creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

o8t uha} B9 =8

Bootstrapping Methods for
Homomorphic Encryption

(TILZT AFEY 7]Hef Tt)

20194 2¢

Bootstrapping Methods for
Homomorphic Encryption

(TILZT AL 7Hef Tt A1)

A 34749

20184 129

q 9 F 2 Y g Q)
E4F A Z 5 (9
=1 a4 A = 2 ()
4 a4 3 = z (9

=/
e
N
0%
X
Fﬁ

Bootstrapping Methods for
Homomorphic Encryption

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Kyoohyung Han

Dissertation Director : Professor Jung Hee Cheon

Department of Mathematical Sciences
Seoul National University

February 2019

(© 2019 Kyoohyung Han

All rights reserved.

Abstract

Bootstrapping Methods for
Homomorphic Encryption

Kyoohyung Han
Department of Mathematical Sciences
The Graduate School

Seoul National University

After Gentry’s blueprint on homomorphic encryption (HE) scheme, var-
ious efficient schemes have been suggested. For unlimited number of op-
erations between encrypted data, the bootstrapping process is necessary.
There are only few works on bootstrapping procedure because of the com-
plexity and inefficiency of bootstrapping. In this paper, we propose various
method and techniques for improved bootstrapping algorithm, and we ap-
ply it to logistic regression on large scale encrypted data.

The bootstrapping process depends on based homomorphic encryption
scheme. For various schemes such as BGV, BFV, HEAAN, and integer-
based scheme, we improve bootstrapping algorithm. First, we improved
bootstrapping for BGV (HElib) and FV (SEAL) schemes which is imple-
mented by Microsoft Research and IMB respectively. The key process for
bootstrapping in those two scheme is extracting lower digits of plaintext

in encrypted state. We suggest new polynomial that removes lowest digit

i

of input, and we apply it to bootstrapping with previous method. As a
result, both the complexity and the consumed depth are reduced. Second,
bootstrapping for multiple data needs homomorphic linear transformation.
The complexity of this part is O(n) for number of slot n, and this part
becomes a bottleneck when we use large n. We use the structure of linear
transformation which is used in bootstrapping, and we decompose the ma-
trix which is corresponding to the transformation. By applying recursive
strategy, we reduce the complexity to O(logn). Furthermore, we suggest
new bootstrapping method for integer-based HE schemes which are based
on approximate greatest common divisor problem. By using digit extrac-
tion instead of previous bit-wise approach, the complexity of bootstrapping
algorithm reduced from O(poly())) to O(log®). Our implementation for

this process shows 6 seconds which was about 3 minutes.

To show that bootstrapping can be used for practical application, we
implement logistic regression on encrypted data with large scale. Our target
data has 400,000 samples, and each sample has 200 features. Because of
the size of the data, direct application of homomorphic encryption scheme
is almost impossible. Therefore, we decide the method for encryption to
maximize the effect of multi-threading and SIMD operations in HE scheme.
As a result, our homomorphic logistic regression takes about 16 hours
for the target data. The output model has 0.8 AUROC with about 80%
accuracy. Another experiment on MNIST dataset shows correctness of our

implementation and method.

Key words: homomorphic encryption, privacy protection, bootstrapping
Student Number: 2013-20250

Contents

[Abstractl i
1__Introductionl 1
(1.1 Homomorphic Encryptionl 1
(1.2 Machine Learning on Encrypted Datal 4
(1.3 List of Papers| 5

[2 Background| 7
2.1 Notationl 7
[2.2 Homomorphic Encryptionl 8
[2.3 Ring Learning with Errors| 9
2.4 Approximate GCD| 10

[3 Lower Digit Removal and Improved Bootstrapping] 12
(3.1 Basis of BGV and BEV schemel 13
[3.2 Improved Digit Extraction Algorithm|. 17
[3.3 Bootstrapping for BGV and BF'V Schemel 26
3.3.1 Our modifications| 27

[3.4 Slim Bootstrapping Algorithm| 31
(3.5 Implementation Result| 34

iii

CONTENTS

[4 Faster Homomorphic DFT and Improved Bootstrapping 38
4.1 Basis of HEAAN schemel 40
4.2 Homomorphic DFT|. 41

4.2.1 Previous Approach| 41
422 QOurmethod 42
4.2.3 Hybrid method| 48
4.2.4 Implementation Result| 49
[4.3 Improved Bootstrapping for HEAAN| 51
[4.3.1 Linear Transformation in Bootstrapping| 51
[4.3.2 Improved CoeffToSlot and SlotToCoeff| 52
4.3.3 Implementation Result| 56

[> Faster Bootstrapping for FHE over the integers| 58
[>.1 Basis of FHE over the integers| 63
[5.2 Decryption Function via Digit Extraction|. 66

[5.2.1 Squashed Decryption Function/. 66
[5.2.2 Digit extraction Techniquel 67
[5.2.3 Homomorphic Digit Extraction in FHE over the in- |

[tegers| 69

[5.3 Bootstrapping for FHE over the integers| 72
b.3.1 CLT scheme with M =24 73
[5.3.2 Homomorphic Operations with M = Z| 75
[5.3.3 Homomorphic Digit Extraction for CLT scheme] . . 79
b.3.4 Our Method on the CLT schemel 81
[5.3.5 Analysis of Proposed Bootstrapping Method| 82

(.4 Implementation Result| 86

v

CONTENTS

[6 Logistic Regression on Large Encrypted Datal 88
[6.1 Basis of Logistic Regression| 91
[6.2 Logistic Regression on Encrypted Datal 93

(6.2.1 HE-friendly Logistic Regression Algorithml| 93
[6.2.2 HE-Optimized Logistic Regression Algorithm| . . . 96
[6.2.3 Further Optimization| 102
6.3 PFvaluationl. o 106

[6.3.1 Logistic Regression on Encrypted Financial Dataset| 107
[6.3.2 Logistic Regression on Encrypted MNIST Dataset| . 109

6.3.3 Discussionlo 112
[r__Conclusions 114
[Abstract (in Korean)| 124
[Acknowledgement (in Korean)| 125

v

Chapter 1

Introduction

1.1 Homomorphic Encryption

Homomorphic Encryption (HE) allows computations on encrypted data,
and this can be used to evaluate in an untrusted party. The concept of
this scheme is proposed by Rivest et al. [RAD7§| with a concrete scheme.
Since 2009, however, all proposed schemes are broken by various attacks.
At 2009, Gentry introduced the first HE scheme based on ideal lattice
problem |Gen09]. After that, there has been a large collection of works (e.g.,
[BGV12, Bral2, [FV12, BLLN13, vDGHV10, |CLT14} CS15, (CKKS17]),
with huge performance improvements.

These schemes follow Gentry’s original blueprint, where each cipher-
text is associated with a certain amount of “noise”. The ratio between
ciphertext moduli and the noise grows as homomorphic evaluations are
performed. When the ratio is over some threshold, decryption will fail to
give the correct result. For this reason, if no additional measure is taken,

one set of parameters can only evaluate circuits of a bounded depth. This

CHAPTER 1. INTRODUCTION

approach is called leveled homomorphic encryption (LHE) and is used in

a many works.

Bootstrapping

However, if we wish to homomorphically evaluate functions of arbitrary
complexity using one single set of parameters, then we need a procedure
to lower the noise without decryption process. This can be done via Gen-
try’s brilliant bootstrapping technique. Roughly speaking, bootstrapping a
ciphertext in some given scheme means running its own decryption algo-
rithm homomorphically, using an encryption of the secret key. The result
is a new ciphertext which encrypts the same message while having lower
noise when the depth of decryption function is small enough for evaluation.

The decryption function of existing HE schemes consists of modulo
or division operation which is not conveniently supported by the scheme
itself. Hence, in order to perform bootstrapping, one either needs to find
another representation of modulo or division, or design some scheme which
can handle its decryption circuit more comfortably. Among the best works
on bootstrapping implementations, the work of Halevi and Shoup [HS15],
which optimized and implemented bootstrapping over the scheme of Brak-
erski, Gentry and Vaikuntanathan (BGV), is arguably still the state-of-
the-art in terms of throughput, ciphertext/message size ratio and flexible
plaintext moduli. For example, they were able to bootstrap a vector of size
1024 over GF(2'%) within 5 minutes.

Another approach for bootstrapping is using approximate homomor-
phic encryption scheme [CKKS17|. This scheme supports operations be-
tween encrypted data approximately, and this scheme can be used for

evaluation of encrypted complex numbers. By using complex number as

CHAPTER 1. INTRODUCTION

plaintext, we use various analytic tools to simplify modulo operations. In
[CHK™ 18], they convert modulo operation to sine function with the condi-
tion that input is close to some integer. This condition can be satisfied in
most of the HE scheme, we just need to start bootstrapping little bit early.
In this work, they reports that their bootstrapping takes only 2 minutes
to bootstrapping a vector of size 128 over C.

Despite of various works, bootstrapping procedure is considered as a
very expensive operation. In case of bootstrapping for BGV scheme, when
the plaintext modulus reaches 2%, bootstrapping still takes a few hours to
perform. The reason is mainly due to a digit extraction procedure, whose
cost grows significantly with the plaintext modulus. The Fan-Vercauteran
(FV) scheme, a scale-invariant variant of BGV, has also been implement in
[LP16, AMBG™16| and used in applications. We are not aware of any pre-
vious implementation of bootstrapping for FV. Furthermore, homomorphic
linear transformation which is used to bootstrap multiple number of plain-
text is also bottleneck for efficient bootstrapping. In [CHK™18], the linear
transformation part takes 456 seconds with overall timing 524 seconds.

In this paper, we solve those problems in bootstrapping. First, faster
digit extraction algorithm in encrypted state is proposed and this is used for
improve bootstrapping in both BGV and FV schemes with implementation
of bootstrapping in FV scheme. Second, we improve linear transformation
part of bootstrapping by understanding it as variant of discrete Fourier
transformation (DFT) and convert it in sense of fast Fourier transforma-

tion.

CHAPTER 1. INTRODUCTION

1.2 Machine Learning on Encrypted Data

Suppose multiple financial institutions want to predict credit scores of
their customers. Although each institution could independently learn a
prediction model using various machine learning techniques, they may be
able to collectively learn a better model by considering all of their data
together for training. However, it is risky in terms of data security to share
financial data between institutions, being even illegal in many countries.
Homomorphic encryption (HE), an encryption scheme that allows arbi-
trary computations on encrypted data, can be used to solve this dilemma.
Using HE, multiple institutions can share their data in an encrypted form
and run machine learning algorithms on the encrypted data without ever
decrypting. This HE-based approach is flexible in that the training com-
putation can be delegated to any party (or even an untrusted third party)
without revealing the training data (other than their own). This flexibil-
ity is desirable, as other approaches require additional assumptions and

conditions that may not be realizable in practice.

