+ (u−w)±)1−ξ ∈ W 1,p(·)
0 (BR)∩L∞(BR) to (3.1)

under (GPX). Then we have

|I±| :=(ξ − 1)

∣∣∣∣ˆ
BR

γ(x)
〈a(x,Du)− a(x,Dw), D(u− w)±〉

(h+ (u− w)±)ξ
dx

∣∣∣∣
=

∣∣∣∣ˆ
BR

γ(x)η±dµ

∣∣∣∣ ≤ Lh1−ξ|µ|(BR).

Now (2.18) and (2.18) imply the following inequality:

(ξ − 1)

ˆ
BR

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx ≤ c(|I+|+ |I−|) ≤ cLh1−ξ|µ|(BR).

From now on, we assume

0 < R ≤ R1, (3.35)

where R1 is the constant given in (3.10).

Lemma 3.2.6. Let u ∈ W 1,p(·)(Ω) be a weak solution to (3.1) under (GPX)
and w ∈ W 1,p(·)(BR) be the weak solution to (3.14). Then we have

ˆ
BR

|Du−Dw|q dx ≤ c

([
|µ|(BR)

Rn−1

]
+Rp0−1

) q
p0−1

, (3.36)

whenever

1 ≤ q ≤ q0 for q0 := min

{
p1 −

1

4
, p1 − 1 +

3(p1 − 1)

4(n− 1)

}
. (3.37)

Proof. Once we obtain (3.36) with q = q0, it then follows from Hölder’s
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inequality that

ˆ
BR

|Du−Dw|q dx ≤
(ˆ

BR

|Du−Dw|q0dx
) q

q0

≤ c

([
|µ|(BR)

Rn−1

]
+Rp0−1

) q
p0−1

for every 1 ≤ q ≤ q0. Therefore we shall prove for q = q0. We first consider
the case p1 ≤ n. To apply Sobolev embedding theorem and Lemma 3.2.5,
we choose ξ = n(p1−q0)

n−q0 ≤ n < ∞, satisfying ξq0
(p1−q0)

= q∗0 with the Sobolev

conjugate q∗0 of q0, and ξ ≥ 4n2−7n
4(n−1)2−3

> 1. We set

h = R
α+q0
q0 +R

(ˆ
BR

|Du−Dw|q0 dx
) 1

q0

> 0 with α =
q0(p0 − 1)

p1 − 1
. (3.38)

Applying (2.19), (2.14) and Hölder’s inequality, we obtain

ˆ
BR

|Du−Dw|q0 dx

=

ˆ
BR

|Du−Dw|q0

(h+ |u− w|)
ξq0
p(x)

(h+ |u− w|)
ξq0
p(x) dx

≤ c

ˆ
BR

|V (x,Du)− V (x,Dw)|
2q0
p(x)

(h+ |u− w|)
ξq0
p(x)

(h+ |u− w|)
ξq0
p(x) dx

≤ c

(ˆ
BR

|V (x,Du)− V (x,Dw)|
2p1
p(x)

(h+ |u− w|)
ξp1
p(x)

dx

) q0
p1

·
(ˆ

BR

(h+ |u− w|)
ξq0p1

(p1−q0)p(x) dx

) p1−q0
p1

≤ c

(ˆ
BR

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx+R

α(p1−ξ)
q0

) q0
p1

·
(ˆ

BR

(
|u− w|

ξq0
p1−q0 + h

ξq0
p1−q0 +R

ξ(α+q0)
p1−q0

)
dx

) p1−q0
p1

. (3.39)
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With the help of Sobolev embedding and (3.38), we have

ˆ
BR

(
|u− w|

ξq0
p1−q0 + h

ξq0
p1−q0 +R

ξ(α+q0)
p1−q0

)
dx

≤ c

(
R

ξq0
p1

(ˆ
BR

|Du−Dw|q0 dx
) ξ

p1

+ h
ξq0
p1 +R

ξ(α+q0)
p1

) p1
p1−q0

≤ ch
ξq0

p1−q0 , (3.40)

where c depends only on n, p0, p1 and q0. By enlarging the constant c, the
dependence on p0, p1 and q0 can be replaced by γ2 and n, since q0 ≤ p1− 1

4
≤

n− 1
4
. Combining (3.39) with (3.40) and applying (3.34), then we find that

ˆ
BR

|Du−Dw|q0 dx ≤ ch
ξq0
p1

(ˆ
BR

|V (x,Du)− V (x,Dw)|2

(h+ |u− w|)ξ
dx+R

α(p1−ξ)
q0

) q0
p1

≤ ch
ξq0
p1

(
h

(1−ξ)q0
p1

[
|µ|(BR)|
Rn

] q0
p1

+R
α(p1−ξ)

p1

)

≤ c

(
h

R

) q0
p1

[
|µ(BR)|
Rn−1

] q0
p1

+ c

(
h

R

) ξq0
p1

R
α(p1−ξ)

p1

≤ 1

2q0

(
h

R

)q0
+ c

([
|µ|(BR)

Rn−1

] q0
p1−1

+Rα

)

≤ 1

2

ˆ
BR

|Du−Dw|q0 dx+ c

([
|µ|(BR)

Rn−1

]
+Rp0−1

) q0
p1−1

.

On the other hand, we observe that for some constant c depending only on
γ2, n and L, it holds that[

|µ|(BR)

Rn−1

] q0
p1−1

=

[
|µ|(BR)

Rn−1

] q0
p0−1

+
q0(p0−p1)

(p1−1)(p0−1)

≤ c

[
|µ|(BR)

Rn−1

] q0
p0−1

,

as 0 < R ≤ min{R1, (M + |µ|(Ω) + 1)−1}. This completes the proof for the
case p1 < n.

Next, we consider the case n < p1, which implies q0 = p1 − 1/4. Let

39



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

ξ = n
(

4p1−2
4p1−1

)
, then we have

1 <
6n

7
≤ ξ ≤ min

{
n

(
4γ2 − 2

4γ2 − 1

)
, q0

}
and

ξq0

p1 − q0

= ξ∗.

Then (3.40) holds true and the proof of Lemma 3.2.6 is finished.

According to (3.10) and the choice of q0, we have

q0 = min

{
p1 −

1

2
, p1 − 1 +

3(p1 − 1)

4(n− 1)

}
≥ p0 − 1.

Hence, we can always take q = p0 − 1 to the Lemma 3.2.6.

3.2.3 Higher integrability and further comparison es-
timates for (GPT)

Through this subsection, we assume that A(·) satisfies (GPT).

Lemma 3.2.7. Let w ∈ W 1,G(BR) be the weak solution to (3.14), 0 < ρ ≤ R,
θ ∈ (0, 1) and q ∈ (0, 1]. Then there exists a constant σ = σ(data) such that(ˆ

Bθρ(z)

G(x, |Dw|)1+σ dx

) 1
1+σ

≤ c

(ˆ
Bρ(z)

G(x, |Dw|)q dx

) 1
q

(3.41)

for some constant c depending only on data, θ and q, whenever Bρ(z) ⊂ BR.

Proof. One can find a higher integrability results for (3.14) in [12, Theorem
4.2], where the constants in the estimates depend on Lp norm of Dw. To
consider measure data problems, we need to eliminate such a dependence on
the constants, otherwise no limiting process for SOLA can be made here. We
start with employing [12, Lemma 4.1], a Caccioppoli type estimates:

ˆ
Br/2(y)

G(x, |Dw|) dx .
ˆ
Br(y)

G

(
x,
|w − (w)Br(y)|

r

)
dx, (3.42)

where c = c(data).
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Applying (3.24) and the Poincaré inequality for Orlicz spaces in [44, The-
orem 7 and Remark 8], there exists a constant d1 = d1(p) such that

ˆ
Br(y)

G

(
x,
|w − (w)Br(y)|

r

)
dx

.

(ˆ
Br(y)

Gm (|Dw|)
1
d1 dx

)d1

+

ˆ
Br(y)

∣∣∣∣w − (w)Br(y)

r

∣∣∣∣p+ωa(·)(r)

dx. (3.43)

We apply (3.32) and (3.11) to see(ˆ
Br(y)

|Dw| dx
)ωa(·)(r)

.

(ˆ
BR

|Dw| dx
)ωa(·)(r)

.

(ˆ
BR

|Dw| dx
)ωa(·)(R)

+ 1

. g−1
0

(
|µ|(BR)

Rn−1

)ωa(·)(R)

+

(ˆ
BR

|Du| dx
)ωa(·)(R)

+ 1 ≤ c. (3.44)

From the assumption (3.10), there exist a constant d2 > 1 depending only
on n, p such that

np

n− (n− 1)ωa(·)(r)
≤ np

d2n− p
, (3.45)

when p < n. On the other hand, if p ≥ n, then we take d2 = 2. By the
Sobolev-Poincaré inequality, we have

ˆ
Br(y)

∣∣∣∣w − (w)Br(y)

r

∣∣∣∣p+ωa(·)(r)

dx

≤

(ˆ
Br(y)

∣∣∣∣w − (w)Br(y)

r

∣∣∣∣ n
n−1

dx

) (n−1)ωa(·)(r)

n

·

(ˆ
Br(y)

∣∣∣∣w − (w)Br(y)

r

∣∣∣∣ np
n−(n−1)ωa(·)(r)

dx

)n−(n−1)ωa(·)(r)

n

≤
(ˆ

Br(y)

|Dw| dx
)ωa(·)(r)

(ˆ
Br(y)

|Dw|
p
d2 dx

)d2
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.

(ˆ
Br(y)

G(x, |Dw|)
1
d2 dx

)d2

. (3.46)

Combining (3.42), (3.43) with (3.46), we have

ˆ
Br/2(y)

G(x,Dw) dx .

(ˆ
Br(y)

G(x, |Dw|)
1
ddx

)d
,

where d = min{d1, d2}. Applying Gehring’s Lemma, [63, Section 6.4], we find
the conclusion of the lemma.

Note that the constant c in Lemma 3.2.7 goes to infinity, when θ → 1.
Theorem 3.2.7 implies that v ∈ W 1,p(1+σ)(B3R/4) ⊂ W 1,G(x1)(B3R/4) for any

x1 ∈ BR. Hence, we see that v − w ∈ W
1,G(x1)
0 (BR̃/2(x1)), where w is the

solution to (3.15). Thanks to the higher integrability result of v, one can
obtain a comparison estimate between (3.14) and (3.15).

Lemma 3.2.8. Let w ∈ W 1,G(BR) be the weak solution to (3.14) and v ∈
W 1,G(x1)(BR̃/2(x1)) be the weak solution to (3.15). Then we have

ˆ
BR̃/2(x1)

|V (x1, Dw)− V (x1, Dv)|2 dx ≤ cω(R̃)2

ˆ
B5R̃/8(x1)

G(x, |Dw|) dx.

Proof. In this proof, we denote B = BR̃(x1) for simplicity. We test v − w to
both (3.14) and (3.15), to discover that

ˆ
1
2
B

g(x1, |Dw|+ |Dv|)
|Dw|+ |Dv|

|Dw −Dv|2 dx

.
ˆ

1
2
B

γ(x1)〈A(x1, Dw)− A(x1, Dv), Dw −Dv〉 dx

=

ˆ
1
2
B

(γ(x1)− γ(x))〈A(x1, Dw), Dw −Dv〉 dx

+

ˆ
1
2
B

γ(x)〈A(x1, Dw)− A(x,Dw), Dw −Dv〉 dx =: I1 + I2. (3.47)
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Here, we have used (2.18). Using (GPT) and (3.17), we estimate I1 as

I1 ≤ c

ˆ
1
2
B

ωγ(·)(R̃)g(x1, |Dw|)|Dw −Dv| dx

= c

ˆ
1
2
B

ωγ(·)(R̃)G(x1, |Dw|)
1
2

(
g(x1, |Dw|)
|Dw|

) 1
2

|Dw −Dv| dx

≤ ε

ˆ
1
2
B

g(x1, |Dw|+ |Dv|)
|Dw|+ |Dv|

|Dw −Dv|2 dx

+ c(ε)ωγ(·)(R̃)2

ˆ
1
2
B

G(x1, |Dw|) dx (3.48)

for some ε > 0. By a direct calculation, we see

ˆ
1
2
B

G(x1, |Dw|) dx ≤
ˆ

1
2
B

G(x, |Dw|) dx

+ ωa(·)(R̃)

ˆ
1
2
B

|Dw|p log(e+ |Dw|) dx (3.49)

Similarly, we estimate I2 as

I2 ≤ cωa(·)(R̃)

ˆ
1
2
B

log(e+ |Dw|)|Dw|p−1|Dw −Dv| dx

≤ ε

ˆ
1
2
B

|Dw|p−2|Dw −Dv|2 dx

+ c(ε)ωa(·)(R̃)2

ˆ
1
2
B

|Dw|p log2(e+ |Dw|) dx

≤ ε

ˆ
1
2
B

g(x1, |Dw|+ |Dv|)
|Dw|+ |Dv|

|Dw −Dv|2 dx

+ c(ε)ωa(·)(R̃)2

ˆ
1
2
B

|Dw|p log2(e+ |Dw|) dx. (3.50)

Combining (3.47)-(3.50) and taking ε small enough, we see

ˆ
1
2
B

g(x1, |Dw|+ |Dv|)
|Dw|+ |Dv|

|Dw −Dv|2 dx
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. ωγ(·)(R̃)2

ˆ
1
2
B

G(x, |Dw|) dx

+ ωa(·)(R̃)2

ˆ
1
2
B

|Dw|p log2(e+ |Dw|) dx︸ ︷︷ ︸
I3

+ ωγ(·)(R̃)2ωa(·)(R̃)

ˆ
1
2
B

|Dw|p log(e+ |Dw|) dx︸ ︷︷ ︸
I4

. (3.51)

By (2.16), we see

I3 .
ˆ

1
2
B

|Dw|p log2 (e+ |Dw|p) dx

.
ˆ

1
2
B

|Dw|p log2

(
e+

|Dw|p

‖Dw‖p
Lp( 1

2
B)

)
dx

+ log2
(
e+ ‖Dw‖p

Lp( 1
2
B)

) ˆ
1
2
B

|Dw|pdx =: I3,1 + I3,2.

(3.52)

Applying (2.15) and Lemma 3.2.7, we discover

I3,1 .

(ˆ
1
2
B

|Dw|p(1+σ)dx

) 1
1+σ

.

(ˆ
1
2
B

G(x, |Dw|)1+σdx

) 1
1+σ

.
ˆ

5
8
B

G(x, |Dw|) dx,

(3.53)

where σ is the constant defined in Lemma 3.2.7. We apply Lemma 3.2.7,
(3.32) and (3.11) to discover

ˆ
1
2
B

|Dw|pdx ≤
ˆ

1
2
B

G(x, |Dw|) dx ≤
(ˆ

B

G(x, |Dw|)
1
2pdx

)2p

.

(ˆ
B

|Dw|dx
)2p

.

(ˆ
B

|Dw −Du| dx+

ˆ
B

|Du| dx
)2p

.
1

R̃2p(n+1)
.
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Now we estimate I3,2 as follows:

I3,2 . log2

(
1

R̃

) ˆ
1
2
B

|Dw|pdx . log2

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx. (3.54)

Combining (3.52)-(3.54), we have

I3 .
ˆ

5
8
B

G(x, |Dw|) dx+ log2

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx (3.55)

Similarly, one can obtain

I4 .
ˆ

5
8
B

G(x, |Dw|) dx+ log

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx (3.56)

Combining (3.51), (3.55) and (3.56), it follows from (2.19) that

ˆ
1
2
B

g(x1, |Dw|+ |Dv|)
|Dw|+ |Dv|

|Dw −Dv|2dx

. ωγ(·)(R̃)2

ˆ
1
2
B

G(x, |Dw|) dx+ ωa(·)(R̃)2 log2

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx

+ ωγ(·)(R̃)2ωa(·)(R̃) log

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx

. ωγ(·)(R̃)2

ˆ
5
8
B

G(x, |Dw|) dx+ ωa(·)(R̃)2 log2

(
1

R̃

) ˆ
5
8
B

G(x, |Dw|) dx,

where we have used (3.10) for the last estimate above.

Remark 3.2.9. To obtain Riesz potential estimates for u, we need to obtain
L1 comparison estimates from Lemma 3.2.8. In this remark, we denote G−1

x1

as the inverse function of G(x1, ·). In the light of Jensen’s inequality, (2.19)
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and Lemma 3.2.8, we discover that for B = BR̃(x1)

ˆ
1
2
B

|Dw −Dv| dx . G−1
x1

(ˆ
1
2
B

G(x1, |Dw −Dv|) dx

)

. G−1
x1

(
ω(R̃)2

ˆ
5
8
B

G(x, |Dw|) dx

)

. G−1
x1

ω(R̃)2

(ˆ
3
4
B

G(x, |Dw|)
1
8pdx

)8p


. G−1
x1

ω(R̃)2

(ˆ
3
4
B

Gm(|Dw|)
1
8p + |Dw|

p+ω(R̃)
8p dx

)8p
 .

We have used Lemma 3.2.7 in the third estimate. It then follows from (3.23)
and (3.44) that(ˆ

3
4
B

Gm(|Dw|)
1
8p + |Dw|

p+ω(R̃)
8p dx

)8p

. Gm

(ˆ
3
4
B

|Dw| dx

)
+

(ˆ
3
4
B

|Dw| dx

)p+ω(R̃)

. G

(
x1,

ˆ
3
4
B

|Dw| dx

)
.

Therefore, there exists a constant c2 = c2(data) such that

ˆ
1
2
B

|Dw −Dv| dx ≤ cG−1
x1

(
ω(R̃)2G

(
x1,

ˆ
3
4
B

|Dw| dx

))
≤ c2ω(R̃)

2
p+1

ˆ
B

|Dw| dx. (3.57)

Here, we have used (2.5) and (3.21).

3.2.4 Higher integrability and further comparison es-
timates for (GPX)

Through this subsection, we assume that A(·) satisfies (GPX).
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Higher integrability result for (3.14) under (GPX) is already obtained
in [21, Lemma 3.2]. By minor modifications with the choice of R in (3.10),
one can see that the constant c in the following lemma does not depend on
M and |µ|(Ω).

Lemma 3.2.10. Let u ∈ W 1,p(·)(Ω) be a weak solution to (3.1) under (GPX)
and w ∈ W 1,p(·)(BR) be the weak solution to (3.14). Then for any θ ∈ (0, 1),
there exist constants σ0 = σ0(data) ∈ (0, 1] and c = c(data, θ) ≥ 1 such that
|Dw|p(·) ∈ L1+σ0

loc (BR) with the estimate:[ˆ
Bθρ(y)

(|Dw|+ s)(1+σ)p(x) dx

] 1
1+σ

≤ c

ˆ
Bρ(y)

(|Dw|+ s+ ρ)p(x) dx,

whenever Bρ(y) ⊂ BR.

Remark 3.2.11. With the help of Lemma 3.2.6 with q = 1, (2.14) and [63,
Remark 6.12], for 0 < θ1 < θ2 ≤ 1, we can deduce(ˆ

Bθ1R(y)

(|Dw|+ s)p(x) dx

)ω(2R)

≤ c

(ˆ
BR(y)

(|Dw|+ s+R)
p(x)
p2 dx

)p2ω(2R)

≤ c

(ˆ
BR(y)

(|Dw|+ s+R) dx

)p2ω(2R)

≤ c

([
|µ|(BR)

Rn−1

] 1
p0−1

+
M

Rn
+ s+R

)p2ω(2R)

≤ c, (3.58)

and ˆ
Bθ1R(y)

(|Dw|+ s)p(x) dx

≤ c

[ˆ
Bθ2R

(|Dw|+ s+R)
p(x)
p2 dx

]p1

·

[ˆ
Bθ1R(y)

(|Dw|+ s+R)p(x) dx

] p2−p1
p2

47



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

≤ c

[ˆ
Bθ2R(y)

(|Dw|+ s+R) dx

]p1

, (3.59)

where c = c(data, θ1, θ2) is increasing to infinity as θ2
θ1
→ 0.

Remark 3.2.12. In what follows, we assume that the number R1 given in
(3.12) further satisfies

ωp(·)(ρ) log

(
1

ρ

)
≤ σ0

100nγ2

. (3.60)

It then follows from Lemma 3.2.10 that

p2 ≤ p1 + ωp(·)(2R) ≤ (1 + σ0)p(x) for x ∈ BR,

and so

w ∈ W 1,(1+σ0)p(·)(BR̃/2(x1)) ⊂ W 1,p2(BR̃/2(x1)) ⊂ W 1,p(x1)(BR̃/2(x1)),

which ensures the existence of the weak solution v ∈ W 1,p(x1)(BR̃/2(x1)) to
the homogeneous problem (3.15) with p(x1) growth.

Lemma 3.2.13. Let w ∈ W 1,p(·)(BR(x0)) be the weak solution to (3.14) and
v ∈ W 1,p(x1)(BR̃/2(x1)) be the weak solution to (3.15). Then we have

ˆ
BR̃/2(x1)

|V (x1, Dw)− V (x1, Dv)|2 dx

≤ cω(R̃)2

[ˆ
B5R̃/8(x1)

(|Dw|+ s)p(x) dx+ R̃p(x1)

]
. (3.61)

and ˆ
BR̃/2(x1)

|Dw −Dv| dx ≤ cω(R̃)
2
p0

ˆ
B3R̃/4(x1)

(|Dw|+ s+ R̃) dx. (3.62)

Proof. From the monotonicity property of a(·), (2.18), we have

ˆ
BR̃/2(x1)

(
|Dw|2 + |Dv|2 + s2

) p(x1)−2
2 |Dw −Dv|2 dx
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≤ c

ˆ
BR̃/2(x1)

γ(x1)〈a(x1, Dw)− a(x1, Dv), Dw −Dv〉 dx

= c

ˆ
BR̃/2(x1)

〈γ(x1)a(x1, Dw)− γ(x1)a(x,Dw), Dw −Dv〉 dx

+ c

ˆ
BR̃/2(x1)

(γ(x1)− γ(x))〈a(x,Dw), Dw −Dv〉 dx

=: I1 + I2.

For the estimate of I1, we refer to [21, Lemma 3.4]:

|I1| ≤ c

[
ωp(·)

(
R̃
)

log

(
1

R̃

)]2
[ˆ

B5R̃/8(x1)

(|Dw|+ s)p(x) dx+ R̃p0

]
.

On the other hand, by (GPX) and Hölder’s inequality, we deduce

|I2| ≤ cωγ(·)(R̃)

ˆ
BR̃/2(x1)

(|Dw|2 + s2)
p(x)

4

· (|Dw|2 + |Dv|2 + s2)
p(x)−2

4 |Dw −Dv| dx

≤ ε

ˆ
BR̃/2(x1)

(|Dw|2 + |Dv|2 + s)
p(x)−2

2 |Dw −Dv|2 dx

+ c(ε)
[
ωγ(·)

(
R̃
)]2
ˆ
BR̃/2(x1)

(|Dw|+ s)p(x) dx. (3.63)

Absorbing the first term in right-hand side of (3.63), we obtain (3.61). In
view of (3.59) with θ1 = 5

8
, θ2 = 3

4
,(3.61) and (2.14), we estimate as follows

ˆ
BR̃/2(x1)

|Dw −Dv| dx

≤

(ˆ
BR̃/2(x1)

|Dw −Dv|p(x1) dx

) 1
p(x1)

≤ c

(ˆ
BR̃/2(x1)

(
|Dw|2 + |Dv|2 + s2

) p(x1)−2
2 |Dw −Dv|2 dx

) 1
p(x1)
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≤ c

(
ω(R̃)2

ˆ
B5R̃/8(x1)

(|Dw|+ s)p(x) dx+ R̃p0

) 1
p(x1)

≤ cω(R̃)
2

p(x1)

ˆ
B3R̃/4(x1)

(|Dw|+ s+ R̃) dx.

This completes the proof.

3.2.5 Sequence of comparison estimates for (GPT)

Through this subsection, we assume that A(·) satisfies (GPT) and set u as a
weak solution to (3.1).

For some δ ∈
(
0, 1

16

)
, we define a sequence of shrinking balls

Bi = Bri(x0) and ri = δiR (i = 0, 1, · · · ). (3.64)

Let vi ∈ W 1,G(Bi) be the weak solution to (3.14) with BR replaced by Bi.
Moreover, let wi ∈ W 1,G(x1)(1

2
Bi) be the weak solution to the following equa-

tion: {
−div (A(x1, Dvi)) = 0 in 1

2
Bri(x1),

wi = vi on ∂ 1
2
Bri(x1).

(3.65)

For the functions defined in (3.16), we denote gm,i = gm,ri , gM,i = gM,ri ,
gm,i,χ = gm,ri,χ and so on. Recall (3.25). For any χ ∈ (−1,∞), we define
functions h0, hm,i, hM,i, h0,χ, hm,i,χ, hM,i,χ, g0,χ : R+ → R+ by

h0(t) =
g0(t)

t
, hm,i(t) =

gm,i(t)

t
, hM,i(t) =

gM,i(t)

t
, hm,i,χ(t) =

gm,i,χ(t)

t
,

hM,i,χ(t) =
gM,i,χ(t)

t
and g0,χ(t) =

(
g0(t)

t

)1+χ

t.

In addition, we write Mi =Mri,x0 for each i ∈ N.

Lemma 3.2.14. Assume

Mi−1 ≤ λ and
λ

H
≤ |Dwi−1| ≤ Hλ in Bi (3.66)

for a constant H ≥ 1. Then there exists a constant c3 = c3(data, δ,H) such
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that ˆ
Bi

|Du−Dwi|dx ≤ c3
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
.

Proof. We set

η :=
1

4(p− 1)(n+ 1)
and ξ := 1 + 2η.

By the assumption (3.66),

ˆ
Bi

|Du−Dwi|dx .H

ˆ
Bi

hM,i,η(|Dwi−1|)
hM,i,η(λ)

|Du−Dwi| dx

.
ˆ
Bi

hM,i,η(|Dwi −Dwi−1|)
hM,i,η(λ)

|Du−Dwi| dx

+

ˆ
Bi

hM,i,η(|Dwi|)
hM,i,η(λ)

|Du−Dwi|dx =: A1 + A2. (3.67)

Since gM,i,η is a Young function, we apply Young’s inequality and (2.6) to see
that

hM,i,η(λ)A1

.
ˆ
Bi

g̃M,i,η

(
gM,i,η(|Dwi −Dwi−1|)
|Dwi −Dwi−1|

)
dx+

ˆ
Bi

gM,i,η(|Du−Dwi|) dx

.
ˆ
Bi

gM,i,η(|Dwi −Dwi−1|) dx+

ˆ
Bi

gM,i,η(|Du−Dwi|) dx

.
ˆ
Bi

gM,i,η(|Du−Dwi−1|) dx+

ˆ
Bi

gM,i,η(|Du−Dwi|) dx. (3.68)

Note that (3.10) implies
(p−2+ωa(·)(ri−1))(1+η)+1

p−1
≤ min

{
p+1
p
, n
n−1

}
. By (3.24),

Lemma 3.2.1, Lemma 3.2.3 and (3.11), we discover

ˆ
Bi

gM,i,η(|Du−Dwi−1|) dx

.δ

ˆ
Bi−1

gm,i−1,η(|Du−Dwi−1|) dx

+

ˆ
Bi−1

|Du−Dwi−1|(p−2+ωa(·)(ri−1))(1+η)+1 dx
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. gm,i−1,η(Mi−1) +

[
|µ|(Bi−1)

rn−1
i−1

] (p−2+ωa(·)(ri−1))(1+η)+1

p−1

. g0,η(Mi−1) +

[
|µ|(Bi−1)

rn−1
i−1

] (p−2)(1+η)+1
p−1

= g0,η(Mi−1) + g0(Mi−1)1+ p−2
p−1

η. (3.69)

In the same manner, we find

ˆ
Bi

gM,i,η(|Du−Dwi|) dx . g0,η(Mi) + g0(Mi)
1+ p−2

p−1
η

.δ g0,η(Mi−1) + g0(Mi−1)1+ p−2
p−1

η. (3.70)

Combining (3.68), (3.69) and (3.70), we apply (3.66) to discover that

A1 .δ
1

h0,η(λ)

(
g0,η(Mi−1) + g0(Mi−1)1+ p−2

p−1
η
)

=
λg0,η(Mi−1)

g0,η(λ)
+

λ1+η

g0(λ)1+η
g0(Mi−1)1+ p−2

p−1
η .

λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
. (3.71)

In the last inequality, we have used

λη

g0(λ)η
g0(Mi−1)

p−2
p−1

η =
λη

g0(λ)
η
p−1

(
g0(Mi−1)

g0(λ)

) p−2
p−1

η

≤ 1.

Applying (3.24), we have

hM,i,η(λ)A2 .
ˆ
Bi

hm,i,η(|Dwi|)|Du−Dwi| dx

+

ˆ
Bi

|Dwi|(p−2+ωa(·)(ri))(1+η)|Du−Dwi| dx

=: B1 +B2. (3.72)

For any α > 0 to be chosen, Lemma 3.2.4 and (2.18) yield

B1 .
ˆ
Bi

[
h(x, |Dwi|+ |Du|)

(α + |u− vi|)ξ
|Du−Dwi|2

] 1
2
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· [hm,i(|Dwi|)(α + |u− vi|)]
ξ
2 dx

.

(ˆ
Bi

|V (x,Du)− V (x,Dwi)|2

(α + |u− vi|)ξ
dx

) 1
2

·
(ˆ

Bi

[hm,i(|Dwi|)(α + |u− vi|)]ξ dx
) 1

2

.

([
|µ|(Bi)

rni

]
α1−ξ

) 1
2
(ˆ

Bi

[hm,i(|Dwi|)(α + |u− vi|)]ξ dx
) 1

2

. (3.73)

By a similar calculation, we have

B2 .
ˆ
Bi

[
h(x, |Dwi|+ |Du|)

(α + |u− vi|)ξ
|Du−Dwi|2

] 1
2

·
[
|Dwi|(p−2)ξ+ω̃(α + |u− vi|)ξ

] 1
2 dx

.

([
|µ|(Bi)

rni

]
α1−ξ

) 1
2
(ˆ

Bi

|Dwi|ω̃
[
|Dwi|p−2(α + |u− vi|)

]ξ
dx

) 1
2

.

([
|µ|(Bi)

rni

]
α1−ξ

) 1
2
(ˆ

Bi

|Dwi| dx
) ω̃

2

·
(ˆ

Bi

[hm,i(|Dwi|)(α + |u− vi|)]
ξ

1−ω̃ dx

) 1−ω̃
2

, (3.74)

where ω̃ = 2ωa(·)(ri)(1 + η). Using (3.32) and (3.11), we see(ˆ
Bi

|Dwi|dx
) ω̃

2

.

(ˆ
Bi

|Dwi −Du| dx
) ω̃

2

+

(ˆ
Bi

|Du| dx
) ω̃

2

.

[
|µ|(Bi)

rn−1
i

] ω̃
2(p−1)

+

[
‖Du‖L1(Ω)

rni

]ω̃
≤ c.

(3.75)

Combining (3.72)-(3.75) gives

A2 .δ
1√
h0(λ)

([
|µ|(Bi−1)

rni−1

]
α1−ξ

) 1
2
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·

(ˆ
Bi

[
hm,i(|Dwi|)
hM,i(λ)

(α + |u− vi|)
] ξ

1−ω̃

dx

) 1−ω̃
2

.

For any constant τ ∈ (0, 1), we take

α :=

(ˆ
Bi

[
hm,i(|Dwi|)
hM,i(λ)

|u− vi|
] ξ

1−ω̃

dx

) 1−ω̃
ξ

+ τ. (3.76)

Then we find that

A2 .δ
α

1
2√

h0(λ)

[
|µ|(Bi−1)

rni−1

] 1
2

1 +

(ˆ
Bi

[
hm,i(|Dwi|)
hM,i(λ)

] ξ
1−ω̃

dx

) 1−ω̃
2


=

[
α

ri−1

] 1
2
[
|µ|(Bi−1)

h0(λ)rn−1
i−1

] 1
2

·

[
1 +

1

hM,i, ξ
2
−1(λ)

(ˆ
Bi

hm,i, ξ
1−ω̃−1(|Dwi|) dx

) 1−ω̃
2

]
. (3.77)

We assert that the last term above can be bounded by some constant c
depending only on data, H and δ. To prove this, we apply (3.66) to have(ˆ

Bi

hm,i, ξ
1−ω̃−1(|Dwi|) dx

) 1−ω̃
2

.H

(ˆ
Bi

hm,i, ξ
1−ω̃−1(|Dwi −Dwi−1|) dx

) 1−ω̃
2

+ hm,i, ξ
2
−1(λ).

In addition, (3.24) and Corollary 3.2.2 imply(ˆ
Bi

hm,i, ξ
1−ω̃−1(|Dwi −Dwi−1|) dx

) 1−ω̃
2

.