Despite many advantages, however, HE has not been used for computation-

intensive tasks such as machine learning (especially on the training phase),
having been thought to be impractical due to its large computation over-
head. Indeed, basic operations (e.g., addition or multiplication) on ci-
phertexts are several (i.e., three to seven) orders of magnitude slower
than the corresponding operations on plaintexts even in the state-of-the-
art [GHS12b| |[HS15, (CKKS17, vDGHV10, BV14, BV11] Bral2, BGV12,
LATV12, |(CLT14, DM15|. Moreover, some complex operations may cause
additional overhead when they are reduced to a combination of basic oper-

ations[] For example, fractional number (e.g., fixed-point or floating-point)

*Most of HE schemes support only basic operations like addition and multiplication

4

CHAPTER 1. INTRODUCTION

arithmetic operations on ciphertexts are quite expensive, as they involve
bit-manipulation operations that are expressed as complex arithmetic cir-
cuits of a large depth.

In addition to the sheer amount of computation, the use of various
complex operations, such as floating-point arithmetic and non-polynomial
functions (e.g., sigmoid), makes it challenging to apply HE to machine
learning algorithms. Indeed, HEs have been applied to machine learning al-
gorithms only in non-realistic settings [GLN12, [KSK™ 18] where only small-
size training datasets over a small number of features are considered; or,
they have been applied only on the prediction phase |[BLN14, BPTG15,
GBDL™16, [LLH"17, CAWM™17, |JVC18, BMMP17]| where the amount of

computation is much smaller than that of the training phase.

1.3 List of Papers

This thesis contains the results of the following papers.

e [CH1§| Hao Chen, Kyoohyung Han: Homomorphic Lower Digits Re-
moval and Improved FHE Bootstrapping. Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, Cham, 2018.

e [CHH18] Jung Hee Cheon, Kyoohyung Han, Minki Hhan. Faster Ho-
momorphic DFT and Improved Bootstrapping for FHE. IACR Cryp-
tology ePrint Archive, 2018.

as built-in, and require other operations to be represented in the form of a combination
of the built-in operations.

CHAPTER 1. INTRODUCTION

e [CHK17] Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim.
Faster Bootstrapping of FHE over the integers, IACR Cryptology
ePrint Archive, 2017:79, 2017.

e [HHCP18] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and
Deajun Park. Efficient Logistic Regression on Large Encrypted Data.
will be appeared at Innovative Applications of Artificial Intelligence
Conference (IAAI), 2019.

Chapter 2

Background

2.1 Notation

[n] ={0,1,--- ,n— 1}, and Z, is treated as [n] in this paper. a mod p for
a € R is a unique number € [0,p) such that a — (e mod p) is an integer
multiple of p. |a] is the nearest integer of a, and [a], is a unique integer
in (—p/2,p/2] such that a — [a], is a multiple of p. a®(r) := a; for a non-
negative integer a = Y. a;t' and a; € [t]. When ¢ = 2, we omit the subscript
t.

Column vectors are written by bold and lower case letters and matrices
are written by bold and upper case letters. The entries of bold face is
denoted as v = (vg, vy, ,v,-1)" and M = (M, ;)1<ij<n- We sometimes
take modular n for indices of vector or matrices, and omit the transpose
operator T'. The entry-wise multiplication of two vectors v, and vy is
denoted by v; ®wvs which is called Hadamard multiplication. For the given
vector v with length n, diag;(v) is n by n matrix M such that M, ;.; = v,

for 0 < 7 < n and all other entries are zero. We will omit the index ¢ of diag

CHAPTER 2. BACKGROUND

when ¢ = 0. On the other hand, for n by n matrix M, diag;(M) denotes a
length n vector (Mo, M1 144, -+ Mp—1n—1+:). rot;(v) is left shifted vector
with index 4, this means that the result vector is (v;, vit1,...,v;—1). When
the index ¢ is negative, it means right shifting with index —i.

We sometimes use the special order of indices called bit-reversal order.
It is defined by ordering the indices in increasing order of the reverse of
binary representations that are padded so that each of these binary repre-
sentation has the same length. For example, bit-reversal order of the given
array (ao, a, az, ag) is (ao, az, a1, ag) (because bit-reversed index is follows:
(00(2): 10¢2), 012y, 1)) = (0,2, 1, 3)).

2.2 Homomorphic Encryption

Fully homomorphic encryption (FHE) is an encryption scheme that allows
arbitrary computation on ciphertexts without decryption. The first secure
FHE (based on the hardness assumption of a plausible number-theoretic
problem) was proposed by Gentry [Gen09]. He first constructed a scheme,
so-called somewhat homomorphic encryption (SHE), that allows a limited
number of addition and multiplication operations[f] A notable aspect of the
scheme is the addition of a random noise for each encryption. To address
the limitation of computation, he proposed the so-called bootstrapping pro-
cedure that converts a ciphertext with large noise into another ciphertext
with the same plaintext but small noise. Using the bootstrapping, he con-
structed an FHE scheme on top of the SHE scheme.

Various FHE schemes have been proposed since Gentry’s construction.

Their message spaces are either Z, or a vector space over Z,. In a bit-wise

*Note that an arbitrary computation can be composed of addition and multiplication
on Zs.

CHAPTER 2. BACKGROUND

FHE (p = 2), bit-manipulation and bootstrapping are efficient, but inte-
ger arithmetic is not. In a word-wise FHE (p » 2), however, the integer
arithmetic is efficient as long as the result is smaller than p. Recently, an
approximate FHE scheme has been proposed by |[CKKS17]. The scheme,
called HeaAn, supports efficient approximate computation. In addition to
addition and multiplication, it supports a rounding operation, called rescal-
ing, that is essential for approximate real arithmetic (e.g., floating-point

arithmetic).

2.3 Ring Learning with Errors

The ring learning with errors (RLWE) problem was firstly introduced by
Lyubaskevsky, Peikert and Regev [LPR10]. The definition of this problem

is as follows:

Definition 2.3.1 (RLWE, definition 4 in [BGV12]). FOr security param-
eter \, let f(r) = 2% + 1 where d = d()) is a power of 2. Let ¢ = q(\) = 2
be an integer. Let R = Z[z]/(f(z)) and let R, = R/qR. Let x = x(\) be a
distribution over R. The RLWE,, , problem is to distinguish the following
two distributions: In the first distribution, one samples (a;, b;) uniformly
from Ri. In the second distribution, one first draws s « R, uniformly and
then samples (a;,b;) € Rz by sampling a;, < R, uniformly, e; < x, and
setting b; = a; - s + ¢;. The RLWE,,, assumption is that the RLWE,,

problem is infeasible.

Usually, the noise distribution y is used as discrete Gaussian distribution.
This Gaussian distribution might need to be “ellipsoidal” for certain re-

ductions [LPR10]. And, secret key is sampled in y instead of R, uniformly.

CHAPTER 2. BACKGROUND

For efficiency of bootstrapping and HE scheme, secret key is samples as

sparse binary which has small number of non-zero coefficients in {—1, 1}.

2.4 Approximate GCD

The approximate greatest common divisor (AGCD) problem was firstly
introduced in [vDGHV10|. Computing GCD of two value can be done
easily using Euclidean algorithm. when the given values has noise, the

hardness of the problem grows. The definition of the problem is follows:

Definition 2.4.1 (Approximate GCD). For a odd positive integer p, we

define the following distribution over 7-bit integers:
D, ,(p) :={qg—Zn[0,27/p),r — Zn (—2°,2") : output z = pq + r}

The (p,n,v)—approximate GCD problem is: given polynomially many sam-
ples from D, ,(p) for a randomly chose n-bit odd integer p, output p.

Based on the hardness of this problem, various homomorhic encryp-
tion schemes were proposed [vDGHV10, CCK™ 13, NK15]. For more faster

homomorphic operations, a variant of this problem is also used in [CLT14].

Definition 2.4.2 (Variant of AGCD). For a odd positive integer p, we

define the following distribution over ~-bit integers:
D, ,(p) = {q —Zn[0,27/p*),r < Z n (=2°,2°) : output x = p*q + r}

The (p, n,v)—approximate GCD problem is: given polynomially many sam-
ples from D, ,(p) for a randomly chose 7-bit odd integer p, output p.

10

CHAPTER 2. BACKGROUND
Remark 2.4.1. The difference is just using p? instead of p. Note that

original AGCD problem has reduction between learning with error problem

while the variant of AGCD does not.

11

Chapter 3

Lower Digit Removal and

Improved Bootstrapping

In this chapter, we aim at improving the efficiency of bootstrapping under
large prime power plaintext moduli. We used a family of low degree lowest-
digit-removal polynomials to design an improved algorithm to remove v
lowest base-p digits from integers modulo p®. Our new algorithm has depth
vlogp + log e, compared to (e — 1)log p in previous work.

We then applied our algorithm to improve the digit extraction step
in the bootstrapping procedure for FV and BGV schemes. Let h = ||s||1
denote the 1-norm of the secret key, and assume the plaintext space is a
prime power t = p". Then for FV scheme, we achieved bootstrapping depth
log h + loglog,(ht). In case of BGV, we have reduced the bootstrapping
degree from log h+2log(t) to log h+logt. We provided a first implementa-
tion of the bootstrapping functionality for FV scheme in the SEAL library
[LP16]. We also implemented our revised digit extraction algorithm in HE-

lib which can directly be applied to improve HElib bootstrapping for large

12

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING
plaintext modulus p".

We also introduced a light-weight mode of bootstrapping which we call
the “slim mode” by restricting the plaintexts to a subspace. In this mode,
messages are vectors where each slot only holds a value in Z,- instead
of a degree-d extension ring. The slim mode might be more applicable in
some use-cases of FHE, including machine learning over encrypted data.
We implemented the slim mode of bootstrapping in SEAL and showed that
in this mode, bootstrapping is about d times faster, hence we can achieve

a similar throughput as in the full mode.

3.1 Basis of BGV and BFV scheme

First, we introduce some notations. Both BGV and FV schemes are ini-
tialized with integer parameters m,t and q. Here m is the cyclotomic field
index, t is the plaintext modulus, and ¢ is the coefficient modulus. Note
that in BGV, it is required that (¢,q) = 1.

Let ¢,,(z) denote the m-th cyclotomic polynomial and let n denote
its degree. We use the following common notations R = Z[z]|/(¢m(z)),
R, = R/tR, and R, = R/qR. In both schemes, the message is a polynomial
m(z) in R;, and the secret key s is an element of R,. In practice, s is
usually taken to be ternary (i.e., each coefficient is either -1, 0 or 1) and
often sparse (i.e., the number of nonzero coefficients of s are bounded by
some h < m). A ciphertext is a pair (co, ¢;) of elements in R,. Following is

relation between ¢y and c¢; for each scheme:
BGV: ¢y = —¢15 + te + m for ¢; < R, and noise e < DG(0),

FV: ¢y = —c15 + Im + e for ¢; < R, and noise e < DG(0).

13

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Decryption formula. The decryption of both schemes starts with a
dot-product with the extended secret key (1,s). In BGV, we have

co + 15 = m(x) + tv + agq,

and decryption returns m(z) = ((co + ¢18) mod ¢) mod ¢t. In FV, the
equation is

co+ 18 = Am(z) + v+ aq

and decryption formula is m(z) = [W].
Plaintext space. The native plaintext space in both schemes is R,
which consists of polynomials with degree less than n and integer coef-
ficients between 0 and ¢t — 1. Additions and multiplications of these poly-
nomials are performed modulo both ¢,,(z) and ¢.

A widely used plaintext-batching technique [SV14] turns the plaintext
space into a vector over certain finite rings. Since batching is used exten-
sively in our bootstrapping algorithm, we recall the details here. Suppose
t = p" is a prime power, and assume p and m are co-prime. Then ¢,,(x)
mod p” factors into a product of k irreducible polynomials of degree d.
Moreover, d is equal to the order of p in Z7,, and k is equal to the size of
the quotient group ZZ /(p). For convenience, we fix a set S = {s1,..., sk}
of integer representatives of the quotient group. Let f(x) be one of the

irreducible factors of ¢,,(z) mod p", and consider the finite extension ring

Then all primitive m-th roots of unity exist in £. Fix (€ F to be one such

14

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

root. Then we have a ring isomorphism

R, — E*
m(z) — (m(¢*), m(C?),...,m(C*"))

Using this isomorphism, we can regard the plaintexts as vectors over E, and
additions/multiplications between the plaintexts are executed coefficient-
wise on the components of the vectors, which are often called slots.

In the reset of the paper, we will move between the above two ways of
viewing the plaintexts, and we will distinguish them by writing them as
polynomials (no batching) and vectors (batching). For example, Enc(m(x))
means an encryption of m(x) € R;, whereas Enc((mq,...,my)) means a

batch encryption of a vector (my, ..., my) € E*.

Modulus switching. Modulus switching is a technique which scales a
ciphertext (cg, ;) with modulus ¢ to another one (cf,¢]) with modulus
¢ that decrypts to the same message. In BGV, modulus switching is a
necessary technique to reduce the noise growth. Modulus switching is not
strictly necessary for FV, at least if used in the LHE mode. However, it will
be of crucial use in our bootstrapping procedure. More precisely, modulus
switching in BGV requires g and ¢’ to be both co-prime to ¢. For simplicity,
suppose ¢ = ¢’ = 1(mod t). Then ¢, equals the closest integer polynomial
to %c such that ¢, = ¢; mod t. For FV, ¢ and ¢’ do not need to be co-prime
to t, and modulus switching simply does scaling and rounding to integers,
ie., ¢ =|q/qci)-

We stress that modulus switching slightly increase the noise-to-modulus
ratio due to rounding errors in the process. Therefore, one can not switch

to arbitrarily small modulus ¢’. On the other hand, in bootstrapping we

15

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

often like to switch to a small ¢’. The following lemma puts a lower bound

on the size of ¢’ for FV (the case for BGV is similar).

Lemma 3.1.1. Suppose ¢+ c1s = Am+v+aq is a ciphertext in F'V with
lv| < AJ4.if ¢ > 4t(1+]]sl||1), and (¢}, ¢}) is the ciphertext after switching

the modulus to ¢', then (cj, c)) also decrypts to m.

Proof. We define the invariant noise to be the term v;,, such that

t
5(00 +¢18) = M + Vipy + 1.

Decryption is correct as long as |[vi|| < 3. Now introducing the new

modulus ¢, we have

t / /
— (q—co + 2013> =M + Vjpy + 11
¢ \9q q

for some integer r. Taking nearest integers of the coefficients on the left

hand side, we arrive at

t (4 q
- - - = inuv 9
7 <[qco]+[qcl]s m + Uiy +tr + 0

with the rounding error ||6|| < t/¢'(1+]|s||1). Thus the new invariant noise
is
Viny! = Vipy + J

We need ||6|| < 1/4 for correct decryption. Hence the lower bound on ¢ is

q > 4t(1+|[s]lh).

16

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

We remark that although the requirement in BGV that ¢ and t are co-
prime seems innocent, it affects the depth of the decryption circuit when
t is large. Therefore, it results in an advantage for doing bootstrapping in
FV over BGV. We will elaborate on this point later.

Multiply and divide by p in plaintext space. In bootstrapping, we
will use following functionalities: dividing by p, which takes an encryption
of pm mod p° and returns an encryption of m mod p¢~!, and multiplying
by p which is the inverse of division. In BGV scheme, multiply by p can
be realized via a fast scalar multiplication (cg, ;) — ((pco) mod g, (per)

mod ¢). In the FV scheme, these operations are essentially free, because if

co+ 18 = [peq,ljm + v + ga, then the same ciphertext satisfies ¢y + ¢1s =
[I%me + v + v + ga for some small v'. In the rest of the paper, we will

omit these operations, assuming that they are free to perform.

3.2 Improved Digit Extraction Algorithm

The previous method for digit extraction used certain lifting polynomials
with good properties. We used a family of “lowest digit removal” poly-
nomials which have a stronger lifting property. We then combined these
lowest digit removal polynomials with the lifting polynomials to construct
a new digit removal algorithm.

For convenience of exposition, we use some slightly modified notations
from [HS15|. Fix a prime p. Let z be an integer with (balanced) base-p
expansion z = Zf:—é z;p'. For integers 4,7 = 0, we use z;; to denote any
integer with first base-p digit equal to z; and the next j digits zero. In

other words, we have z;; = z; mod p'*'.

17

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Previous Method

The bootstrapping procedure in [HS15] consists of five main steps: modulus
switching, dot product (with an encrypted secret key), linear transform,
digit extraction, and another “inverse” linear transform. Among these, the
digit extraction step dominates the cost in terms of both depth and work.
Hence we will focus on optimizing the digit extraction. Essentially, we need

the following functionality.

DigitRemove(p, e, v) : fix prime p, for two integers v < e and an input
u mod p°, let u = > u;p’ with |u;| < p/2 when p is odd (and u; = 0,1

when p = 2), returns

e—1
w(v,...,e—1):= Zulp’

We say this functionality “removes ” the v lowest significant digits in
base p from an e-digits integer. To realize the above functionality over
homomorphically encrypted data, the authors in [HS15| constructed some

special polynomials F,(-) with the following lifting property.

Lemma 3.2.1 (Corollary 5.5 in |[HS15]). For every prime p and e > 1
there exist a degree p-polynomial F, such that for every integer zo, z; with

20 € [p] and every 1 < ¢ < e we have F,(zy + pz1) = 2z (mod p¢*1).

For example, if p = 2, we can take F.(z) = z?. One then uses these
lifting polynomials F} to extract each digit u; from u in a successive fashion.
The digit extraction procedure is defined in Figure 1 in [HS15| and can be

visualized in the following diagram.

18

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

U = Uug,0 Uop,1 Ug,v—1 Ug,e—1
Uy,1 ot Urer—2 s Ul,e—2

Ue—2,1

Figure 3.1: Previous Method for Digit Extraction

In Figure [3.1] the top-left digit is the input. This algorithm starts with
the top row. From left to right, it recursively applies the lifting polynomial
to obtain all the digits in area 2. Then the digits in area 1 on the next row
can be obtained from subtracting all digits in area 2 on the same diagonal
from the input and then dividing by p. When this procedure concludes,
the (¢, 7)-th digit of the diagram will be u; ;. In particular, digits on the

final diagonal will be u;._;_;. Then we can compute

v—1

wv, - e—1)=u— Z(pZ CUje—1—i)-

i=0
New Method

We first stress that in the above method, it is not enough to obtain the

u; mod p. Rather, one requires u; ._;_;. The reason is one has to clear the

higher digits to create numbers with base -p expansion (u;, 0,0, ...,0), oth-
—_——

e—i—1
erwise it will mess up the u; for i" > . Previously, to obtain u; j, one needs

to apply the lifting polynomial j times. Fortunately, there is a polyno-
mial of lower degree with the same functionality, as shown in the following

lemma.

19

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Lemma 3.2.2. Let p be a prime and e = 1. Then there exists a polynomial
f of degree at most (e—1)(p—1)+1 such that for every integer 0 < x < p°,
we have

f(z)=2—(x modp) mod p°
where |x mod p| < (p— 1)/2 when p is odd.

Proof. We complete the proof sketch in [Gril7] by adding in the necessary

details. To begin, we introduce a function

i (Aﬂ_l) (Aij)'

This function F4(x) converges on every integer, and for M € Z,

1 ifM>A
Fa(M) =

0 otherwise.

Define f(z) as

flo) - pi Fypla) = w:i:pam) (2): (321)

We can verify that the function f(z) satisfies the properties in the lemma

(for the least residue system), but its degree is infinite. So we let

(e—

o= S am ()

m=p

Now we will prove that the polynomial f(z) has p-integral coefficients and

has the same value with f(z) for z € Z..

20

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Claim: f(z) has p-integral coefficients and a(m)(?) is multiple of p°® for all
rxeZ whenm > (e—1)(p—1) + 1.

Proof: If we rewrite the equation [3.2.1],

f(x)=pi PZ (2 (ijr;_l) (jpii))'

j=1 = =0

By replacing the jp + ¢ to m, we arrive at the following equation:

- 2 mkp(m k:lp)

In the equation, we can notice that the term (—1)™~*7(™!} is the coeffi-

m—kp
cient of X™P* in the Taylor expansion of (1 + X)~*. Therefore, a(m) is
actually the coefficient of X™ in the Taylor expansion of Y~ pX*7(1 +

X) ke,

= 1+ X)P
XMP(1+ X))~ —p
Zp * ZX+1 Mo X — X

k=1

We can get a m-th coefficient of Taylor expansion from following equation:

(1+Xxp (1I+X)P

Py~ Piy B P XA B+ BT).

Because B(X) is multiple of pX, the coefficient of X™ can be obtained
from a finite number of powers of B(X). We can also find out the degree
of B(X)isp—1,so

Deg(p(1+ X)P(1—B(X) +---+ (=) IB(X)2)) = (e=1)(p—1) + 1.

21

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Hence these terms do not contribute to X™. This means that a(m) is m-th

coefficient of

p(1 + X)"B(X)"" Z(—l)iB(X)i

which is multiple of p¢ (since B(X) is multiple of p). |

By the claim above, the p-adic valuation of a(m) is larger than = and
it is trivial that the p-adic valuation of m! is less than]ﬁ. Therefore, we
proved that the coefficients of f(x) are p-integral. Indeed, we proved that
a(m) (") is multiple of p™ for any integer when m > (e—1)(p—1)+ 1. This
means that f(z) = f(z) mod p¢ for all z € Z.

As a result, the degree (e — 1)(p — 1) + 1 polynomial f(x) satisfies
the conditions in lemma for the least residue system. For balanced residue

system, we can just replace f(z) by f(z + (p —1)/2). O

Note that the above polynomial f(x) removes the lowest base-p digit in
an integer. It is also desirable sometimes to “retain” the lowest digit, while
setting all the other digits to zero. This can be easily done via g(z) =
x — f(x). In the rest of the paper, we will denote such polynomial that
retains the lowest digit in the balanced base-p representation by G.,(x)
(or Ge(x) if p is clear from context). In other words, if x € Z,e and = =

mod p with |zo| < p/2, then G.(z) = zp mod p°.

Example 3.2.1. When e = 2, we have f(z) = —z(x —1)---(z —p+ 1)
and Gay(z) =z — f(z + (p—1)/2).

We recall that in the previous method, it takes degree p°~*~! and (e —
i — 1) evaluations of polynomials of degree p to obtain u;.;. With our
lowest digit removing polynomial, it only takes degree (e—i—1)(p—1) +1.

As a result, by combining the lifting polynomials and lowest digit removing

22

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

polynomials, we can make the digit extraction algorithm faster with lower
depth.