(ˆ
Bi

hm,i, ξ
1−ω̃−1(|Dwi −Du|) dx

) 1−ω̃
2

+

(ˆ
Bi

hm,i, ξ
1−ω̃−1(|Du−Dwi−1|) dx

) 1−ω̃
2
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.δ hm,i, ξ
2
−1(Mi) +

(ˆ
Bi−1

hm,i−1, ξ
1−ω̃−1(|Du−Dwi−1|) dx

) 1−ω̃
2

+

(ˆ
Bi−1

|Du−Dwi−1|(p−2+ωa(·)(ri−1))( ξ
1−ω̃−1)dx

) 1−ω̃
2

.δ hm,i, ξ
2
−1(Mi−1) +

(ˆ
Bi−1

|Du−Dwi−1|(p−2+ωa(·)(ri−1)) ξ
1−ω̃ dx

) 1−ω̃
2

It then follows from Hölder’s inequality, Corollary 3.2.2, (3.32) and (3.11)
that (ˆ

Bi−1

|Du−Dwi−1|(p−2+ωa(·)(ri−1)) ξ
1−ω̃ dx

) 1−ω̃
2

≤
(ˆ

Bi−1

hm,i−1, ξ
1−ω̃−ωa(·)(ri−1)ξ

−1(|Du−Dwi−1|) dx
) 1−ω̃−ωa(·)(ri−1)ξ

2

·
(ˆ

Bi−1

|Du−Dwi−1| dx
)ωa(·)(ri−1)ξ

2

. hm,i−1, ξ
2
−1(Mi−1) . hm,i, ξ

2
−1(Mi−1),

and this is the assertion. Similarly, one can show

ˆ
Bi

gm,i(|Dwi−1 −Dwi|)
ξ

1−ω̃ dx .δ,H

[
|µ|(Bi−1)

rn−1
i−1

] ξ
1−ω̃

. (3.78)

Thus, for any ε ∈ (0, 1), we further estimate (3.77) as

A2 .δ,H

[
α

ri−1

] 1
2
[
|µ|(Bi−1)

h0(λ)rni−1

] 1
2

≤ c(ε)λ

g0(λ)

[
|µ|(Bi−1)

rni−1

]
+

εα

ri−1

. (3.79)

Combining (3.67), (3.71), (3.79) gives

ˆ
Bi

|Du−Dwi|dx ≤
c(δ,H, ε)λ

g0(λ)

[
|µ|(Bi−1)

rni−1

]
+

εα

ri−1

. (3.80)
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From (3.76), we find

h0(λ)α .

(ˆ
Bi

[hm,i(|Dwi−1 −Dwi|)|u− vi|]
ξ

1−ω̃ dx

) 1−ω̃
ξ

+

(ˆ
Bi

[hm,i(|Dwi−1|)|u− vi|]
ξ

1−ω̃ dx

) 1−ω̃
ξ

+ h0(λ)τ

=: I1 + I2 + h0(λ)τ. (3.81)

We note ξ
1−ω̃ ≤

n
n−1

from the assumption (3.10). We estimate I1 as

I1

ri
=

(ˆ
Bi

[
gm,i(|Dwi−1 −Dwi|)
|Dwi−1 −Dwi|

|u− vi|
ri

] ξ
1−ω̃

dx

) 1−ω̃
ξ

.

(ˆ
Bi

g̃m,i

(
gm,i(|Dwi−1 −Dwi|)
|Dwi−1 −Dwi|

) ξ
1−ω̃

dx

) 1−ω̃
ξ

+

(ˆ
Bi

gm,i

(
|u− vi|
ri

) ξ
1−ω̃

dx

) 1−ω̃
ξ

.

(ˆ
Bi

gm,i(|Dwi−1 −Dwi|)
ξ

1−ω̃ dx

) 1−ω̃
ξ

+

(ˆ
Bi

gm,i

(
|u− vi|
ri

) n
n−1

dx

)n−1
n

.δ,H

(ˆ
Bi

gm,i (|Du−Dwi−1|)
ξ

1−ω̃ dx

) 1−ω̃
ξ

+

ˆ
Bi

gm,i (|Du−Dwi|) dx

.

[
|µ|(Bi−1)

rn−1
i−1

]
. (3.82)

Here, we have used Young’s inequality, (2.6), Lemma 2.2.3 and (3.78).
Applying (3.66) and Sobolev embedding theorem, we discover

I2

rih0(λ)
.H

(ˆ
Bi

∣∣∣∣u− viri

∣∣∣∣ ξ
1−ω̃

dx

) 1−ω̃
ξ

.
ˆ
Bi

|Du−Dwi|dx. (3.83)
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Combining (3.80)-(3.83), we have

ˆ
Bi

|Du−Dwi|dx ≤
c(δ,H, ε)λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
+ cε

ˆ
Bi

|Du−Dwi|dx+
ετ

ri−1

.

We choose ε small enough and let τ → 0, to conclude that

ˆ
Bi

|Du−Dwi|dx ≤ c3
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
.

Next, we obtain a sequence of comparison estimates between (3.1) and
(3.65).

Lemma 3.2.15. Assume

Mi−1 ≤ λ, sup
3
4
Bi

|Dwi| ≤ Hλ and
λ

H
≤ |Dwi−1| ≤ Hλ in Bi (3.84)

for a constant H ≥ 1 and λ > 0. Then there exists a constant c4 = c4(data, δ,H)
such that

ˆ
1
2
Bi

|Du−Dvi| dx ≤ c4
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
+ c4ω(ri)λ.

Proof. From Lemma 3.2.7 and (3.24), we have

ˆ
5
8
Bi

G(x, |Dwi|) dx .

(ˆ
3
4
Bi

G(x, |Dwi|)
1
2p dx

)2p

.

(ˆ
3
4
Bi

Gm,i(|Dwi|)
1
2p + |Dwi|

p+ωa(·)(ri)

2p dx

)2p

.H Gm,i(λ) +

(ˆ
3
4
Bi

|Dwi| dx

)p+ωa(·)(ri)

, (3.85)

where we have used (3.84) and Hölder’s inequality for the last inequality. By
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(3.32), (3.84) and (3.11), we find(ˆ
3
4
Bi

|Dwi| dx

)p+ωa(·)(ri)

.

([
|µ|(Bi)

rn−1
i

] 1
p−1

+
M

rni

)ωa(·)(ri)

λp

. λp . G0(λ). (3.86)

Combining Lemma 3.2.8, (3.85) and (3.86) gives

ˆ
1
2
Bi

h0(|Dvi|+|Dwi|)|Dwi−Dvi|2dx . ω(ri)
2

ˆ
5
8
Bi

G(x, |Dwi|) dx . ω(ri)
2G0(λ).

(3.87)

We define an auxiliary function G1(t) = G0

(
t

1
p
)

for t ∈ R+. By a direct
calculation, we discover

dG1(t)

dt
= 1 + a0 log

(
e+ t

1
p

)
+

a0t
1
p

p(e+ t
1
p )
> 0,

and so the derivative of G1 is increasing, i.e., G−1
1 is concave. It then follows

from Jensen’s inequality, (2.19) and (3.87) that

ˆ
1
2
Bi

|Dvi −Dwi|p dx ≤ G−1
1

(ˆ
1
2
Bi

G0 (|Dvi −Dwi|) dx

)
.H G−1

1

(
ω(ri)

2G0 (λ)
)
. (3.88)

On the other hand, we apply (3.24) and Lemma 3.2.3 to discover

ˆ
Bi

g0(|Dwi −Dwi−1|) dx

.
ˆ
Bi

g0(|Dwi −Du|) dx+

ˆ
Bi

g0(|Du−Dwi−1|) dx

.δ

ˆ
Bi

gm,i(|Dwi −Du|) + |Dwi −Du|p−1+ωa(·)(ri) dx

+

ˆ
Bi−1

gm,i−1(|Du−Dwi−1|) + |Du−Dwi−1|p−1+ωa(·)(ri−1) dx
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.δ

[
|µ|(Bi−1)

rn−1
i−1

]
+

[
|µ|(Bi−1)

rn−1
i−1

]1+
ωa(·)(ri−1)

p−1

.

[
|µ|(Bi−1)

rn−1
i−1

]
. (3.89)

Applying (3.84), we see

ˆ
1
2
Bi

|Dvi −Dwi|dx .H

ˆ
1
2
Bi

(
g0(|Dwi−1|)

g0(λ)

) 1
p′

|Dvi −Dwi| dx

.
ˆ

1
2
Bi

(
g0(|Dwi|)
g0(λ)

) 1
p′

|Dvi −Dwi| dx

+

ˆ
1
2
Bi

(
g0(|Dwi −Dwi−1|)

g0(λ)

) 1
p′

|Dvi −Dwi| dx

= I1 + I2. (3.90)

Since 1 < p′ ≤ 2, we see t
1
p′ ≤ Ht

1
2 for every t ∈ [0, H] and

I1 .
ˆ

1
2
Bi

(
g0(|Dwi|)
g0(λ)

) 1
2

|Dvi −Dwi|dx

.H
1

h0(λ)
1
2

(ˆ
1
2
Bi

h0(|Dvi|+ |Dwi|)|Dwi −Dvi|2dx

) 1
2

. ω(ri)λ. (3.91)

Here, we have used (3.84) and (3.87).
It only remains to estimate I2. Applying (3.89), (3.88) and (3.22), we

obtain

I2 .

(ˆ
Bi

g0(|Dwi −Dwi−1|)
g0(λ)

dx

) 1
p′
(ˆ

Bi

|Dvi −Dwi|p dx
) 1

p

.δ,H

(
1

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]) 1
p′

G−1
0

(
ω(ri)

2G0(λ)
)

.
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
+ λ1−p (G−1

0

(
ω(ri)

2G0(λ)
))p

.
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
+ ω(ri)

2p
p+1λ. (3.92)
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Combining (3.90)-(3.92) yields

ˆ
1
2
Bi

|Dvi −Dwi|dx .δ,H
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
+ ω(ri)λ.

This estimate and Lemma 3.2.14 complete the proof.

3.2.6 Iterative comparison estimates for (GPX)

Through this subsection, we assume that A(·) satisfies (GPT) and set u as a
weak solution to (3.1).

Given a number 0 < δ ≤ 1
16

, let wδ ∈ W 1,p(·)(BδR) be the weak solution
to the following Dirichlet problem under the assumptions (GPX):{

−div (γ(x)A(x,Dwδ)) = 0 in BδR(x0)

wδ = u on ∂BδR(x0).
(3.93)

Lemma 3.2.16. Let λ > 0 and assume that([
|µ|(BR)

Rn−1

]
+Rp0−1

) 1
p0−1

≤ λ. (3.94)

We further assume that

λ

H
≤ |Dw| ≤ Hλ in BδR (3.95)

holds for some constant H ≥ 1. Then there exists a constant c3 = c3(data, δ,H) ≥
1 such that

ˆ
BδR

|Du−Dwδ| dx ≤ c3λ
2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
. (3.96)

Proof. We fix parameters η and ξ as

η :=
1

4(n+ 1)(p0 − 1)
, ξ = 1 + 2η,
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and introduce w̄ = w
λ

and w̄δ = wδ
λ

. We shall use exponents q such that

1 ≤ q ≤ ξ(p0 − 1)

1− ωp(·)(2δR)
=

(
p0 − 1 +

1

2(n+ 1)

)
1

1− ωp(·)(2δR)
< q0, (3.97)

where q0 is given in (3.37). Note

ξ

1− ωp(·)(δR)
≤ n

n− 1
= 1∗, (3.98)

from (3.60). We start with estimating the lefr-hand side of (3.96), by applying
(3.95) and (2.14):

ˆ
BδR

|Du−Dwδ| dx ≤ H(p0−2)(1+η)c

ˆ
BδR

|Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

≤ c

ˆ
BδR

|Dw̄δ −Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

+ c

ˆ
BδR

|Dw̄δ|(p0−2)(1+η)|Du−Dwδ| dx. (3.99)

For any q satisfying (3.97), we apply Lemma 3.2.6, to deduce that

ˆ
BδR

|Dw̄δ −Dw̄|q dx

≤ cλ−q
ˆ
BδR

|Du−Dwδ|q dx+ cλ−q
ˆ
BδR

|Du−Dw|q dx

≤ cλ−q
([
|µ|(BδR)

(δR)n−1

]
+Rp0−1

) q
p0−1

+ cλ−q
|BR|
|BδR|

ˆ
BR

|Du−Dw|q dx

≤ cλ−q
([
|µ|(BδR)

(δR)n−1

]
+Rp0−1

) q
p0−1

+ cλ−q
([
|µ|(BR)

Rn−1

]
+Rp0−1

) q
p0−1

≤ cλ−q
([
|µ|(BR)

Rn−1

]
+Rp0−1

) q
p0−1

, (3.100)

where c = c(data, δ, q). Using Hölder’s inequality, (3.36), (3.100) and (3.94),
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we have ˆ
BδR

|Dw̄δ −Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

≤
(ˆ

BδR

|Dw̄δ −Dw̄|(p0−1)(1+η) dx

) p0−2
p0−1

·
(ˆ

BδR

|Du−Dwδ|p0−1 dx

) 1
p0−1

≤ cλ1−(p0−2)(1+η)−1

([
|µ|(BR)

Rn−1

]
+Rp0−1

) (p0−2)(1+η)+1
p0−1

≤ cλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
, (3.101)

with c = c(data, δ), where we have used the fact that

(p0 − 2)(1 + η) + 1

p0 − 1
≥ 1.

We combine (3.99) with (3.101) to discover

ˆ
BδR

|Du−Dwδ| dx

≤ c

ˆ
BδR

|Dw̄δ|(p0−2)(1+η)|Du−Dwδ| dx︸ ︷︷ ︸
=:I1

+cλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)

(3.102)

with c = c(data, δ). We use (2.19) to estimate I1 as follows: for any h > 0

I1 = λ(2−p0)(1+η)

ˆ
BδR

(
|Dwδ|p(x)−2

(h+ |u− wδ|)ξ
|Du−Dwδ|2

) 1
2

·
(
|Dwδ|(p0−2)ξ−(p(x)−p0) (h+ |u− wδ|)ξ

) 1
2
dx
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≤ cλ
2−p0

2

ˆ
B2δR

(|Du|2 + |Dwδ|2 + s2)
p(x)−2

2

(h+ |u− wδ|)ξ
|Du−Dwδ|2

 1
2

·
(
|Dwδ|(p0−2)ξ−(p(x)−p0)

λ(p0−2)ξ
(h+ |u− wj|)ξ

) 1
2

dx

≤ cλ
2−p0

2

ˆ
BδR

(
|V (x,Du)− V (x,Dwδ)|2

(h+ |u− wδ|)ξ

) 1
2

·

(
(|Dwδ|+R)(p0−2)ξ+ω(2δR)

λ(p0−2)ξ
(h+ |u− wδ|)ξ

) 1
2

dx.

We use Hölder’s inequality and (3.34) to deduce that

I1 ≤ cλ
2−p0

2

(ˆ
BδR

|V (x,Du)− V (x,Dwδ)|2

(h+ |u− wδ|)ξ
dx

) 1
2

·
(ˆ

BδR

(|Dwδ|+R) dx

)ωp(·)(2δR)

2

·
(ˆ

BδR

(
(|Dw̄δ|+ 1)(p0−2) (h+ |u− wδ|)

) ξ
(1−ωp(·)(2δR)

dx

) 1−ωp(·)(2δR))

2

≤ cλ
2−p0

2

(
h1−ξ

[
|µ|(BδR)

δRn

]) 1
2

·
(ˆ

BδR

(|Dwδ|+R) dx

)ωp(·)(2δR)

2

·
(ˆ

BδR

(
(|Dw̄δ|+ 1)(p0−2) (h+ |u− wδ|)

) ξ
1−ωp(·)(2δR)

dx

) 1−ωp(·)(2δR)

2

.

We employ (3.58) to estimate I1 as follows

I1 ≤ cλ
2−p0

2

(
h1−ξ

[
|µ|(BR)

Rn

]) 1
2

·
(ˆ

BδR

(
(|Dw̄δ|+ 1)(p0−2) (h+ |u− wδ|)

) ξ
1−ωp(·)(2δR)

dx

) 1−ωp(·)(2δR)

2
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=: cλ
2−p0

2

(
h1−ξ

[
|µ|(BR)

Rn

]) 1
2

I
1−ωp(·)(2δR)

2
2 . (3.103)

Now, for any small η̃ ∈ (0, 1), we fix h by

h :=

(ˆ
BδR

(
(|Dw̄δ|+ 1)(p0−2) |u− wδ|

) ξ
1−ωp(·)(2δR)

dx

) 1−ωp(·)(2δR)

ξ

+ η̃. (3.104)

Then it follows that

I
1−ωp(·)(2δR)

2
2

≤ ch
ξ
2

(ˆ
BδR

(|Dw̄δ|+ 1)
(p0−2)ξ

1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

2

+ ch
ξ
2 . (3.105)

Applying (3.100), (3.94) and (3.95), we find that

ˆ
BδR

(|Dw̄δ|+ 1)
(p0−2)ξ

1−ωp(·)(2δR) dx

≤ c

ˆ
BδR

|Dw̄δ −Dw̄|
(p0−2)ξ

1−ωp(·)(2δR) dx+ c

ˆ
BδR

|Dw̄|
(p0−2)ξ

1−ωp(·)(2δR) dx+ c

≤ c. (3.106)

Combining (3.103), (3.105) with (3.106), for any ε ∈ (0, 1), we conclude with

I1 ≤
(
λ2−p0

h

R

[
|µ|(BR)

Rn−1

]) 1
2

≤ εh

R
+ c(ε)λ2−p0

[
|µ|(BR)

Rn−1

]
, (3.107)

where c = c(data, δ,H). It finally remains to estimate h, which is defined in
(3.104). According to (3.95), we have

h ≤ c

(ˆ
BδR

(
|Dw̄δ −Dw̄|(p0−2)|u− wδ|

) ξ
1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

ξ

+ c

(ˆ
BδR

(
|Dw̄|(p0−2)|u− wδ|

) ξ
1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

ξ

64



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

+ c

(ˆ
BδR

|u− wδ|
ξ

1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

ξ

+ η̃

≤ c

(ˆ
BδR

(
|Dw̄δ −Dw̄|(p0−2)|u− wδ|

) ξ
1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

ξ

+ c

(ˆ
BδR

|u− wδ|
ξ

1−ωp(·)(2δR) dx

) 1−ωp(·)(2δR)

ξ

+ η̃ =: I3 + I4 + η̃. (3.108)

We use Sobolev embedding, (3.100) and (3.36) to estimate I3 as follows:

I3 ≤ c

(ˆ
BδR

|Dw̄δ −Dw̄|
ξ(p0−1)

1−ωp(·)(2δR) dx

) (1−ωp(·)(2δR))(p0−2)

ξ(p0−1)

·
(ˆ

BδR

|u− wδ|
ξ(p0−1)

1−ωp(·)(2δR)

) 1−ωp(·)(2δR)

ξ(p0−1)

≤ cRλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

) p0−2
p0−1

·
(ˆ

BδR

|Du−Dwδ|
ξ(p0−1)

1−ωp(·)(2δR)

) 1−ωp(·)(2δR)

ξ(p0−1)

≤ cRλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
. (3.109)

According to (3.98), (3.95) and (3.101), we have

I4 ≤ c

(ˆ
BδR

|u− wδ|
n
n−1 dx

)n−1
n

≤ cR

ˆ
BδR

|Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

≤ cR

ˆ
BδR

|Dw̄δ|(p0−2)(1+η)|Du−Dwδ| dx

+ cR

ˆ
BδR

|Dw̄δ −Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

≤ cR

ˆ
BδR

|Dw̄δ|(p0−2)(1+η)|Du−Dwδ| dx

65



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

+ cRλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
. (3.110)

We finally combine (3.108), (3.109) and (3.110) to discover

h

R
≤ c

ˆ
BδR

|Dw̄|(p0−2)(1+η)|Du−Dwδ| dx

+ cλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
+
η̃

R
,

where c depends on data, δ and H. Plugging the inequality in (3.107) and
choosing ε = 1

2c
, we have

I1 ≤ cλ2−p0

([
|µ|(B2R)

Rn−1

]
+Rp0−1

)
+
η̃

R
(3.111)

for any η̃ ∈ (0, 1). Letting η̃ → 0 and combining (3.102) with (3.111) com-
pletes the proof.

We now compare u ∈ W 1,p(·)(Ω) to vδ ∈ W 1,p0(BδR/2), the weak solution
to the following reference problem:{

−div (a(x0, Dvδ)) = 0 in BδR/2

vδ = wδ on ∂BδR/2.

We present the last comparison estimates of this section.

Lemma 3.2.17. Assume that

([
|µ|(BR)

Rn−1

]
+Rp0−1

) 1
p0−1

≤ λ

sup
B 3δR

4

(|Dwδ|+ s+R) ≤ Hλ

λ

H
≤ |Dw| ≤ Hλ in BδR

(3.112)

for some 1 ≤ H and every λ > 0. Then there exists a constant c4 =
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c4(data, δ,H) ≥ 1 such that

ˆ
BδR/2

|Du−Dvδ| dx ≤ c4ω (δR)λ+ c4λ
2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
.

Proof. Applying (3.61) with x1 = x0, and (3.112), we have

ˆ
BδR/2

|Dwδ −Dvδ|p0 dx

≤ c

ˆ
BδR/2

(
|Dwδ|2 + |Dvδ|2 + s2

) p0−2
2 |Dwδ −Dvδ|2 dx

≤ cω (δR)2

ˆ
B 5δR

8

(|Dwδ|+ s+R)p(x) dx+Rp0


≤ cω (δR)2

ˆ
B 3δR

4

(|Dwδ|+ s+R) dx

p1

≤ cω (δR)2 λp0 , (3.113)

where c = c(data, H, δ). Here, we have used (3.59) with θ1 = 5
8

and θ2 = 3
4
,

and (2.14), in the last inequality. Now (3.112) implies

ˆ
BδR/2

|Dwδ −Dvδ| dx ≤ c

ˆ
BδR/2

|Dw̄|
p0−2

p′0 |Dwδ −Dvδ| dx

≤ c

ˆ
BδR/2

|Dw̄δ|
p0−2

p′0 |Dwδ −Dvδ| dx

+ c

ˆ
BδR/2

|Dw̄δ −Dw̄|
p0−2

p′0 |Dwδ −Dvδ| dx.

(3.114)

Since p′0 ≤ 2, it follows from (3.112) and (3.113) that

ˆ
BδR/2

|Dw̄δ|
p0−2

p′0 |Dwδ −Dvδ| dx

≤ c

ˆ
BδR/2

|Dw̄δ|
p0−2

2 |Dwδ −Dvδ| dx
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≤ cλ
2−p0

2

ˆ
BδR/2

(
|Dwδ|2 + |Dvδ|2 + s2

) p0−2
4 |Dwδ −Dvδ| dx

≤ cω (δR)λ. (3.115)

Furthermore, we see from Lemma 3.2.6 with q = p0 − 2, and (3.113) that

ˆ
BδR/2

|Dw̄δ −Dw̄|
p0−2

p′0 |Dwδ −Dvδ| dx

≤ cλ
2−p0
p′0

(ˆ
BδR/2

|Dwδ −Dw|p0−2 dx

) 1
p′0

·

(ˆ
BδR/2

|Dwδ −Dvδ|p0 dx

) 1
p0

≤ cλ
2−p0
p′0

+1
([
|µ|(BR)

Rn−1

]
+Rp0−1

) p0−2
p0

ω (δR)
2
p0

≤ cω (δR)λ+ cλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
. (3.116)

Combining (3.114), (3.115) with (3.116), we find that

ˆ
BδR/2

|Dwδ −Dvδ| dx ≤ cω (δR)λ+ cλ2−p0

([
|µ|(BR)

Rn−1

]
+Rp0−1

)
.

We recall Lemma 3.2.16 and combine with the last estimate to finish the
proof.

3.3 Regularity results for homogeneous equa-

tion

The remaining parts of the proof of Theorem 3.1.3 are very similar to the
one of Theorem 3.1.4. Therefore, from now on, we present only the proof of
Theorem 3.1.3.

Our main purpose of this section is to show local C1 regularity of (3.14).
Let x1 ∈ B3R/4. For some δ ∈

(
0, 1

16

)
to be determined and for any r ∈
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(
0, 1

16
R
]
, we define

B̄i = Br̄i(x1) and r̄i = δir (i = 0, 1, · · · ). (3.117)

Thus

· · · ⊂ 1

2
B̄1 ⊂ B̄1 ⊂

1

2
B̄0 ⊂ 2B̄0 ⊂ BR = BR(x0).

Note that {B̄i}i∈N is the sequence of balls centered at x1, while BR is the ball
centered at x0. For simplicity, we denote h1(·) = h(x1, ·) and G1(·) = G(x1, ·)
in this subsection. With the weak solution v ∈ W 1,G(BR) to (3.14), let w̄i ∈
W 1,G1(1

2
B̄i) be the weak solution to (3.15) with BR̃(x1) replaced by 1

2
B̄i.

Lemma 3.3.1. Assume thatˆ
B̄i−1

|Dv| dx ≤ Hλ and
λ

H
≤ |Dw̄i−1| ≤ Hλ in B̄i (3.118)

for a constant H ≥ 1, a number λ > 0 and any index i ≥ 1. Then there
exists a constant c5 = c5(data, δ,H) ≥ 1 such that

ˆ
B̄i

|Dv −Dw̄i−1| dx ≤ c5ω (r̄i−1)λ.

Proof. By (3.118) and Lemma 3.2.8, we have

ˆ
B̄i

|Dv −Dw̄i−1| dx .H

ˆ
B̄i

(
h1(|Dw̄i−1|)

h1(λ)

) 1
2

|Dv −Dw̄i−1| dx

.δ
1

h1(λ)
1
2

(ˆ
1
2
B̄i

h1(|Dv|+ |Dw̄i−1|) |Dv −Dw̄i−1|2 dx

) 1
2

.
ω (ri−1)

h1(λ)
1
2

(ˆ
5
8
B̄i−1

G(x, |Dv|) dx

) 1
2

.

It then follows from (3.24), (3.23) and Lemma 3.2.7 that

ˆ
5
8
B̄i−1

G(x, |Dv|) dx

69



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

.

(ˆ
5
8
B̄i−1

G(x, |Dv|)
1
8p dx

)8p

.

(ˆ
3
4
B̄i−1

Gm,r̄i−1
(|Dv|)

1
8pdx

)8p

+

(ˆ
3
4
B̄i−1

|Dv|
p+ωa(·)(r̄i−1)

8p dx

)8p

. Gm,r̄i−1

(ˆ
3
4
B̄i−1

|Dv| dx

)
+

(ˆ
3
4
B̄i−1

|Dv|
p+ωa(·)(r̄i−1)

2p dx

)2p

.H Gm,r̄i(λ) +

(ˆ
3
4
B̄i−1

|Dv| dx

)p+ωa(·)(r̄i−1)

By (3.32) and (3.11), we discover(ˆ
3
4
B̄i−1

|Dv| dx

)p+ωa(·)(r̄i−1)

.

(ˆ
B̄i−1

|Dv| dx
)p(ˆ

BR

|Dv| dx
)ωa(·)(r̄i−1)

≤
(ˆ

B̄i−1

|Dv| dx
)p(ˆ

BR

|Du−Dv|+ |Du| dx+ 1

)ωa(·)(R)

.H λp

([
|µ|(BR)

Rn−1

] 1
p−1

+
‖Du‖L1(Ω)

Rn
+ 1

)ωa(·)(R)

. G1(λ).

Merging all the estimates above, we complete the proof.

We first need to establish local Lipschitz regularity for (3.14). We will use
an exit time argument in the proof of next theorem.

Theorem 3.3.2. Let v ∈ W 1,G(BR) be the weak solution to (3.14). Then
there exist positive constants R2 = R2(data, ω, |µ|(Ω), ‖Du‖L1(Ω)) and c6 =
c6(data) such that

‖Dv‖L∞(B3R/4) ≤ c6

ˆ
BR

|Dv| dx

whenever 0 < R ≤ R2.
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Proof. Our proof consists of three parts. At first, we define some significant
constants and an exit time index. Next, we show some excess decay estimates
for v. In the last part, we prove the Lipschitz regularity of v. We assume x1

is a Lebesgue point of Dv and take r = δR.
Step 1: Basic setup.
We choose positive constants H and δ < 1

16
such that

H = 1052n+2cl and 2n+2cβδ
β ≤ 1

4 · 105
, (3.119)

where β, cl, cβ are the constants given in Lemma 2.3.1. Then there exists an
integer k ≥ 2 such that

2cβδ
kβ ≤ δn. (3.120)

Note that the constants H, δ, k depend only on data. Recalling (2.10) and
(2.11), one can find a positive constant R2 ≤ R1 such that

δ−knω(τ)
2
p+1 + δ−1

ˆ τ

0

ω(ρ)
dρ

ρ
≤ δ2n

2n+3106cβc2c5

(3.121)

for every 0 < τ ≤ R2, where c2 and c5 are the constants given in (3.57) and
Lemma 3.3.1, respectively. Assume 0 < R ≤ R2. Direct calculations give

δωa(·)(r̄i+1) log

(
1

r̄i+1

)
≤ δ log

(
1

δ

)
ωa(·)(r̄i+1) log

(
1

r̄i

)
≤ ωa(·)(r̄i+1) log

(
1

r̄i

)
and

ˆ 2r̄0

0

ωa(·)(ρ) log

(
1

ρ

)
dρ

ρ

=
∞∑
i=0

ˆ r̄i

r̄i+1

ωa(·)(ρ) log

(
1

ρ

)
dρ

ρ
+

ˆ 2r̄0

r̄0

ωa(·)(ρ) log

(
1

ρ

)
dρ

ρ

≥ log

(
1

δ

) ∞∑
i=0

ωa(·)(r̄i+1) log

(
1

r̄i

)
+ (log 2)ωa(·)(r̄0) log

(
1

2r̄0

)
≥ δ

∞∑
i=1

ωa(·)(r̄i) log

(
1

r̄i

)
+

log 2

2
ωa(·)(r̄0) log

(
1

r̄0

)
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≥ δ
∞∑
i=0

ωa(·)(r̄i) log

(
1

r̄i

)
. (3.122)

It then follows from (3.121) that

∞∑
i=0

ω(r̄i) ≤ δ−1

ˆ 2r̄0

0

ω(ρ)
dρ

ρ
≤ δ2n

2n+3106cβc2c5

.

We now take

λ = H1

ˆ
BR

|Dv| dx with H1 = 105δ−3n

and set

Ci =
0∑

m=−1

ˆ
B̄i+m

|Dv| dx+ 2δ−n
ˆ
B̄i

|Dv − (Dv)B̄i | dx,
∀i ∈ N. (3.123)

Since r = r0 = δR, we see

C1 ≤ 6δ−3n

ˆ
BR

|Dv| dx ≤ 6δ−3n

H1

λ ≤ λ

1000
.

If there exists an infinite sequence {ij}j∈N ⊂ N such that Cij ≤ λ
1000

for every
j ∈ N , then

|Dv(x1)| = lim
j→∞

ˆ
B̄ij

|Dv| dx ≤ λ

1000
.

Hence, it suffices to assume that there exits an exit time index ie > 1 such
that

Cie ≤
λ

1000
and Ci >

λ

1000
, ∀i > ie.

Recalling (3.13), we denote

Ei := E(Dv, B̄i) and ai := |(Dv)B̄i |.

For i ≥ ie, we say that “Ind(i) holds” if and only if

ˆ
B̄i−1

|Dv| dx ≤ λ.
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Step 2: Excess decay estimate.
First, we assume that Ind(i) holds for some i ≥ ie. It then follows from

(3.57) and (3.121) that

ˆ
1
2
B̄i−1

|Dv −Dw̄i−1| dx ≤ c2ω(r̄i−1)
2
p+1

ˆ
B̄i−1

|Dv| dx

≤ c2ω(r̄i−1)
2
p+1λ ≤ δ(k+2)n

106
λ. (3.124)

and ˆ
1
2
B̄i−1

|Dw̄i−1| dx ≤
ˆ

1
2
B̄i−1

|Dv| dx+

ˆ
1
2
B̄i−1

|Dv −Dw̄i−1| dx

≤ 2nλ+
δ(k+2)n

106
λ ≤ 2n+1λ.

Applying Lemma 2.3.1 and (3.119), we see

‖Dw̄i−1‖L∞( 3
8
B̄i−1) ≤ cl

ˆ
1
2
B̄i−1

|Dw̄i−1| dx ≤ 2n+1clλ (3.125)

and

osc
B̄i
|Dw̄i−1| ≤ 2cβδ

β

ˆ
1
2
B̄i−1

|Dw̄i−1| dx ≤ 2n+2cβδ
βλ ≤ λ

105
. (3.126)

Using Lemma 2.3.1, (3.124), (3.126) and (3.120), we discover

2

δn
E(Dv, B̄i+k) ≤

2

δn

ˆ
B̄i+k

|Dv − (Dw̄i−1)B̄i+k | dx

≤ 2

δn
E(Dw̄i−1, B̄i+k) +

2

δn

ˆ
B̄i+k

|Dv −Dw̄i−1| dx

≤ 2cβδ
kβ

δn
E(Dw̄i−1, B̄i) +

2

δ(k+2)n

ˆ
1
2
B̄i−1

|Dv −Dw̄i−1| dx

≤ 2cβδ
kβ

105δn
λ+

2

105
λ ≤ λ

2000
.
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Since Ci+k >
λ

1000
, we find from (3.123) that

0∑
m=−1

ˆ
B̄i+k+m

|Dv| dx ≥ λ

2000
. (3.127)

Combining (3.124) and (3.127), we discover

λ

2000
≤

0∑
m=−1

ˆ
B̄i+m+k

|Dv| dx

≤ 2

δ(k+1)n

ˆ
1
2
B̄i−1

|Dv −Dw̄i−1| dx+
0∑

m=−1

ˆ
B̄i+m+k

|Dw̄i−1| dx

≤ 2λ

106
+ 2 sup

B̄i

|Dw̄i−1|

and therefore
λ

104
≤ λ

4000
− λ

106
≤ sup

B̄i

|Dw̄i−1|. (3.128)

From (3.125), (3.126), (3.128) and (3.119), we observe

λ

H
≤ |Dw̄i−1| ≤ Hλ in B̄i.