Figure illustrates how our new digit removal algorithm works. First,
each digit in area 2 is obtained by evaluating a lifting polynomial to the
entry on its left. Then, the digits in area 3 on each row are obtained by
evaluating the remaining lowest digit polynomial to the left-most digit on
its row. Digits in area 1 are obtained by subtracting all the digits in area 2
on the same diagonal from the input, and dividing by p. Finally, in order
to remove the v lowest digits, we subtract all the digits in area 3 from the

input.

Uo,0 Up,1 - Uow—2 UOw—1 Ug,e—1
U1 v Ul w—2 Up,e—2

Uy—2,1 Uy—2,e—v+1

2 Uy—1,e—v

Figure 3.2: New Digit Extraction

We remark that the major difference of this procedure is that we only
need to populate the top left triangle of side length v, plus the right most
v-by-1 diagonal, where as the previous method needs to populate the entire
triangle of side length e.

Moreover, the digits in area 3 (in Figure has lower depth: in the
previous method, the i-th red digit is obtained by evaluating lift polynomial

e—1—1

(e—i—1) times, hence its degree is p on top of the i-th element of digit
in area 1. However, in our method, its degree is only (p —1)(e —i—1) + 1
on top of the i-th element of digit in area 1, which has degree at most p’.

The total degree of the algorithm is bounded by the maximum degree over

23

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Algorithm 1: Removing v lowest digits from z € Z,.

Data: x € Zye
Result: « — [z],» mod p°

// Fi(z): lifting polynomial with F;(z + O(p%)) = x + O(p'*1)

// Gi(x): lowest digit retain polynomial with G;(z) = [z], mod p’
1 Find largest ¢ such that p’ < (p — 1)(e — 1) + 1;
2 Initialize res = x;
s for i € [0,v) do

// evaluate lowest digit retain polynomial

4 Ry = Ge_i(2) ; // R; = x; mod p*~"
5 Ri=R; p'; // R; = x;p’ mod p°
6 if i <v —1 then
7 | Lio = Fi(a) ; // evaluate lifting polynomial
8 end
9 for je [0,/ —2) do
10 ifi+j <v—1then
11 | Lij+1 = Fipa(Lij)
12 end
13 end
14 if i <v —1 then
15 ' =
16 for je[0,i+1) do
17 if i —j > /¢ — 2 then
18 ‘ ¥ =1’ —R;
19 end
20 else
21 ‘ I/ = I/ — Lj,i—j
22 end
23 end
24 end
25 res = res — R;;
26 end

27 return res;

all the digits in area 3, that is

max (p’ - ((e—1—1)-(p—1) +1)).

o<i<r

Since each individual term is bounded by e - p¥, the total degree of the

24

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

procedure is at most e - p?. This is lower than p°~! in the previous method

when v < e—2 and p > e.

Comparison.

We discuss one further optimization to remove v lowest digits in base p
from an e-digit integer. If £ is an integer such that p’ > (p—1)(e — 1) + 1,
then instead of using lifting polynomials to obtain the /-th digit, we can
just use the result of evaluating the G; polynomial (or, the red digit) to
obtain the green digit in the next row. This saves some work and also lowers
the depth of the overall procedure. This optimization is incorporated into
Algorithm [T}

The depth and computation cost of Algorithm 1 is summarized in The-
orem [3.2.1] The depth is simply the maximum depth of all the removed
digits. To determine the computational cost to evaluate Algorithm 1 ho-
momorphically, we need to specify the unit of measurement. Since scalar
multiplication is much faster than FHE schemes than ciphertext multi-
plication, we choose to measure the computational cost by the number
of ciphertext multiplications. The Paterson-Stockmeyer algorithm [PS73]
evaluates a polynomial of degree d with ~ v/2d non-constant multiplica-

tions, and we use that as the base of our estimate.

Theorem 3.2.1. Algorithm 1 is correct. Its depth is bounded above by

log(ep”) = vlog(p) + log(e).

The number of non-constant multiplications is asymptotically equal to v/2pev.

Table compares the asymptotic depth and number of non-constant

multiplications between our method for digit removal and the method of

25

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Method Depth No. ciphertext multiplications
IHS15, elog(p) L2y
This work | vlog(p) + log(e) v/2pev

Table 3.1: Complexity of DigitRemove(p, e, v)

[HS15]. From the table, we see that the advantage of our method grows
with the difference e — v. In the bootstrapping scenario, we have e —v = r,
the exponent of the plaintext modulus. Hence, our algorithm compares

favorably for larger values of r.

3.3 Bootstrapping for BGV and BFV Scheme

The bootstrapping for FV scheme follows the main steps from [HS15| for
the BGV scheme, while we make two modifications in modulus switching

and digit extraction. First, we review the procedure in [HS15|.

Modulus Switching. One fixes some ¢’ < ¢ and compute a new cipher-

text ¢ which encrypts the same plaintext but has much smaller size.

Dot product with bootstrapping key. Here we compute homomor-
phically the dot product (¢, s), where s is an encryption of a new secret
key s' under a large coefficient modulus) and a new plaintext modulus
t'" = p°. The result of this step is an encryption of m + tv under the new

parameters (s',t', Q).

26

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Linear Transformation. Let d denote the multiplicative order of p in
Z}, and k = n/d be the number of slots supported in plaintext batching.
Suppose the input to linear transform is an encryption of Z?;ol a;xt, then

the output of this step is d ciphertexts Cy, ..., Cq_1, where Cj is a batch

encryption of (ajk, Gjkt1, - - - Qjktrk—1)-

Digit Extraction. When the above steps are done, we obtain d cipher-

texts, where the first ciphertext is a batch encryption of
(mo - ™" +eg,my T Fer, e M T+).

Assuming that |e;| < ’% for each i, we will apply Algorithm [1{ to remove
the lower digits e;, resulting in d new ciphertexts encrypting Am; for 0 <
t < n in their slots. Then we perform a free division to get d ciphertexts,

encrypting m; in their slots.

Inverse Linear Transformation. Finally, we apply another linear trans-

formation which combines the d ciphertexts into one single ciphertext en-

crypting m(z).

3.3.1 Owur modifications
BFV scheme

Suppose t = p” is a prime power, and we have a ciphertext (cg, ¢;) modulo
q. Here, instead of switching to a modulus ¢’ co-prime to p as done in BGV,

we switch to ¢’ = p®, and obtain ciphertext (¢}, ¢;) such that

o+ s =p""m+uv+ ap’.

27

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Then, one input ciphertext to the digit extraction step will be a batch
encryption

Enc((p® "mo + vo, ..., 0 "My + vi))
under plaintext modulus p°. Hence this step requires DigitRemove(p, e, e —
T).
BGYV scheme

To apply our ideas to the digit extraction step in BGV bootstrapping, we
simply replace the algorithm in [HS15] with our digit removal Algorithm
1l

Comparison

The major difference in the complexities of bootstrapping between the
two schemes comes from the parameter e. In case of BFV, we can choose
(roughly) e = r +log,(|[s]|1)). On the other hand, the estimate of e for
correct bootstrapping in [HS15| for the BGV scheme is

e>=2r + logp(||s||1).

We can analyze the impact of this difference on the depth of digit removal,
and therefore on the depth of bootstrapping. Setting v = e — r in Theo-
rem [3.2.1], the depth for the BGV case is

(r + log,(|[s][1) log p + log(2r + log,([ls||1))-

Substituting r = log,(t) into the above formula and throwing away lower

order terms, we obtain the improved depth for the digit extraction in step

28

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

BGV bootstrapping as
log t + log(||s]|1) + log(log,(t* - [[s|1)) ~ logt + log(|s|).

Note that the depth grows linearly with the logarithm of the plaintext
modulus £. On the other hand, the depth in the FV case turns out to be

log([Is[1) + log(log,(Z - [s|]1))-

which only scales with loglogt. This is smaller than BGV in the large
plaintext modulus regime.

We can also compare the number of ciphertext multiplications needed
for the digit extraction procedures. Replacing v with e — r in the second
formula in Theorem and letting e = 2r +log,(|[s[|1) for BGV (resp.
e =1 +log,(|[s]|1) for BFV), we see that the number of ciphertext multi-
plications for BGV is asymptotically equal to

V2
(log p)3/2

In the BFV case, the number of ciphertext multiplications is asymp-

- (2log(t) + log(|[s][1))"2 - (log(t) + log([Is]1))-

totically equal to

NG

W(log(t) + log([Is[1)) " og(|[sl]1))-

Hence when t is large, the digit extraction procedure in bootstrapping
requires less work for BFV than BGV.

For completeness, we also analyze the original digit extraction method
in BGV bootstrapping. Recall that the previous algorithm has depth (e —

1)logp, and takes about %e2 homomorphic evaluations of polynomials of

29

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Method Depth No. ciphertext multiplications

[HS15) (BGV) | 2log(t) + log(h) | 572855 (21og(t) + log(h))?

*This work (BGV) | log(t) + log(h) ﬁ@ log(t) + log(h))"/?(log(t) + log(h))
This work (FV) loglog(t) + log(h) W(log(t) +log(h))'/?log(h)

Table 3.2: Asymptotic complexity of digit extraction step in bootstrapping.
Here h = ||s||; is the 1-norm of the secret key, and ¢t = p" is the plaintext
modulus.

degree p. If we use the Paterson-Stockmeyer method for polynomial evalua-
tion, then the total amount of ciphertext multiplications is roughly %62\/%.
Plugging in the lower bound e > 2r +log,(||s||1), we obtain an estimate of
depth and work needed for the digit extraction step in the original BGV
bootstrapping method in [HS15|. Table summarizes the cost for three
different methods.

Fixing p and h in the last column of Table [3.2] we can see how the
number of multiplications grows with log¢. The method in [HS15| scales
by (logt)?, while our new method for BGV improves it to (logt)%2. In the

FV case, the number of multiplications scales by only (logt)"/2.

Remark 3.3.1. As another advantage of our revised BGV bootstrapping,
we make a remark on security. From Table [3.2] we see that in order for
bootstrapping to be more efficient, it is advantageous to use a secret key
with smaller 1-norm. For this reason, both [HS15] and this work choose to
use a sparse secret key, and a recent work |[APS15] shows that sparseness
can be exploited in the attacks. To resolve this, note that it is easy to keep
the security level in our situation: since our method reduces the overall

depth for the large plaintext modulus case, we could use a smaller modulus

30

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

¢, which increases the security back to a desired level.

3.4 Slim Bootstrapping Algorithm

The bootstrapping algorithm for BFV and BGV is expensive also due to
the d repetitions of digit extraction. For some parameters, the extension
degree d can be large. However, many interesting applications requires
arithmetic over Z,- rather than its degree-d extension ring, making it hard
to utilize the full plaintext space.

Therefore we will introduce one more bootstrapping algorithm which is
called “slim” bootstrapping. This bootstrapping algorithm works with the
plaintext space ZF, embedded as a subspace of R; through the batching
isomorphism.

This method can be adapted using almost the same algorithm as the
original bootstrapping algorithm, except that we only need to perform one
digit extraction operation, hence it is roughly d times faster than the full
bootstrapping algorithm. Also, we need to revise the linear transformation
and inverse linear transformation slightly. We give an outline of our slim

bootstrapping algorithm below.

Inverse Linear Transformation. We take as input a batch encryption
of (my...,my) € Z’;r. In the first step, we apply an “inverse” linear trans-
formation to obtain an encryption of my + mez® + ... + mupz®*=1. This

can be done using k slot permutations and % plaintext multiplications.

Modulus Switching and Dot product. These two steps are exactly

the same as the full bootstrapping procedure. After these steps, we obtain

31

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Enc(mg, my, ma, -+, mg_1)

4 InverselLinearTransformation
Enc(mg 4+ miz? + - - + my_124*k=1)

4 Modulus Switching and Dot Product
Enc(m(z) - p™" + e(x))

4 LinearTransformation
Enc(mg - p°~ " +eg, -, mp_1 -0 " +ex_1)

J Digit Extraction
Enc(mg, m1, ma, -+, mp_1)

Figure 3.3: slim bootstrapping
a (low-noise) encryption of
(Amy +v1 + (Amg + va)z? + ...+ (Amy, + vg)2d*D),

Linear Transformation. In this step, we apply another linear transfor-
mation consisting of k slot permutations and k scalar multiplications to
obtain a batch encryption of (Amy 4wy, ..., Amy+vy). Details of this step

can be found in the below.

Digit extraction. Then, we apply digit-removal algorithm to remove the
noise coefficients v;, resulting in a batch encryption of (Amy, ..., Amy). We
then execute the free division and obtain a batch encryption of (my, ..., my).

This completes the slim bootstrapping process.

32

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Optimizing Linear Transformation for Slim Bootstrapping

In our slim mode of bootstrapping, we used a linear transform which has
the following property: the input is an encryption of Y] m;x?, and the out-
put is a batch encryption of (mg, ma, ..., myx-1)). A straightforward im-
plementation of this functionality requires n slot permutations and n scalar
multiplications. However, in the case when n is a power of 2, we can break
down the linear transform into two parts, which we call coefficient selection
and sparse linear transform. This reduces the number of slot permutations

to log(d) + k and the number of scalar multiplications to k.

Coefficient Selection. The first part of the optimized linear transform
functionality can be viewed as a coefficient selection. This process gets
input Enc(m(x)) and outputs Enc(m/(z)) with m/(x) = Z?:/%_l miq - ' In
other words, it selects the coefficients of m(x) where the exponents of x
are divisible by d. The following algorithm is specified to the case when n
is a power of two . Using the property that ™ = —1 in the ring R, we can

construct an automorphism ¢; of R such that
bi X2 — X" = _x?

For example, ¢y(-) negates all odd coefficients, because ¢y maps X to —X.
This means that (¢o(m(z)) +m(z)) will remove all odd terms and double
the even terms. Using this property, we construct a recursive algorithm

which return m/(x) = ZZ ‘é_l miq - 7' for power of two d.

e For given m(x), First compute mg(x) = m(x) + ¢o(m(x)).

e Recursively compute m;(z) = ¢;(mi—1(x)) + m—1(x) for 1 < i <

log, d.

33

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

e Return m/(z) = d=' - Migg, ¢ mod ¢ for plain modulus ¢.

The function ¢; : X — X "3 can be evaluated homomorphically by using
the same technique used in slot permutation. Another operation is just
multiplying by d~! mod ¢. Hence we can obtain Enc(m/(z)). This process

needs log d slot permutations and additions.

Sparse Linear Transform. The desired functionality of the sparse lin-
ear transform is: take as input an encryption ¢ of Zmixid and output a
batch encryption of (mg, my...,mg_1). We claim that this functionality
can be expressed as Zf:_(} Aios,(c), where \; are pre-computed polynomials
in R; and the s; form a set of representatives of Z¥ /(p). This is because
the input plaintext only has k nonzero coefficients my, . .., my_1. Hence for
each 7 it is possible to write m; as a linear combination of the evaluations
of the input at k different roots of unity. Therefore, this step only requires
k slot permutations and k plaintext multiplications. We can also adapt the
babystep-giantstep method to reduce the number of slot permutations to
O(Vk), and we omit further details.

3.5 Implementation Result

We implemented both the full mode and the slim mode of bootstrapping for
BFV in the SEAL library. We also implemented our revised digit extraction
procedure in HEIlib. Since SEAL only supports power-of-two cyclotomic
rings, and p needs to be co-prime to m in order to use batching, we can
not use p = 2 for SEAL bootstrapping. Instead, we chose p = 127 and
p = 257 because they give more slots among primes of reasonable size.

The following tables in this section illustrate some results. We used

34

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

sparse secrets with hamming weight 64 and 128, and we estimated security

levels using Martin Albrecht’s LWE estimator |[APS15].

Digit Extraction

We implemented Algorithm [1] in HElib and compared with the results of
the original HEIlib implementation for removing v digits from e digits. From
Table 3.3, we see that for e > v+2 and large p, our digit removal procedure
can outperform the current HElib implementation in both depth and work.
Therefore, for these settings, we can replace the digit extraction procedure
in the recryption function in HElib, and obtain a direct improvement on

after level and time for recryption.

[HS15] Our Method

(p,e,v) Timing (sec) Before/After Timing (sec) Before/After
level level

(2,11,5) 15 23/3 16 23/10
(2,21,13) 264 56/16 239 5622
(5,6,3) 49.5 39/5 30 39/13
(17,4,2) 612 38/5 35.5 38/14
(31,3,1) 26.3 32/8 12.13 32/18
(127,3,1) 73.2 42/3 38 42/20

Table 3.3: Comparison of digit removal algorithms in HEIlib (Toshiba
Portege Z30t-C laptop with 2.6GHz CPU and 8 GB memory)

When p = 2 and r, e are small, the current HElib implementation can be
faster due to the fact that the lifting polynomial is F,(x) = x? and squaring
operation is faster than generic multiplication. Also, when e = v + 1, i.e.,
the task is to remove all digits except the highest one, our digit removal

method has similar performance as the HElib counterpart.

35

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

Bootstrapping for BFV scheme

Table [3.4] and present timing results for the full and slim modes of
bootstrapping for BF'V implemented in SEAL. In both tables, the column
labeled “recrypt init. time” shows the time to compute the necessary data
needed in bootstrapping. The “recrypt time” column shows the time it
takes to perform one bootstrapping. The before (resp. after) level shows
the maximal depth of circuit that can be evaluated on a freshly encrypted
ciphertext (resp. freshly bootstrapped ciphertext). Here R(p", d) denotes a
finite ring with degree d over base ring Z,, and GF(p") denotes the finite
field with p” elements.

Comparing the corresponding entries from Table and [3.5] we see
that the slim mode of bootstrapping is either close to or more than d

times faster than the full mode.

Parameters Result

n log ¢ Plaintext Slots Security Before Recrypt Memory Recrypt

Space /After Time usage init.
Level (sec) (GB) time
(sec)

16384 558 GF(127%%%) 64 92.9 24/7 2027 8.9 193
16384 558 GF(257'%%) 128 92.9 22/4 1381 7.5 242
32768 806 R(1272,256) 64 126.2 32/12 21295 27.6 658
32768 806 R(2572,128) 128 126.2 23/6 11753 26.6 732

Table 3.4: Time table for bootstrapping for BEV scheme, hw=128 (Intel(R)
Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)

36

CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED

BOOTSTRAPPING
Parameters Result
n logq PlaintextNumber Security Before Recrypt Memory Recrypt

Space of Pa- /After init usage Time
Slots rame- level time (GB) (sec)
ter (sec)
16384 558 Zqar 64 92.9 23/10 57 2.0 6.75
32768 806 Zjope 64 126.2 25/11 59 2.0 30.2
32768 806 Zjors 64 126.2 20/6 257 8.9 34.5
16384 558 Zosy 128 92.9 22/7 59 2.0 10.8
32768 806 Zosy 128 126.2 31/15 207 7.4 36.8
32768 806 Zosre 128 126.2 23/7 196 7.4 42.1

Table 3.5: Time table for slim bootstrapping for BFV scheme, hw=128
(Intel(R) Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)

37

Chapter 4

Faster Homomorphic DFT and
Improved Bootstrapping

In this chapter, we study the fast linear transformations for special struc-
tured matrices. First, we propose a new way to evaluate discrete Fourier
transformation for a given packed ciphertext. Our method only needs
O(logn) number of homomorphic operations while the previous method
requires O(4/n) rotations and O(n) constant vector multiplications for n
the length of input vector.

We factorize the DF'T matrix into log, n sparse block diagonal matri-
ces using the Cooley-Tukey factorization with radix 2. We observe that
each factor has only three diagonal vectors, and each log, k consecutive
multiplication of those factors has (2k — 1) diagonal vectors. Therefore,
homomorphic DF'T evaluation is converted to log; n number of homomor-
phic matrix multiplications for matrix with (2k — 1) diagonal vectors for
an arbitrary integer k dividing n.

From SIMD operation of HE schemes, evaluating matrices with d di-

38

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

agonal vector in encrypted state can be done with O(+/d) homomorphic
rotations and d homomorphic constant vector multiplications using the
baby-step algorithm. So, we obtain a homomorphic DFT algorithm which
needs O(vk log n) number of homomorphic rotations and O(k logn) num-
ber of homomorphic constant vector multiplications with O(log, n) con-
stant vector multiplication depth. In addition, we can obtain a trade-off
between depth and complexity by adjusting k.

Second, we apply the same matrix decomposition strategy into sparse
diagonal matrices to improve the linear transformations in bootstrapping
for HeaAn. We decompose corresponding matrices recursively, similarly to
the Cooley-Tukey algorithm. As a result we obtain the same improvement
in the linear transformations in bootstrapping: O(v/k log n) homomorphic
rotations and O(k log n) homomorphic constant vector multiplications with
O(log, n) constant vector multiplication depth for plaintext vector length
n.

We also implement our method using the approximate homomorphic
encryption library [snul§| to show the improvements. Our implementa-
tion shows that the homomorphic DFT with length 2'% only takes about
8 seconds when k = 2. This results shows a more than 150x performance
improvement compared to previous works on homomorphic DFT (or FFT)
[CKKS17, /CSV17, CSVW16]. On the other hand, the bootstrapping pro-
cedure for HeaAn using our linear transformation algorithm only takes 2

C3?768 plaintext space with 8-bit precision. This result yields

minutes for
an amortized rate per bits of 0.45ms, less than one millisecond. The pre-
vious algorithm takes 26 hours in the same setting, which is only realistic

for a small number of slots.

39

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

4.1 Basis of HEAAN scheme

In our chapter, we will focus on the DFT on complex field. For this rea-
son, we need homomorphic encryption for complex arithmetic. At 2017,
homomorphic encryption scheme for approximate number arithmetic is
proposed by Cheon et al. [CKKS17] which is called HeaAn. The ciphertext

is (co,c1) € Ry as in BGV and FV schemes with following relation:
o = —c15+ |A-m] + e for m e R[X],e — DG (o).