Therefore, we are under the hypothesis of Lemma 3.3.1, which give us the
following excess decay estimate:

E(Dv, B̄i+1) ≤ E(Dw̄i−1, B̄i+1) +

ˆ
B̄i+1

|Dv −Dw̄i−1| dx

≤ cβδ
βE(Dw̄i−1, B̄i) + δ−n

ˆ
B̄i

|Dv −Dw̄i−1| dx

≤ cβδ
βE(Dv, B̄i) + 2cβδ

−n
ˆ
B̄i

|Dv −Dw̄i−1| dx

≤ 1

4
E(Dv, B̄i) + 2cβc5δ

−nω(r̄i−1)λ. (3.129)

Step 3: Final induction.
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We now assert
ai + Ei ≤ λ, ∀i ≥ ie. (3.130)

Since Cie ≤ λ
1000

, (3.130) holds for i = ie. We now assume that (3.130) holds
for every j ∈ {ie, ie + 1, · · · , i} for some i ≥ ie. Consequently, Ind(i) holds
for every j ∈ {ie, ie + 1, · · · , i}. We apply (3.129) iteratively to discover

i+1∑
j=ie

Ej ≤ Eie +
1

4

i∑
j=ie

Ej +
2cβc5

δn

i∑
j=ie

ω(r̄j)λ

≤ 2Eie +
4cβc5

δn

i∑
j=ie

ω(r̄j)λ ≤
δnλ

200
.

On the other hand, we have

ai+1 = aie +
i∑

j=ie

(aj+1 − aj)

≤ aie +
i∑

j=ie

ˆ
B̄j+1

|Dv − (Dv)j| dx ≤ Cie +
1

δn

i∑
j=ie

Ej ≤
λ

100
.

By induction, (3.130) holds for every i ≥ ie. Consequently, we obtain

|Dv(x1)| = lim
i→∞
|ai| ≤ λ.

Theorem 3.3.3. Let v ∈ W 1,G(BR) be the weak solution to (3.14). Assume
that

sup
BR/2

|Dv| ≤ Hλ (3.131)

for a constant H ≥ 1 and a number λ > 0. Then for any σ1 ∈ (0, 1), there
exist constants R3 = R3(data,H, σ1, ω, |µ|(Ω), ‖Du‖L1(Ω)) > 0 and δ1 =
δ1(data,H, σ1) ∈

(
0, 1

16

)
such that

osc
δ1BR

Dv ≤ σ1λ,
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whenever 0 < R ≤ R3.

Proof. Step 1: Basic setup.
Let x1 ∈ 1

4
BR be any Lebesgue point of Dv. Let ε > 0 be a small constant,

which will be chosen later in this proof. We take positive constants Hε and
δε ≤ 1

16
such that

Hε :=
2n+7clH

ε
and 2cβδ

β
εH ≤

ε

2n+7
, (3.132)

where β, cβ, cl are given in Lemma 2.3.1. We set δ = δε in (3.117) and take a
positive constant R1,ε ≤ R1 such that

ω(τ)
2
p+1 + δ−2

ε

ˆ τ

0

ω(ρ)
dρ

ρ
≤ δ2n

ε ε

2n+10c2c5H
, (3.133)

whenever 0 < τ < R1,ε. Here, c2 = c2(n, ν, L, p) and c5 = c5(data, Hε, δε)
are the constants given in (3.57) and Lemma 3.3.1, respectively. Assume
0 < R ≤ R1,ε. By (3.122), we see

∞∑
i=0

ω(r̄i) ≤ δ−2
ε

ˆ 2r̄0

0

ω(ρ)
dρ

ρ
≤ δ2n

ε ε

2n+10c2c5H
. (3.134)

For i ≥ 1, we set

Ci =

ˆ
B̄i

|Dv| dx, L =

{
i ∈ N : Ci ≤

ελ

2n+5

}
and im = minL. (3.135)

If L is empty, then we define im =∞.
Step 2: VMO estimate.
First, we assume that i ≥ 1 is an integer such that i+1 /∈ L. Using (3.57),

(3.131) and (3.133), we have

ˆ
B̄i+1

|Dw̄i−1| dx ≥ Ci+1 − δ−2n
ε

ˆ
1
2
B̄i−1

|Dv −Dw̄i−1| dx

≥ ελ

2n+5
− c2δ

−2n
ε ω(r̄i−1)

2
p+1Hλ ≥ ελ

2n+6
, (3.136)

where we have used the assumption i+ 1 /∈ L.
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Likewise, we have

ˆ
1
2
B̄i−1

|Dw̄i−1| dx ≤
ˆ

1
2
B̄i−1

|Dv| dx+

ˆ
1
2
B̄i−1

|Dw̄i−1 −Dv| dx

≤ Hλ+ c2δ
−n
ε ω(r̄i−1)

2
p+1Hλ ≤ 2Hλ.

It then follows from Lemma 2.3.1 and (3.132) that

‖Dw̄i−1‖L∞( 1
4
B̄i−1) ≤ Hελ and osc

B̄i
|Dw̄i−1| ≤

ελ

2n+7
. (3.137)

Combining (3.136) and (3.137), we find

λ

Hε

≤ ελ

2n+7
≤ |Dw̄i−1| ≤ Hελ in B̄i.

Therefore, we can apply Lemma 3.3.1 to discover

ˆ
B̄i

|Dv −Dw̄i−1| dx ≤ c5ω (r̄i−1)λ.

Following the calculations as in (3.129) with (3.133) and (3.131), we have

E(Dv, B̄i+1) ≤ ε

10H
E(Dv, B̄i) + 4c5δ

−n
ε ω(r̄i−1)λ ≤ ελ. (3.138)

On the other hand, if i+ 1 ∈ L, then we have

E(Dv, B̄i+1) ≤ 2Ci+1 ≤
ελ

2n+4
. (3.139)

For any positive constant ρ ≤ δ3
εR, there exist m ≥ 2 and r ∈ (δ2

εR, δεR]
such that ρ = δmε r. It then follows from (3.138) and (3.139) that

sup
x1∈ 1

4
BR

sup
0≤ρ≤δ3

εR

E(Dv,Bρ(x1)) ≤ ελ. (3.140)

Step 3: Proof of Theorem 3.3.3.
The estimate (3.140) shows that there exist positive constants δ̃ and R3
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such that

sup
x1∈ 1

4
BR

sup
0≤ρ≤δ̃R

E(Dv,Bρ(x1)) ≤
δnσ1
σ1λ

2n+8
, (3.141)

whenever 0 < R < R3. We now fix the constant ε = σ1 with δ = δσ1 in Step
1 and r = δ̃R. Recall (3.135) in order to prove that

|(Dv)B̄k − (Dv)B̄h| ≤
σ1λ

2n+3
for every 2 ≤ k ≤ h. (3.142)

Case 1 : k < h ≤ im. By the definition of im in (3.135), Ci+1 ≥ σ1λ
2n+5 holds

for every i ∈ {k − 1, k, · · · , h − 2}. Applying (3.138) iteratively, it follows
from (3.141) and (3.134) that

h−1∑
i=k

E(Dv, B̄i) ≤ E(Dv, B̄k) +
σ1

10

h−2∑
i=k

E(Dv, B̄i) +
h−2∑
i=k

4c5δ
−n
σ1
ω(r̄i−1)λ

≤ 2E(Dv, B̄k) + 8c5δ
−n
σ1
λ

h−2∑
i=k−1

ω(r̄i−1) ≤
δnσ1
σ1λ

2n+6
. (3.143)

Consequently, we obtain

|(Dv)B̄k − (Dv)B̄h| ≤
h−1∑
i=k

|(Dv)B̄i − (Dv)B̄i+1
|

≤ δ−nσ1

h−1∑
i=k

E(Dv, B̄i) ≤
σ1λ

2n+6
. (3.144)

Case 2 : im ≤ k < h. In this case, (3.142) is immediately obtained by the
following estimates.

|(Dv)B̄h | ≤
σ1λ

2n+4
and |(Dv)B̄k | ≤

σ1λ

2n+4
. (3.145)

If h ∈ L, then the first inequality of (3.145) holds. We now assume h /∈ L.
Then there exists ih ∈ L such that {ih + 1, ih + 2, · · · , h} ∩ L = ∅. The
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calculations as in (3.143) give

h−1∑
i=ih

E(Dv, B̄i) ≤ 2E(Dv, B̄ih) + 8c5δ
−n
σ1
λ

h−2∑
i=k−1

ω(r̄i−1) ≤
δnσ1
σ1λ

2n+6
.

Similarly to (3.144), we find

|(Dv)B̄h| ≤ |(Dv)B̄ih |+
h−1∑
i=ih

|(Dv)B̄i − (Dv)B̄i+1
| ≤ σ1λ

2n+4
,

as ih ∈ L. One can obtain the second estimate of (3.145) by the same argu-
ment.

Case 3 : k < im < h. We assert that (3.145) also holds in this case. One
can apply the calculations as in Case 2 to obtain the first estimate of (3.145).
To prove the second one of (3.145), we recall (3.135) and (3.143) to estimate
as follows:

|(Dv)B̄k | ≤ |(Dv)B̄im |+
im−1∑
i=k

|(Dv)B̄i − (Dv)B̄i+1
| ≤ σ1λ

2n+4
.

Consequently, these three cases show that (3.142) holds for every 2 ≤ k ≤
h.

We now consider any 0 < ρ1, ρ2 ≤ δ2δ̃R. Then there exist two integers
k, h ≥ 2 such that rk+1 < ρ1 ≤ rk and rh+1 < ρ2 ≤ rh. Applying (3.141), we
have

|(Dv)B̄k − (Dv)B̄ρ1 (x1)| ≤
ˆ
Bρ1 (x1)

∣∣Dv − (Dv)B̄k
∣∣ dx

≤ δ−nσ1
E(Dv, B̄k) ≤

σ1λ

2n+8

and

|(Dv)Bh − (Dv)Bρ2 (x1)| ≤
σ1λ

2n+8
.

It then follows from (3.142) that

|(Dv)Bρ1 (x1) − (Dv)Bρ2 (x2)| ≤
σ1λ

2n+2
.
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Consequently, we conclude that

|Dv(y)−Dv(z)|
≤ |Dv(y)− (Dv)B2δ1R

(y)|+ |(Dv)B2δ1R
(y) − (Dv)B4δ1R

(z)|
+ |(Dv)B4δ1R

(z) −Dv(z)|

≤ σ1λ

2n
+

ˆ
B2δ1R

(y)

|Dv − (Dv)B4δ1R
(z)| dx

≤ σ1λ

2n
+ 2nE(Dv,B4δ1R(z)) ≤ σ1λ.

for any y, z ∈ Bδ1R with δ1 = δ2δ̃.

3.4 Proof of Theorem 3.1.3

We are now all set in proving Theorem 3.1.3. A main technique of our proof
is based on a double step induction argument as in [79].

Proof of Theorem 3.1.3. Let x0 ∈ Ω be a Lebesgue point ofDu andB2R(x0) ⊂
Ω. We take the concentric balls given in (3.64) and the corresponding weak
solutions vi and wi.

Step 1: Basic setup.
Keeping Lemma 3.2.14, Lemma 3.2.15 and Theorem 3.3.3 in mind, we

select

H := 10004np+2clc6, σ1 := 10−5 and δ0 :=

(
1

4n+4cβ

) 1
β

,

where β, cl, cβ are the constants given in Lemma 2.3.1 and c6 is the constant
given in Theorem 3.3.2. By replacing H in Theorem 3.3.3 by H, we can find
a constant δ1 = δ1(n, ν, L, p) given there. We note that the constants in this
section depend only on data and ω. We further take δ ∈ (0, 1

16
) and the

smallest integer k ≥ 2 satisfying

δ := min

{
δ0, δ1, H

1
n(k+6) ,

(
1

16n(p+1)cβ

) 1
β

}
and 2n+5cβδ

kβ ≤ δn

106
. (3.146)

Recall the constants c1 and c4 from (3.32) and Lemma 3.2.15, respectively.

80



CHAPTER 3. NON-AUTONOMOUS EQUATIONS

We then define a positive number R0 ≤ min{R1, R2, R3} depending only on
data, ωa(·), ωγ(·), |µ|(Ω), ‖Du‖L1(Ω) such that

2c2δ
−n(k+6)ω(τ)

2
p+1 + c4δ

−(2n+1)

ˆ 2τ

0

ω(ρ)
dρ

ρ
≤ 1

2n106
(3.147)

for every 0 < τ ≤ R0.
We now set

λ := H1

ˆ
B2R(x0)

|Du| dx+H2g
−1
0

(ˆ 2R

0

|µ|(Bρ(x0))

ρn−1

dρ

ρ

)
, (3.148)

where

H1 := 2n100
n
p−1 106δ−(k+6)n, H2 := 2n106Hc1c4δ

−(k+6)n (3.149)

and R = r0 ∈
(
0, R0

2

]
. By a direct calculation, we find

ˆ 2r0

0

|µ|(Bρ)

ρn−1

dρ

ρ
=
∞∑
i=0

ˆ ri

ri+1

|µ|(Bρ)

ρn−1

dρ

ρ
+

ˆ 2r0

r0

|µ|(Bρ)

ρn−1

dρ

ρ

≥ δn−1 log

(
1

δ

) ∞∑
i=0

|µ|(B̄i+1)

rn−1
i+1

+
log 2

2n−1

(
|µ|(B̄0)

rn−1
0

)
≥ δn

∞∑
i=0

|µ|(B̄i)

rn−1
i

.

Thus (3.148) and (2.5) implies

H2δ
n
p g−1

0

(
∞∑
i=0

|µ|(B̄i)

rn−1
i

)
≤ λ (3.150)

and

g−1
0

(
∞∑
i=0

|µ|(B̄i)

rn−1
i

)
≤ δ(k+5)n

2n106Hc1c4

λ.

Note that (3.150) shows the first assumption in Lemma 3.2.15 for i ≥ 1.
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Recalling (3.122) and (3.147), we discover

2c2δ
−n(k+4)ω(r0)

2
p+1 + c4

∞∑
i=0

ω(ri) ≤
δ2n

2n106
. (3.151)

For simplicity, we denote

Ei := E(Du,Bi) and ai := |(Dv)B̄i|. (3.152)

Step 2: Exit time argument and induction scheme.
For each i ≥ 1, we define

Ci :=
0∑

m=−1

ˆ
Bi+m

|Du| dx+ 2δ−n
ˆ
Bi

|Du− (Du)Bi| dx.

By (3.148) and (3.149), it follows that

C1 ≤ 6δ−2n

ˆ
B0

|Du| dx ≤ λ

1000
.

If there exists an infinite sequence {ij}j∈N ⊂ N such that Cij ≤ λ
1000

for every
j ∈ N , then we see

|Du(x0)| = lim
j→∞

ˆ
Bij

|Du| dx ≤ λ

1000
,

and we are done. Therefore, we only consider the case that there exists an
exit time index 1 ≤ ie satisfying

Ci >
λ

1000
for i ∈ {ie + 1, ie + 2, · · · } and Cie ≤

λ

1000
. (3.153)

We say that “Ind1(i) holds”, if

ai−1 + ai =

ˆ
Bi−1

|Du| dx+

ˆ
Bi

|Du| dx ≤ λ (i ≥ ie)
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and say that “Ind2(i) holds”, if

i∑
j=ie+1

Ej ≤
1

2

i−1∑
j=ie

Ej +
2c4

δn
λ

i−1∑
j=ie

ω(rj) +
2c4

δn
λ

g0(λ)

i−2∑
j=ie−1

[
|µ|(Bj)

rn−1
j

]
(i > ie).

Our aim is to show that Ind1(i) holds for every i ≥ ie, which implies that

|Du(x0)| = lim
i→∞

ˆ
Bi

|Du| dx ≤ λ. (3.154)

Our proof will proceed as follows:

Ind1(ie) ⇒ Ind2(ie + 1), (3.155)

Ind1(i) and Ind2(i) ⇒ Ind2(i+ 1), ∀i > ie, (3.156)

Ind1(i) and Ind2(i+ 1) ⇒ Ind1(i+ 1), ∀i > ie. (3.157)

We note that Cie ≤ λ
1000

directly implies Ind1(ie).
Step 3: Estimates obtained by Ind1(i).
Assuming that Ind1(i) holds for i ≥ ie, we shall obtain the assumptions

in Lemma 3.2.15. At first, we are going to find upper bounds of |Dvi| and
|Dvi−1| in Lemma 3.2.15. Applying (3.32) and (3.150), we discover

ˆ
Bi−1+l

|Du−Dvi−1| dx ≤ δ−nl
ˆ
Bi−1

|Du−Dvi−1| dx

≤ c1δ
−nlg−1

0

(
|µ|(Bi−1)

ri−1

)
≤ δ4n

2n106
λ (3.158)

and similarly, ˆ
Bi+l

|Du−Dvi| dx ≤
δ4n

2n106
λ, (3.159)

whenever l ∈ {0, 1, ..., k + 1}. Ind1(i) and 3.158 with l = 0 implies

ˆ
Bi−1

|Dvi−1| dx ≤
δ4nλ

2n106
+

ˆ
Bi−1

|Du| dx ≤ 2λ.
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It then follows from Theorem 3.3.2 and Theorem 3.3.3 that

sup
3
4
Bi−1

|Dvi−1| ≤ 2c6

ˆ
Bi−1

|Dvi−1| dx ≤ Hλ and osc
Bi
Dvi−1 ≤

λ

105
, (3.160)

where we have used (3.146) and (3.160).
Similarly, one can obtain the following estimates for Dvi:

ˆ
Bi

|Dvi| dx ≤ 2λ and sup
3
4
Bi

|Dvi| ≤ Hλ. (3.161)

Next, we want to show a lower bound of |Dvi|. Applying (3.57), (3.151)
and (3.161), we discover

ˆ
1
2
Bi

|Dvi −Dwi| dx ≤ c2ω (ri)
2
p+1

ˆ
3
4
Bi

|Dvi| dx

≤ 2n+1c2ω (ri)
2
p+1 λ ≤ δn(k+6)

106
λ,

and ˆ
Bi+l

|Dvi −Dwi| dx ≤
δ5n

106
λ, (3.162)

whenever l ∈ {1, ..., k+1}. For any l ∈ {1, ..., k+1}, we combine (3.159) and
(3.162) to see ˆ

Bi+l

|Du−Dwi| dx ≤
δn

106
λ. (3.163)

For this reason, Ind1(i) implies

ˆ
1
2
Bi

|Dwi| dx ≤
ˆ

1
2
Bi

|Du| dx+

ˆ
1
2
Bi

|Du−Dwi| dx

≤ 2nλ+ λ ≤ 2n+1λ. (3.164)

It then follows from Lemma 2.3.1 that

sup
1
4
Bi

|Dwi| ≤ cl

ˆ
1
2
Bi

|Dwi| dx ≤ Hλ.
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At this time, we apply the second estimates of Lemma 2.3.1 to see

2δ−nE(Du,Bi+k) ≤ 4δ−nE(Dwi, Bi+k) + 4δ−n
ˆ
Bi+k

|Du−Dwi| dx

≤ 8cβδ
kβ−nE(Dwi,

1

2
Bi) +

4

106
λ

≤ 16cβδ
kβ−n

ˆ
1
2
Bi

|Dwi| dx+
4

106
λ

≤ 2n+5cβδ
kβ−nλ+

2

106
λ ≤ 1

105
λ,

where we have used (3.163), (3.164) and (3.146).
Since Ci+k >

λ
1000

for ie ≤ i, we discover

0∑
m=−1

ˆ
Bi+m+k

|Du| dx ≥ λ

1000
− λ

105
≥ λ

2000
. (3.165)

In addition, (3.158) with l = k, k + 1 gives

0∑
m=−1

ˆ
Bi+m+k

|Du| dx

≤
0∑

m=−1

(ˆ
Bi+m+k

|Du−Dvi−1| dx+

ˆ
Bi+m+k

|Dvi−1| dx

)

≤ λ

106
+

0∑
m=−1

ˆ
Bi+m+k

|Dvi−1| dx ≤
λ

106
+ 2 sup

Bi

|Dvi−1|. (3.166)

Combining (3.165), (3.166) and (3.160), we have

λ

H
≤ λ

5000
− λ

105
≤ sup

Bi

|Dvi−1| − osc
Bi
|Dvi−1| = inf

Bi
|Dvi−1|. (3.167)

Hence, (3.150), (3.160), (3.161) and (3.167) allow us to apply Lemma 3.2.15.
Step 4: Verification of Ind2(ie + 1) and Ind2(i+ 1).
According to Lemma 2.3.1, Lemma 3.2.15 and the assumption (3.146),
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we find

E(Dwi, Bi+1) ≤ 2δβcβE(Dwi,
1

2
Bi)

≤ 2−2n−5

ˆ
1
2
Bi

|Du− (Du)Bi | dx+ 2−2n−5

ˆ
1
2
Bi

|Du−Dwi| dx

≤ 1

4
Ei +

1

4

ˆ
1
2
Bi

|Du−Dwi| dx

≤ 1

4
Ei + c4ω(ri)λ+ c4

λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
,

but then it follows from Lemma 3.2.15 that

Ei+1 ≤ 2

ˆ
Bi+1

|Du−Dwi| dx+ 2

ˆ
Bi+1

|Dwi − (Dwi)Bi+1
| dx

≤ 1

2
Ei +

2c4

δn
ω(ri)λ+

2c4

δn
λ

g0(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
. (3.168)

This estimate (3.168) with i = ie shows that Ind2(ie + 1) holds.
To prove (3.156), we assume that Ind1(i) and Ind2(i) hold. Consequently,

(3.168) and Ind2(i) yields

i+1∑
j=ie+1

Ej ≤
1

2

i−1∑
j=ie

Ej +
2c4

δn
λ

i−1∑
j=ie

ω(rj) +
2c4

δn
λ

g0(λ)

i−1∑
j=ie

[
|µ|(Bi−1)

rn−1
i−1

]
+ Ei+1

≤ 1

2

i∑
j=ie

Ej +
2c4

δn
λ

i∑
j=ie

ω(rj) +
2c4

δn
λ

g0(λ)

i∑
j=ie

[
|µ|(Bj−1)

rn−1
j−1

]
. (3.169)

Step 5: Verification of Ind1(i+ 1).
It remains to show (3.157). We assume that Ind1(i) and Ind2(i+ 1) hold

for some i ≥ ie. Then, for all l ∈ {ie, ..., i}, we see

al+1 − al ≤
ˆ
Bl+1

|Du− (Du)Bl | dx ≤
1

δn

ˆ
Bl

|Du− (Du)Bl | dx =
El
δn
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and

al+1 ≤ aie +
l+1∑
i=ie

ˆ
Bi+1

|Du− (Du)Bi | dx = aie +
1

δn

l+1∑
i=ie

Ei. (3.170)

Continuously applying (3.169), (3.150) and (3.151) give

l+1∑
j=ie

Ej ≤ Eie +
1

2

l∑
j=ie+1

Ej +
2c4

δn
λ

l∑
j=ie

ω(rj) +
2c4

δn
λ

g0(λ)

l∑
j=ie

[
|µ|(Bj−1)

rn−1
j−1

]

≤ 2Eie +
4c4

δn
λ

l∑
j=ie

ω(rj) +
4c4

δn
λ

g0(λ)

l∑
j=ie

[
|µ|(Bj−1)

rn−1
j−1

]

≤ 2Eie +
δnλ

105
≤ δn

(
Cie +

λ

105

)
(3.171)

for every l ∈ {ie, ..., i}. Combining (3.153), (3.170) and (3.171),

al+1 ≤ 2Cie +
λ

105
≤ λ

100

for all l ∈ {ie, ..., i}. The last inequality directly implies that Ind1(i+1) holds.
Therefore, (3.155), (3.156) and (3.157) hold, which implies the claim (3.154).
This completes the proof.

3.5 Gradient continuity via Riesz potentials

In this section, we prove Theorem 3.1.7 and Theorem 3.1.9. To this end, we
assume that the nonhomogeneous term µ satisfies that

lim
τ→0

|µ|(Bτ (x))

τn−1
= 0 locally uniformly in Ω w.r.t. x. (3.172)

Then according to Theorem 3.1.3, Du is locally bounded. Therefore, for any
open subsets Ω′ b Ω′′ b Ω, we can define

λ := ‖Du‖L∞(Ω′′) and d := dist(Ω′, ∂Ω′′) > 0. (3.173)
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Recall (3.64) and (3.152) with the corresponding solutions vi and wi. Once we
obtain the following proposition, then the proof of Theorem 3.1.7 is verbatim
repetition of that of [76, Theorem 1.5].

Proposition 3.5.1. Under the assumption (3.172), Du is locally VMO-
regular in Ω. More precisely, for any ε ∈ (0, 1), there exists a small constant
rε = rε(ε, n, p, ν, L, λ, ωa(·), ωγ(·), |µ|(Ω), ‖Du‖L1(Ω)) < d such that

ˆ
Bρ(x0)

∣∣Du− (Du)Bρ(x0)

∣∣ dx < ελ,

whenever ρ ∈ (0, rε] and x0 ∈ Ω′.

Proof. Keeping Theorem 3.3.3 in mind, we take H and σ1 as follows:

H :=
400c1c6

ε
and σ1 :=

ε

400
,

where the constants c1 is given in (3.32) and c6 is given in Theorem 3.3.2,
respectively. From this we can find a constant δ1 = δ1(n, p, ν, L, ω) for which
Theorem 3.3.3 holds.

We now choose the ratio of the shrinking balls in (3.64). Let δ ≤ min
{

1
16
, δ1

}
be a small constant such that

22n+10cβδ
β ≤ ε

24
, (3.174)

where the constants cβ and β are given in Lemma 2.3.1. From the assumption
(3.172), there exists 0 < Rε ≤ min{R1, R2, R3, d} such that

sup
x∈Ω′

sup
0<τ≤Rε

g−1
0

(
|µ|(Bτ (x))

τn−1

)
≤ δ2nε

2n+2400cβc1c4

λ (3.175)

and

sup
0<τ≤Rε

ω(τ) ≤ δn

80cβc1

,

where c4 is the constant given in Lemma 3.2.15.
Take R = r0 ∈ (δRε, Rε] in (3.64) and fix any i ≥ 1, then we want to

show
Ei+2 = E(Du,Bi+2) < ελ. (3.176)
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If ai+2 <
ε

100
λ, then (3.176) is trivial, and so we consider the case ai+2 ≥ ε

100
λ.

We now assert that

Ei+2 ≤
ε

24
Ei+1 +

8cβc4

δn
ω (ri)λ+

8cβc4

δn
λ

g0(λ)

[
|µ|(Bi)

rn−1
i

]
. (3.177)

By (3.32) and (3.175), we discover that

sup
Bi+1

|Dvi| ≥
ˆ
Bi+2

|Dvi| dx

≥
ˆ
Bi+2

|Du| dx−
ˆ
Bi+2

|Du−Dvi| dx

≥ ε

100
λ− c1δ

−2ng−1
0

(
|µ|(Bi)

rn−1
i

)
≥ ε

200
λ. (3.178)

Likewise, it follows from Theorem 3.3.2 and (3.32) that

‖Dvi‖L∞( 3
4
Bi)
≤ c6

ˆ
Bi

|Dvi| dx ≤ c6λ

+ c1c6g
−1
0

(
|µ|(Bi)

rn−1
i

)
≤ 2c6λ (3.179)

and
‖Dvi+1‖L∞( 3

4
Bi+1) ≤ 2c6λ. (3.180)

In addition, Theorem 3.3.3 and (3.179) imply

osc
Bi+1

Dvi ≤
ε

400
λ. (3.181)

We combine (3.178), (3.179) and (3.181) to discover

λ

H
≤ ε

400
λ ≤ |Dvi| ≤ 2c6λ ≤ Hλ in Bi+1. (3.182)

Hence, (3.180) and (3.182) allow us to apply Lemma 3.2.15, so that

ˆ
1
2
Bi+1

|Du−Dwi+1| dx ≤ c4ω (ri)λ+ c4
λ

g0(λ)

[
|µ|(Bi)

rn−1
i

]
. (3.183)
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We apply Lemma 2.3.1 and (3.183) to conclude that

Ei+2 ≤ 2E(Dwi+1, Bi+2) + 2

ˆ
Bi+2

|Du−Dwi+1| dx

≤ 2cβδ
βE(Dwi+1, Bi+1) +

2

δn

ˆ
1
2
Bi+1

|Du−Dwi+1| dx

≤ 4cβδ
βE(Du,Bi+1) +

8cβ
δn

ˆ
1
2
Bi+1

|Du−Dwi+1| dx

≤ ε

24
Ei+1 +

8cβc4

δn
ω (ri)λ+

8cβc4

δn
λ

g0(λ)

[
|µ|(Bi)

rn−1
i

]
.

This show the assertion (3.177).
Taking into account (3.173), (3.174), (3.175) and (3.177), we see that

the claim (3.176) holds uniformly with respect to the point x0 ∈ Ω′ and to
the initial radius R ∈ (δRε, Rε]. We then take rε := δ3Rε to observe that
there exists a positive integer m ≥ 3 such that δm+1R < ρ ≤ δmR for each
ρ ∈ (0, rε]. Consequently, (3.176) holds with ρ = δmr for some r ∈ (δR,R].
This completes the proof.

Actually, we assumed µ ∈ L∞(Ω), so that the solution u to (3.1) belongs
to W 1,G(Ω) in Theorem 3.1.3, Theorem 3.1.4 and Theorem 3.1.7. To com-
plete Theorem 3.1.9, we need to consider a bounded Borel measure µ and a
corresponding SOLA u.

Proof of Theorem 3.1.9. Let {uk}k∈N ∈ W 1,G(Ω) be a sequence of weak so-
lutions to (3.1) with right-hand side data µk ∈ L∞(Ω) as in Definition 3.1.2.
Let vk ∈ W 1,G(BR) be the weak solution to{

−div (γ(x)A(x,Dvk)) = 0 in BR

vk = uk on ∂BR,

for each k ∈ N. Then Lemma 3.2.1, Lemma 3.2.3, Lemma 3.2.4 and Corollary
3.2.2 holds for every k ∈ N. Recall Lemma 3.2.3 and lim supi→∞ |µi|(BR) ≤
|µ|(B̄R). Then for any sufficiently large k, we have

ˆ
BR

gm (|Duk −Dvk|)1+ 1
np dx ≤ c

[
|µk|(BR)

Rn−1

]1+ 1
np
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≤ 2c

[
|µ|(B̄R)

Rn−1

]1+ 1
np

, (3.184)

whenever 0 < R ≤ R1. By the uniform boundedness of ‖uk‖W 1,g(BR) and
(3.24), we discover that ‖vk‖W 1,g(BR) is uniformly bounded. Hence, there ex-
ists v ∈ W 1,g(BR) such that vk ⇀ v in W 1,g(BR). Applying Theorem 3.3.2
and Theorem 3.3.3 along with a standard covering argument, we find that
‖Dvk‖L∞(BαR) ≤ c(α) and {Dvk} is equicontinuous in BαR for each α ∈ (0, 1).
We now apply Arzela-Ascoli theorem, so that v ∈ C1

loc(BR) and Dvk(x) con-
verges to Dv(x) a.e. x ∈ BR, up to a not relabeled subsequence. Conse-
quently, (3.184) and the almost everywhere convergence imply vk → v in
W 1,g(BR). By Fatou’s Lemma, v solves{

−div (γ(x)A(x,Dv)) = 0 in BR

v = u on ∂BR,

In addition, Lemma 3.2.1 holds for u and v with χ satisfying (3.26):

ˆ
BR

gm,χ(|Du−Dv|) dx =

ˆ
BR

lim inf
k→∞

gm,χ(|Duk −Dvk|) dx

. lim inf
k→∞

gm,χ

(
|µk|(BR)

Rn−1

)
. gm,χ

(
|µ|(B̄R)

Rn−1

)
.

Similarly, Lemma 3.2.3, Lemma 3.2.4 and Corollary 3.2.2 also holds for u
and v. We remark that Lemma 3.2.3, Lemma 3.2.4 and Corollary 3.2.2 we
have used |µ|(BR), while we use instead |µ|(B̄R) here. Since the remaining
parts of the proof are still valid, we finish the proof.
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Chapter 4

Subquadratic systems without
the quasi-diagonal structure

4.1 Main results

The goal of Chapter 4 is to obtain sharp potential bounds for the gradient of
solutions to general nonlinear elliptic systems with subquadratic growth in
terms of modified Riesz potentials, which provides a complimentary nonlinear
potential theory to those with superquadratic growth in [80]. We refer to
Section 1.3 for remarks about gradient potential theory for elliptic systems.