The plaintext structure of this scheme is CV/? for polynomial ring dimen-
sion N, and it is suitable for our purpose. More precisely, encoded polyno-
mial m(x) = Zi]i_ol fi X for given plaintext m can be computed as follows:
= (fi)o<ien = %(U?m—l— UT.m). For given polynomial m(z), decoded
vector m can be compute as follows: U - f such that f = (fi)o<i<ny for
m(x) = SN, f;X?. Following is description of the matrix U

1wy wi s
1w w? o !
U =
2 N-1
|1 wnje— Whjo—1 " Wy q |

This scheme supports various kinds of homomorphic operations. Let ct;
is encrypted of m; € C¥/? for i = 0, 1. Functions in below are homomorphic

operations in the scheme.

e encrypt(m; A): return encryption of m using scaling factor A.

e add(ctg, cty): return encryption of mg + m;.

40

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

e constAdd(m, cty): return encryption of m + m.

e mult(cto, cty): return encryption of mg ® m;.

e constMult(m, cty): return encryption of m © my.

e leftRotate(cty, idx): return encryption of m’ = rot;(my).

e rightRotate(cty, idx): return encryption of m’ = rot_;(my).

4.2 Homomorphic DFT

In this section, we briefly review the previous approach to evaluate DFT
with homomorphic encryption (HE) and describe our new homomorphic
DFT algorithm. We propose new homomorphic DFT algorithm and also

hybrid algorithm that combines our new method with previous approach.

4.2.1 Previous Approach

In [HS15], they proposed faster linear transformation (~ NTT) for boot-
strapping when the input size of ¢(m) (here m is product of co-prime
integers m;). They understand one variable polynomial ring as multivari-
ate with special basis which is called powerful basis. This approach shows
that DFT with dimension m can be split to several number of DFT with
m,; for co-prime m;s.

On the other hand, in the case of power of prime dimension, there is no
specialized algorithm for homomorphic DFT. Previously known approaches
apply a general homomorphic linear transform with DFT matrix to the ci-
phertext [CKKS17, CH18|. We review the key ideas of these approaches.

41

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

HE schemes support Hadamard multiplication and rotation for the plain-

text vector. The following equation shows a representation of matrix-vector

multiplication via Hadamard multiplications and rotations.

diag,(M) O rot;(v)

M- 1D

N
Il
=}
<.
Il
=}

Mw

diagy;. ;(M) O rotyyj(v)

[
.MN

S
Il
=

k
roty; (Z rot_;(diag;,;(M)) © rotj(v)>

J=0

The first line gives a simple way to compute homomorphic matrix-vector
multiplication which requires O(n) rotations and Hadamard multiplica-
tions. Based on the third line of the equation, we can achieve an algorithm
so-called baby-step giant-step (BSGS) to matrix-vector multiplication with
O(4/n) rotations of ciphertexts.

4.2.2 Our method

Now we will introduce our method for fast homomorphic DFT. In this
section, we will mainly consider DFT with bit-reversed output DFT,’;‘R and
its inverse (the letter NR stands for normal to reversal). In addition, we
will describe the method to extend our method to input bit-reversed case
and its inverse in the last part of this section. We focus on the power-of-
two dimension case while our method can be generalized to other power
of prime dimensions, because power-of-two cases are appropriate to our

applications and, moreover, easy to describe.

42

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

The starting point of our method is to observe that the multiplication
between matrix and encrypted vector can be much faster when the matrix
only has the small number of non-zero {diag;(M)}o<i<n. Bit-reversed order
DFT matrix can be decomposed to sparse matrices, and this property is
used to fasten the discrete Fourier transform. Our observation is that those
sparse matrices have small number of non-zero {diag;(-)}o<i<n (exactly two

or three non-zero vectors).

The DFT matrix factorization

Let DFTL\LIR be a matrix corresponding to the DFT algorithm with input
length n with bit-reversed output. The following equation shows that the
matrix representation of recursive FET Cooley-Tukey algorithm [CT65].

NR NR NR
DFTNR = DET,, DFT, > _ |PFTo 0 | e I,
n DFT)%,-W,;; —DFT)\, -W,; 0 DFT)%, Won ~Woaps
. . 271 .
where the matrix W, , = diag(1,w,, w2, - Lwr) and w, = e /m. If

we adapt this equation repeatedly, we can decompose the DFT matrix
DFT,';IR to log, m number of matrices. The following matrix illustrates the

specific form of matrices in the recursive formula:

Wn/k _Wn/k

Dy = 2 : ecmn. (4.2.1)

I, I,
. . l " /k]

which has k/2 number diagonal blocks. The recursive equation above im-

43

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

plies

DFT)* = DV - D) ... D{”. (4.2.2)

Remark 4.2.1. As noted above, decomposing DFT matrices into sparse
diagonal matrices is possible for other power-of-prime cases and this in-
duces a fast homomorphic DFT algorithm for power-of-prime dimension.

This fact can be obtained by using general Cooley-Tukey algorithm.

Homomorphic DFT.

We recall the representation of matrix and vector multiplication via Hadamard

multiplication and vector shifting:

M- v = Z diag;(M) ® rot;(v).
i=0
The matrix-vector multiplication algorithm based on this form is especially
efficient for the matrix M with only small number of non-zero diagonal
vector. Namely, diag;(M) is a non-zero vector only for small number of i’s.
We call this matrix by sparse-diagonal matrix. For sparse diagonal matrix
M, we don’t need to compute rot;(v) for those i’s satisfying diag,(M) = 0.
Therefore, the required number of shifting in naive approach is at most the

number of non-zero diagonal vectors that the matrix M has.

Lemma 4.2.1. diagk(Dé?)) is nonzero only for k = 0, +n/2".

Proof. See Equantion (4.2.1)). O O
From Lemma [4.2.1) multiplication between matrix D' and vector v

21

44

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

can be represented as follows:

DY v = diagy(D{) ©Ov + diag, (D) O rot,, i (v)
+ diagn_n/gi(Dé?)) Orot_p 2 (v).

Therefore, DFTSR -v can be computed recursively as Hioff " Dgf) -v, where
each multiplication can be done with O(1) number of Hadamard multipli-
cation and shifting. The overall number of operations is O(logn) homo-
morphic shiftings and Hadamard multiplications with constant plaintext
vectors. The Algorithm [2| shows our homomorphic DFT algorithm in detail

with notations in Section 4.1

Algorithm 2: Homomorphic DFT;\L'R algorithm
Data: Ciphertext ctxt such that Dec(ctxt, sk) = m e C"
1 for 1 < i <logy,n do
2 | ctxtg «— constMuIt(diagO(D(;)), ctxt);
ctxt; < leftRotate(ctxt, n/2);
Ctxty < rightRotate(ctxt, n/2¢);
5 | ctxty < constMuIt(diagn/Qi(D(Q?)), ctxty);

6 | ctxty <« constMuIt(diagn_n/gi(Dé:L)), ctxty);
7 ctxt < add(ctxtg, ctxty);

8 ctxt « add(ctxt, ctxty);

9 end

In each loop of the Algorithm [2] there are two homomorphic rotations
and three homomorphic constant vector multiplications. Furthermore, left
rotation by n/2 and right rotation by n/2 is same. For this reason, we do
not need to compute right and left rotations for ¢ = 1 case. This will reduce
one homomorphic rotation. As a result, our algorithm needs (2log,n — 1)

number of homomorphic rotation and (3log, n) number of homomorphic

45

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

constant vector multiplications.

Trade-off between depth and complexity.

While our method is fairly efficient with respect to the number of oper-
ations, the required depth with respect to constant multiplication is also
increased by O(log,n). In this respect, we adapt additional parameter r
which is called radixz to generalize our method. Our generalized method
gives trade-off between the number of steps and complexity of homomor-
phic DFT.

Assume that log, n is even and recall the matrix decomposition of DFT

matrix:
DFT* - D{.D) DY, D\)---- Dif - D" - D{" - D’
= (DY D) (DY), - DY) - (DY - DY),

This equation give a factorization of DF'T matrix into log, n number of

matrices of the form

DEWL) = (Dg;’l) : Dg;i)_l) for 1 < i <log,n.

We also can define similar term for r = 2% by

D p . pm . p

J ri/2 ri—1.2

for 1 < j < log, n and k|log, n. This factorization allows us to compute
DFT in a new way. To analyze the efficiency, we observe some properties

of these matrices.

46

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

Lemma 4.2.2. The multiplication of i-th diagonal matriz and j-th diago-
nal matriz s i+ j-th diagonal matrixz. More precisely, the following equation
holds

diag;(a) - diag;(b) = diag,, ;(a © rot;(b)).

Proof. Trivial.]

Lemma 4.2.3. Let Dy be a multiplication of k consecutive matrices in

Equation [{.2.2:
Dk = Dg:i—k : Dg:-)uc—l """ Dg@d

Then at most 281 —1 diagonals of D is nonzero vector. Further, the indices

of nonzero diagonals form arithmetic progression.

Proof. Lemma [4.2.2 clearly holds. To show Lemma [4.2.3] we decompose

DY into diag_n/Qt(Dgf)) +diag, (D) + diag,, o (DY) as in Lemma [4.2.1]

By Lemma [4.2.2] the index of Dy, that is non-zero is of the form

n n n
€s+1'W+€s+2‘ﬁ+”'+€s+t‘ﬁu

where e; € {—1,0,1} for s + 1 < i < s+ t. These indices are multiple of

n/25%t and the absolute value of it is bounded by Zj:iﬂ n/2 = (2! —

1)n/25+. O O

)is

According to Lemma [4.2.3 the number of nonzero diagonal of D;n”

2r—1for 7 > 1 and r for j = 1. Thus the required number of homomorphic
multiplication and slot shifting to compute multiplication of encryption of

v and Dg»""") is less than 2r — 1 = O(r) for radix r, respectively. By re-
cursively multiplying Dg-n;r) to v, we obtain a new algorithm to compute

47

;4 _CI:I_]_-_]i

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

homomorphic DFT which requires O(rlog, n) homomorphic rotations and
constant vector multiplications while has O(log, n) depth. Overall, we ob-
tain depth-efficiency trade-off using larger radix. We note that we assumed
that the used radix is a divisor of log, n, but this condition can be removed

by considering dynamic radices for each recursive step.

4.2.3 Hybrid method

An interesting observation in Lemma [4.2.3| is that the indices of Dém)

forms an arithmetic progression. We call this property regular. Here we
show that this property yield a hybrid method of our homomorphic DFT
algorithm and baby-step giant-step (BSGS) algorithm. To do this, we apply
a BSGS matrix-vector multiplication method for sparse diagonal matrix M

with arithmetic progression indices as follows:

t k1—1 ko
Z m; O roty(v) = Z Z Myt j O 0ty (ikytj) (V)
i=1 i=0 j=1
kl—l k2
= Z rotx, (Z rot by (Mg +5) © r°%‘(”)>
i=0 Jj=1

where m; = diag,;(M) and kik, = t.

In this BSGS method we can obtain a matrix multiplication M - v
by O(k; + ko) rotations and O(t) constant multiplications. We remark
that we can vary the choice of k; and ko by increasing t and add zero
diagonals. For this reason, we can say that the hybrid method needs O(v/t)
homomorphic rotations and O(¢) number of homomorphic constant vector
multiplications. The Table shows comparison our methods with other

techniques.