In this chapter, we consider general p-Laplace type systems of the form

− div (A(x,Du)) = f in Ω (4.1)

where p ∈ (1, 2], Ω is a bounded domain in Rn, u : Ω→ RN with n,N ≥ 2.
The continuous vector field A : Ω × RNn → RNn is assumed to be C1-

regular in the second variable with ∂A being Carathéodory regular, and to
satisfy the following growth, ellipticity and continuity assumptions:
|A(x, ξ)|+ |∂A(x, ξ)||ξ| ≤ L|ξ|p−1

ν|ξ|p−2|z|2 ≤ 〈∂A(x, ξ)z, z〉
|A(x, ξ)− A(y, ξ)| ≤ Lω(|x− y|)|ξ|p−1

|∂A(x, ξ2)− ∂A(x, ξ1)| ≤ Lµ
(
|ξ2−ξ1|
|ξ1|+|ξ2|

)
|ξ1|p−2|ξ2|p−2(|ξ1|+ |ξ2|)2−p

(4.2)

for every ξ ∈ RNn \ {0}, ξ1, ξ2 ∈ RNn (except for ξ1 = ξ2 = 0), x, y ∈ Ω
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and z ∈ RNn, where 0 < ν ≤ L are fixed constants and ∂A stands for the
derivative of A with respect to the second variable. Two moduli of continuity
ω, µ : R+ → [0, 1] are concave, nondecreasing, bounded functions satisfying
ω(0) = µ(0) = 0. Observe from (4.2)4 and concavity of µ(·) that we have the
following locally Lipschitz continuity of A away from the origin:

|∂A(x, z2)− ∂A(x, z1)| ≤ c(p, L)µ

(
|z2 − z1|
|z1|

)
|z1|p−2 (4.3)

for every z1, z2 ∈ RNn with |z1| > 2|z2 − z1|.
We further assume Dini-continuity of the following partial map

x 7→ A(x, ξ)

|ξ|p−1
,

in the sense that for any r > 0

ˆ r

0

ω(ρ)
dρ

ρ
=: d(r) <∞. (4.4)

This partial map can be regarded as coefficients. When dealing with C1-
regularity of solutions to nonlinear p-Laplace equations with coefficients,
Dini-continuity is known to be an optimal regularity assumption for the co-
efficients, see for instance [76, 78]. It is known in [69] that weak solutions to
elliptic equations with continuous coefficient are not Lipschitz continuous in
general. Under (4.4), we have partial C1-regularity criteria in terms of Riesz
potentials, see Theorem 4.1.3.

In this chapter, we do not assume quasi-diagonal structure, in which one
can obtain full regularity results for the systems, see for instance [102]. On
the other hand, for the systems without quasi-diagonal structure, only partial
regularity results are available, except for subtle higher integrability. Indeed,
De Giorgi constructed discontinuous solutions to general systems in [62]. To
establish partial regularity, we assume that there exists η : (0,∞) → (0,∞)
and a : Ω→ [ν, L] such that

|ξ| ≤ η(s) =⇒ |A(x, ξ)− a(x)|ξ|p−2ξ| ≤ s|ξ|p−1 (4.5)

for every ξ ∈ RNn, x ∈ Ω and s > 0. In other words, A(x, ·) is asymptotically
close to p-Laplace operator with the coefficient a(x) at the origin, uniformly
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with respect to x ∈ Ω.
To guarantee the existence of weak solution to (4.1), we assume that

f ∈ Lq(Ω), where q ∈ (q̄,∞) with

q̄ :=


[p∗]′ =

np

np− (n− p)
if p < n,

3

2
if p = n = 2.

(4.6)

One can easily see that q̄ ∈ (1, n).
The approach that we will use through this chapter is the so-called ε-

regularity criteria which mean that the point x ∈ Ω satisfying

E(Du,Bρ(x)) :=

( ˆ
Bρ(x)

∣∣V (Du)− V
(
(Du)Bρ(x)

)∣∣2 dy) 1
2

< ε (4.7)

is a regular point of u, where the bijection map V : RNn → RNn is given
by V (ξ) = |ξ| p−2

2 ξ. Here, we call E(Du,Bρ(x)) as the excess functional of
Du. Indeed, it is also reasonable to use ε-regularity criteria to the following
modified Riesz potential

If1,q(x0, R) =

ˆ R

0

(
ρq
ˆ
Bρ(x0)

|f |q dx
) 1

q dρ

ρ
, (4.8)

from the presence of f ∈ Lq(Ω) in (4.1). We refer to [2, 16, 47, 61, 86, 87]
for further discussion about ε-regularity criteria regarding partial regularity
results for the systems.

Through this chapter data stands for the set of constants {n,N, p, q, ν, L}.
We now state our main result.

Theorem 4.1.1. Let u ∈ W 1,p(Ω;RN) be a weak solution to (4.1) under
(4.2), (4.4) and (4.5). There exists a constant ε∗ = ε∗(data, µ(·), η(·)) > 0
and a radius R∗ = R∗(data, d(·)) such that if

[
E(Du,BR(x0))

]2
+
[
If1,q(x0, R)

] p
(p−1) ≤ ε∗ (4.9)

holds for some BR(x0) ⊂ Ω with R ∈ (0, R∗], then we have the limits

lim
ρ→0

(Du)Bρ(x0) = Du(x0) and lim
ρ→0

(
V (Du)

)
Bρ(x0)

= V (Du)(x0), (4.10)

95



CHAPTER 4. SUBQUADRATIC SYSTEMS WITHOUT THE
QUASI-DIAGONAL STRUCTURE

with the equality
V (Du)(x0) = V

(
Du(x0)

)
. (4.11)

Moreover, for any ρ ∈ (0, R], we have

|V (Du)(x0)− V
(
(Du)Bρ(x0)

)
|

≤ cE(Du,Bρ(x0)) + c
[
Iµ1,q(x0, ρ)

] p
2(p−1)

+ c

( ˆ
Bρ(x0)

|Du| dx
) 2−p

2

Iµ1,q(x0, ρ) + c d(ρ)

ˆ
Bρ(x0)

|Du| dx, (4.12)

where c depends only on data and µ(·).

Note that if If1,q(x,R) is bounded for some radius R > 0, then one can

take If1,q(x, ρ) as small as one want, by taking ρ small enough. Hence, roughly
speaking, (4.9) is not much more restrictive than (4.7) once Riesz potential
is bounded.

The last term on the right hand side of (4.12) arises in the process of han-
dling the coefficients. In addition, the second to the last term naturally arises
from the interaction between lack of degeneracy for the problem with sub-
quadratic growth and the data on the right hand side in non-divergence form,
see [53] for such interaction and cf. [80] for the problem with superquadratic
growth.

Our second main result is VMO-regularity.

Theorem 4.1.2. Under the assumptions of Theorem 4.1.1, Du is VMO-
regular at x0 ∈ Ω, i.e.,

lim
ρ→0

E(Du,Bρ(x0)) = 0. (4.13)

Moreover, if we replace the assumption (4.9) by

sup
Bρ⊂Ω

[
If1,q(x0, ρ)

] p
2(p−1) ≤ ε∗

2
, (4.14)

and if

lim
ρ→0

(
ρq
ˆ
Bρ

|f |q dx
) 1

q

= 0 (4.15)
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holds locally uniformly in Ω, then Du is locally VMO-regular in the set

Ωu =
{
x ∈ Ω : ∃Bρ(x) ⊂⊂ Ω with ρ ≤ R∗ satisfying E(Du,Bρ(x)) <

ε∗
2

}
,

which is an open subset of Ω, satisfying |Ω \ Ωu| = 0.

One of the most important consequence of the gradient potential theory
is C1-regularity criteria in terms of potentials, see for instance [52,76]. Since
the proof of Theorem 4.1.3 is routine after obtaining Theorem 4.1.2, we now
state C1-regularity criteria without its proof.

Theorem 4.1.3. Let u ∈ W 1,p(Ω;RN) be a weak solutions to (4.1) under
the assumptions (4.2), (4.4) and (4.5). If

lim
ρ→0

[
If1,q(x0, ρ)

] p
2(p−1)

= 0 (4.16)

locally uniformly in Ω, then Du is continuous in the set Ωu, which is given in
Theorem 4.1.2. Consequently, Du is continuous in Ωu, whenever f ∈ L(n, 1)
that implies (4.16).

4.2 Preliminaries

We refer to Section 2.2 for the basic ingredients regarding N -functions and
Orlicz spaces.

We first recall a equivalent definition of excess functional given in 4.7. By
denoting

Ẽ(g,O) =

(ˆ
O

∣∣V (g(x))−
(
V (g)

)
O

∣∣2 dx) 1
2

for any g ∈ Lp(O;RNn), there exists a constant c1 = c1(n,N, p) satisfying

Ẽ(g,O) ≤ E(g,O) ≤ c1Ẽ(g,O), (4.17)

see for instance [61, (2.6)] and see also [46, Lemma A.2] for more general
cases.

Moreover, we have∣∣V ((g)Br
)
− V

(
(g)Br̃

)∣∣
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≤
∣∣V ((g)Br

)
−
(
V (g)

)
Br

∣∣+∣∣(V (g)
)
Br
−
(
V (g)

)
Br̃

∣∣+∣∣(V (g)
)
Br̃
− V

(
(g)Br̃

)∣∣
≤ τ−

n
2 Ẽ(g,Br) + 2

( ˆ
Br̃

∣∣V (g)− V
(
(g)Br

)∣∣2 dx) 1
2

(4.17)

≤ 3τ−
n
2E(g,Br), (4.18)

whenever g ∈ Lp(Br;RNn), r > 0, τ ∈ (0, 1) and r̃ ∈ [τr, r]. We use this
estimate in Section 4.5, when g = Du in order to deal with excess decay
estimates for Du.

As we mentioned earlier, there are several types of Sobolev-Poincaré in-
equality according to N -functions, see for instance Lemma 2.2.1, Lemma
2.2.2 and Lemma 2.2.3. The next lemma shows another Sobolev-Poincaré
type inequality for N -functions.

Lemma 4.2.1. Let ψ ∈ C1[0,∞) be a N-function satisfying (2.2) for any
1 < γ1 ≤ γ2 < ∞. Then for any u ∈ W 1,ψ(Br;RN) there exist constants
γ ≥ 1 and c ≥ 1, both depending only on n,N, γ1, γ2, such that

ˆ
Br

ψ

(∣∣∣∣u− (u)Br
r

∣∣∣∣) dx ≤ c

[ˆ
Br

[
ψ
(
|Du|

)] 1
γ dx

]γ
,

where Br is the ball with radius r > 0 in Rn .

Proof. This lemma is a consequence of Lemma 2.2.3.
Set γ = min

{
γ1+1

2
, n
n−1

}
∈ (1, γ1), and define a C2(0,∞) function

ψ(t) =

ˆ t

0

[
ψ(τ)

] 1
γ

τ
dτ.

Using (2.4), one can discover that ψ is also an N -function. By a straightfor-
ward calculation, we find that for every t > 0

0 <
γ1 − γ
γ

≤ tψ
′′
(t)

ψ
′
(t)

=
tψ′(t)

γψ(t)
− 1 ≤ γ2 − γ

γ
<∞

and ψ is an N -function satisfying

1 <
γ1

γ
≤ tψ

′
(t)

ψ(t)
≤ γ2

γ
<∞.

98



CHAPTER 4. SUBQUADRATIC SYSTEMS WITHOUT THE
QUASI-DIAGONAL STRUCTURE

Note that ψ(·) is equivalent to [ψ(·)]
1
γ , i.e., there exists c = c(γ2) > 1 such

that c−1[ψ(t)]
1
γ ≤ ψ(t) ≤ c[ψ(t)]

1
γ for every t > 0. Indeed, by the definition

of ψ, we discover[
ψ( t

2
)
] 1
γ

2
≤ ψ(t) ≤

∞∑
i=0

ψ

(
t

2i

) 1
γ

≤
[
ψ(t)

] 1
γ

∞∑
i=0

(
1

2

) γ1i
γ

≤ 2
[
ψ(t)

] 1
γ .

Applying [10, Proposition 3.5] with ψ, we find

ˆ
Br

ψ

(∣∣∣∣u− (u)B
r

∣∣∣∣)dx ≤ [ˆ
Br

[
ψ

(∣∣∣∣u− (u)B
r

∣∣∣∣)] n
γ(n−1)

dx

] γ(n−1)
n

≤ c

[ˆ
Br

[
ψ

(∣∣∣∣u− (u)B
r

∣∣∣∣)] n
n−1

dx

] γ(n−1)
n

≤ c

[ˆ
B

ψ(|Du|) dx
]γ

≤ c

[ˆ
B

ψ(|Du|)
1
γ dx

]γ
.

In the first line, we have used the fact that n
γ(n−1)

≥ 1 to use Hölder’s in-
equality. This completes the proof.

Let us consider a set of N -functions {ψs}s≥0 ⊂ C1[0,∞)∩C2(0,∞), where

ψs(t) = (t2 + s2)
p−2

2 t2. (4.19)

Then we have

2p−2|ψs2(t)|2 ≤ |ψs1(t)|2 ≤ 22−p|ψs2(t)|2, (4.20)

whenever 0 < 1
2
s2 ≤ s1 ≤ 2s2. We further see that there exists a constant

c = c(n,N, p) > 1 such that

c−1ψ|ξ1|(|ξ1 − ξ2|) ≤ |V (ξ1)− V (ξ2)|2 ≤ cψ|ξ1|(|ξ1 − ξ2|) (4.21)

for any ξ1, ξ2 ∈ RNn, see [44, Lemma 3]. Indeed, this set of N -functions
are used in the context of partial differential equations with general growth,
see [47, 48] and Section 5.
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We remark that (2.2) holds with γ1 = p and γ2 = 2, for every ψs uniformly
with respect to s ≥ 0. Furthermore, constant c in Lemma 4.2.1 does not
depend on s, when applying ψs to the lemma, later in this chapter.

4.2.1 Approximation lemmas.

Our analysis relies on A-harmonic approximation lemma, and p-harmonic
approximation lemma. We first look at A-harmonic approximation lemma,
which will be used later in Section 4.4.1 to discuss the non-singular case. Let
A : RNn × RNn → R be a bilinear form satisfying

|A| ≤ L and ν|ξ|2 ≤ A(ξ, ξ) for every ξ ∈ RNn. (4.22)

We say that h ∈ W 1,p(Br;RN) is A-harmonic if and only if

ˆ
Br

A(Dh,Dϕ) dx = 0

holds for every ϕ ∈ W 1,p
0 (Br;RN).

Lemma 4.2.2 (A-harmonic approximation lemma, see [47], Theorem 14).
Let A be a bilinear form on RNn satisfying (4.22) and Ψ be an N-function
satisfying (2.2). For any ε, σ > 0, there exists δ = δ(n,N, γ1, γ2, L, ν, σ, ε) > 0
such that the following statement holds: Assume that v ∈ W 1,Ψ(Br;RN) is
approximately A-harmonic i.e., v satisfies

ˆ
Br/2

A(Dv,Dϕ) dx ≤ δ

ˆ
Br

|Dv| dx ‖Dϕ‖L∞(Br)

for all ϕ ∈ C∞0 (Br;RN). Then there exists a unique A-harmonic map h ∈
v +W 1,Ψ

0 (Br;RN) satisfying

ˆ
Br/2

Ψ(|Dv−Dh|) dx ≤ ε

([ˆ
Br/2

[
Ψ(|Dv|)

]1+σ
dx

] 1
1+σ

+

ˆ
Br

Ψ(|Dv|) dx

)
,

whenever the right-hand side is finite.

From the classical theory of elliptic partial differential equations, A-
harmonic function is locally smooth. Recall the following excess decay type
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estimate of A-harmonic map: Let h ∈ W 1,2(Br;RN) be A-harmonic function
and 0 < r̃ ≤ r/2. Then we have

ˆ
Br̃

|Dh− (Dh)Br̃ | dx ≤
r̃

r

ˆ
Br

|Dh− (Dh)Br | dx.

For any N -function Ψ satisfying (2.2), Lipschitz regularity for Dh further
yields

ˆ
Br̃

Ψ
(
|Dh− (Dh)Br̃ |

)
dx ≤

(
r̃

r

)γ1
ˆ
Br

Ψ
(
|Dh− (Dh)Br |

)
dx, (4.23)

as follows from [47, Proposition 27].

Now, turn our attention to p-harmonic approximation lemma which is first
introduced by Duzaar and Mingione in [50, Lemma 1]. If h ∈ W 1,p(Br;RN)
satisfies ˆ

Br

|Dh|p−2Dh ·Dϕdx = 0

for every ϕ ∈ C∞0 (Br;RN), then we call h a p-harmonic map. We now present
a modified version of p-harmonic approximation lemma, see [49,50].

Lemma 4.2.3 (p-harmonic approximation lemma). For any ε > 0 and p1 ∈
(0, 2], there exists δ = δ(n,N, p, p1, ε) > 0 such that the following statement
holds: Assume that v ∈ W 1,p(Br;RN) is approximately p-harmonic i.e., v
satisfies

ˆ
Br

|Dv|p−2〈Dv,Dϕ〉 dx ≤ δ

( ˆ
Br

|Dv|p dx
) p−1

p

‖Dϕ‖L∞(Br)

for all ϕ ∈ C∞0 (Br;RN). Then there exists a unique p-harmonic map h ∈
v +W 1,p

0 (Br;RN) satisfying( ˆ
Br

|V (Dv)− V (Dh)|p1 dx

) 2
p1

≤ ε

ˆ
Br

|Dv|p dx.

Excess decay estimates for p-harmonic maps were shown by Giaquinta
and Modica for p ≥ 2 in [61], and by Acerbi and Fusco for 1 < p < 2
in [2, Proposition 2.11]. By virtue of (4.17), for any p-harmonic function
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h ∈ W 1,p(Br) and any 0 < r̃ ≤ r, there are two constants α ∈ (0, 1) and
c ≥ 1 both depending only on n,N, p such that

E(Dh,Br̃) ≤ c

(
r̃

r

)α
E(Dh,Br). (4.24)

It is enough to assume α ≤ p/2 to simplify the notations in later sections.
As mentioned earlier, our proof relies on Lemma 4.2.2 and Lemma 4.2.3

to deal with the condition (4.5), instead of Uhlenbeck condition on the vector
field A(·). For interested readers, we refer to [51], which summarized affluent
results on harmonic approximation lemmas.

We are going to show some higher integrability results in Section 4.3,
which will play a key role in approximation lemmas. We will apply Lemma
4.2.2 to obtain excess decay estimates for the non-singular case in Section
4.4.1. On the other hand, we apply Lemma 4.2.3 to establish excess decay
estimates for the singular case in Section 4.4.4.

4.3 higher integrability

We start this section with the following higher integrability result.

Lemma 4.3.1. Let u ∈ W 1,p(Ω) be a weak solution to (4.1) with (4.2). There
exist two constants c = c(data) > 1 and σg = σg(data) ∈ (0, 1], such that( ˆ

Br/2

|Du|p(1+σg) dx

) 1
1+σg

≤ c

ˆ
Br

|Du|p dx+c

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

(4.25)

for every ball Br ⊂ Ω, with q̄(1 + σg) ≤ q < n.

Proof. For the sake of completeness, we sketch its proof. We refer to [63,
Section 6] and [87, Section 4.1] for the detailed proof.

Fix a ball Br̃ := Br̃(y) ⊂ Br and test ϕ = ζ2(u − (u)Br̃) to (4.1), where
ζ ∈ C∞c (Br̃) is a cutoff function satisfying 0 ≤ ζ ≤ 1, ζ ≡ 1 on Br̃/2

and |Dζ| ≤ 4/r̃. Using (4.2) and Hölder’s inequality, we have the following
Caccioppoli type estimate:

ˆ
Br̃/2

|Du|p dx ≤ c

ˆ
Br̃

(
|u− (u)Br̃ |

r̃

)p
dx
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+ c

(
r̃q̄
ˆ
Br̃

|f |q̄ dx
) 1

q̄
( ˆ

Br̃

(
|u− (u)Br̃ |

r̃

)p∗
dx

) 1
p∗

,

where q̄ = [p∗]′. For any ε > 0, we now apply Sobolev-Poincaré inequality to
discover

ˆ
Br̃/2

|Du|p dx ≤ ε

ˆ
Br̃

|Du|p dx+ c

(ˆ
Br̃

|Du|p∗ dx
) p

p∗
+ c(ε)K

ˆ
Br̃

|f |q̄ dx,

where

p∗ =
np

n+ p
< p and K =

( ˆ
Br

|f |q̄ dx
) p

q̄(p−1)
−1

.

Applying Gehring’s lemma (see [63, Corollary 6.1]) for sufficiently small ε >
0, we complete the proof.

We next establish a modified version of the above higher integrability
result. It will play the central role in the proof of excess decay estimates for
the non-singular case, (4.32). We recall the notation (4.19) and simply denote
ψ := ψ0. Note that x dependence of the vector field A with (4.2)3 is a natural
generalization of p-Laplace systems.

Lemma 4.3.2. Let u ∈ W 1,p(Ω) be a weak solution to (4.1) with (4.2). Then
there exist constants σ = σ(data) ∈ (0, σg) and c = c(data) such that the
estimate(ˆ

Br/2

|V (Du)− V (ξ)|2(1+σ) dx

) 1
1+σ

≤ c

ˆ
Br

|V (Du)− V (ξ)|2 dx+ cω(r)2

ˆ
Br

(|Du|+ |ξ|)p dx

+ c

( ˆ
Br

(|Du|+ |ξ|)p dx
) 2−p

p
(
rq
ˆ
Br

|f |q dx
) 2

q

+ c

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

holds for any ξ ∈ RNn and ball Br ⊂ Ω, where σg > 0 is the constant
determined in Lemma 4.3.1.

Proof. Take any ball Br̃ = Br̃(y) ⊂ Br, and set

l := (u)Br̃ + ξ(x− x̄).
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Define a test function ϕ = ζ2(u− l), where ζ ∈ C∞0 (Br̃) is a cutoff function
such that 0 ≤ ζ ≤ 1, ζ = 1 on Br̃/2 and |Dζ| ≤ 4/r̃. Applying ϕ to (4.1), we
see

I1 :=

ˆ
Br̃

ˆ 1

0

〈∂A
(
x, ξ + (Du− ξ)t

)
(Du− ξ), Dϕ〉 dt dx

=

ˆ
Br̃

〈A(x,Du)− A(x, ξ), Dϕ〉 dx

=

ˆ
Br̃

〈A(x0, ξ)− A(x, ξ), Dϕ〉 dx+

ˆ
Br̃

fϕ dx =: I2 + I3.

We first estimate I1 as

I1

(4.2)

≥ ν

ˆ
Br̃

ˆ 1

0

|ξ + (Du− ξ)t|p−2 dt |Du− ξ|2ζ2 dx

− 2L

ˆ
Br̃

ˆ 1

0

|ξ + (Du− ξ)t|p−2 dt |Du− ξ||u− l||Dζ|ζ dx

≥ c−1

ˆ
Br̃

|V (Du)− V (ξ)|2ζ2 dx

− c
ˆ
Br̃

(|ξ|+ |Du− ξ|)p−2|Du− ξ||u− l||Dζ|ζ dx.

We now haveˆ
Br̃

|V (Du)− V (ξ)|2ζ2 dx

≤ c

ˆ
Br̃

ψ|ξ|(|Du− ξ|)
|Du− ξ|

|u− l||Dζ|ζ dx+ c I2 + c I3. (4.26)

Using Young’s inequality with ε̄ ∈ (0, 1), (2.1), (2.4) and Lemma 4.2.1
with ψ|ξ|, we discover

ˆ
Br̃

ζ
ψ|ξ|(|Du− ξ|)
|Du− ξ|

∣∣∣u− l
r̃

∣∣∣ dx
≤ ε̄

ˆ
Br̃

ψ∗|ξ|

(
ζ
ψ|ξ|(|Du− ξ|)
|Du− ξ|

)
dx+ c(ε̄)

ˆ
Br̃

ψ|ξ|

(∣∣∣u− l
r̃

∣∣∣) dx
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≤ c(p)ε̄

ˆ
Br̃

|V (Du)− V (ξ)|2ζ2 dx

+ c(ε̄)

(ˆ
Br̃

|V (Du)− V (ξ)|
2
γ dx

)γ
. (4.27)

Here, we have used (4.21) in the last line, and γ = γ(data) ∈ (0, 1) is the
constant determined in Lemma 4.2.1.

We now estimate I2 and I3. By (4.2)3 and Sobolev’s inequality, we discover

|I2| ≤ cω(r̃)|ξ|p−1

ˆ
Br̃

|Du− ξ| dx

≤ cω(r̃)

ˆ
Br̃

|V (Du)− V (ξ)|(|Du|+ |ξ|)
p
2 dx

≤ ε̄

ˆ
Br̃

|V (Du)− V (ξ)|2 dx+ c(ε̄)ω(r̃)2

ˆ
Br̃

(|Du|+ |ξ|)p dx. (4.28)

Recalling (4.6) and performing some standard manipulations leads to

|I3| ≤ cr̃

(ˆ
Br̃

|f |q̄ dx
) 1

q̄
(ˆ

Br̃

|Du− ξ|p dx
) 1

p

. (4.29)

We now estimate second term in (4.29) as

ˆ
Br̃

|Du− ξ|p dx

≤ c

ˆ
Br̃

|V (Du)− V (ξ)|p(|Du|+ |ξ|)
p(2−p)

2 dx

≤ c

( ˆ
Br̃

|V (Du)− V (ξ)|2 dx
) p

2
( ˆ

Br̃

(|Du|+ |ξ|)p dx
) 2−p

2

,

in order to discover

|I3| ≤ ε̄

ˆ
Br̃

|V (Du)− V (ξ)|2 dx

+ c(ε̄)

( ˆ
Br̃

(|Du|+ |ξ|)p dx
) 2−p

p
(
r̃q̄
ˆ
Br̃

|f |q̄ dx
) 2

q̄

. (4.30)
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Combining (4.26)-(4.28) and (4.30), we obtain

ˆ
Br̃

|V (Du)− V (ξ)|2 dx

≤ ε̄

ˆ
Br̃

|V (Du)− V (ξ)|2 dx+ c(ε̄)

(ˆ
Br̃

|V (Du)− V (ξ)|
2
γ dx

)γ
+ c(ε̄)

( ˆ
Br̃

(|Du|+ |ξ|)p dx
) 2−p

p
(
r̃q̄
ˆ
Br̃

|f |q̄ dx
) 2

q̄

+ c(ε̄)ω(r̃)2

ˆ
Br̃

(|Du|+ |ξ|)p dx. (4.31)

Recalling the definition of q̄ given in (4.6) and writing

K :=

( ˆ
Br

(|Du|+ |ξ|)p dx
) 2−p

p
( ˆ

Br

|f |q̄ dx
) 2

q̄
−1

,

we further estimate (4.31) as

ˆ
Br̃

|V (Du)− V (ξ)|2 dx

≤ ε̄

ˆ
Br̃

|V (Du)− V (ξ)|2 dx+ c(ε̄)

(ˆ
Br̃

|V (Du)− V (ξ)|
2
γ dx

)γ
+ c(ε̄)K

ˆ
Br

|f |q̄ dx+ c(ε̄)ω(r)2

ˆ
Br̃

(|Du|+ |ξ|)p dx.

From Lemma 4.3.1, we know that |Du| ∈ L1+σg(Br). Therefore, we apply
Gehring’s lemma and use (4.25) to deduce the desired result.

We remark that if there is no x dependence on A, then one can obtain
Lemma 4.3.2 without Lemma 4.3.1.

4.4 Excess decay estimates

Throughout the rest of this chapter, we denote by u ∈ W 1,p(Ω) to mean a
weak solution to (4.1) satisfying (4.2) and (4.5). In this section, we study two
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cases, the non-singular case and the singular case, via A-harmonic approxi-
mation lemma, Lemma 4.2.2, and p-harmonic approximation lemma, Lemma
4.2.3, respectively.

4.4.1 The non-singular case

Here we deal with the non-singular case which is characterized by the as-
sumption that

|(Du)Br |p >
1

θ1

[
E(Du,Br)

]2
(4.32)

for some fixed Br b Ω, while the constant θ1 ∈ (0, 1) will be selected later in
Lemma 4.4.3. For the sake of readability, we use the short notation

ξ1 := (Du)Br =

ˆ
Br

Dudx ∈ RNn.

We start with the following useful lemma.

Lemma 4.4.1. If (4.32) holds, then there exists a constant c = c(data) ≥ 1
such that ˆ

Br

|Du|p dx ≤ c |ξ1|p. (4.33)

Proof. By a direct calculation, we see

ˆ
Br

|Du|p dx ≤ 2p−1

[ˆ
Br

|Du− ξ1|p dx+ |ξ1|p
]
.

To estimate the first term on the right-hand side, we divide Br into

B+ =
{
x ∈ Br : |Du(x)− ξ1| ≥

1

2

[
|Du(x)|+ |ξ1|

]}
and B− := Br \B+. In B−, it holds that |Du(x)− ξ1| < 2|ξ1|, so

1

|Br|

ˆ
B−
|Du− ξ1|p dx < 2p|ξ1|p.

On the other hand in B+, we estimate

1

|Br|

ˆ
B+

|Du− ξ1|p dx ≤
22−p

|Br|

ˆ
B+

(|Du|+ |ξ1|)p−2|Du− ξ1|2 dx
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≤ c[E(Du,Br)]
2.

Finally, (4.33) follows from (4.32).

4.4.2 Large measure or oscillatory coefficient

For any constant θ2 ∈ (0, 1) to be chosen, we call(
rq
ˆ
Br

|f |q dx
) 1

q

> θ2|ξ1|
p−2

2 E(Du,Br) (4.34)

as large measure condition. In this case, we find from (4.17), (4.32) and (4.34)
that for every τ ∈ (0, 1)

[
E(Du,Bτr)

]2 ≤ c

ˆ
Bτr

∣∣V (Du)−
(
V (Du)

)
Bτr

∣∣2 dx
≤ c

ˆ
Bτr

∣∣V (Du)− V
(
(Du)Br

)∣∣2 dx
≤ c

τn

[
E(Du,Br)

]2
≤ c
√
θ1

τn
|ξ1|

p
2E(Du,Br)

≤ c2

θ2 τn
|ξ1|
(
Rq

ˆ
Br

|f |q dx
) 1

q

, (4.35)

where c2 depends only on data. In a similar way, if |ξ1| ≤ λ for any λ > 0,
then we have [

E(Du,Bτr)
]2 ≤ c

τn

[
E(Du,Br)

]2
≤ c

τn
λ2−p|ξ1|p−2

[
E(Du,Br)

]2
≤ c2

θ2
2τ

n
λ2−p

(
Rq

ˆ
Br

|f |q dx
) 2

q

. (4.36)

We next consider oscillatory coefficient condition

ω(r)2|ξ1|p > θ3

[
E(Du,Br)

]2
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for another constant θ3 ∈ (0, 1) to be chosen. Then we have[
E(Du,Bτr)

]2 ≤ c2

θ3τn
ω(r)2|ξ1|p. (4.37)

Here, we have abused the notation c2, since the dependence of the constants
is the same as in (4.35), (4.36) and (4.37).

4.4.3 Small measure and stable coefficient

We now deal with the case that (4.32),(
rq
ˆ
Br

|f |q dx
) 1

q

≤ θ2E(Du,Br)|ξ1|
p−2

2

and
ω(r)2|ξ1|p ≤ θ3

[
E(Du,Br)

]2
(4.38)

hold. As a direct consequence of (4.32) and (4.38)1, we have(
Rq

ˆ
BR

|f |q dx
) p

q(p−1)

≤ θ
2−p

2(p−1)

1 θ
p
p−1

2

[
E(Du,BR)

]2
. (4.39)

To establish excess decay estimate of Du, we are going to use A-harmonic
approximation lemma with the following bilinear form

A :=
∂A(x0, ξ1)

|ξ1|p−2
∈ RN2n2

,

which is strongly elliptic and has linear growth:

ν|λ|2 ≤ A(λ, λ) and |A| ≤ L

for any λ ∈ RNn by (4.2). We define a normalized function v ∈ W 1,p(Ω;RN)
by

v(x) =
|ξ1|

p−2
2

E(Du,Br)

[
u(x)− (u)Br − ξ1x

]
, (4.40)

which is indeed approximately A-harmonic, as we now have

Lemma 4.4.2. Assume (4.32) and (4.38). For any δ > 0 there exist θ̄1 =
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θ̄1(data, µ(·), δ), and θ2, θ3 depending on data and δ such that for every
ϕ ∈ C∞c (Br;RN)

ˆ
Br

A(Dv,Dϕ) dx ≤ δ‖Dϕ‖L∞(Br)

whenever θ1 ≤ θ̄1.

Proof. Fix a test function ϕ ∈ C∞c (Br;RN). Taking into account (4.1), we
haveˆ

Br

〈
∂A(x0, ξ1)(Du− ξ1), Dϕ

〉
dx

=

ˆ
Br

ˆ 1

0

〈[
∂A(x0, ξ1)− ∂A(x0, ξ1 + t(Du− ξ1))

]
(Du− ξ1), Dϕ

〉
dt dx

+

ˆ
Br

〈
A(x0, Du)− A(x,Du), Dϕ

〉
dx−

ˆ
Br

f · ϕdx

=: I + II −
ˆ
Br

f · ϕdx. (4.41)

Denoting B+ := {x ∈ Br : |ξ1| > 2|Du(x)−ξ1|} ⊂ Br and B− = Br \B+,
we estimate I as

I ≤
‖Dϕ‖L∞(Br)

|Br|

[ˆ
B+

ˆ 1

0

∣∣∣[∂A(x0, ξ1)− ∂A(x0, ξ1,t)
]
(Du− ξ1)

∣∣∣ dt dx︸ ︷︷ ︸
=:I1

+

ˆ
B−

ˆ 1

0

∣∣∣[∂A(x0, ξ1)− ∂A(x0, ξ1,t)
]
(Du− ξ1)

∣∣∣ dt dx]︸ ︷︷ ︸
=:I2

, (4.42)

where we have used the abbreviation ξ1,t := ξ1+t(Du−ξ1) for every t ∈ [0, 1].
Note that |Du(x)|+ |ξ1| ≤ 3|ξ1| and t|Du(x)−ξ1| ≤ |ξ1|/2 for all t ∈ [0, 1]

inB+. On the other hand, concavity of µ(·) implies that we have µ(ct) ≤ cµ(t)
for any c ≥ 1 and t ≥ 0. Taking these into account, we discover

I1

(4.3)

≤ c|ξ1|p−2

ˆ
B+

µ

(
|Du− ξ1|
|ξ1|

)
|Du− ξ1| dx
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≤ c|ξ1|
p−2

2

ˆ
B+

µ

(
|V (Du)− V (ξ1)|

|ξ1|
p
2

)
|V (Du)− V (ξ1)| dx

≤ c|ξ1|
p−2

2

( ˆ
B+

µ

(
|V (Du)− V (ξ1)|

|ξ1|
p
2

)2

dx

) 1
2

·
( ˆ

Br

|V (Du)− V (ξ1)|2 dx
) 1

2

. (4.43)

By Jensen’s inequality and (4.32), we have

1

|Br|

ˆ
B+

µ

(
|V (Du)− V (ξ1)|

|ξ1|
p
2

)2

dx ≤ c

|Br|

ˆ
B+

µ

(
|V (Du)− V (ξ1)|

|ξ1|
p
2

)
dx

≤ cµ

(
E(Du,Br)

|ξ1|
p
2

)
≤ cµ(θ

1
2
1 ). (4.44)

We combine (4.43) and (4.44) to obtain

I1

|Br|
≤ cµ(θ

1
2
1 )|ξ1|

p−2
2 E(Du,Br). (4.45)

On the other hand in B−, |Du(x)− ξ1|+ |ξ1| ≤ 3|Du(x)− ξ1| holds, and
we estimate I2 as follows:

I2

(4.2)

≤ c

ˆ
B−

[
|ξ1|p−2 +

ˆ 1

0

|ξ1 + t(Du− ξ1)|p−2 dt

]
|Du− ξ1| dx

≤ c

ˆ
B−

[
|ξ1|p−2 + (|ξ1|+ |Du− ξ1|)p−2

]
|Du− ξ1| dx

≤ c

|ξ1|

ˆ
B−

[
|Du− ξ1|p−1 +

|Du− ξ1|p−1

|ξ1|+ |Du− ξ1|
|ξ1|
]
|Du− ξ1| dx

≤ c

|ξ1|

ˆ
Br

∣∣V (Du)− V (ξ1)
∣∣2 dx. (4.46)

Combining (4.42), (4.45) and (4.46), we obtain

I ≤
c‖Dϕ‖L∞(Br)

|Br|

[
µ(θ

1
2
1 )|ξ1|

p−2
2 E(Du,Br) +

[E(Du,Br)]
2

|ξ1|

]
. (4.47)
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We now use Lemma 4.4.1 and (4.38)2 to estimate II as

II
(4.2)

≤ cω(R)‖Dϕ‖L∞(Br)

(ˆ
Br

|Du|p dx
) p−1

p

≤ cθ
1
2
3 ‖Dϕ‖L∞(Br)|ξ1|

p−2
2 E(Du,Br). (4.48)

Merging (4.41), (4.47) and (4.48), and dividing the resulting estimate by
|ξ1|p−2, we find

ˆ
Br

〈
A(Du− ξ1), Dϕ

〉
dx

(4.40)

≤ c

[
µ(θ

1
2
1 ) +

[
E(Du,Br)

]
|ξ1|

p
2

+ θ
1
2
3

+
1

|ξ1|
p−2

2 E(Du,Br)

(
Rq

ˆ
Br

|f |q dx
) 1

q

]
‖Dϕ‖L∞(Br)

≤ c∗
(
µ(θ

1
2
1 ) + θ

1
2
1 + θ2 + θ

1
2
3

)
‖Dϕ‖L∞(Br),

for some c∗ = c∗(data) ≥ 1. In the last line, we also have used (4.32) and
(4.38). Taking

θ̄1 = min

{( δ

4c∗

)2

,

[
µ−1
( δ

4c∗

)]2}
, θ2 =

δ

4c∗
and θ3 =

(
δ

4c∗

)2

,

we complete the proof.

Lemma 4.4.3. Assume (4.32) and (4.38). For any τ ∈ (0, 1/2] there exist
θ1 = θ1(data, µ(·), τ) ≤ τn+2α and θ2, θ3 depending on data and τ such that[

E(Du,Bτr)
]2 ≤ c3τ

2α
[
E(Du,Br)

]2
, (4.49)

where the constant c3 depends only on data.

Proof. Recall (4.19) and (4.40). We are going to use A-harmonic approxima-
tion lemma with an N -function

Ψ(t) =
1

[E(Du,Br)]2
ψ|ξ1|

(
E(Du,Br)

|ξ1|
p−2

2

t

)
, ∀t ≥ 0.
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Then we have

Ψ(|Dv|) =
ψ|ξ1|(|Du− ξ1|)
[E(Du,Br)]2

.

It then follows from Lemma 4.3.2, Lemma 4.3.1 and Lemma 4.4.1 that

[E(Du,Br)]
2

(ˆ
Br/2

Ψ(|Dv|)1+σ dx

) 1
1+σ

=

( ˆ
Br/2

[
ψ|ξ1|(|Du− ξ1|)

]1+σ

dx

) 1
1+σ

≤ c[E(Du,Br)]
2 + c|ξ1|2−p

(
rq
ˆ
Br

|f |q dx
) 2

q

+ cω(r)2|ξ1|p

+ c

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

,

where σ > 0 is the number given in Lemma 4.3.2. Dividing this estimate by
[E(Du,Br)]

2 and using (4.32), (4.38) and (4.39), we discover( ˆ
Br/2

Ψ(|Dv|)1+σ dx

) 1
1+σ

≤ c
(

1 + θ2
2 + θ3 + θ

2−p
2(p−1)

1 θ
p
p−1

2

)
≤ c. (4.50)

Apparently, we also have

ˆ
Br

Ψ(|Dv|) dx ≤ c. (4.51)

In light of Lemma 4.4.2, one can apply Lemma 4.2.2 to see that for any
ε > 0 there exists A-harmonic function h̄ ∈ v +W 1,Ψ(Br/2) such that

ˆ
Br/2

Ψ(|Dv −Dh̄|) dx ≤ ε, (4.52)

where we also have used (4.50) and (4.51). Using the notation

h(x) :=
E(Du,Br)√
|ξ1|p−2

h̄(x),
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(4.52) can be written as follows:

ˆ
Br/2

ψ|ξ1|(|Du−Dh|) dx ≤ ε[E(Du,Br)]
2. (4.53)

So far we have shown comparison estimates between u and A-harmonic
function h. To proceed further, let τ > 0, and set ξ2 = (Du)Bτr . Then we
have

|ξ2 − ξ1| ≤ c

(ˆ
Bτr

|Du− ξ1|p dx
) 1

p

≤ c

τ
n
p

(ˆ
Br

|V (Du)− V (ξ1)|p(|Du|+ |ξ1|)
(2−p)p

2 dx

) 1
p

(4.32)

≤ c̃∗

τ
n
p

θ
1
2
1 |ξ1|,

where c̃∗ depends only on data. Taking

θ1 = min

{
τn+2α,

τ
2n
p

4c̃2
∗
, θ̄1

}
,

we see 1
2
|ξ2| ≤ |ξ1| ≤ 2|ξ2|, and (4.20) follows.

Using Jensen’s inequality, we have

ˆ
Br/2

ψ|ξ1|(|Dh− (Dh)Br/2|) dx

≤ c

ˆ
Br/2

ψ|ξ1|(|Dh−Du|) dx+ c

ˆ
Br/2

ψ|ξ1|(|Du− ξ1|) dx

+ c ψ|ξ1|(|ξ1 − (Du)Br/2 |) + c ψ|ξ1|(|(Du)Br/2 − (Dh)Br/2|)

≤ c

ˆ
Br/2

ψ|ξ1|(|Dh−Du|) dx+ c

ˆ
Br/2

ψ|ξ1|(|Du− ξ1|) dx.

Similarly, we also have[
E(Du,Bτr)

]2
(4.21)

≤ c

ˆ
Bτr

ψ|ξ2|(|Du−Dh|) dx+ c

ˆ
Bτr

ψ|ξ2|(|Dh− (Dh)Bτr |) dx.
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It then follows from (4.20) and (4.23) that[
E(Du,Bτr)

]2
≤ cτ2α

ˆ
Br/2

ψ|ξ1|(|Dh− (Dh)Br/2|) dx+
c

τn

ˆ
Br/2

ψ|ξ1|(|Du−Dh|) dx

≤ cτ2α

ˆ
Br

ψ|ξ1|(|Du− ξ1|) dx+ c

(
τ2α +

1

τn

) ˆ
Br/2

ψ|ξ1|(|Du−Dh|) dx

(4.53)

≤ c
(
τ2α +

ε

τn

)
[E(Du,Br)]

2.

Taking ε ≤ τn+2 in the above estimate yields the desired result.

4.4.4 The singular case

In this section, we consider the case complementary to (4.32), that is∣∣(Du)Br
∣∣p ≤ 1

θ1

[
E(Du,Br)

]2
(4.54)

The following lemma is the singular counterpart of Lemma 4.4.1.

Lemma 4.4.4. Assume that (4.54) holds. There exists a constant c = c(p) ≥
1 such that ˆ

Br

|Du|p dx ≤ c

θ1

[
E(Du,Br)

]2
.

Proof. This lemma can be proved by applying (4.54) instead of (4.32) in the
very last part of the proof of Lemma 4.4.1.

We are now able to obtain excess decay estimates for the singular case
(4.54). We refer to [80, Proposition 4.1] for analogous estimates in case of
p ≥ 2.

Lemma 4.4.5. Assume (4.54). For any τ ∈ (0, 1), there exists ε1 depending
only on data, θ1, η(·) and τ such that if[

E(Du,Br)
]2 ≤ ε1, (4.55)
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then we have

[
E(Du,Bτr)

]2 ≤ c3τ
2α
[
E(Du,Br)

]2
+ c4

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

,

where c3 = c3(data) and c4 = c4(data, θ1, τ) are greater than or equal to 1,
and α ∈ (0, 1] is the constant determined in (4.24).

Proof. Fix any ϕ ∈ C1
0(Br), then by (4.1) we have∣∣∣∣ ˆ

Br

a(x)|Du|p−2 〈Du,Dϕ〉 dx
∣∣∣∣

≤
∣∣∣∣ ˆ

Br

〈A(x,Du)− a(x)|Du|p−2Du,Dϕ〉 dx
∣∣∣∣+

∣∣∣∣ˆ
Br

ϕf dx

∣∣∣∣
=: I1 + I2. (4.56)

We now use (4.2), (4.5) and Lemma 4.4.4 to estimate I1. For any s > 0, it
holds

I1 ≤
L

|Br|

ˆ
Br∩{|Du|>η(s)}

|Du|p

η(s)
dx‖Dϕ‖L∞(Br)

+
Ls

|Br|

ˆ
Br∩{|Du|≤η(s)}

|Du|p−1 dx‖Dϕ‖L∞(Br)

≤
[

c

θ1η(s)
[E(Du,Br)]

2 +
cs

θ
p−1
p

1

[E(Du,Br)]
2(p−1)
p

]
‖Dϕ‖L∞(Br). (4.57)

On the other hand, Hölder’s and Sobolev’s inequalities yield

I2 ≤ c‖Dϕ‖L∞(Br)

(
rq
ˆ
Br

|f |q dx
) 1

q

. (4.58)

Define

w(x) :=
u(x)

λ
with λ :=

[E(Du,Br)]
2
p

θ
1
p

1

+

(
rq

κ1

ˆ
Br

|f |q dx
) 1

q(p−1)
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for κ1 > 0 to be chosen shortly. According to Lemma 4.4.4

ˆ
Br

|Dw|p dx ≤ c.

We now combine (4.56)-(4.58) and use (4.55) to obtain

ˆ
Br

|Dw|p−2〈Dw,Dϕ〉 dx ≤ c̄∗

(
ε

1
p

1

θ
1
p

1 η(s)
+ s+ κ

1
q

1

)
‖Dϕ‖L∞(Br),

where c̄∗ ≥ 1 depends only on data. For any δ ∈ (0, 1), we derive

ˆ
Br

|Dw|p−2 〈Dw,Dϕ〉 dx ≤ δ‖Dϕ‖L∞(Br),

by taking s ≤ δ
3c̄∗

, thereby η(s), and then

ε1 ≤
(
δθ

1
p

1 η(s)

3c̄∗

) p
2

and κ1 ≤
(
δ

3c̄∗

)q
.

Set κ2 = θ1τ
2n+4α > 0 and p1 := p′2 := (2 + 2σg)

′ for the constant σg > 0
in Lemma 4.3.1. Taking δ = δ(data, p1, κ2) = δ(data, θ1, τ) > 0 sufficiently
small, one can apply Lemma 4.2.3, so that there exists p-harmonic map
h̄ ∈ W 1,p(Br;RN) with h̄ = w on ∂Br such that(ˆ

Br

|V (Dw)− V (Dh̄)|p1 dx

) 2
p1

≤ κ2.

From the choice of δ, we note that ε1 depends only on data, θ1, τ and η(·).
Scaling back the last estimate with h(ξ) = λh̄(ξ), we find(ˆ

Br

|V (Du)− V (Dh)|p1 dx

) 2
p1

≤ c
κ2

θ1

[
E(Du,Br)

]2
+ cκ2

(
rq

κ1

ˆ
Br

|f |q dx
) p

q(p−1)

. (4.59)

Higher integrability (see for instance [63, Section 6]) and energy minimiz-
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ing property of p-harmonic map yield( ˆ
Br/2

|Dh̄|p(1+σg) dx

) 1
1+σg

≤ c

ˆ
Br

|Dh̄|p dx ≤ c

ˆ
Br

|Dw|p dx.

It then follows from the equalities |Dh|p(1+σg) = |V (Dh)|2(1+σg) = |V (Dh)|p2

and Lemma 4.4.4 that(ˆ
Br/2

|V (Dh)|p2 dx

) 2
p2

≤ c

ˆ
Br

|Du|p dx ≤ c
[
E(Du,Br)

]2
. (4.60)

By Lemma 4.3.1 and Lemma 4.4.4, we further have( ˆ
Br/2

|V (Du)|p2 dx

) 2
p2

≤ c
[
E(Du,Br)

]2
+ c

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

. (4.61)

We combine (4.59), (4.60) and (4.61) to discover

ˆ
Br/2

|V (Du)− V (Dh)|2 dx

≤

(ˆ
Br/2

|V (Du)− V (Dh)|p1 dx

) 1
p1

(ˆ
Br/2

|V (Du)− V (Dh)|p2 dx

) 1
p2

≤ cτn+2α
[
E(Du,Br)

]2
+ c(κ1)

(
rq
ˆ
Br

|f |q dx
) p

q(p−1)

. (4.62)

In the last line, we have used κ2 = θ1τ
2n+4α.

We now estimate the excess of Du by using (4.17) and (4.24) as follows:

[
E(Du,Bτr)

]2 ≤ c

ˆ
Bτr

∣∣V (Du)−
(
V (Du)

)
Bτr

∣∣2 dx
≤ c

ˆ
Bτr

∣∣V (Du)−
(
V (Dh)

)
Bτr

∣∣2 dx
≤ c
[
E(Dh,Bτr)

]2
+ c

ˆ
Bτr

∣∣V (Du)− V (Dh)
∣∣2 dx

≤ c τ2α
[
E(Dh,Br/2)

]2
+ c τ−n

ˆ
Br/2

∣∣V (Du)− V (Dh)
∣∣2 dx
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≤ c τ2α
[
E(Du,Br/2)

]2
+ c τ−n

ˆ
Br/2

∣∣V (Du)− V (Dh)
∣∣2 dx.

Consequently, (4.62) gives the desired estimate.

We recall Lemma 4.4.3 to see that θ1 depends on data, µ(·) and τ. There-
fore, ε1 depends on data, µ(·), η(·) and τ, while c4 depends only on data, µ(·)
and τ.

4.5 Proof of Theorem 4.1.1

We divide the proof of Theorem 4.1.1 into three steps. In step 1, we construct
a sequence of concentric balls and revisit some well known properties of Riesz
potentials. In step 2, we prove some iterative lemmas including Lemma 4.5.1,
which insures that at least one of the estimates in Section 4.4 is still valid for
each concentric balls. Finally in step 3, we complete the proof of Theorem
4.1.1.

4.5.1 Basic settings

We fix constants 0 < ρ ≤ R ≤ R∗, where R∗ will be chosen shortly. Let us
take a small constant τ ∈ (0, 1/2] satisfying

c2
1c3τ

2α ≤ 1

16
, (4.63)

where c1 is determined in (4.17), and c3 is determined in Lemma 4.4.3 and
Lemma 4.4.5. Recall the constants θ1, θ2, θ3, ε1, c4 and c2 given in Section 4.4
and their dependence. Notice that we have chosen θ1 ∈ (0, 1) in Lemma 4.4.3
to satisfy

θ1 ≤ τn+2α. (4.64)

For every i ∈ {0, 1, 2, · · · }, we set a sequence of concentric balls

Bi := Bri = Bri(x0) with ri = τi+1R,

and write
ki = |(Du)Bi |

p
2 and Ei = E(Du,Bi).
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Recall (4.8) and the basic property of If1,q from [80, (6.6)]

∞∑
i=0

(
rqi

ˆ
Bi

|f |q dx
) 1

q

≤
If1,q(x0, R)

τ2n
. (4.65)

Since p/2(p− 1) ≥ 1, we have

∞∑
i=0

(
rqi

ˆ
Bi

|f |q dx
) p

2q(p−1)

≤
(
If1,q(x0, R)

τ2n

) p
2(p−1)

. (4.66)

Moreover, (4.65) readily implies

sup
0<ρ≤τR

(
ρq
ˆ
Bρ

|f |q dx
) 1

q

≤
If1,q(x0, R)

τ2n
and lim

ρ→0
ρq
ˆ
Bρ

|f |q dx = 0. (4.67)

Dini continuity of coefficient, (4.4) allow us to take R∗(data, d(·)) > 0
satisfying

d(R∗) =

ˆ R∗

0

ω(ρ)
dρ

ρ
≤ θ

1
2
1 θ

1
2
3 τ

n
2

100c1c
1
2
2

.

Similarly to (4.65), we discover

∞∑
i=0

ω(ri) ≤
1

− log τ

( ˆ R

r0

ω(ρ)
dρ

ρ
+
∞∑
i=0

ˆ ri

ri+1

ω(ρ)
dρ

ρ

)

≤ d(R) ≤ θ
1
2
1 θ

1
2
3 τ

n
2

100c1c
1
2
2

. (4.68)

4.5.2 Iterative lemmas

To begin with, let us remark about counterpart of Lemma 4.5.1 for the case
p ≥ 2 shown by Kuusi and Mingione in [80, Section 5]. They showed that Ei
is sufficiently small for every i ≥ 0 when E0 is small enough. However, this
fails when p < 2, because of lack of degeneracy. More precisely,

|ξ1 − ξ2|p ≤ c|V (ξ1)− V (ξ2)|2 (ξ1, ξ2 ∈ RNn)
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does not holds in general, for instance, see [53, Lemma 4.2] and [80]. There-
fore, it is not clear that Lemma 4.4.5 is applicable to the singular case (4.54).
Nevertheless, we can show that if (4.54) holds at some i ≥ 0, then Ei is small
enough, as we now state and prove.

Lemma 4.5.1. There exists a constant H1 = H1(data, µ(·), τ) ≥ 1 such that
for the constant ε1 given in Lemma 4.4.5, if

E2
0 +H1 sup

j≥0

(
rqj

ˆ
Bj

|f |q dx
) p

q(p−1)

≤ ε1, (4.69)

then

E2
i ≤ ε1 or

1

θ1

E2
i < k2

i (4.70)

holds for every i ≥ 0.

Proof. We prove by induction. For i = 0, (4.70)1 holds true by the assumption
(4.69). We now assume that (4.70) holds for some i ≥ 0. We write

H1 = min

{
4c4, 4

(
16c2

θ2
2τ

n

) 2p−1
p−1
}
. (4.71)

Case 1) (4.70)2 fails.
In this case, we assume not only (4.70)1, but also 1

θ1
E2
i ≥ k2

i . It then
follows from Lemma 4.4.5, (4.63) and (4.71) that

E2
i+1 ≤ 2c3τ

2αE2
i + 2c4

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

≤ ε1.

Case 2) (4.70)2 holds.
We now suppose that (4.70)2 holds. Taking (4.18) and (4.70) into account,

we see
ki ≤ ki+1 + 3τ−

n
2Ei ≤ ki+1 + 3c1τ

−n
2 θ

1
2
1 ki.

Accordingly, (4.63) and (4.64) yield

ki ≤ 2ki+1. (4.72)
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Next, we consider the following alternatives: Either

k2
i >

1

θ∗

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

(4.73)

or

k2
i ≤

1

θ∗

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

(4.74)

for some θ∗ ∈ (0, 1) to be chosen shortly. For the case (4.73), we combine
(4.35), (4.37) and (4.49) to discover

E2
i+1 ≤

c2

θ2τn
k

2
p

i

(
rqi

ˆ
Bri

|f |q dx
) 1

q

+
c2

θ3τn
ω(ri)

2k2
i + c3τ

2αE2
i

≤
[
c2θ

p−1
p
∗

θ2τn
+

c2

θ3τn
ω(ri)

2 + c3τ
2αθ1

]
k2
i .

Taking θ∗ =
(
θ1θ2τn

16c2

) p
p−1 , the estimate

1

θ1

E2
i+1 ≤ k2

i+1

follows from (4.63), (4.68) and (4.72).
The only case left to be considered is that (4.70)2 holds with (4.74). If we

assume (
rqi

ˆ
Bi

|f |q dx
) 1

q

≤ θ2Eik
p−2
p

i and ω(ri)
2k2
i ≤ θ3E

2
i ,

then Lemma 4.4.3 and (4.72) yield

1

θ1

E2
i+1 ≤

c3τ
2α

θ1

E2
i

(4.63)

≤ 1

16
k2
i ≤ k2

i+1.

On the contrary, when(
rqi

ˆ
Bi

|f |q dx
) 1

q

> θ2Eik
p−2
p

i or ω(ri)
2k2
i > θ3E

2
i
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holds, then (4.35), (4.37), (4.68), (4.74) and the choice of θ∗ yield

E2
i+1 ≤

c2

θ2τn
k

2
p

i

(
rqi

ˆ
Bi

|f |q dx
) 1

q

+
c2

θ3τn
ω(ri)

2k2
i

≤ c2

θ2θ∗τn

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

+
c2

θ3θ∗τn
ω(ri)

2

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

≤ H1

(
rqi

ˆ
Bi

|f |q dx
) p

q(p−1)

.

Recalling (4.69), we obtain E2
i+1 ≤ ε1. This finishes the proof.

Remark 4.5.2. Assume (4.69). Consequently, in light of Lemma 4.5.1, we
can apply Lemma 4.4.5, Lemma 4.4.3, (4.36) and (4.37) to obtain

Ei+1 ≤
1

4
Ei + c

1
2
4

(
rqi

ˆ
Bi

|f |q dx
) p

2q(p−1)

+
c

1
2
2

θ2τ
n
2

Λ
2−p

2

(
Rq

ˆ
Bi

|f |q dx
) 1

q

+
c

1
2
2 ω(ri)

θ
1
2
3 τ

n
2

Λ
p
2 , (4.75)

whenever k2
i ≤ Λp for any i ≥ 0. Here, we also have used (4.63), (4.65) and

(4.66).

Lemma 4.5.3. Under the assumption (4.69), if

kl + τ−
n
2El ≤

Λ
p
2

100
(4.76)

and

H2I
f
1,q(x0, rl) ≤ Λp−1 with H2 =

100c1c
1
2
2 c

1
2
4

θ2τ3n
(4.77)

holds for some l ≥ 0, then for every 0 < ρ ≤ rl we have

|(Du)Bρ| ≤ Λ. (4.78)

Proof. Firstly, we prove

k2
i ≤

Λp

2
(4.79)
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for every i ≥ l by induction and by using the estimate (4.75). The case i = l
follows directly from (4.76).

We now assume that (4.79) holds for every i ∈ {l, l + 1, . . . ,m}. Using
(4.75) repeatedly, we have

m∑
i=l

Ei ≤ El +
1

4

m−1∑
i=l

Ei + c
1
2
4

m−1∑
i=l

(
rqi

ˆ
Bi

|f |q dx
) p

2q(p−1)

+
c

1
2
2

θ2τ
n
2

Λ
2−p

2

m−1∑
i=l

(
Rq

ˆ
Bi

|f |q dx
) 1

q

+
c

1
2
2

θ
1
2
3 τ

n
2

Λ
p
2

m−1∑
i=l

ω(ri)

≤ 2El + 2c
1
2
4

m−1∑
i=l

(
rqi

ˆ
Bi

|f |q dx
) p

2q(p−1)

+
2c

1
2
2

θ2τ
n
2

Λ
2−p

2

m−1∑
i=l

(
rqi

ˆ
Bi

|f |q dx
) 1

q

+
2c

1
2
2

θ
1
2
3 τ

n
2

Λ
p
2

m−1∑
i=l

ω(ri).

It then follows from (4.65), (4.66), (4.68) and (4.79) that

m∑
i=l

Ei ≤ 2El + 2c
1
2
4

(
If1,q(x0, rl)

τ2n

) p
2(p−1)

+
2c

1
2
2

θ2τ
n
2

Λ
2−p

2
If1,q(x0, rl)

τ2n
+

2c
1
2
2

θ
1
2
3 τ

n
2

Λ
p
2

m−1∑
i=l

ω(ri) ≤
τ
n
2

10
Λ
p
2 . (4.80)

For the last inequality, we have used the definition of H2 given in (4.77) and
the fact that p/2(p− 1) ≥ 1. It then follows from (4.18) that

km+1 ≤ kl + 2τ−
n
2

l∑
i=l

Ei ≤
Λ
p
2

2
.

This shows (4.79).
We next prove (4.78). For any 0 < ρ ≤ rl, there exists an integer m ≥ l

such that ρ ∈ (rm+1, rm]. Using again (4.18), we discover

|(Du)Bρ|
p
2 ≤ 2τ−

n
2Em + km.

Now, (4.78) is a direct consequence of (4.79) and (4.80).
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For each x0 ∈ Ω, we write

Λ
p
2 := Λ(x0)

p
2

:= 200τ−
n
2

[( ˆ
BτR(x0)

|Du|p dx
) 1

2

+
(
H2I

f
1,q(x0, τR)

) p
2(p−1)

]
. (4.81)

The assumptions, (4.76) and (4.77) for l = 0, immediately hold with above
Λ.

Remark 4.5.4. A consequence of Lemma 4.5.1 and Lemma 4.5.3 is pointwise
BMO-regularity for Du under (4.69). In light of Lemma 4.5.1, for every i ≥ 0,
we have

E2
i ≤ ε1 + θ1k

2
i .

For any ρ ∈ (0, r0], there exists j ≥ 0 such that ρ ∈ (rj+1, rj]. Using (4.17),
we obtain

E(Du,Bρ) ≤ c1Ẽ(Du,Bρ) ≤ c1τ
−n

2Ej ≤ c1τ
−n

2 (1 + kj). (4.82)

On the other hand, Lemma 4.5.3 implies that kj ≤ Λ
p
2 . Consequently,

E(Du,Bρ) is uniformly bounded with respect to ρ ∈ (0, r0] with r0 = τR.

We are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Set ε∗ = τnε1/H1, where τ, H1, ε1 are the given con-
stants in (4.63), Lemma 4.5.1 and Lemma 4.4.5. Then (4.69) holds. Therefore,
Lemma 4.5.1 holds, and also Lemma 4.5.3 holds for the constant Λ given in
(4.81) and l = 0 .

Our first goal is to prove that for any small constant s > 0, there exists
is ∈ N such that

sup
0<ρ≤is

E(Du,Bρ(x0)) ≤ s, (4.83)

which is equivalent to (4.13). We now fix a small constant s > 0. Taking
(4.67) and (4.68) into account, there exists i0 such that

H2(1 + Λ
2−p

2 ) sup
i≥i0

(
rqm

ˆ
Bm

|f |q dx
) p

2q(p−1)

≤ τ
n
2 s

8
(4.84)

and

H2ω(ri0)Λ
p
2 ≤ τ

n
2 s

4
. (4.85)
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Fix any ρ ∈ (0, ri0+1], then there exists j ≥ i0 + 1 such that ρ ∈ (rj+1, rj],
and so

E(Du,Bρ(x0)) ≤ τ−
n
2Ej. (4.86)

Applying (4.75) iteratively and using (4.84) and (4.85), we find

Ej ≤
1

4j−i0
Ei0 +H2 sup

i≥i0

(
rqi

ˆ
Bi

|f |q dx
) p

2q(p−1)

+H2Λ
2−p

2 sup
i≥i0

(
rqi

ˆ
Bi

|f |q dx
) 1

q

+H2ω(ri0)Λ
p
2

≤ 1

4j−i0
Ei0 +

τ
n
2 s

2
,

where we also have used the fact p/2(p−1) ≥ 1. We now combine (4.86) and
(4.82) to discover

E(Du,Bρ(x0)) ≤ c1(1 + Λ)

τn4j−i0
+
s

2
.

Consequently, there exists is = is(τ,Λ) > i0 such that (4.83) holds. This
shows (4.13).

We now turn our attention to local VMO-regularity. Assume (4.14) and
(4.15), and take a point x0 ∈ Ωu. Note that (4.14) and continuity property
of integral imply the uniform boundedness of map x 7→ Λ(x), where Λ(·) is
defined in (4.81).

For a fixed constant s > 0, (4.15) and uniform boundedness of Λ(·) allow
us to take a neighborhood of x0(denote by O), such that there exists i0
satisfying (4.84) for every points in O. In light of (4.68), we can further
assume that (4.85) holds for every x ∈ O. Then the same proof as above
gives

E(Du,Bρ(x)) ≤ c1(1 + Λ(x))

τn4j−i0
+
s

2

for every x ∈ O. Consequently, uniform boundedness of x→ Λ(x) in O yields
that E(Du,Bρ(x))→ 0 uniformly in O. This completes the proof.
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4.5.3 Proof of Theorem 4.1.1

We first prove that every point x0 ∈ Ω satisfying (4.9) is a Lebesgue point of
Du. Recall that the choice of ε∗ given in the proof of Theorem 4.1.2 implies
(4.69), and so Lemma 4.5.1 is available.

Proof of (4.10) and (4.11). For any i ≥ 0, (4.18) implies

|V
(
(Du)Bi+1

)
− V

(
(Du)Bi

)
| ≤ 3τ−

n
2Ei.

In light of (4.9), we can apply (4.80) for any 1 ≤ m < l to discover

|V
(
(Du)Bl

)
− V

(
(Du)Bm

)
|

≤ 3τ−
n
2

∑
m≤i≤l−1

Ei

≤ 6τ−
n
2Em +H2

[
If1,q(x0, rm−1)

] p
2(p−1)

+H2Λ
2−p

2 If1,q(x0, rm−1) +H2Λ
p
2d(rm−1). (4.87)

Recall (4.4) and (4.8) to observe that If1,q(x0, rm−1) and d(rm−1) converges to
0, as m→∞. In addition, the right-hand side of (4.87) does not depend on
l, and it converges to 0 as m→∞ by pointwise VMO regularity, (4.13).

On the other hand, using Lemma 4.5.3, we have

|(Du)Bl − (Du)Bm| ≤ cΛ
2−p

2 |V
(
(Du)Bl

)
− V

(
(Du)Bm

)
|.

Hence, {(Du)Bi}i≥1 is a Cauchy sequence, and denote the limit of the se-
quence by L ∈ RNn, i.e.,

lim
i→∞

(Du)Bi = L.

For any ρ ∈ (0, τ2r], there exists m ≥ 1 such that ρ ∈ (rm+1, rm]. Again
(4.18) implies

|V
(
(Du)Bρ(x0)

)
− V

(
(Du)Bm

)
| ≤ 3τ−

n
2Em.

Therefore, we obtain

lim
ρ→0
|L − (Du)Bρ(x0)| ≤ lim

m→∞
|L − (Du)Bm|

+ cΛ(2−p)/2 lim
ρ→0

∣∣V ((Du)Bm
)
− V

(
(Du)Bρ(x0)

)∣∣
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≤ lim
m→∞

|L − (Du)Bm|+ 3cτ−
n
2 Λ

2−p
2 lim

m→∞
Em = 0.

This completes the proof of (4.10).
A slight modification of the proof of (4.10)1 yields (4.10)2. Hence we omit

the proof of (4.10)2. For more details, we refer to [80, Lemma 6.4].
At this stage, the proof of (4.11) follows from (4.10) and the following

estimate ∣∣(V (Du)
)
Bρ(x0)

− V
(
(Du)Bρ(x0)

)∣∣ ≤ E(Du,Bρ(x0))

for every ρ ∈ (0, τ2R]. Specifically, we have

|V (Du)(x0)− V (Du(x0))| ≤ |V (Du)(x0)−
(
V (Du)

)
Bρ(x0)

|

+ |
(
V (Du)

)
Bρ(x0)

− V
(
(Du)Bρ(x0)

)
|

+ |V
(
(Du)Bρ(x0)

)
− V (Du(x0))|.

Taking (4.10) and (4.13) into account, the right-hand side converges to 0 as
ρ goes to 0.

Proof of (4.12). First, we assume ρ ∈ (0, τR]. There existsmρ ∈ {0, 1, 2, · · · }
such that ρ ∈ (rmρ+1, rmρ ]. In this proof, we set

Λ
p
2 = 200τ−n

[( ˆ
Bρ(x0)

|Du|p dx
) 1

2

+
(
H2I

f
1,q(x0, ρ)

) p
2(p−1)

]
.

A straightforward calculation shows

kmρ+1 + τ−
n
2Emρ+1 ≤ τ−

n
2 kρ + τ−nE(Du,Bρ) ≤

Λ
p
2

100

and
H2I

f
1,q(x0, rl) ≤ Λp−1.