48

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

| Naive | BSGS | Ours | Hybrid
Hadamard Mult | O(n) | O(n) | O(rlog,n) | O(rlog,n)
Slot Shifting O(n) | O(y/n) | O(rlog,n) | O(y/rlog,n)
Depth 1 1 O(log, n) O(log, n)

Table 4.1: Comparison: homomorphic operation number and depth con-
sume for homomorphic DFT with radix r

Remark 4.2.2. Another advantage of our method is that it highly reduces
the size of public key for operations. While the previous BSGS method
requires O(4/n) rotation key, our method only needs O(rlog, n) number

of rotation key.

4.2.4 Implementation Result

We implemented our DFT algorithm using HeaAn library [snul8|. HeaAn li-
brary supports batch encodings, or encoding for vectors, for complex plain-
text space thus it is suitable for our target; discret Fourier transform. All
of experiments in this paper are done at the PC having 32 number of In-
tel(R) Xeon(R) CPU E5-2620 v4 2.10 GHz CPU (each CPU has 8 cores)
and 64GB RAM. We used multi-threding with 8 number of threads.

The following HeaAn parameter setting is what we used in the experi-

ment for our homomorphic DFT algorithm.
o ¢ = 240 the largest ciphertext modulus.
e N = 2%: the dimension of polynomial ring R.

e A = p¥ = 230 scaling factor which is used to make integer polynomial

in encryption and constant vector multiplication both.

e 0 =232, p=0.5, and h = 64: distribution related parameters.

49

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

6l T T 54‘75 5.9s]
5.2s 5 4
5 4.6s :
8 4l | 5 Y 1
S S
3 g 3l]
31 .
21 . 20 l
1 L L L | 1 \) L 1 L |
21 22 23 24 6 8 10 12 14
radix log, (dimension)

Figure 4.1: Timming results for
various radix setting with dimen-
sion n = 212

Figure 4.2: Timming results for
various dimension setting with
radix r = 4

Note that the expected security of this parameter setting is about 128 bit
following the LWEestimator [APS15|.

The Figure [4.1| and show timing results for various setting. In case
of the first one, radix varies from 2 to 16 with the fixed dimension of input
vector 2'2. In case of the second one, dimension varies from 2°¢ to 2'? with
the fixed radix 4.

By the effect of baby-step giant-step method, the left one of the Fig-
ure and shows that timing does not increase a lot when we in-
crease the radix. And, the right figure shows that timing increase linearly
to logarithm of the dimension n. Therefore, we can get a homomorphic
DFT algorithm which is significantly faster and similar depth consume. In
our experiment, we compare the result with DF'T on un-encrypted vector.
We use average of |a; — b;| for all 0 < i < n as difference between two
length n vector a and b. The difference between DFT on encrypted and
un-encrypted state in our experiment is 279 to 27!°. We can reduce this

difference by using larger A = p*.

20

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

There are a few previous implementation results about homomorphic
DFT. In [CSV17], there homomorphic DFT takes about 22 minutes for
n = 213 with 8-bit precision. In [CKKS17], it takes about 22 minutes with
same length. But these works focus on amortized time by put each element
of the input vector in different ciphertext. We note that our results shows

about 200 times faster than previous one.

4.3 Improved Bootstrapping for HEAAN

In this section, we explain about linear transformations in bootstrapping
for approximate homomorphic encryption scheme. And, we give an im-
proved transformation algorithms for such linear transform using our ho-
momorphic DFT which provides an improved bootstrapping procedure for

approximate homomorphic encryption.

4.3.1 Linear Transformation in Bootstrapping

The bootstrapping procedure for approximate homomorphic encryption
in [CHK™ 18| can be divided as following steps:

1. Put polynomial coefficients in plaintext slots,
2. Evaluate exponent function,
3. Extract Imaginary part,
4, Switch back to the coefficient representation.
The transformations in the first and the last step are called CoeffToSlot

and SlotToCoeff respectively. In [CHK™ 18|, the authors use the index i of

o1

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

slots corresponding to 5% (mod 2N) for 0 < k < N/2 by considering wg’f\,
as in Encode map. To transform coefficients of polynomial representation
of plaintext into slots, we should construct two encodings since there are

only N /2 slots while the number of coefficients is N.

Let t(z) = to + tix + ---ty_12V ! be a polynomial representation
of encoding with messages z = (2, - ,2n/2-1) in slots, and let v =
(to, - ,tn—1) = (v, 1) be its vector representation. Suppose that U be

the encoding matrix defined in Section [4.1]and parsed into [U|U] for N /2
by N/2 matrices Uy’s. Then the following equation holds by definition of
encoding map, which yields the SlotToCoeff map,

Vo
Z:U[]ZUO'U0+U1"U1.

V1

Note that - Uy = U, and Ual = % -FOT hold. Using this, we can obtain

that
B 1

N

This equation corresponds to CoeffToSlot map.

Vi, (ﬁkT-z—l—Uf-E)fork:O,l.

4.3.2 Improved CoeffToSlot and SlotToCoeff

We now describe a modified linear transforms for bootstrapping. We mainly
focus on how to decompose the matrix U into sparse diagonal matrices.
To obtain this, the bit-reversal permutation matrix R works a central role
in this method. Note that the order of the slots after CoeffToSlot does not

play any role in the bootstrapping. For this reason, we replace Uy to Vi

52

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

which is row permuted by R:
VkZUk‘RfOT‘k‘:O,l.

As in U, the relation V; = i - V| holds. For this reason, we focus on
the matrix decomposition of V using recursive relation; this induces the
decomposition of V';. Let rev, (i) denotes bit-reversal permutation of ¢ with

size n.

Lemma 4.3.1. Let S, = (wi;"ev”(j) . Then, Vo = Snj2 and fol-

lowing equation holds:

g |1 Wal| [Sur 0
ol -wy, 0 Supe

for W,, = diag(wi;)0<i<n.

>0<i,j<n

Proof. Vo = Spy/2 is clear by definition. Let’s start the proof with the
following claim. Here vy(a) is the maximal integer k such that 2% is a
divisor of integer a.
Claim: v9(5¢ — 1) = vy(e) + 2 holds for a positive integer e.
Proof: This claim can be proven using the mathematical induction on vy(e).
[|

To prove the recursive formula, it suffices to show the following equa-

tion:

S, =

Sn/2 Wn ’ Sn/2
Sn/2 *Wn) Sn/Z

5t.revn (

Let S, = (sij)o<ij<n, 1€ Sij = Wy,) The following equations show

the above equation. Note that 4n is a power of two integer.

93

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

1. sij = Sitnsp, for all i and for 0 < j < n/2: this is equivalent to
4n|(50+2) rev, () —5"-rev,(j)). By the claim vy(5"2—1) = vy(n/2)+
2 = v9(2n) holds and rev,(j) is even for j < n/2. Combining this we

obtain the desired result is induced.

2. 5;; = —siyn/2,; for all 4 and for n/2 < j < n: as in the above, it is
equivalent to vy (502 - rev,, (j) — 5 - rev,(5)) = v2(2n). It is showed
by v2(5"2 —1) = vy(n/2) +2 = v5(2n) and rev,,(j) is odd for j = n/2.

3. SijiN/2 = Sij -w? for all i and 0 < j < n/2: this is clear by definition

of rev,,.

If we combine these cases, we can easily show that the recursive relation
of S holds.]

By adapting Lemma repeatedly, we can decompose V to log,n
number of matrices as in Equation [.2.2] The following matrix illustrates

the specific form of matrices in the recursive formula:

i In/k Wn/k: o 0 1
In/k _Wn/k

Eén) _ e Cnxm, (433)

I, w,
0 0 /k /k
In/k: _Wn/k _

which has k/2 number diagonal blocks. Lemma implies

Vo= B B g g,

These factor matrices have exactly the same structure with D,(C”), SO we

can apply our method in previous section (from radix to hybrid method).

o4

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

Furthermore, we can also multiply the inverse of Vj in encrypted state, as
in the same way to the inverse DFT matrix case.

Now we will describe two linear transformations, CoeffToSlot and Slot-
ToCoeff, using Vi , V' and its conjugations. As we noted above, V; =
1-V and further V,;l = %WT hold as in the case of U for k = 0, 1. There-
fore, CoeffToSlot with bit-reversed result and SlotToCoeff with bit-reversed

input are computed as follows for t, = R - v, for k =0, 1:

1 e 1 —
t(]:E(VO_I'Z—FVEI'Z), t1=—§i(Val'Z—Val'Z>,
Z:VO'(tO—FZ"tl).
Optimization

We can further improve the efficiency of the bootstrapping in light of hoist-
ing, i.e. by computing the common part first or last. More precisely, for
CoeffToSlot, compute V' - z first and compute other parts using conjuga-
tion. Therefore, t; and ¢; can be computed from z in 24/ log, (/N /2) homo-
morphic operations for the radix r. For SlotToCoeff, we compute (tq+-t;)
first and multiply V. This also needs only 24/rlog,.(N/2) number of ho-

momorphic operations.

Remark 4.3.1. Our technique can be applied for bootstrapping of (n/2)-
sparsely packed ciphertext in [CHK™18|. The plaintext space of sparse
packed ciphertext is Z[Y]/(Y"™ + 1) for Y = X"/ So, we just need to

replace won to way,.

95

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

4.3.3 Implementation Result

Use one of the parameter sets which is in the previous work |[CHK™ 18] for
easier comparison. And, we run the previous method which is implemented
in HeaAn library [snul§| in the same machine for fare comparison (with
recently release version v2.1). The PC information is same as the previous

implementation in Section [4.2.4]

e ¢y = 2": the smallest ciphertext modulus (before bootstrapping).
o q;, = 21249 the largest ciphertext modulus.
e N = 2!6: the dimension of polynomial ring R.

o A = pF = 231: scaling factor which is used to make integer polynomial

in encryption and constant vector multiplication both.
e 0 =232, p=0.5, and h = 64: distribution related parameters.

r = 7 which is the number of iteration in sin evaluation.

The Table [4.2] shows implementation result of bootstrapping using our
linear transformation and previous method. To maximize the effect of our

method, we used number of slots as the largest one (= N/2).

H Key Gen ‘ Linear Trans ‘ Eval sin ‘ Total

Previous || 25 hours 26 hours 30 sec | 26 hours
Ours 44 sec 97 sec 30 sec 127 sec
Table 4.2: Timing of Bootstrapping with comparison for C327%® plaintext

space. Here amortized time means that bootstrapping time per one com-
plex element. Both works gives about 277 additive error while bootstrap-

ping.

o6

CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

The timing results for linear transformation time shows about 700 times
faster result than previous one. We use radix 32 which means each lin-
ear transformation consumes 3 (= logs, 2'%) constant vector multiplication
depth. As a result, the modulus of the return ciphertext is 468 bits which
means 14 depth computation can be done after bootstrapping. In the pre-
vious method, the modulus of the return ciphertext is 632 bits which means
19 depth computation can be done after bootstrapping.

Another advantage of our method is key generation time. Key genera-
tion includes public key generation for various rotations and pre-encodings
for diagonal vectors. In the previous method, they need to encode for
N /2(= 32768) number of constant vectors for each linear transformation.
The number of rotation key is QW which is quite large compare to
2k log,, N/2 in our case. In the experiment, this problem makes their key
generation time slower and the size of pre-encoded vector and public keys
to be huge. Previous method need 800GB to save them and 7GB for ours.