Therefore, Lemma 4.5.3 gives

|(Du)B%| ≤ Λ

for every % ∈ (0,mρ + 1]. Moreover, similarly to (4.87), we have

|V
(
(Du)Bl

)
− V

(
(Du)Bmρ+2

)
|
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≤ 6τ−
n
2Emρ+2 +H2

[
If1,q(x0, rmρ+1)

] p
2(p−1)

+H2Λ
2−p

2 If1,q(x0, rmρ+1) +H2Λ
p
2d(rmρ+1)

for any l ≥ mρ + 2.
Letting l→∞ in the previous estimates, we discover

|V (Du)(x0)− V
(
(Du)Bmρ+2

)
|

≤ 6τ−
n
2Emρ+2 +H2

[
If1,q(x0, rmρ+1)

] p
2(p−1)

+H2Λ
2−p

2
2 If1,q(x0, rmρ+1) +H2Λ

p
2
2 d(rmρ+1)

≤ 6τ−
3n
2 E(Du,Bρ) +H2

[
If1,q(x0, ρ)

] p
2(p−1)

+H2Λ
2−p

2
2 If1,q(x0, ρ) +H2Λ

p
2
2 d(ρ), (4.88)

where we have used (4.10).
Again we have∣∣V ((Du)Bmρ+2

)
− V

(
(Du)Bρ

)∣∣ ≤ 3τ−nE(Du,Bρ). (4.89)

Combining (4.88) and (4.89), we conclude that (4.12) holds for every ρ ≤ τR.
We use (4.12) for τρ > 0 to obtain (4.12) for ρ ∈ (τR,R]. This completes

the proof.
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Chapter 5

Measure data problems with
general growth

In this chapter, we study Calderón-Zygmund type estimates for nonlinear
elliptic measure data problems in terms of the fractional maximal function
of order 1 and later, we investigate similar estimates for integral functionals
with p(x)-growth. Indeed, for the second problems, we take quasi-minimizers
into account and present only the proof of a comparison estimate which
essentially deals with controlling quasi-minimality, since the remaining parts
of the proofs are quite similar to the ones for former problems.

We remark that these researches delivered from the process of developing
a unified method in the gradient potential theory.

5.1 Main result

Let us consider the following measure data problem with general growth:{
−div(A(x,Du)) = µ in Ω,

u = 0 on ∂Ω,
(5.1)

where Ω ⊂ Rn is a bounded domain with n ≥ 2 and µ is a Radon measure
with finite mass. The given vector field A : Ω × Rn → Rn is assumed to be
C1-regular in the second variable, with ∂A(·) = ∂ξA(·) being Carathéodory

131



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL
GROWTH

regular, and satisfy the following growth and ellipticity assumptions:{
|A(x, ξ)|+ |∂A(x, ξ)||ξ| ≤ Lg(|ξ|),
ν g(|ξ|)|ξ| |ζ|

2 ≤ 〈∂A(x, ξ)ζ, ζ〉
(5.2)

for every ξ, ζ ∈ Rn and x ∈ Ω, where 0 < ν ≤ L < ∞. Here, g is the
derivative of an N -function G ∈ C2(0,∞) ∩ C1[0,∞) satisfying

0 < γ1 − 1 ≤ tg′(t)

g(t)
≤ γ2 − 1 <∞ (5.3)

for some constants γ1, γ2 > 1. Recall the definition of N -functions and cor-
responding function spaces given in Section 2.2.

For (5.1), we are going to prove the existence of a SOLA and the global
Calderón-Zygmund estimates for (5.1) in terms of M1(µ), under possibly the
weakest assumptions both on A(·) and Ω.

So far, there have been only a few regularity results for SOLAs to (5.1)
with general g(t) satisfying (5.3), while there are many research papers when
g(t) = tp−1 in (5.2). We refer to the very fine paper [10] which obtained Riesz
potential estimates for (5.1) with general growth. To avoid the difficulties
that arise from the lack of monotonicity of the map t 7→ g′(t), it is assumed
in [10] that

2 ≤ γ1, (5.4)

in order to obtain gradient potential estimates. On the other hand, in the
spirit of Calderón-Zygmund estimates, (5.4) can be relaxed as

2− 1/n < γ1 ≤ γ2 <∞, (5.5)

which covers the whole range of p ∈ (2− 1/n,∞) for p-Laplacian type equa-
tions, see [94].

We would like to emphasize that comparison estimates between p-Laplacian
type measure data problem and the corresponding homogeneous problem
have different forms, stemming from (5.14), according to the range of p.
Roughly speaking, constructing some auxiliary functions, we can obtain de-
sired comparison estimates in the sense of L1 without distinguishing p ≥ 2
and p ∈ (2− 1/n, 2), see Lemma 5.3.5.

We now turn our attention to our assumptions on the couple (A(·),Ω).
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Definition 5.1.1. For some R > 0 and δ ∈ (0, 1/8), we say that (A(·),Ω) is
(δ, R)-vanishing, whenever the followings hold:

1. Denoting

θ(U)(x) :=
1

g(|ξ|)
sup
ξ∈Rn

∣∣∣∣A(x, ξ)−
ˆ
U

A(z, ξ) dz

∣∣∣∣ (≤ 2L)

for any measurable set U ⊂ Rn and x ∈ U , we have

sup
0<r<R

sup
y∈Rn

ˆ
Br(y)

θ(Br(y))(x) dx ≤ δ.

2. For each y ∈ ∂Ω and r ∈ (0, R], there exists a coordinate system
{ỹ1, · · · , ỹn} with the origin at y satisfying

Br(0) ∩ {ỹn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {ỹn > −δr}.

We call such Ω as a (δ, R)-Riefenberg flat domain.

We remark that a Riefenberg flat domain has its boundary trapped be-
tween two hyperplanes. Moreover, (δ, R)-Riefenberg flatness guarantees the
measure density condition

sup
0<r≤R
x∈Ω

|Br(x)|
|Ω ∩Br(x)|

≥
(

2

1− δ

)n
≥
(

16

7

)n
and

inf
0<r≤R
x∈∂Ω

|Ωc ∩Br(x)|
|Br(x)|

≥
(

1− δ
2

)n
≥
(

7

16

)n
.

This condition will be used several times later, without referring to it. For a
further discussion on Riefenberg domains, we refer to [28,82,96].

We now state our main result.

Theorem 5.1.2. Under the assumptions (5.2) and (5.3), let u ∈ W 1,1
0 (Ω)

be a SOLA to the problem (5.1). Suppose that g−1(M1(µ)) ∈ LH(Ω) for some
N-function H ∈ C2(0,∞) ∩ C1[0,∞) with its derivative h satisfying

0 < γ3 − 1 = inf
t>0

th′(t)

h(t)
≤ th′(t)

h(t)
≤ sup

t>0

th′(t)

h(t)
= γ4 − 1. (5.6)
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Then there exists a small constant δ = δ(n, γ1, γ2, γ3, γ4, ν, L) > 0 such that
if (A(·),Ω) is (δ, R)-vanishing, then Du ∈ LH(Ω) with the estimate

ˆ
Ω

H(|Du|) dx ≤ c

ˆ
Ω

H ◦ g−1(M1(µ)) dx, (5.7)

where c depends only on n, γ1, γ2, γ3, γ4, ν, L and diam(Ω)/R.

As a consequence of Theorem 5.1.2, we find a sharp gradient estimate in
the frame of Lorentz spaces, see Remark 5.4.2.

Our main approach to the proof of Theorem 5.1.2 is based on the so-
called maximal function free technique which is introduced in [5] and revisited
by [27,32], along with the following observation

g−1

(
r|µ|(Ωr(x0))

|Br(x0)|

)
≤ c

ˆ
Ωr(x0)

g−1

(
2r|µ|(Ω2r(x))

|B2r(x)|

)
dx

≤ c

ˆ
Ωr(x0)

g−1(M1(µ)) dx, (5.8)

for any x0 ∈ Ω and some constant c = c(n, γ1, γ2). The main feature in this
chapter is that we are able to find a unified way working both the degenerate
and singular cases to prove (5.7).

5.2 Existence of SOLA

Until Section 5.5, we use the abbreviation

data := {n, γ1, γ2, ν, L}

and set the auxiliary vector field V : Rn → Rn by

V (ξ) :=

(
g(|ξ|)
|ξ|

) 1
2

ξ

for each ξ ∈ Rn. The monotonicity of A can be written simply in terms of V
as in (2.18).

This section is devoted to introducing the so-called SOLAs to (5.1) and
proving its existence. Recall that the right-hand side datum µ given in (5.1)
is a bounded Radon measure. As mentioned in Section 1.1, several notions
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of solutions were mentioned to deal with measure data problems. Before
introducing SOLAs, we first recall approximable solutions with the following
notation:

Λ1,G := {u is measurable in Ω : Tt(u) ∈ W 1,G(Ω) for all t > 0}.

Definition 5.2.1. We say that u ∈ Λ1,G is called an approximable solution
to (5.1), if u solves (5.1) in the distributional sense which means

ˆ
Ω

〈A(x,Du), Dφ〉 dx =

ˆ
Ω

φ dµ, ∀φ ∈ W 1,∞
0 (Ω),

and the following statement holds: There exists a sequence of weak solutions
{uk}k∈N ⊂ W 1,G

0 (Ω) to{
−div(A(x,Duk)) = µk in Ω

uk = 0 on ∂Ω,
(5.9)

where µk ∈ L∞(Ω) converges to µ weakly inMb(Ω), such that uk → u almost
everywhere.

We now introduce SOLAs.

Definition 5.2.2. We say that u ∈ W 1,1
0 (Ω) is a SOLA to (5.1), if u is an ap-

proximable solution with a sequence of functions {uk}k≥0, then uk converges
to u strongly in W 1,1(Ω) up to a subsequence.

A main difference between the notion of SOLA and approximable solu-
tion is that an approximable solution u only requires Duk → Du almost
everywhere, while a SOLA requires Duk → Du strongly in L1. We point out
that the almost everywhere convergence is not enough in proving the desired
Calderón-Zygmund estimate (5.7), as far as we are concerned. In this regard,
we need the strong convergence in L1 for which we are dealing with SOLA
instead of approximable solution.

Except for this section where the existence of a SOLA is proved under
(5.12), we always assume γ1 > 2− 1

n
but do not assume γ2 ≤ n. Instead, we

consider the following slow growth conditions

ˆ ∞( t

G(t)

) 1
n−1

dt =∞ and

ˆ
0

(
t

G(t)

) 1
n−1

dt <∞. (5.10)
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Note that for the case G(t) = tp, (5.10)1 implies p ≤ n. If (5.10)1 does not
hold, that is ˆ ∞( t

G(t)

) 1
n−1

dt <∞,

then u ∈ W 1,G
0 (Ω) is continuous as follows from [33, Theorem 1a], which

ensures µ ∈ (W 1,G
0 (Ω))∗ and the existence and uniqueness of a weak solution

to (5.1) follows from the monotone operator theory. Therefore (5.10)1 can be
regarded to be a natural generalization of p ≤ n for the case of G(t) = tp.
On the other hand, assumption (5.10)2 is given for a technical reason. If
(5.10)2 does not hold, then we define Ḡ, a modification of G near 0, so that
Ḡ satisfies (5.10) and LG = LḠ, see [10, Section 5] and [37, Section 3].

Our proof of the existence of a SOLA to (5.1) is motivated from the pre-
vious paper [37]. Let us start with the introduction of the following functions
from [37]:

φn(t) :=

ˆ t

0

(
s

G(s)

) 1
n−1

ds, Hn(t) := φn(t)
1
n′ , Ψn(t) :=

G(t)

φn(t)

and
Gn(t) := G(H−1

n (t)). (5.11)

Let us present important lemmas from [37]. Throughout this section we al-
ways assume that G satisfies (5.3).

Lemma 5.2.3. [37, Lemma 4.1] Let Ω be a domain in Rn such that |Ω| <∞
and u ∈ W 1,G

0 (Ω). We assume that there exists M > 0 and t0 ≥ 0 such that

ˆ
{|u|≤t}

G(|Du|) dx ≤Mt for t≥ t0.

Then there exists c = c(n) such that

|{|u| > t}| ≤ Mt

Gn(ct
1
n′ /M

1
n )

for t ≥ t0,

where n′ = n
n−1

.

By using the standard mollification, there exist a sequence {µk}k∈N ⊂
C∞c (Rn) with µk ⇀ µ in measure, and a sequence of weak solutions {uk}k∈N ⊂
W 1,G

0 (Ω) to (5.9). In light of (5.3), um and Duk converge to u and Du in
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measure, respectively, see [37, Section 5]. As mentioned earlier, we need L1

convergence of Duk to Du in Definition 5.2.2. To show the existence of a
SOLA, we assume that ˆ ∞ dt

Ψn(t)
<∞. (5.12)

When G(t) = tp, Ψn(t) = t
n
n−1

(p−1) and (5.12) is equivalent to p > 2− 1
n
. In

this way we regard (5.12) to be a necessary assumption to the existence of a
SOLA to (5.1).

Lemma 5.2.4. Let u be a weak solution to{
−divA(x,Du) = f in Ω,

u = 0 on ∂Ω,
(5.13)

where f ∈
(
W 1,G

0 (Ω)
)∗ ∩ L1(Ω). If ||f ||L1 ≤ M for some positive constant,

then there exists a constant c = c(n, ν, L,M) > 0 such that

|{|Du| > t}|Ψn(t) ≤ c for all t > 0.

Proof. By taking a test function ψ = Tl(u) with l > 0 in (5.13) and using
(5.2), we find

1

c

ˆ
{|u|≤l}

G(|Du|) dx ≤
ˆ
{|u|≤l}

A(x,Du)Dudx

=

ˆ
Ω

fψ dx ≤ l||f ||L1(Ω) ≤Ml,

where c = c(ν, L). Then according to Lemma 5.2.3, there exists c(n) such
that

|{|u| > l}| ≤ cMl

Gn(c(n)l
1
n′ /M

1
n )

for all t > 0. Also, the following inequality holds:

|{G(|Du|)) > s, |u| ≤ t}| ≤ 1

s

ˆ
{G(|Du|)>s,|u|≤t}

G(|Du|) dx ≤ cMl

s
,

for all s > 0. Consequently, we have

|{G(|Du|) > s}| ≤ |{G(|Du|) > s, |u| ≤ l}|+ |{|u| > l}|
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≤ cMl

s
+

cMl

Gn(cl
1
n′ /M

1
n )
.

Then taking l = ( 1
c(n)

M
1
nG−1

n (s))n
′
, we find

|{G(|Du|) > s}| ≤ c
Mn′G−1

n (s)n
′

s

where c = c(c, ν, L). We then select s = G(t) and recall (5.11) to have

|{|Du| > t}| ≤ c
Hn(t)n

′

G(t)
=

c

Ψn(t)
,

as required.

We now prove L1 convergence of Duk, where uk is a weak solution to
(5.9), using Lemma 5.2.4.

Theorem 5.2.5. Let G satisfy (5.3) and (5.12). If uk is a weak solution to
(5.9), then Duk converges to Du strongly in L1 up to a subsequence, where u
is an approximable solution to (5.1). Therefore, any approximable solutions
to (5.1) are SOLAs.

Proof. Out first step is to show that {Duk}k≥1 is a Cauchy sequence in L1.
To do this, we split domain of the following integral into three parts. For
some small ε > 0 and large M0 > 0, we have

ˆ
Ω

|Duk −Dum| dx =

ˆ
{|Duk−Dum|≤ε}

|Duk −Dum| dx

+

ˆ
{ε<|Duk−Dum|≤M0}

|Duk −Dum| dx

+

ˆ
{|Duk−Dum|>M0}

|Duk −Dum| dx

=: I1 + I2 + I3.

Clearly, we have

I1 ≤ ε|Ω| and I2 ≤M0|{|Duk −Dum| > ε}|.
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From Lemma 5.2.4, we have

|{|Duk −Dum| > t}| ≤ |{|Duk|+ |Dum| > t}|

≤ |{|Duk| >
t

2
}|+ |{|Dum| >

t

2
}| ≤ c

Ψn(t/2)
.

Then we have

I3 ≤
ˆ ∞
M0

|{|Duk −Dum| > t}|dt+M0|{|Duk −Dum| > M0}|

≤c∗
ˆ ∞
M0

1

Ψn( t
2
)
dt+M0|{|Duk −Dum| > ε}|,

where c∗ = c∗(n, ν, L, |µ|(Ω)). Choose M0 large enough so that

c∗
ˆ ∞
M0

1

Ψn( t
2
)
dt ≤ ε

3
,

which is possible by (5.12). Since Dum is a Cauchy sequence in measure, see
the proof of [37, Theorem 3.8], there exists a positive integer N0 such that
k,m > N0 implies

M0|{|Duk −Dum| > ε}| ≤ ε

3
.

Consequently ˆ
Ω

|Duk −Dum| dx ≤ ε(|Ω|+ 1),

whenever k,m ≥ N0, which proves that {Duk} is a Cauchy sequence in L1.
Let Z = (Z1, · · · , Zn) be a vector-valued function satisfying Duk → Z

strongly in L1. Then uk converges to u almost everywhere, as shown in [37].
According to Definition 5.2.1, we are left to show that u ∈ W 1,1(Ω) and
Du = Z. By Rellich-Kondrachov compactness theorem, we have uk → u
strongly in Ls(Ω) for all 1 ≤ s < n

n−1
. For any φ ∈ C∞0 (Ω), we have

ˆ
Ω

uDiφ dx = lim
k→∞

ˆ
Ω

ukDiφ dx

=− lim
k→∞

ˆ
Ω

Diuk φ dx
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=−
ˆ

Ω

Ziφ dx,

which implies that Du = Z. This completes the proof.

5.3 Comparison estimates

This section is devoted to deriving the desired comparison estimates. To this
end, we divide it into three parts. In the first part, we define some N -functions
related to G. Boundary estimates are in the second part, while interior case
is in the last part. Throughout this section, we assume that u ∈ W 1,G

0 (Ω)
is the weak solution to (5.1) with µ ∈ L∞(Ω). In addition, without lose of
generality, we assume (5.3), (5.5) and γ1 < n, here and in the sequel.

5.3.1 Technical estimates

We want to remark that for G1(t) = tp and any ε > 0, we have

G1(|ξ1 − ξ2|) ≤

{
|Vp(ξ1)− Vp(ξ2)|2 if p ≥ 2,

ε
p−2
p |Vp(ξ1)− Vp(ξ2)|2 + ε(|ξ1|+ |ξ2|)p if p < 2,

(5.14)

where Vp(ξ) = |ξ|(p−2)/2ξ for every ξ ∈ Rn. As far as we know, there is not
a proper analogy of (5.14) for general N -functions, which makes it hard to
apply the argument given in [24, Lemma 3.4] to the measure data problem
(5.1). To overcome this difficulty, we construct some auxiliary functions in
the followings. In turn, we obtain L1-comparison estimates for Du in order
to prove Theorem 5.1.2.

Let us define an auxiliary function

Ψ−1
g (t) :=

ˆ t

0

Ψ̊−1
g (s)

s
ds, where Ψ̊−1

g (t) :=

(
tγ2+1

g(t)

) 1
γ2+2

. (5.15)

Then we have the following properties.

Lemma 5.3.1. The functions given in (5.15) are equivalent:

Ψ−1
g (t) ≈ Ψ̊−1

g (t).

Moreover, Ψ−1
g has the inverse function Ψg that is an N-function.

140



CHAPTER 5. MEASURE DATA PROBLEMS WITH GENERAL
GROWTH

Proof. Note that

Ψ̊−1
g (t) > 0 and

d

dt
Ψ̊−1
g (t) =

g(t)
−1
γ2+2

(γ2 + 2)t
1

γ2+2

(
γ2 + 1− tg′(t)

g(t)

)
> 0 (5.16)

for t > 0, thus, Ψ̊−1
g and Ψ−1

g are strictly increasing C1-functions on [0,∞).
Moreover, by a direct calculation, we discover that Ψ−1

g has its continuous
second derivative on (0,∞) as follows:

d2

dt2
Ψ−1
g (t) =

t d
dt

Ψ̊−1
g (t)− Ψ̊−1

g (t)

t2
=
−g(t)

−1
γ2+2

(γ2 + 2)t
γ2+3
γ2+2

(
1 +

tg′(t)

g(t)

)
< 0.

It also turns out that Ψ−1
g is concave. We apply the inverse function theorem

to find Ψg ∈ C2(0,∞) which is convex and satisfies Ψg ◦Ψ−1
g (t) = t.

On the other hand, the first part of the lemma can be shown by using
(5.15), (5.16) and (5.3) as follows:

c(γ2)Ψ̊−1
g (t) ≤ Ψ̊−1

g

(
t

2

)
≤ Ψ−1

g (t) (5.17)

and

Ψ−1
g (t) ≤

∞∑
i=1

Ψ̊−1
g

(
t

2i−1

)
≤ c(γ1, γ2)Ψ̊−1

g (t).

To complete the proof, it remains to show that

lim
t→0

Ψg(t)

t
= 0 and lim

t→∞

Ψg(t)

t
=∞. (5.18)

Indeed, we use (5.3) to see

lim
t→0

Ψ̊−1
g (t)

t
= lim

t→0

(
1

tg(t)

) 1
γ2+2

≥ lim
t→0

(
1

γ2G(t)

) 1
γ2+2

=∞.

It then follows from (5.17) that

lim
t→0

Ψ−1
g (t)

t
=∞,
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or equivalently

lim
t→0

Ψg(t)

t
= 0.

Similarly, we can show (5.18)2. This completes the proof.

Remark 5.3.2. Note that whenever t 7→ Ψ̊−1
g (t)/t is decreasing and t 7→

Ψ̊−1
g (t) is increasing, there are a few indirect ways to construct concave func-

tions like Ψ−1
g , which is neither a differentiable function nor an N -function.

See for instance [93, Lemma 2.7] and [67, Lemma 2.2].

For Ψ̃g, the complementary N -function of Ψg, we now claim that

Ψ̃g

(
G(t)

1
γ2+2

)
≈ t. (5.19)

Recalling Lemma 5.3.1 and (5.3), we have

Ψ−1
g (t) ≈ Ψ̊−1

g (t) ≈ t

[G(t)]
1

γ2+2

(5.20)

and

−1 < − γ2

γ2 + 2
≤
t[Ψ−1

g ]′′(t)

[Ψ−1
g ]′(t)

=
−1

γ2 + 2

(
1 +

tg′(t)

g(t)

)
≤ − γ1

γ2 + 2
< 0.

This estimate implies

0 <
2

γ2 + 2
≤
t[Ψ−1

g ]′(t)

Ψ−1
g (t)

≤ γ2 − γ1 + 2

γ2 + 2
< 1,

and so we obtain

1 <
γ2 + 2

γ2 − γ1 + 2
≤
tΨ′g(t)

Ψg(t)
≤ γ2 + 2

2
(5.21)

and

1 <
γ2 + 2

γ2

≤
tΨ̃′g(t)

Ψ̃g(t)
≤ γ2 + 2

γ1

.

Here, we have used (2.4) and the fact that

[Ψ−1
g ]′ ◦Ψg(t) = 1/Ψ′g(t).
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It then follows from (5.20) that

t ≈ Ψg

(
t

[G(t)]
1

γ2+2

)
≈ t

[G(t)]
1

γ2+2

[Ψ̃′g]
−1

(
t

[G(t)]
1

γ2+2

)
.

This estimate can be written as

Ψ̃′g

(
[G(t)]

1
γ2+2

)
≈ t

[G(t)]
1

γ2+2

.

At this stage the claim (5.19) is a direct consequence of (5.21).
We further note that from (5.21) there exists γ = γ(γ1, γ2) > 1 such that

for any ε ∈ (0, 1] and s, t ≥ 0

st ≤ εΨ(s) + ε−γΨ̃(t). (5.22)

Remark 5.3.3. We define another auxiliary function

G̊(t) =

ˆ t

0

[G(s)]
1
γ1

s
ds ≈ [G(t)]

1
γ1 (5.23)

for every t ≥ 0. As in the proof of Lemma 5.3.1, we can show that for t > 0,
t 7→ [G(t)]1/γ1/t has non-negative derivative, and so G̊ is convex.

5.3.2 Boundary comparison estimates

We recall first our assumption that (Ω, A(·)) is (δ, R)-vanishing. Take x0 ∈ Ω
and r ∈ (0, R/5] such that

B+
5r ⊂ Ω5r ⊂ B5r ∩ {xn > −10δr}, (5.24)

and consider the homogeneous Dirichlet problem{
−div(A(x,Dw)) = 0 in Ω5r,

w = u on ∂Ω5r.
(5.25)

One can find a higher integrability result for (5.25) in [44, Theorem 9],
which we state as follows in view of [63, Remark 6.12].
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Lemma 5.3.4. Let w ∈ W 1,G(B5r) be the weak solution to (5.25). Then for
every q ≥ 1, there exists σ = σ(data) ∈ (0, 1) such that( ˆ

Ω4r

G(|Dw|)1+σ dx

) 1
1+σ

≤ c

(ˆ
Ω5r

G(|Dw|)
1
q dx

)q
,

where c = c(data, q).

We can see that t 7→
[
G(t)

]1/2γ2/t is decreasing, by differentiating it. Sim-

ilarly to Lemma 5.3.1, the map t 7→
[
G(t)

]1/2γ2 is comparable to some con-
cave function. Therefore, in light of Lemma 5.3.4 with q = 2γ2 and Jensen’s
inequality, we have( ˆ

Ω4r

G(|Dw|)1+σ dx

) 1
1+σ

≤ cG

( ˆ
Ω5r

|Dw| dx
)
, (5.26)

where c depends only on data.
We now move on to a L1-comparison estimate between (5.1) and (5.25).

The functions Ψg, Ψ̊g and G̊ investigated in Subsection 5.3.1 are useful in
the following lemma.

Lemma 5.3.5. Let w ∈ W 1,G(Ω5r) be the weak solution to (5.25). For any
ε ∈ (0, 1], there exists δ = δ(data, ε) > 0 such that if

ˆ
Ω5r

|Du| dx+
1

δ

ˆ
Ω5r

g−1(M1(µ)) dx ≤ λ (5.27)

for some λ > 0, then ˆ
Ω5r

|Du−Dw| dx ≤ ελ.

Proof. We start with scaling and normalization arguments. For some con-
stants κ ∈ (0, 1] and θ ≥ 1 to be chosen later, set

M = κ

ˆ
Ω5r

|Du| dx+
1

κθ
g−1

(
|µ|(Ω5r)

rn−1

)
≥ 0.

If |µ|(Ω5r) = 0, there is nothing to prove. So, without loss of generality,
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assume |µ|(Ω5r) > 0, which implies M > 0. We now set

Â(y, ξ) =
A(x0 + ry,Mξ)

g(M)
, ĝ(t) =

g(Mt)

g(M)
, Ψ̂(t) = Ψĝ(t),

Ĝ(t) =
G(Mt)

G(M)
, û(y) =

u(x0 + ry)

Mr
, ŵ(y) =

w(x0 + ry)

Mr

and µ̂(y) =
rµ(x0 + ry)

g(M)
(5.28)

for y ∈ Ω̂5 := {y ∈ Rn : x0 + ry ∈ Ω5r}. It is readily seen that

|µ̂|(Ω̂5) ≤ κ(γ1−1)θ,

ˆ
Ω̂5

|Dû| dx ≤ κ−1, Ĝ(1) = 1 (5.29)

and

〈∂Â(y, ξ)η, η〉 ≥ ν
g(M |ξ|)
g(M)|ξ|

|η|2 = ν
ĝ(|ξ|)
|ξ|
|η|2. (5.30)

Accordingly, once we have

ˆ
Ω̂5

|Dû−Dŵ| dx ≤ c (5.31)

for some c ≥ 1, then

ˆ
Ω5r

|Du−Dv| dx ≤ c κ

(ˆ
Ω5r

|Du| dx+
1

κ1+θ

ˆ
Ω5r

g−1(M1(µ)) dx

)
,

where we also have used (5.8). Taking κ = ε/c and δ = κ1+θ, we obtain the
desired estimate. Therefore, it is enough to verify (5.31).

From now on, for simplicity of notation, we omit ˆ over characters. As
mentioned at the beginning of Subsection 5.3.1, there is no analogy of (5.14)
for general N -function. Instead, for any ξ1, ξ2 ∈ Rn, Lemma 5.3.1 and (5.22)
yield

|ξ1 − ξ2| ≤ c

(
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
) 1

γ2+2

Ψ−1(|ξ1|+ |ξ2|)
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≤ c

(
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
) 1

γ2+2 [
Ψ−1(|ξ1 − ξ2|) + Ψ−1(|ξ1|)

]
≤ 1

2
|ξ1 − ξ2|+ κ|ξ1|+ c κ−γΨ̃

((
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
) 1

γ2+2

)
,

where γ > 1 is the constant determined in (5.22). Here, we also have used
the concavity of Ψ−1. Taking (5.19) and (5.23) into account, we discover

Ψ̃
(
t

1
γ2+2

)
≈ G−1(t),

and we find

|ξ1 − ξ2| ≤ 2κ|ξ1|+ c κ−γG̊−1

([
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
] 1
γ1

)
. (5.32)

Recall the truncation operators given in Section 2.1, and denote

Cs := {x ∈ Ω5 : |u(x)− w(x)| ≤ s}

and
Ds := {x ∈ Ω5 : s < |u(x)− w(x)| ≤ s+ 1}

for every s ∈ N. Testing Ts(u − w) and Ts(u − w) to both (5.1) and (5.25)
and using (5.30), we have

ˆ
Cs

g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2 dx ≤ c s|µ|(Ω5)

and ˆ
Ds

g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2 dx ≤ c |µ|(Ω5).

Then applying Hölder’s inequality, we find

ˆ
Cs

(
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
) 1

γ1

dx ≤ c s
1
γ1 |µ|(Ω5)

1
γ1
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and

ˆ
Ds

(
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
) 1

γ1

dx

≤ c |Ds|1−
1
γ1 |µ|(Ω5)

1
γ1 ≤ c

( ˆ
Ds

(
|u− w|

s

) n
n−1

dx

)1− 1
γ1

|µ|(Ω5)
1
γ1 .

It then follows from Sobolev-Poincaré’s inequality that for any s0 ∈ N,

ˆ
Ω5

(
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
) 1

γ1

dx

≤
ˆ
Cs0

(
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
) 1

γ1

dx

+
∑
s≥s0

ˆ
Ds

(
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
) 1

γ1

dx

≤ c s
1
γ1
0 |µ|(Ω5)

1
γ1 + c

∑
s≥s0

(
|µ|(Ω5)

s
n(γ1−1)
(n−1)

) 1
γ1
( ˆ

Ds

|u− w|
n
n−1 dx

)1− 1
γ1

≤ c s
1
γ1
0 |µ|(Ω5)

1
γ1 + c

(∑
s≥s0

|µ|(Ω5)

s
n(γ1−1)
(n−1)

) 1
γ1
( ˆ

Ω5

|u− w|
n
n−1 dx

)1− 1
γ1

≤ c s
1
γ1
0 |µ|(Ω5)

1
γ1 + c(s0)|µ|(Ω5)

1
γ1

( ˆ
Ω5

|Du−Dw| dx
)n(γ1−1)

(n−1)γ1

. (5.33)

Note that c(s0) <∞ and c(s0)→ 0 as s0 goes to ∞, since γ1 > 2− 1
n
.

By (5.32), we have

ˆ
Ω5

|Du−Dw| dx ≤ 2κ

ˆ
Ω5

|Du| dx

+ cκ−γ
ˆ

Ω5

G̊−1

([
g(|Du|+ |Dw|)
|Du|+ |Dw|

|Du−Dw|2
] 1
γ1

)
dx

≤ I + II. (5.34)

It is readily checked that I ≤ 2 in (5.29).
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We now recall Remark 5.3.3 to see that G̊−1 is concave. Then Jensen’s
inequality and (5.33) yield

κγII ≤ c G̊−1

( ˆ
Ω5

[
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
] 1
γ1

dx

)
≤ cG−1

(
s0|µ|(Ω5)

)
+ cG−1

(
c(s0)γ1|µ|(Ω5)

[ˆ
Ω5

|Du−Dw| dx
]n(γ1−1)

n−1

)
.

Note that n(γ1−1)
(n−1)γ2

≤ n(γ1−1)
(n−1)γ1

< 1, since γ1 < n. In light of (5.3) and (5.29)3,

we discover that for any t ≥ 0, α ∈ (0, 1) and any small κ̄ > 0,

G−1
(
αt

n(γ1−1)
n−1

)
≤ G−1(α) max

{
t
n(γ1−1)
(n−1)γ1 , t

n(γ1−1)
(n−1)γ2

}
≤ c(n, γ1, γ2)κ̄−q1αq2 + κ̄t,

where q1 and q2 depend only on data, which are introduced for simplicity of
notation. It then follows from (5.29) that

κγII ≤ cG−1(s0)κ
(γ1−1)θ
γ2 + c(s0)κ(γ1−1)θq2κ̄−q1 + κ̄

ˆ
Ω5

|Du−Dw| dx, (5.35)

where c(s0)→ 0 as s0 goes to ∞.
Combining (5.34) and (5.35), we have

ˆ
Ω5

|Du−Dw| dx ≤ 2 +G−1(s0)κ
(γ1−1)θ
γ2

−γ

+ c(s0)κ(γ1−1)θq2−γκ̄−q1 + c∗κ
−γκ̄

ˆ
Ω5

|Du−Dw| dx,

where we temporarily fix a constant c∗ depending only on data. We now take
κ̄ = κγ

2c∗
, and then take θ large enough to satisfy

(γ1 − 1)θ − γγ2 > 0 and (γ1 − 1)θq2 − γ − γq1 > 0.

Consequently, we have (5.31) and this completes the proof.

Remark 5.3.6. We note that a suitable modification of the proof of Lemma
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5.3.5 gives ˆ
Ω

|Du| dx ≤ c

ˆ
Ω

g−1(M1(µ)) dx, (5.36)

where c depends only on data. We will use this estimate later in the proof
of Theorem 5.1.2.

Here, we give a sketch of the proof of (5.36). We denote d = diam(Ω) and
take any x̃ ∈ Ω to see that Ω ⊂ Bd(x̃). We now set

M = κ

ˆ
Ω

|Du| dx+
1

κθ
g−1

(
|µ|(Ω)

dn−1

)
≥ 0

for some constants κ ∈ (0, 1] and θ ≥ 1. We use a scaling similar to (5.28) with
x̃, d replacing x0, r, respectively. That is, for y ∈ Ω̂ := {y ∈ Rn : x̃+dy ∈ Ω},

û(y) =
u(x̃+ dy)

Md
, µ̂(y) =

dµ(x̃+ dy)

g(M)
, Â(y, ξ) =

A(x̃+ dy,Mξ)

g(M)

and so on. Testing Ts(u),Ts(u) ∈ W 1,G
0 (Ω) to (5.1) as in the proof of Lemma

5.3.5, we discover

ˆ
Ω

|Du| dx ≤ cκ

ˆ
Ω

|Du| dx+
c

κθ

ˆ
Ω

g−1(M1(µ)) dx,

where c depends only on data. Taking κ > 0 small enough, we obtain the
desired estimate (5.36).

We now consider the weak solution w̄ ∈ W 1,G(Ω5r) to{
− div(Ā(Dw̄)) = 0 in Ω4r,

w̄ = w on ∂Ω4r,
(5.37)

where Ā : Rn → Rn is given by

Ā(ξ) =
1

|B+
4r|

ˆ
B+

4r

A(x, ξ) dx.
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By (5.2), we have the following ellipticity and growth of Ā:{
|Ā(ξ)|+ |∂Ā(ξ)||ξ| ≤ Lg(|ξ|),
ν g(|ξ|)|ξ| |ζ|

2 ≤ 〈∂Ā(ζ)ζ, ζ〉
(5.38)

for every ξ, ζ ∈ Rn, where ν, L are the constant given in (5.2). Apparently,
there holds that for any ϕ ∈ w +W 1,G

0 (Ω4r)

ˆ
Ω4r

G(|Dw̄|) dx ≤ c

ˆ
Ω4r

G(|Dϕ|) dx. (5.39)

In other words, w̄ is a quasi-minimizer of the above functional.

Lemma 5.3.7. Let w̄ ∈ W 1,G(Ω4r) is the weak solution to (5.37). For any
ε ∈ (0, 1], there exists δ = δ(data, ε) > 0 such that if (5.27) holds for some
λ > 0, then

G−1

( ˆ
Ω4r

|V (Dw)− V (Dw̄)|2 dx
)
≤ ελ (5.40)

and

G−1

( ˆ
Ω4r

G(|Dw̄|) dx
)
≤ cλ.

Proof. We give a brief sketch of the proof, since it is similar as in [32, Lemma
5.10]. By (5.38), we have

1

c

ˆ
Ω4r

|V (Dw)− V (Dw̄)|2 dx ≤
ˆ

Ω4r

〈Ā(Dw)− Ā(Dw̄), Dw −Dw̄〉 dx

=

ˆ
Ω4r

〈Ā(Dw)− A(x,Dw), Dw −Dw̄〉 dx

≤
ˆ

Ω4r

θ(B+
4r)(x)g(|Dw|)|Dw −Dw̄| dx

=: I.

Young’s inequality for any ε̄ > 0 and Hölder’s inequality yield

I ≤ c(ε̄)

ˆ
Ω4r

θ(B+
4r)(x)G(|Dw|) dx+ ε̄

ˆ
Ω4r

θ(B+
4r)(x)G(|Dw̄|) dx

≤ c(ε̄)

( ˆ
Ω4r

(
θ(B+

4r)(x)
) 1+σ

σ dx

) σ
1+σ
(ˆ

Ω4r

G(|Dw|)1+σ dx

) 1
1+σ
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+ 2ε̄L

ˆ
Ω4r

G(|Dw̄|) dx

(5.39)

≤ c(ε̄)

(
L

1
σ

ˆ
B+

4r

θ(B+
4r)(x) dx+ L

1+σ
σ δ

) σ
1+σ
( ˆ

Ω4r

G(|Dw|)1+σ dx

) 1
1+σ

+ cε̄

ˆ
Ω4r

G(|Dw|) dx

≤
(
c(ε̄)δ

σ
1+σ + cε̄

)( ˆ
Ω4r

G(|Dw|)1+σ dx

) 1
1+σ

(5.26)

≤
(
c(ε̄)δ

σ
1+σ + cε̄

)
G

( ˆ
Ω5r

|Dw| dx
)
,

where σ is the constant given in Lemma 5.3.4. Taking ε̄, δ > 0 small enough
and employing Lemma 5.3.5, we have (5.40).

Moreover, we use (5.40), (5.26) and Lemma 5.3.5 to obtain

G−1

( ˆ
Ω4r

G(Dw̄) dx

)
≤ cG−1

(ˆ
Ω4r

|V (Dw)− V (Dw̄)|2 dx
)

+ c

ˆ
Ω5r

|Dw| dx

≤ cλ+ c

ˆ
Ω5r

|Du−Dw| dx+ c

ˆ
Ω5r

|Du| dx ≤ cλ.

This completes the proof.

In the next lemma, we construct a function defined on a flat boundary,
which is close enough to w̄. Note that it is also possible to construct such a
function by using compactness argument, see for instance [32, Lemma 5.8].
Here, we present a simple proof of the lemma by modifying the proof given
in [73, Lemma 2.5].

Lemma 5.3.8. For any ε ∈ (0, 1], there exists δ = δ(data, ε) > 0 such that
the following statement holds: Let w̄ ∈ W 1,G(Ω4r) be the weak solution to
(5.37) and v ∈ W 1,G(B+

2r) be the weak solution to{
−div(Ā(Dv)) = 0 in B+

2r,

v = ηw̄ on ∂B+
2r,

(5.41)
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where η = η(xn) ∈ C∞(R) satisfies

0 ≤ η ≤ 1, η ≡ 1 on [δr, 2r], η ≡ 0 on (−∞, 0] and |Dη| ≤ 2

δr
.

We extend v to Ω2r by setting v = 0 in Ω2r \B+
2r. Then we have

ˆ
Ω2r

|V (Dw̄)− V (Dv)|2 dx ≤ ε

ˆ
Ω4r

G(|Dw̄|) dx (5.42)

and ˆ
Ω2r

G(|Dv|) dx ≤ c

ˆ
Ω4r

G(|Dw̄|) dx. (5.43)

Proof. We apply Lemma 5.3.4 to w̄ and Hölder’s inequality to estimate

1

|B3r|

ˆ
Ω3r∩{xn≤δr}

G(|Dw̄|) dx

≤ c

(
1

|B3r|

ˆ
Ω3r∩{xn≤δr}

G(|Dw̄|)1+σ dx

) 1
1+σ
(
|Ω3r ∩ {xn ≤ δr}|

|B3r|

) σ
1+σ

(5.24)

≤ cδ
σ

1+σ

(ˆ
Ω3r

G(|Dw̄|)1+σ dx

) 1
1+σ

≤ cδ
σ

1+σ

ˆ
Ω4r

G(|Dw̄|) dx, (5.44)

where σ = σ(n, ν, L, p) is the constant given in Lemma 5.3.4.
Moreover, we discover from the fact that {|x′| < 2r}× {|xn| < 2r} ⊂ B3r

and w̄ = 0 in B′2r × {xn ≤ −10δr} that

ˆ
Ω2r∩{xn≤δr}

G(|w̄||Dη|) dx

≤ c

ˆ
Ω2r∩{xn≤δr}

G

(
1

δr

∣∣∣∣ˆ xn

−10δr

∂

∂y
w̄(x′, y) dy

∣∣∣∣)dx
≤ c

ˆ
Ω2r∩{xn≤δr}

G

(
−
ˆ δr

−10δr

|Dw̄(x′, y)| dy
)
dx

≤ c

δr

ˆ
Ω2r∩{xn≤δr}

ˆ δr

−10δr

G(|Dw̄(x′, y)|) dy dx
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≤ c

ˆ
Ω3r∩{xn≤δr}

G(|Dw̄|) dx. (5.45)

Testing v − ηw̄ ∈ W 1,G
0 (B+

2r) to (5.41) and using (5.45), we obtain (5.43)
as follows:ˆ

B+
2r

G(|Dv|) dx ≤ c

ˆ
B+

2r

G(|D(ηw̄)|) dx

≤ c

ˆ
B+

2r∩{xn≤δr}
G(|w̄||Dη|) dx+ c

ˆ
B+

2r

G(|Dw̄|) dx

≤ c

ˆ
Ω3r

G(|Dw̄|) dx. (5.46)

To prove (5.42), we now test v− ηw̄ ∈ W 1,G
0 (B+

2r) for (5.37) and (5.41) to
discover ˆ

B+
2r

(Ā(Dv)− Ā(Dw̄)) ·D(v − ηw̄) dx = 0.

It then follows from Young’s inequality that

ˆ
B+

2r

(Ā(Dv)− Ā(Dw̄)) ·D(v − w̄) dx

=

ˆ
B+

2r

(Ā(Dv)− Ā(Dw̄)) ·D(ηw̄ − w̄) dx

=
2

|B2r|

ˆ
B+

2r∩{xn≤δr}
(Ā(Dv)− Ā(Dw̄)) · (w̄Dη + (η − 1)Dw̄) dx

≤ ε̄

ˆ
B+

2r

G(|Dv|) dx+ ε̄

ˆ
B+

2r

G(|Dw̄|) dx

+
c(ε̄)

|B2r|

ˆ
B+

2r∩{xn≤δr}
G(|w̄||Dη|+ |Dw̄|) dx

for any ε̄ > 0. Using (2.18), (5.43), (5.44), (5.45) and (5.46), we discover

ˆ
Ω2r

|V (Dv)− V (Dw̄)|2 dx =
1

|Ω2r|

ˆ
Ω2r\B+

2r

|V (Dw̄)|2 dx

+
1

|Ω2r|

ˆ
B+

2r

|V (Dv)− V (Dw̄)|2 dx
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≤
(
cε̄+ c(ε̄)δ

σ
1+σ

)ˆ
Ω4r

G(|Dw̄|) dx.

Taking ε̄, δ small enough, we finally obtain the desired estimates.

Remark 5.3.9. According to Lemma 5.3.8 and Lemma 5.3.7, we see that
for any ε > 0 there exists a small δ = δ(data, ε) > 0 such that

ˆ
Ω2r

|V (Dw̄)− V (Dv)|2 dx ≤ ε

ˆ
Ω4r

G(|Dw̄|) dx ≤ cεG(λ),

whenever (5.27) holds for some λ > 0.
Therefore, we combine this estimate and Lemma 2.3.2 to obtain

sup
B+
r

|Dv| ≤ G−1

( ˆ
Ω2r

|V (Dw̄)− V (Dv)|2 dx
)

+G−1

( ˆ
Ω2r

G(|Dw̄|) dx
)

≤ cλ. (5.47)

5.3.3 Interior comparison estimates

In this subsection, we study the interior counterparts of the comparison esti-
mates given in Section 5.3.2. In what follows, we state lemmas without their
proofs, as they are similar to those in Section 5.3.2.

Take any B5r ⊂ Ω. Let w ∈ W 1,G(B5r) be the weak solution to{
−div(A(x,Dw)) = 0 in B5r,

w = u on ∂B5r,
(5.48)

and v ∈ W 1,G(Ω2r) be the weak solution to{
− div(Ā(Dv)) = 0 in B2r,

v = w on ∂B2r,
(5.49)

where the vector field Ā : Rn → Rn is defined by

Ā(ξ) =
1

|B2r|

ˆ
B2r

A(x, ξ) dx ξ ∈ Rn.

Then the following lemma is an interior version of Lemma 5.3.5.
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Lemma 5.3.10. For any ε ∈ (0, 1], there exists δ = δ(data, ε) > 0 such that
if ˆ

Ω5r

|Du| dx+
1

δ

ˆ
Ω5r

M1(µ) dx ≤ λ

for some λ > 0, then ˆ
Ω5r

|Du−Dw| dx ≤ ελ.

For the interior case, the following comparison estimate and interior Lips-
chitz regularity are enough to prove Theorem 5.1.2 (cf. Lemma 5.3.8, Lemma
2.3.2 and Remark 5.3.9).

Lemma 5.3.11. Under the same assumptions as in Lemma 5.3.10, we have

G−1

( ˆ
Ω2r

|V (Dw)− V (Dv)|2 dx
)
≤ ελ

and
sup
Br

|Dv| ≤ clλ, (5.50)

where cl is the constant given in Lemma 2.3.2.

5.4 Proof of the main theorem

To prove regularity results for a SOLA given in Section 5.2, we consider a
sequence of measurable functions {µk}k∈N ∈ L∞(Ω) and a sequence of weak
solutions {uk}k≥1 to {

−div(A(x,Duk)) = µk in Ω,

uk = 0 on ∂Ω,
(5.51)

where µk → µ weakly in measure and uk → u in W 1,1
0 (Ω). The convergence

of {uk} implies that for every ε > 0, there exists k0 > 0 such that

ˆ
Ω

|Du−Duk| dx ≤ ελ0 (5.52)

for every k ≥ k0, where λ0 > 0 will be determined later in (5.54).
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We recall here a property of weak convergence in measure from the classi-
cal measure theory. Extending {µk}k∈N ∈ L∞(Ω) by 0 in Rn\Ω, the sequence
can be regarded as a sequence of bounded Radon measures converging to µ
weakly in measure. Therefore, in light of [56, Theorem 1.3.1], we have

lim sup
k→∞

|µk|(Ō) ≤ |µ|(Ō),

for every measurable subset O ⊂ Ω. In other words, for each O ⊂ Ω, we can
take large enough k0 ∈ N such that for every k ≥ k0 the following inequality
holds:

|µk|(Ō) ≤ 2|µ|(Ō). (5.53)

Lemmas in Section 5.3 hold for uk ∈ W 1,G(Ω), the weak solutions to
(5.51), but do not hold for u ∈ W 1,1(Ω), a SOLA to (5.1). Accordingly, to
estimate integral quantities of Du, (5.52) and (5.53) have an important role
in our analysis.

We now denote super level sets of Du by

E(λ) = {x ∈ Ω : |Du(x)| > λ}, λ > 0,

and write

λ0 =

ˆ
Ω

|Du| dx+
1

δ

ˆ
Ω

g−1
(
M1(µ)

)
dx and A =

(
2000 · diam(Ω)

R

)n
, (5.54)

where δ is the constant given in Lemma 5.3.5 and Lemma 5.3.10.
The following is a Vitali type covering lemma, which can be obtained by

a modification of [27, Lemma 4.1].

Lemma 5.4.1. For any λ ≥ Aλ0, there exists a negligible set N and a
disjoint covering {Bri(x

i)}i≥1 with center xi ∈ Ω and radii ri ≤ R/500 such
that

E(λ) \N ⊂
⋃
i≥1

B5ri(x
i),

ˆ
Ωri (x

i)

|Du| dx+
1

δ

ˆ
Ωri(xi)

g−1
(
M1(µ)

)
dx = λ (5.55)

and ˆ
Ωρ(xi)

|Du| dx+
1

δ

ˆ
Ωρ(xi)

g−1
(
M1(µ)

)
dx ≤ λ, ρ ∈ (ri, R].
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We are now ready to prove our main result.

Proof of Theorem 5.1.2. Throughout this proof, we denote by |Du|l = min{|Du|, l}
for any l ≥ KAλ0, where K = 2cl with the constant cl given in (5.47) and
(5.50). A straightforward calculation yields

ˆ
Ω

h(|Du|l)|Du| dx = K

ˆ l/K

0

ˆ
E(Kλ)

|Du| dx h′(Kλ) dλ

= K

ˆ Aλ0

0

ˆ
E(Kλ)

|Du| dx h′(Kλ) dλ

+K

ˆ l/K

Aλ0

ˆ
E(Kλ)

|Du| dx h′(Kλ) dλ

=: I + II, (5.56)

where h is the derivative of H given in Theorem 5.1.2.
We first estimate I as

I ≤ h(KAλ0)

ˆ
Ω

|Du| dx ≤ γ3|Ω|(KA)γ3−1H(λ0). (5.57)

On the other hand, we use the covering given in Lemma 5.4.1 to see

II ≤ K
∑
i≥1

ˆ l/K

Aλ0

ˆ
E(Kλ)∩B5ri

(xi)

|Du| dx h′(Kλ) dλ. (5.58)

We now distinguish two cases, B25ri(x
i) ⊂ Ω and B25ri(x

i) 6⊂ Ω.
The first case Using (5.52) and (5.53), for any ε > 0 and each i ≥ 1,

there exists k ∈ N such that
ˆ
B25ri

(xi)

|Du−Duk| ≤ ελ and |µk|(B25ri(x
i)) ≤ 2|µ|(B25ri(x

i)). (5.59)

Let wi,k ∈ uk + W 1,G(B25ri) be the weak solution to (5.48) with B5r =
B25ri(x

i) and u = uk, and vi,k ∈ wi,k + W 1,G(B10ri) be the weak solution to
(5.49) with B2r = B10ri(x

i) and w = wi,k.
It then follows from (5.50) that in E(Kλ)∩B5ri(x

i), there holds |Dvi,k| ≤
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Kλ/2, and so

|Du| ≤ |Du−Duk|+ |Duk −Dwi,k|
+G−1(|V (Dwi,k)− V (Dvi,k)|2) + |Dvi,k|
≤ |Du−Duk|+ |Duk −Dwi,k|

+G−1(|V (Dwi,k)− V (Dvi,k)|2) +
1

2
|Du|.

Hence, for any ε > 0, Jensen’s inequality, Lemma 5.3.10, Lemma 5.3.11 and
(5.59) imply

1

|B5ri |

ˆ
E(Kλ)∩B5ri

(xi)

|Du| dx

≤
ˆ
B5ri

(xi)

|Du−Duk| dx+

ˆ
B5ri

(xi)

|Duk −Dwi,k| dx

+ cG−1

( ˆ
B5ri

(xi)

|V (Dwi,k)− V (Dvi,k)|2 dx
)

≤ cελ. (5.60)

The second case In this case, we take a point yi ∈ B25ri(x
i) with a

coordinate system y = (y1, y2, . . . , yn) such that

B+
400ri

(yi) ⊂ Ω400ri(y
i) ⊂ B400ri(y

i) ∩ {yn > −400δri}

and
|yi − xi| ≤ 25ri + 400δri ≤ 75ri.

Noting B400ri(y
i) ⊂ B500ri(x

i), we discover

ˆ
Ω400ri

(yi)

|Du| dx+
1

δ

ˆ
B400ri

(yi)

g−1
(
M1(µ)

)
dx ≤ 5nλ.

Moreover, similarly to The first case, using lemmas in Subsection 5.3.2
for B5r = B400ri(y

i), we discover

sup
Ω5ri

(xi)

|Dvi,k| ≤ sup
Ω80ri

(yi)

|Dvi,k| ≤ clλ
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and ˆ
E(Kλ)∩B5ri

(xi)

|Du| dx ≤ cελ|Ω5ri(x
i)|. (5.61)

Here, we also have used the fact that B5ri(x
i) ⊂ B80ri(y

i).
Combining (5.60) and (5.61), we have

ˆ
E(Kλ)∩B5ri

(xi)

|Du| dx ≤ cελ|Ωri(x
i)|. (5.62)

To estimate λ|Ωri(x
i)| in the above inequality, we recall (5.55) to see either

ˆ
Ωri (x

i)

|Du| dx ≥ λ

2
or

1

δ

ˆ
Ωri (x

i)

g−1
(
M1(µ)

)
dx ≥ λ

2
. (5.63)

In case of (5.63)1, we estimate as follows:

λ|Ωri(x
i)| ≤ 2

ˆ
Ωri (x

i)∩{|Du|>λ
4
}
|Du| dx+ 2

ˆ
Ωri (x

i)∩{|Du|≤λ
4
}
|Du| dx

≤ 2

ˆ
Ωri (x

i)∩{|Du|>λ
4
}
|Du| dx+

λ

2
|Ωri(x

i)|. (5.64)

Similarly, we estimate (5.63)2 as

λ|Ωri(x
i)| ≤ 2

ˆ
Ωri (x

i)∩{g−1(M1(µ))>λ
4
}
g−1
(
M1(µ)

)
dx+

λ

2
|Ωri(x

i)|. (5.65)

Applying (5.64) and (5.65) to (5.62), we obtain

ˆ
E(Kλ)∩B5ri

(xi)

|Du| dx ≤ cε

ˆ
Ωri (x

i)∩{|Du|>λ
4
}
|Du| dx

+ cε

ˆ
Ωri (x

i)∩{g−1(M1(µ))>λ
4
}
g−1
(
M1(µ)

)
dx. (5.66)

Since {Bri(x
i)}i∈N are mutually disjoint, we combine (5.58) and (5.66) to

discover

II ≤ cεK

ˆ l/K

0

ˆ
Ω∩{|Du|>λ

4
}
|Du| dx h′(Kλ) dλ
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+ cεK

ˆ l/K

0

ˆ
Ω∩{g−1(M1(µ))>λ

4
}
g−1
(
M1(µ)

)
dx h′(Kλ) dλ

=: III + IV. (5.67)

We estimate III directly as

III ≤ cεKγ4−1γ4 − 1

γ3 − 1

ˆ l

0

ˆ
Ω∩{|Du|>λ}

|Du| dx h′(λ) dλ

≤ c(γ3, γ4)ε

ˆ
Ω

h(|Du|l)|Du| dx. (5.68)

Likewise, IV can be estimated as

IV ≤ c(γ3, γ4)ε

ˆ
Ω

H ◦ g−1
(
M1(µ)

)
dx. (5.69)

Combining (5.56),(5.57),(5.67),(5.68) and (5.69) and then taking ε small
enough depending only on data, γ3, γ4 and K, we discover

ˆ
Ω

h(|Du|l)|Du| dx ≤ c

ˆ
Ω

H ◦ g−1
(
M1(µ)

)
dx+ γ3|Ω|(KA)γ3−1H(λ0).

Then we take limit as l goes to ∞, use (5.54) and Jensen’s inequality, to
observe
ˆ

Ω

H(|Du|) dx ≤ c

ˆ
Ω

H ◦ g−1
(
M1(µ)

)
dx+ γ3|Ω|(KA)γ3−1H

(ˆ
Ω

|Du| dx
)
.

Recalling (5.36) and using Jensen’s inequality, we finally derive the conclu-
sion.

Remark 5.4.2. In this final remark, we present an mapping property of
Riesz potential to derive a direct consequence of Theorem 5.1.2. Recall the
mapping property

I1 : L(p, q)→ L(np/(n− p), q) for 1 < p < n and q > 0,

where L(p, q) for p > 1 and q > 0 is Lorentz space defined by

ˆ ∞
0

(
tp|{x ∈ Ω : |µ(x)| > t}|

) q
p
dt

t
<∞,
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see for instance [64, 77]. If p = nq
n+q

for some q > n
n−1

, then the mapping

property and (1.3) imply that

M1(µ) ∈ L(q, q) = Lq,

whenever µ ∈ L( nq
n+q

, q).
Setting

H1(t) = g(t)q and H2(t) =

ˆ t

0

H1(s)

s
ds,

we see that H2 is an N -function satisfying (5.6). Moreover, similar calcula-
tions as in (5.17) show that H1 ≈ H2. Applying Theorem 5.1.2 with H = H2,
we conclude that ˆ

Ω

[
g(|Du|)

]q
dx ≤ c

ˆ
Ω

[M1(µ)]q dx.

This claims that µ ∈ L( nq
n+q

, q) implies g(|Du|) ∈ Lq for any q > n
n−1

. Recall-

ing L(s, s∗) ⊂ L(s, s) = Ls, for every s > 1 we cover the fact which is given
in [19, Theorem 3] that µ ∈ Ls implies g(|Du|) ∈ Ls∗ .

5.5 Calderón-Zygmund theory for integral func-

tionals with p(x)-growth

In the rest of this chapter, we study spherical quasi-minimizers (orQ-minimizers
with Q ≥ 1), along with ω-minimizers, of integral functionals with p(x)
growth of the type

F(u,Ω) :=

ˆ
Ω

f(x,Du)− |F |p(x)−2F ·Dudx (5.70)

that is already introduces in (1.8), where Ω ⊂ Rn (n ≥ 2) is a bounded
domain. We assume that p(·) : Rn → R satisfies

1 < γ1 ≤ p(x) ≤ γ2 <∞ for x ∈ Rn (5.71)

for some constants γ1, γ2 and it is logarithmic Hölder continuous with ωp(·)
a modulus of continuity of p(·), see 1.5.

We are given a function F : Ω → Rn with |F |p(·) ∈ L1 and the integral
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function
f = f(x, ξ) : Rn × Rn → R

satisfying the following growth and ellipticity conditions:

ν(|ξ|2 + s2)
p(x)

2 ≤f(x, ξ) ≤ L(|ξ|2 + s2)
p(x)

2

ν(|ξ|2 + s2)
p(x)−2

2 |η|2 ≤D2f(x, ξ)η · η ≤ L(|ξ|2 + s2)
p(x)−2

2 |η|2
(5.72)

for almost every x ∈ Rn, every ξ ∈ Rn, any s ∈ [0, 1] and some 0 < ν ≤ 1 ≤
L <∞ , where D2f = D2

ξf (if s = 0 and p(x) < 2, then we do not consider
D2f(x, ξ) at ξ = 0).

Now let us introduce various weak type minimizers for the functional
(5.70).

Definition 5.5.1. We say that u ∈ W 1,p(·)(Ω) is a quasi-minimizer(briefly
Q-minimizer) with Q ≥ 1 of F in (5.70), if for any ball Br(y) with y ∈ Ω

and any ϕ ∈ W 1,p(·)
0 (Ωr(y)), we have

F(u, suppϕ) ≤ QF(u+ ϕ, suppϕ).

Definition 5.5.2. We say that u ∈ W 1,p(·)(Ω) is an ω-minimizer of the
functional F in (5.70), if there exists a concave nonnegative function ω :
[0,∞) → [0,∞) with ω(0) = 0 such that for any ball Br(y) with y ∈ Ω and

any ϕ ∈ W 1,p(·)
0 (Ωr(y)), we have

F(u,Ωr(y)) ≤ (1 + ω(r))F(u+ ϕ,Ωr(y)).

Definition 5.5.3. We say that u ∈ W 1,p(·)(Ω) is a spherical quasi-minimizer(briefly
spherical Q-minimizer) with Q ≥ 1 of the functional F in (5.70), if for any

ball Br(y) with y ∈ Ω and any ϕ ∈ W 1,p(·)
0 (Ωr(y)), we have

F(u,Ωr(y)) ≤ QF(u+ ϕ,Ωr(y)). (5.73)

We point out some comments regarding the mentioned quasi-minimizers:
When Q = 1, a quasi-minimizer is the same as a minimizer. A ω-minimizer
is a spherical Q-minimizer with Q = 1 +ω(diam(Ω)). A quasi-minimizer is a
spherical quasi-minimizer.

We now return to our main regularity assumptions and results.
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Definition 5.5.4. For any R > 0 and δ ∈ (0, 1
8
), we say that (p(·), f(·),Ω)

is (δ, R)-vanishing provided the following conditions hold:

1. For the modulus of continuity function ωp(·) of p(·), we have

sup
0<r≤R

ωp(r) log

(
1

r

)
≤ δ.

2. For any measurable set U ⊂ Rn and any x ∈ U , we write

θ(U)(x) := sup
ξ∈Rn

∣∣∣∣ f(x, ξ)

(|ξ|2 + s2)p(x)
−
ˆ
U

f(z, ξ)

(|ξ|2 + s2)p(z)
dz

∣∣∣∣ ≤ 2L. (5.74)

Then we have

sup
0<r<R

sup
y∈Rn

ˆ
Br(y)

θ(Br(y))(x) dx ≤ δ.

3. Ω is a (δ, R)-Reifenberg flat domain. In other words, for each y ∈ ∂Ω
and each r ∈ (0, R], there exists a coordinate system {ỹ1, · · · , ỹn} with
the origin at y such that

Br(0) ∩ {ỹn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {ỹn > −δr}.

We now state the main results.

Theorem 5.5.5. Assume |F |p(·) ∈ Lq(Ω) for 1 < q < ∞. Then there exists
δ = δ(n, ν, L, γ1, γ2, q) ∈ (0, 1

8
) such that if (p(·), f(·),Ω) is (δ, R)-vanishing

for some R ∈ (0, 1] and 1 ≤ Q ≤ 1 + δ, then any spherical Q-minimizer

u ∈ W 1,p(·)
0 (Ω) of (5.70) satisfies |Du|p(·) ∈ Lq(Ω) with the estimate

ˆ
Ω

|Du|p(x)qdx ≤ c

(
diam(Ω)

R0

)n(q−1) ˆ
Ω

[
|F |p(x)q + 1

]
dx (5.75)

for some constants c = c(n, ν, L, γ1, γ2, q) ≥ 1 and R0 = R0(n, ν, L, γ1, γ2, q,
ωp(·), R,m1) > 1 is given in (5.94).

With the help of the so called maximal function free method introduced
in [5], our idea to the proof of Theorem 5.5.5 is based on a perturbation
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argument which was mainly developed in [4]. In particular, we regard the
integrand f as a perturbation of a function with standard growth in or-
der to utilize the Lipschitz regularity for the associated integral functional.
Knowing that we deal with quasi-minimizers of functionals, we need to make
comparison estimates for integral functional instead of equations as studied
in [4].

5.6 Proof of Theorem 5.5.5

As we mentioned, in the remaining part of this chapter, we only give the
comparison estimates for spherical Q-minimizers, since the remaining part of
the proofs are similar to the one in Section 5.4.

5.6.1 Auxiliary results for frozen functionals

Let 1 < p <∞ and f0 ∈ C2(Rn;R). We assume that

ν(|ξ|2 + s2)
p
2 ≤f0(ξ) ≤ L(|ξ|2 + s2)

p
2

ν(|ξ|2 + s2)
p−2

2 |η|2 ≤D2f0(ξ)η · η ≤ L(|ξ|2 + s2)
p−2

2 |η|2

for every ξ, η ∈ Rn, for some s ∈ [0, 1] and 0 < ν ≤ L <∞. Let w ∈ W 1,p(Ω)
be a minimizer of the functional of

F0(w,Ω) :=

ˆ
Ω

f0(Dw) dx (5.76)

and write a(ξ) = Dξf0. Then it is readily checked that{
|a(ξ)|+ |Da(ξ)| ≤ L(|ξ|2 + s2)

p−1
2

(a(ξ1)− a(ξ2) · (ξ1 − ξ2) ≥ ν(|ξ1|2 + |ξ2|2 + s2)
p−2

2 |ξ1 − ξ2|2,
(5.77)

and that w is a weak solution to

div a(Dw) = 0 in Ω.

Let us first state Lipschitz regularity for the frozen functional (5.76).

Lemma 5.6.1. (Lipschitz regularity, see [41, 83])
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1. Let w ∈ W 1,p(Br) be a minimizer of the functional (5.76) with Ω re-
placed by Br. Then there holds

‖Dw‖pL∞(B r
2

) ≤ c

(ˆ
Br

|Dw|pdx+ 1

)
for some c = c(n, ν, L, p) ≥ 1.

2. (See for instance [83]) Let v ∈ W 1,p(B+
r ) with v = 0 on Tr be a mini-

mizer of (5.76) with Ω replaced by B+
r . Then we have

‖Dw‖p
L∞(B+

r
2

)
≤ c

(ˆ
B+
r

|Dw|pdx+ 1

)
for some c = c(n, ν, L, p) ≥ 1.

In the above lemma we have considered a weak solution with the zero
value on the flat boundary. We next consider a weak solution with the zero
value on the rough boundary. In this case we cannot obtain Lipschitz regu-
larity. Instead we make comparison estimates as in the next lemma.

Lemma 5.6.2. Let 0 < r, ε < 1. Then there exists δ = δ(n, p, ν, L, ε) > 0
such that if w ∈ W 1,p(Ω3r) is a weak solution to{

−div(a(Dw)) = 0 in Ω4r,

w = 0 on ∂wΩ4r := B4r ∩ ∂Ω
(5.78)

with
B+

5r ⊂ Ω5r ⊂ B5r ∩ {xn > −10δr},

and v ∈ W 1,p(B+
2r) is a weak solution to{

−div(a(Dv)) = 0 in B+
2r,

v = ηw on ∂B+
2r

(5.79)

with η = η(xn) ∈ C∞(R) satisfying

0 ≤ η ≤ 1, η ≡ 1 on [δr, 2r], η ≡ 0 on (−∞, 0], |Dη| ≤ 2/(δr),
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then there holds
ˆ

Ω2r

|Dw −Dv|pdx ≤ ε

(ˆ
Ω4r

|Dw|p dx+ 1

)
, (5.80)

where v is extended to B2r by zero. Moreover, we also have

ˆ
Ω2r

|Dv|pdx ≤ c

(ˆ
Ω4r

|Dw|p dx+ 1

)
. (5.81)

Proof. We first observe from Hölder’s inequality and the higher integrability
of Dw thatˆ

Ω3r∩{xn≤δr}
|Dw|p dx

≤ c

(ˆ
Ω3r∩{xn≤δr}

|Dw|p(1+σ) dx

) 1
1+σ

|Ω3r ∩ {xn ≤ δr}|
σ

1+σ

≤ cδ
σ

1+σ |B3r|
(ˆ

Ω3r

|Dw|p(1+σ) dx

) 1
1+σ

≤ cδ
σ

1+σ

(ˆ
Ω4r

|Dw|p dx+ 1

)
, (5.82)

for some positive constant σ = σ(n, ν, L, p). From the fact that {|x′| < 2r}×
{|xn| < 2r} ⊂ B3r and w = 0 in B′2r×{xn < −10δr} and Hölder’s inequality,
we find
ˆ

Ω2r∩{xn≤δr}
|Dη|p|w|p dx ≤ c

(δr)p

ˆ
Ω2r∩{xn≤δr}

∣∣∣∣ˆ xn

−10δr

∂

∂y
w(x′, y) dy

∣∣∣∣p dx
≤ c

(δr)p

ˆ
Ω2r∩{xn≤δr}

(ˆ δr

−10δr

|Dnw(x′, y)| dy
)p

dx

≤ c

δr

ˆ
Ω2r∩{xn≤δr}

ˆ δr

−10δr

|Dnw(x′, y)|p dy dx

≤ c

ˆ
Ω3r∩{xn≤δr}

|Dw(x′, y)|p dx′ dy. (5.83)
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By standard energy estimate for (5.79), it follows from (5.83) that

ˆ
B+

2r

|Dv|p dx ≤ c

(ˆ
B+

2r

[|D(ηw)|p + 1] dx

)

≤ c

(ˆ
B+

2r∩{xn≤δr}
|Dη|p|w|p dx+

ˆ
B+

2r

|Dw|p dx+ |B+
2r|

)
≤ c

ˆ
Ω3r

[|Dw|p + 1] dx, (5.84)

and so (5.81) is proved.
To prove (5.80), we first note that v − ηw ∈ W 1,p

0 (B+
2r). Define v̄ ∈

W 1,p(B2r) by v̄ = v in B+
2r and v̄ = 0 in Ω2r \B+

2r. Then v̄− ηw ∈ W 1,p
0 (Ω2r),

and by taking v̄−ηw as a test function in both (5.78) and (5.79), we discover

ˆ
Ω2r

(a(Dv)− a(Dw)) ·D(v̄ − ηw) dx = 0.

To estimate the integral

I :=

ˆ
B+

2r

(a(Dv)− a(Dw)) ·D(v − w) dx,

we use the previous identity, the fact that v̄−ηw ≡ 0 in Ω2r\B+
2r and Hölder’s

inequality, to find

I =

ˆ
B+

2r

(a(Dv)− a(Dw)) ·D(ηw − w) dx

=
2

|B2r|

ˆ
B+

2r∩{xn≤δr}
(a(Dv)− a(Dw)) · (wDη + (η − 1)Dw) dx

≤ c

|B2r|

(ˆ
B+

2r∩{xn≤δr}
[|Dv|p + |Dw|p + 1] dx

) p−1
p

·

(ˆ
B+

2r∩{xn≤δr}
[|w|p|Dη|p + |Dw|p] dx

) 1
p

.
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Thus (5.82), (5.83) and (5.84) imply

I ≤ cδ
σ

(1+σ)p

ˆ
Ω4r

[|Dw|p + 1] dx

for some constant c = c(n, ν, L, p) ≥ 1. Employing (5.77), we deduce

ˆ
Ω2r

(|Dw|2 + |Dv|2 + s2)
p−2

2 |Dw −Dv|2 dx ≤ cδ
σ

(1+σ)p

ˆ
Ω4r

[|Dw|p + 1] dx.

On one hand, if p ≥ 2, then we have

ˆ
Ω2r

|Dw −Dv|p ≤ cδ
σ

(1+σ)p

ˆ
Ω4r

[|Dw|p + 1] dx,

which implies (5.80) by taking sufficiently small δ depending on ε and the
other universal constants.

On the other hand, if 1 < p < 2, then by Young’s inequality and (5.84),
we have that for any κ ∈ (0, 1),

ˆ
Ω2r

|Dw −Dv|p ≤ κ

ˆ
Ω2r

(|Dw|2 + |Dv|2 + s2)
p
2 dx

+ c(κ)

ˆ
Ω2r

(|Dw|2 + |Dv|2 + s2)
p−2

2 |Dw −Dv|2 dx

≤ c1κ

ˆ
Ω2r

[|Dw|p + 1] dx+ c2(κ)δ
σ

(1+σ)p

ˆ
Ω2r

[|Dw|p + 1] dx

for some universal constants c1, c2. We first select κ so that c1κ ≤ ε/2, and

then δ so that c2(κ)δ
δ

(1+δ)p ≤ ε/2. This proves assertion (5.80).

5.6.2 Comparison estimates

Throughout this subsection, we assume that δ ∈ (0, 1
8
) is a sufficiently

small number depending on a given parameter ε and structure numbers like
n, ν, L, p, while R > 0 is a given small number. We start with a self improving
property of the gradient of spherical quasi-minimizers under consideration.

Lemma 5.6.3. Let f satisfy the first condition in (5.72), and assume that
p(·) and Ω satisfy (1) and (3) in Definition 5.5.4, respectively, and F p(·) ∈
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Lq(Ω) for some q > 1. Suppose u ∈ W 1,p(·)
0 (Ω) is a spherical Q-minimizer of

(5.70) for any Q ≥ 1 and

ˆ
Ω

|Du|p(x)dx+ 1 ≤ m

for some m ≥ 1. Assume finally that y0 ∈ Ω and R0 > 0 satisfy

R0 ≤ min

{
R

8
,

1

4m

}
and ωp(2R0) ≤

√
n+ 1

n
− 1. (5.85)

Then there exists positive constants σ1 = σ1(n, ν, L, γ1, γ2, Q, q) < q and
c = c(n, ν, L, γ1, γ2, Q) such that(ˆ

Ωr̃(ỹ)

|Du|p(x)(1+σ) dx

) 1
1+σ

≤ c

ˆ
Ω2r̃(ỹ)

|Du|p(x) dx

+

(ˆ
Ω2r̃(ỹ)

[
|F |p(x)(1+σ) + 1

]
dx

) 1
1+σ

,

whenever 0 < σ ≤ σ1 and Ω2r̃(ỹ) ⊂ ΩR0(y) with ỹ ∈ ΩR0(y) and 0 < r̃ ≤ R0

2
.

Proof. It suffices to consider the boundary case BR0(y) 6⊂ Ω, as the inte-
rior case BR0(y) ⊂ Ω can be handled in the same way. We now fix any
B8r̃(ỹ) ⊂ BR0(y). For simplicity, we will omit the center ỹ and denote
p1 := infx∈Ω8r̃

p(x), p2 := supx∈Ω8r̃
p(x).

We first assume B2r̃ ⊂ Ω. Let r̃ ≤ ρ1 < ρ2 ≤ 2r̃ and η ∈ C∞c (Bρ2) be
a cutoff function satisfying 0 ≤ η ≤ 1, η = 1 in Bρ1 and |Dη| ≤ 2

ρ2−ρ1
. We

substitute ϕ = (u− (u)B2r̃
)η ∈ W 1,p(·)

0 (B2r̃) into the right-hand side of (5.73).
By following the proof of [4, Theorem 5] under a suitable modification for
quasi-minimizers with [63, Theorem 7.1], we have the following Caccioppoli
type inequality

ˆ
Br̃

|Du|p(x) dx ≤ c

ˆ
B2r̃

(
|u− (u)B2r̃

|
r̃

)p2

dx

+ c

ˆ
Ω2r̃

[
|F |p(x) + 1

]
dx. (5.86)

According to (5.85), we have 1 ≤ p2

p1
≤
√

n+1
n

=: t and p2 ≤
(
p1

t

)∗
, where
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(
p1

t

)∗
is the Sobolev conjugate of p1

t
. By Sobolev-Poincáre inequality, we have

ˆ
B2r̃

(
|u− (u)B2r̃

|
r̃

)p2

dx ≤ c

(ˆ
B2r̃

|Du|
p1
t dx

) tp2
p1

. (5.87)

In the light of (5.85), we find(ˆ
B2r̃

|Du|
p1
t dx

)ωp(16r̃)

≤ c
(m
r̃n

)ωp(16r̃)

t ≤ c

(
1

r̃

) (n+1)
t

ωp(4r̃)

≤ c. (5.88)

Combining (5.86), (5.87) and (5.88), we have

ˆ
Br̃

|Du|p(x) dx ≤ c

(ˆ
B2r̃

(|Du|+ 1)
p(x)
t dx

)t
+ c

ˆ
B2r̃

[
|F |p(x) + 1

]
dx. (5.89)

On the other hand, if B2r̃ 6⊂ Ω and B2r̃ ∩ Ω 6= ∅, then one can find
ỹ′ ∈ ∂Ω such that Br̃ ⊂ B3r̃(ỹ

′) and B6r̃(ỹ
′) ⊂ B8r̃. Let 3r̃ ≤ ρ1 < ρ2 ≤ 6r̃

and η ∈ C∞c (Bρ2) be a cutoff function satisfying 0 ≤ η ≤ 1, η = 1 in Bρ1 and

|Dη| ≤ 2
ρ2−ρ1

. Taking ϕ = uη ∈ W 1,p(·)
0 (Ωρ2(ỹ′)) in (5.73), we discover

ˆ
Ω3r̃(ỹ′)

|Du|p(x) dx ≤ c

ˆ
Ω6r̃(ỹ′)

(
|u|
r̃

)p2

dx+ c

ˆ
Ω6r̃(ỹ′)

[
|F |p(x) + 1

]
dx.

Using Sobolev-Poincáre inequality, we discover with the same spirit as in
(5.88) and (5.89) that

ˆ
Ω3r̃(ỹ′)

|Du|p(x) dx ≤ c

(ˆ
Ω6r̃(ỹ′)

|Du|
p(x)
t dx

)t
+ c

ˆ
Ω6r̃(ỹ′)

[
|F |p(x) + 1

]
dx,

which yields

ˆ
Br̃

|Du|p(x) dx ≤ c

(ˆ
B8r̃

|Du|
p(x)
t dx

)t
+ c

ˆ
B8r̃

[
|F |p(x) + 1

]
dx. (5.90)

We see that (5.89) (5.90) holds for any B8r̃ ⊂ BR0(y). Applying Gehring’s
lemma, see [63, Corollary 6.1], [4, Theorem 4], the conclusion follows.
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Remark 5.6.4. If R0 > 0 satisfies that

R0 ≤ min

{
R

8
,

1

4m0

}
and ωp(4R0) ≤

√
n+ 1

n
− 1, (5.91)

where m0 ≥ 1 is denoted by

m0 :=

ˆ
Ω

|Du|p(x)dx+ 1.

Then we see that ΩR0(y) satisfies the assumption in Lemma 5.6.3 for any
y ∈ Ω. Therefore we discover that u ∈ W 1,p(·)(1+σ0)(Br̃(ỹ)) for any 0 < r̃ ≤ R0

2

and ỹ ∈ Ω.

We also need the following self improving property.

Lemma 5.6.5. Suppose 1 < p <∞, s ∈ [0, 1], and f0 : Rn → R satisfies

ν(|ξ|2 + s2)
p
2 ≤ f0(ξ) ≤ L(|ξ|2 + s2)

p
2 .

Let w ∈ w0 + W 1,p
0 (Ω2r(y)), y ∈ Ω, be a minimizer of (5.76) with w0 ∈

W 1,p(1+σ1)(Ω2r(y)) for some σ1 > 0. Then there exists a positive constant
σ2 = σ2(n, p, ν, L, σ1) < σ1 such that for any σ ∈ (0, σ2], we have(ˆ

Ωr(y)

|Dw|p(1+σ) dx

) 1
1+σ

≤ c

ˆ
Ω2r(y)

|Dw|p dx

+

(ˆ
Ω2r(y)

[
|Dw0|p(1+σ) + 1

]
dx

) 1
1+σ

,

where c > 1 depends only on n, ν, L, p. In particular, if γ1 ≤ p ≤ γ2, then the
dependence p of σ2 and c can be replaced by γ1, γ2.

Proof. The proof is similar to that of Lemma 5.6.3 and so we use the same
notation. Let B8r̃(ỹ) ⊂ B2r(y). If B2r̃(ỹ) ⊂ Ω2r(y), then by taking a test

function ϕ = (w − (w)B2r̃
)η ∈ W 1,p(·)

0 (B2r̃), we have

ˆ
Br̃

|Dw|p dx ≤ c

ˆ
B2r̃

(
|w − (w)B2r̃

|
r̃

)p
dx+ c ≤ c

(ˆ
B2r̃

|Dw|p∗ dx
) p

p∗
+ c,

where p∗ := max{1, np
n+p
}.
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If B2r̃ 6⊂ Ω but B2r̃∩Ω 6= ∅, then we take ϕ = (w−w0)η ∈ W 1,p(·)
0 (Ω6r̃(ỹ

′))
in (5.73) to find

ˆ
Ω3r̃(ỹ′)

|Du|p dx ≤ c

ˆ
Ω6r̃(ỹ′)

(
|w − w0|

r̃

)p
dx+ c

≤ c

(ˆ
Ω6r̃(ỹ′)

|Dw −Dw0|p∗ dx
) p

p∗
+ c

≤ c

(ˆ
Ω6r̃(ỹ′)

|Dw|p∗ dx
) p

p∗
+ c

ˆ
Ω6r̃(ỹ′)

[|Dw0|p + 1] dx.

Therefore, we have

ˆ
Br̃

|Du|p dx ≤ c

(ˆ
B8r̃

|Dw|p∗ dx
) p

p∗
+ c

ˆ
B8r̃

[|Dw0|p + 1] dx

for any B8r̃ ⊂ B2r(y), by putting Dw and Dw0 by 0 in B2r(y) \ Ω. Now
Gehring’s lemma gives the desired estimate.

Remark 5.6.6. We define σ0 = σ0(n, ν, L, γ1, γ2, Q, q) > 0 by σ2 in Lemma
5.6.5, where σ1 is the one determined in Lemma 5.6.3 and p ∈ [γ1, γ2]. Of
course, we have σ0 = σ2 ≤ σ1.

From now on, we present boundary comparison estimates. Suppose (p(·), f(·),Ω)

is (δ, R)-vanishing for some R ∈ (0, 1), and let u ∈ W 1,p(·)
0 (Ω) be a spherical

Q-minimizer of (5.70) with

1 ≤ Q ≤ 1 + δ. (5.92)

We first denote m1 > 0 by

m1 :=

ˆ
Ω

|Du|p(x)dx+

ˆ
Ω

[
|F |p(x)(1+σ0) + 1

]
dx+ 1 ≥ m0, (5.93)

where σ0 > 0 is determined in Remark 5.6.6. Then R0 > 0 is assumed to
satisfy

R0 ≤ min

{
R

8
,

1

4m1

}
(5.94)
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and

ωp(2R0) ≤ min

{√
n+ 1

n
− 1,

σ0

4
,

ν

8(L+ L̃)

}
.

Note that R0 satisfies (5.91). Let us consider any boundary region Ω5r(y)
with y ∈ Ω and 0 < r ≤ R0

5
satisfying

B5r(y)+ ⊂ Ω5r(y) ⊂ B5r(y) ∩ {xn ≥ −10δr}. (5.95)

Finally, set

p1 = inf
Ω5r(y)

p(x), p2 = sup
Ω5r(y)

p(x), and h(x, ξ) = f(x, ξ)(|ξ|2 + s2)
p2−p(x)

2 .

Then we have from (5.94) that

p2 ≤ p(x)

(
1 +

ωp(10r)

p1

)
≤ p(x)(1 + σ0) (5.96)

and
(1 + ωp(10r))(1 +

σ0

4
) ≤ 1 + σ0. (5.97)

We next construct a frozen functional relevant to F . We shall omit the
center y when no confusion arises in the context. According to [41, Proposi-
tion 2.32], it follows from (5.72) that

|Df(x, ξ)| ≤ L̃(|ξ|2 + s2)
p(x)−1

2 (5.98)

for some L̃ = L̃(γ1, γ2, L) ≥ 0. Define function h : Rn × Rn → Rn and
h̄ : Rn → Rn by

h(x, ξ) := f(x, ξ)(|ξ|2 + s2)
p2−p(x)

2 and h̄(ξ) :=

ˆ
B+

4r

h(x, ξ) dx.

Then we have{
ν(|ξ|2 + s2)

p2
2 ≤ h̄(ξ) ≤ L(|ξ|2 + s2)

p2
2

ν
8
(|ξ|2 + s2)

p2−2
2 |η|2 ≤ D2h̄(ξ)η · η ≤ 2L(|ξ|2 + s2)

p2−2
2 |η|2.

(5.99)

Indeed, it suffices to show that h satisfies (5.99) with h replaced by h̄. We
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first calculate D2h:

D2h(x, ξ)

= D2f(x, ξ)(|ξ|2 + s2)
p2−p(x)

2 + (p2 − p(x))(|ξ|2 + s2)
p2−p(x)

2
−1f(x, ξ)I

+ (p2 − p(x))(|ξ|2 + s2)
p2−p(x)

2
−1 [Df(x, ξ)⊗ ξ + ξ ⊗Df(x, ξ)]

+ (p2 − p(x))(p2 − p(x)− 2)(|ξ|2 + s2)
p2−p(x)

2
−2f(x, ξ)ξ ⊗ ξ,

where I is the n× n identity matrix. It then follows from (5.72), (5.98) and
(5.94) that

ν

8
(|ξ|2 + s2)

p2−2
2 |η|2 ≤ D2h(x, ξ)η · η ≤ 2L(|ξ|2 + s2)

p2−2
2 |η|2.

Notice that as a direct consequence of (5.99), there exists a constant c ≥ 1
such that

h̄(ξ2)− h̄(ξ1)−Dh̄(ξ1) · (ξ2−ξ1) ≥ c−1(|ξ1|2 + |ξ2|2 +s2)
p2−2

2 |ξ1−ξ2|2 (5.100)

and
|Dh̄(ξ)| ≤ c(|ξ|2 + s2)

p2−1
2 .

In addition, for any x ∈ B+
4r, it follows from (5.74) that

sup
ξ∈Rn

|h(x, ξ)− h̃(ξ)|
(|ξ|2 + s2)

p2
2

= sup
ξ∈Rn

∣∣∣∣∣ h(x, ξ)

(|ξ|2 + s2)
p2
2

−
ˆ
B+

4r

h(z, ξ)

(|ξ|2 + s2)
p2
2

dz

∣∣∣∣∣
= sup

ξ∈Rn

∣∣∣∣∣ f(x, ξ)

(|ξ|2 + s2)
p(x)

2

−
ˆ
B+

4r

f(z, ξ)

(|ξ|2 + s2)
p(z)

2

dz

∣∣∣∣∣
= θ(B+

4r)(x). (5.101)

We now consider a minimizer w ∈ u+W 1,p2

0 (Ω4r) of the functional

F0(Dw) :=

ˆ
Ω4r

h̄(Dw) dx ≤
ˆ

Ω4r

h̄(Dw +Dϕ) dx (5.102)
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for every ϕ ∈ W 1,p2

0 (Ω4r). Then w solves the following Dirichlet problem:{
−div

(
Dh̄(Dw)

)
= 0 in Ω4r

w = u on ∂Ω4r.
(5.103)

It then follows from (5.96), (5.102) with ϕ = w − u and Lemma 5.6.3 that

ˆ
Ω4r

|Dw|p2dx ≤ 1

ν

ˆ
Ω4r

h̄(Dw) dx ≤ 1

ν

ˆ
Ω4r

h̄(Du) dx

≤ L

ν

ˆ
Ω4r

[|Du|p2 + 1] dx

≤ c

ˆ
Ω4r

[
|Du|p(x)(1+

ωp(10r)

p1
)
+ 1

]
dx

≤ c

(ˆ
Ω5r

|Du|p(x) dx

)1+
ωp(10r)

p1

+

(ˆ
Ω5r

[
|F |p(x)(1+σ0) + 1

]
dx

) 1
1+σ0

+
ωp(10r)

p1(1+σ0)

. (5.104)

Using (5.94), we estimate(ˆ
Ω5r

|Du|p(x)dx

)ωp(10r)

≤ c
(m1

rn

)ωp(10r)

≤
(

1

r

)(n+1)ωp(10r)

(5.105)

and similarly,(ˆ
Ω5r

[
|F |p(x)(1+σ0) + 1

]
dx

)ωp(10r)

≤ c
(m1

rn

)ωp(10r)

≤
(

1

r

)(n+1)ωp(10r)

. (5.106)

Combining (5.104), (5.105) and (5.106), we have

ˆ
Ω4r

|Dw|p2 dx ≤ L

ν

ˆ
Ω4r

[|Du|p2 + 1] dx

≤ c

ˆ
Ω5r

|Du|p(x) dx
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+ c

(ˆ
Ω5r

[
|F |p(x)(1+σ0) + 1

]
dx

) 1
1+σ0

. (5.107)

Now we are ready to derive comparison estimates.

Lemma 5.6.7. For any small ε > 0, there exists δ = δ(n, ν, L, γ1, γ2, ε) > 0
such that the following statement holds: For any λ ≥ 1, if

ˆ
Ω5r

[
|Du|p(x) + 1

]
dx+

1

δ

(ˆ
Ω5r

|F |p(x)(1+σ0)dx

) 1
1+σ0

≤ λ, (5.108)

then we haveˆ
Ω3r

|Dw|p2 dx ≤ c1λ and

ˆ
Ω3r

|Du−Dw|p2 dx ≤ ελ.

Proof. We first observe from (5.107) and (5.108) that

ˆ
Ω3r

|Dw|p2 dx ≤ c

ˆ
Ω4r

|Dw|p2 dx ≤ cλ

Moreover, using Lemma 5.6.5, Lemma 5.6.3, (5.97), (5.105), (5.106) and
(5.108), we discover(ˆ

Ω3r

|Dw|p2(1+
σ0
4

)dx

) 4
4+σ0

≤ c

ˆ
Ω4r

|Dw|p2dx+ c

(ˆ
Ω4r

|Du|p2(1+
σ0
4

)dx

) 4
4+σ0

≤ cλ+ c

(ˆ
Ω4r

[
|Du|p(x)(1+ωp(8r)(1+

σ0
4

)) + 1
]
dx

) 4
4+σ0

≤ cλ+ c

(ˆ
Ω5r

|Du|p(x)dx

)1+ωp(8r)

+ c

(ˆ
Ω5r

[
|F |p(x)(1+σ0) + 1

]
dx

) 1+ωp(8r)

1+σ0

≤ cλ+ c

ˆ
Ω5r

|Du|p(x)dx+ c

(ˆ
Ω5r

[
|F |p(x)(1+σ0) + 1

]
dx

) 1
1+σ0

≤ cλ. (5.109)
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When p2 ≥ 2, we see

|Du−Dw|p2 ≤ (|Du|2 + |Dw|2 + s2)
p2−2

2 |Du−Dw|2.

On the other hand, when p2 < 2, we see

|Du−Dw|p2 = (|Du|2 + |Dw|2 + s2)
p2(2−p2)+p2(p2−2)

4 |Du−Dw|p2

≤ ε1(|Du|2 + |Dw|2 + s2)
p2
2

+ c(ε1)(|Du|2 + |Dw|2 + s2)
p2−2

2 |Du−Dw|2 (5.110)

for any ε1 > 0. In (5.110), c(ε1) ≥ 1 depends only on n, γ1, γ2, ν, L and ε1,
and it is stable as p2 ↗ 2 for each ε1 > 0. Therefore, regardless of whether
p2 < 2 or not, we have

ˆ
Ω3r

|Du−Dw|p2 dx

≤ ε1

ˆ
Ω3r

(|Du|2 + |Dw|2 + s2)
p2
2 dx

+ c(ε1)

ˆ
Ω3r

(|Du|2 + |Dw|2 + s2)
p2−2

2 |Du−Dw|2 dx

≤ cε1λ+ c(ε1)

ˆ
Ω3r

(|Du|2 + |Dw|2 + s2)
p2−2

2 |Du−Dw|2 dx.

To estimate further, recall that w solves (5.103). It then follows from (5.100)
that ˆ

Ω3r

(|Du|2 + |Dw|2 + s2)
p2−2

2 |Du−Dw|2 dx

≤ c

ˆ
Ω3r

h̄(Du)− h̄(Dw)−Dh̄(Dw) · (Du−Dw) dx

=

ˆ
Ω3r

(h̄(Du)− h(x,Du)) dx+

ˆ
Ω3r

(h(x,Du)− f(x,Du)) dx

+

ˆ
Ω3r

(f(x,Du)− f(x,Dw)) dx+

ˆ
Ω3r

(f(x,Dw)− h(x,Dw)) dx

+

ˆ
Ω3r

(h(x,Dw)− h̄(Dw)) dx =: I1 + I2 + I3 + I4 + I5.
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Estimates I1 and I5: Applying (5.101), Hölder’s inequality and (5.109),
we estimate

|I1|+ |I5| ≤ c

ˆ
Ω3r

θ(B+
4r)
[
(|Du|2 + s2)

p2
2 + (|Dw|2 + s2)

p2
2

]
dx

≤ c

(ˆ
Ω3r

θ(B+
4r)

4+σ0
σ0 dx

) σ0
4+σ0

λ

≤ c

(
L

4
σ0

ˆ
B+

4r

θ(B+
4r) dx+ L

4+σ0
σ0 δ

) σ0
4+σ0

λ ≤ cδ
σ0

4+σ0 λ

Here, we have used (2) in Definition 5.5.4, so that

ˆ
B+

4r(y)

θ(B+
4r(y))(x) dx ≤ 4

ˆ
B4r(y)

θ(B4r(y))(x) dx ≤ 4δ,

and (5.95).
Estimates I2 and I4: The following estimates can be obtained by a direct

calculation.

|I2| ≤ L

ˆ
Ω3r

[ˆ 1

0

p2 − p(x)

2
| log(|Du|2 + s2)|

· (|Du|2 + s2)
p2−p(x)

2
tdt

]
(|Du|2 + s2)

p(x)
2 dx

≤ cωp(10r)

ˆ 1

0

ˆ
Ω3r

| log(|Du|2 + s2)|(|Du|2 + s2)
p2−p(x)

2
t+

γ1
4

· (|Du|2 + s2)
2p(x)−γ1

4 dxdt.

For any α > 0 and β > 1 we see

tα| log t| ≤


eα

α
if 0 < t ≤ e,

2tα log(e+ t
β
2 ) if e < t,

and for every t1, t2 > 0 we have log(e + t1t2) ≤ log(e + t1) + log(e + t2). It
then follows that

| log(|Du|2 + s2)|(|Du|2 + s2)
p2−p(x)

2
t+

γ1
4 (|Du|2 + s2)

2p(x)−γ1
4
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≤ 2| log(e+ (|Du|2 + 1)
p2
2 )|(|Du|2 + 1)

p2
2 +

4eγ2

γ1

(|Du|2 + s2)
2p(x)−γ1

4

≤ 2 log

(
e+

(|Du|2 + 1)
p2
2

((|Du|2 + 1)
p2
2 )Ω3r

)
(|Du|2 + 1)

p2
2

+ 2 log

(
e+

(
(|Du|2 + 1)

p2
2

)
Ω3r

)
(|Du|2 + 1)

p2
2

+ c(γ1, γ2)(|Du|2 + 1)
p(x)

2 .

Thus, (2.15), (5.94), (5.109) and (1) in Definition 5.5.4 yield

|I2| ≤ cωp(10r)

ˆ
Ω3r

log

(
e+

(|Du|2 + 1)
p2
2

(|Du|2 + 1)
p2
2 )Ω3r

)
(|Du|2 + 1)

p2
2 dx

+ cωp(10r)

ˆ
Ω3r

log

(
e+

(
(|Du|2 + 1)

p2
2

)
Ω3r

)
(|Du|2 + 1)

p2
2 dx

+ cωp(10r)

ˆ
Ω3r

(|Du|2 + 1)
p(x)

2 dx

≤ cωp(10r)

(ˆ
Ω3r

(|Du|+ 1)p2(1+
σ0
4 ) dx

) 4
4+σ0

+ cωp(10r) log

(
1

r

) ˆ
Ω3r

(|Du|+ 1)p2dx

+ cωp(10r)

ˆ
Ω3r

(|Du|+ 1)p(x) dx

≤ cωp(10r) log

(
1

r

)(ˆ
Ω3r

(|Du|+ 1)p2(1+
σ0
4 ) dx

) 4
4+σ0

≤ cδλ.

In the same spirit, we find

|I4| ≤ cωp(10r) log

(
1

10r

)(ˆ
Ω3r

(|Dw|+ 1)p2(1+
σ0
4 ) dx

) 4
4+σ0

≤ cδλ.

Estimate I3. Using Young’s inequality and that u is quasi-minimizer of
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(5.70) with (5.92), we have

|I3| ≤ (Q− 1)

ˆ
Ω3r

f(x,Dw) dx+

ˆ
Ω3r

|F |p(x)−2F · (Du−QDw) dx

≤ Lδ

ˆ
Ω3r

(|Dw|2 + s2)
p(x)

2 dx+

ˆ
Ω3r

|F |p(x)−1|Du−Dw| dx

+ δ

ˆ
Ω3r

|F |p(x)−1|Dw| dx

≤ cδ

ˆ
Ω3r

(|Dw|+ 1)p2 dx+ ε2

ˆ
Ω3r

|Du−Dw|p2 dx

+ c(ε2)

ˆ
Ω3r

(|F |+ 1)p(x)dx

for any ε2 > 0. Taking (5.109) into account, we see

|I3| ≤ c(ε2)δλ+ ε2

ˆ
Ω3r

|Du−Dw|p2 dx.

Summing up the previous inequalities gives

ˆ
Ω3r

|Du−Dw|p2 dx

≤ cε1λ+ c(ε1, ε2)

(
δ

σ0
4+σ0 + ωp(10r) log

(
1

10r

))
λ

+ c(ε1)ε2

ˆ
Ω3r

|Du−Dw|p2dx.

Taking ε1, ε2 and δ small enough, the desired results follows.

Finally using the previous lemma, Lemma 5.6.2 and (2) in Lemma 5.6.1,
we can deduce the following lemma.

Lemma 5.6.8. For any small ε > 0, there exists δ = δ(n, ν, L, γ1, γ2, ε) > 0
such that the following statement holds: For any λ ≥ 1, if

ˆ
Ω5r

[
|Du|p(x) + 1

]
dx+

1

δ

(ˆ
Ω5r

|F |p(x)(1+σ0) dx

) 1
1+σ0

≤ λ,
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then there exists v ∈ W 1,p(Ω2r) ∩W 1,∞(Ωr) with v = 0 on T2r such that

ˆ
Ω2r

|Du−Dv|p2 dx ≤ ελ

and

sup
Ωr

‖Dv‖p2 = sup
B+
r

‖Dv‖p2 ≤ c

(ˆ
Ω2r

|Dv|p2 dx+ 1

)
≤ cλ,

for some c = c(n, ν, L, γ1, γ2) ≥ 1.

As we mentioned, the remaining part of the proof of Theorem 5.5.5 is
similar to the one for Theorem 5.1.2. Therefore, we end the proof here.
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[74] S. M. Kozlov, O. A. Olĕınik, and V. V. Zhiikov, Homogenization of
differential operators and integral functionals, Springer-Verlag, Berlin,
1994.

[75] T. Kuusi and G. Mingione, Universal potential estimates, J. Funct.
Anal. 262 (2012), no. 10, 4205–4269.

[76] , Linear potentials in nonlinear potential theory, Arch. Ration.
Mech. Anal. 207 (2013), no. 1, 215–246.

[77] , Guide to nonlinear potential estimates, Bull. Math. Sci. 4
(2014), no. 1, 1–82.

[78] , A nonlinear stein theorem, Calc. Var. Partial Differential
Equations 51 (2014), no. 1-2, 45–86.

[79] , Riesz potentials and nonlinear parabolic equations, Arch. Ra-
tion. Mech. Anal. 212 (2014), no. 3, 727–780.

[80] , Partial regularity and potentials, J. École Polytech. Math 3
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국문초록

이학위논문에서는측도데이터를갖는비선형편미분방정식에대하여해

의 그라디언트가 각 점 별로 주어진 데이터의 1-리즈 퍼텐셜 가늠을 갖는다는
것을 다양한 비표준 성장조건 하에서 증명하였다.
특히 1-리즈 퍼텐셜이 선형 연산자에 대응하는 퍼텐셜이라는 사실로 인

하여 선형화 기법을 통하여 주어진 비선형 연산자를 선형 연산자로 근사하

는 방법이 요구된다. 이러한 과정에서 현재까지의 접근법에는 주어진 편미분
방정식의 성장조건이 2차보다 높은 차수인 경우와 낮은 차수인 경우에 대해
근본적인 차이가 있었다.
위와 같은 차이는 이 논문의 4장의 접근법을 통하여 주어진 데이터가 약

해의 존재성을 보장할 수 있는 경우에 대하여 극복된다. 그러나 측도데이터를
갖는 방정식에 대해서는 아직까지 위와 같은 통합적인 접근법이 제시되지 않

았으며, 이러한 접근법을 제시하는 첫 걸음으로서 5장에서 측도데이터를 갖는
올릭즈 성장조건 방정식에 대하여 칼데론 지그먼드 이론을 설명하고 있다.

주요어휘: 측도데이터, 퍼텐셜 이론, 비표준 성장, 선형화 기법, 조화적 근사
학번: 2015-30968
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에게질문을던졌습니다. ‘수학이좋아서공부를하는것일까?지금까지공부한
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