Remark 4.3.2. In this paper, we only consider the linear transformation
part of bootstrapping. But we can use improved evaluation strategy for sine
as in [CCS18]|. This paper use Chebyshev approximation method instead of
double angle plus Taylor approximation. This method gives better accuracy

and the depth is reduced with slightly larger complexity.

o7

Chapter 5

Faster Bootstrapping for FHE

over the integers

In this chapter, we proposed new bootstrapping method for fully homo-
morphic encryption over the integers. The first FHE over the integers
was proposed by van Dijk et al. [vDGHV10|, and it was extended to
the batch version [CCK™13| and the non-binary message space version
[NK15]. Furthermore, following the scale-invariant technique of a lattice-
based FHE [BGV12|, so called the modulus switching technique, Coron et
al. [CLT14] succeeded to construct a scale-invariant FHE over the integers.

In FHESs over the integers with the secret integer p € Z*, the message
m € Z; is encrypted into an integer ¢ = pq + te + m, pq + |p/tlm + e or
p*q+|p/t](m+tr)+e according to the schemes [vDGHV10, (CS15,|CLT14],
where the ¢,7,e are uniform randomly chosen integers from some pre-

scribed intervals. Hence the bootstrapping procedure is to homomorphi-

o8

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

cally evaluate the decryption function

m= |- modtorc—p-[f] mod ¢.
p

p
The complicated division by p can be relaxed by using the hardness as-
sumption of the sparse subset sum problem (SSSP): 1/p ~ 2?:1 s;y; mod ¢
for secret bit s; € {0, 1}, public rational number y; € [0, t) of k-bit precision
with x> log |¢| + A and © = O(X*). In that case, the decryption function

is reduced to

e ©
m = {; sl%w modtorc—p- {; sz%} mod ¢,
where n = O(log, \) and w; = |c - y; - "] mod ¢" 1.

In the previous methods [vDGHV10, NK15|, each s; is encrypted under
a HE with message space Z;, so we need to expand each w; t-adically and
each digits of s;w; are encrypted separately. As a result, each of digits of
s;w; are encrypted as different ciphertexts, so the homomorphic evaluation
of the additions in the decryption circuit should be done digit-wisely. In
that case, a large number of carry computations are required, which results
in é(/\4) homomorphic multiplication in the bootstrapping. One possible
approach to avoid this massive homomorphic multiplication is to encrypt
s; with a HE with plaintext space as large as w;. However, in that case,
log t-bit should be homomorphically extracted and this is regarded as a
problem as hard as bootstrapping.

Overview of our Bootstrapping method. The idea of our new boot-
strapping method is to use a homomorphic encryption scheme with var-

ious message spaces. Let us denote Encp(m) be a ciphertext of mes-

29

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

sage m under an encryption with plaintext space M. For a given boot-
strapping key (bk;)i<ico = (EnCZtn+1(Si))1gi<@, the output of the ho-
momorphic additions for bootstrapping is the ciphertext ¢ of the form
é=22 w;-bk; = Encz,,,, (m- t"—i—zj "o #j-t7) for some integers z; € [0,).
To complete the bootstrapping process, it is required to compute the ci-
phertext ¢ = Encz, (m) from the ciphertext ¢.

For this, we first suggest plaintext space contraction and dilation func-

tions over the ciphertexts of HEs over the integers.
PSCon; : Encz,, (m - t) — Encz,,_,(m) for 1 <i <k,

PSDil; : Encz,,_,(m) — Encg,, (m - t') for 1 <i <k,

which do not affect error growth. In case of lattice-based FHESs, these tech-
niques already exist and bootstrapping can be done efficiently by exploiting
them. In this paper, we suggest PSCon and PSDil techniques for HEs over
the integers. With these techniques, we can homomorphically extract n-th
digit of (m-t"+ " 0 z;-1") in HEs over the integers using a gap-increasing
polynomial F; ,,(X) suggested by Halevi and Shoup [HS15|, which satisfies

the following equation:
Fip(z-t"+a)=y - t""" +aforael0,t)nZ,z,yeZ.

The overview of homomorphic digit extraction with the functions PSCon
and PSDil in HE schemes over the integers are follows. For digit extraction,

we need to compute ¢; = Ency, tr; + z) for 0 < i < n and z; € Z.

n—i+1 (

60

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Assume that following ciphertexts are given:

co = Encg,.,, (txo+ 2)
a1 = Ency,,(tz1 + 21)
Ci—1 = EnCZtn_H_2 (tl’z‘_l + Zi—1)~

By (i — j) time evaluating F} ,,(X) for each ¢; and using PSDil technique,
we can get ¢; = Encg,, ., (yjt"*" + z;t/) for each j € {0,1,---,i — 1}. By

(tz; + z;). Now we

subtraction and PSCon technique, we get ¢; = Encz,, .,

can get ¢; from ¢; for 1 < j < i — 1, so we can compute ¢, = Encg, (m)
recursively. The figure below is our bootstrapping process with simple case
of n=2andt=2.

As you can see in Figure 1, our bootstrapping process is simpler than
previous works which are very hard to describe. In our implementations
for the security parameter A = 72, we set parameters n = 5 and t = 2,

which are very small.

INK15] Our Method
Degree O(N) O(A'79)
Hommult | O(A*1og® \) | O(log® \)

Table 5.1: Comparison with NK15 method

Faster bootstrapping method. We propose a faster bootstrapping
method for FHEs over the integers than previous methods [vDGHV10,
NK15]. Since the complexity of long integers addition depends on both the

length and the number of the integers, the number of multiplications in

61

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

3 Sy % Enczg (4m + 2a + b)
v}(Zmd 8
Enczg (4m + 2a + b) Enczg (4 % +b)
\U{suhstmcl
Encz, (4 * +2a) ﬂ}- Encz, (2 +a)
szmnd 1 X?mod 8
Encg, (a)
LPSDiI A
Encgg (4m + 2a + b) Encg, (2a) Ijnc;g; (b)

Usuhstracl
PSC
Ency, (4m) L N Ency, (m)

Figure 5.1: Our bootstrapping process for simple case. Note that [, (X) =
X? for all n € N. Here star shape denotes some integer of which we do not
need to consider the exact value.

previous works relies on the large parameter © = O(A*). Contrary to that,
the complexity of homomorphic digit extraction only depends on the small
parameter n = O(log \), and this difference makes our method efficient.
Table below is a comparison with the previous method [NK15|. Note
that the small constant € is consequence of using the large message space
Lgn+1.

An implementation on the CLT scheme. The CLT scheme has the
fastest homomorphic multiplication algorithm among the HEs over the
integers, and the ciphertext form of the scheme is appropriate to apply our
method. Therefore, we apply our method on the CLT scheme, and provide a

precise noise analysis of the bootstrapping procedure. Our implementation

62

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

on the CLT scheme takes about 6 seconds for a 500-bit message space
with a 80-bit security. This result is far superior comparing to the previous

result in [CCK™13], 13 minutes for a 500-bit message space.

Homomorphic evaluation of AES circuit. Due to the inefficiency
of bootstrapping, homomorphic evaluations of AES circuit with leveled or
scale-invariant FHESs so far have been implemented without bootstrapping.
Contrary to the previous works, we implement a homomorphic evaluation
of an AES-128 circuit using our bootstrapping method on the CLT scheme
with low depth parameters. In our implementation, the evaluation takes
about 8 seconds per block, and this result is faster than the result in
[CLT14] without bootstrapping (with large depth parameters), 26 seconds
per block. Furthermore, this is the first time that homomorphic evalua-
tion of AES circuit with bootstrapping is more efficient than homomorphic

evaluation of AES circuit without bootstrapping.

5.1 Basis of FHE over the integers

In this section, we will introduce HE scheme based on integer problems.
DGHYV and CS schemes are based on AGCD problem and CLT scheme
is based on variant of the problem. We note that our new method for
bootstrapping can be adapted to all these three schemes. But we will focus
on CLT scheme which is the most efficient integer based HE scheme. We
follow the notation from original paper |[CLT14], and describe the scheme

with the message space Z; for a positive integer ¢ [} For an -bit odd integer

*Original schemes are described with plaintext space Zs, but the extension to Z; is
trivial.

63

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

p and an integer g in [0,27/p?), we define a distribution as follows:

Dz,qo = {p2 q + 1 : Choose ¢ [07 q0)7 T (_21), 2p>}
Note that this distribution is hard to distinguish with uniform distribution
in [0,27) based on the variant of AGCD problem in Section 2.4 Followings

are brief description of CLT scheme (for more information see [CLT14]).

KeyGen;(1*). Generate an odd 7-bit integer p and a v-bit integer zy =
o - p* + 1o With 7 — (=2°,2°) N Z and gy — [0,27/p?) N Z. Let x; — D?

p;q0

. / ~ o / . . .
forl<i<r7,y <D, ,andy=y + |p/t|, which is the encryption of 1.

Let z be a vector of length ©, the components of which have kK = 2y + 2
bits of precision following the binary point. Let s € {0, 1}° such that

t- 27
p?

={s,z)+¢€ mod (t-27),
with |¢| < 27". Now define

oc=q p’+r+ lPowersofTWOn(S) : %] ’

where the components of g are randomly chosen from [0, ¢y) N Z and those
of r from (—2°,2°) n Z. The secret key is sk = {p} and the public key is

pk = {._'L'(),.Tl, T 7'I7'7yaa-7z}'

Encrypt;(pk, m € [t]). Choose a random subset S < {1,---,7} and out-
put

C [m-y—l—E:ci]xO.

€S

64

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Decrypt;(sk,c) . Output m « lt : fg] mod ¢.
Add;(pk, c1,c2). Output ¢ < ¢; + ¢ mod xg.

Convert;(pk,c). Output ¢ < 2 - (o, BitDecomp,(c)) where ¢ = (|c -
zi] mod 27)1<;<o.
Mult;(pk, c1,c2). Output ¢ < [Convert(pk, ¢ - ¢2)] .-

Remark 5.1.1. Small difference with original scheme is using plaintext
Zy and (s,z) + € is %n instead of Z—Z. This changes the homomorphic
multiplication algorithm as [Convert(pk, ¢; - ¢2)],, instead of [Convert(pk, 2-

Ct - 02)]230-

Semantic Security

Security for this scheme is from same problem introduced in [CLT14]. The
only difference is change of message space from Zs to Z;, so we omit this

part. Note that the security of this scheme is from hardness of the variant
of AGCD problem in Section
Conditions on the Parameters

The parameters must satisfy the following conditions for security parame-

ter A and message space Z;:
e p=Q(\) to avoid brute force attacks on noise [CN12, (CNT12],

e 1= p+O(L(log A +1logt)), where L is the depth of multiplication of

the circuits to be evaluated,

65

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

e v = w((2n — p)? - log\) to avoid lattice-based attacks [vDGHV10),
CMNT11),

e ©2 >~ w(log\) to avoid lattice attacks on the subset sum problem
[CMNT11],

e 7=+ 2\ to apply the leftover hash lemma.

5.2 Decryption Function via Digit Extrac-

tion

5.2.1 Squashed Decryption Function

In the FHESs over the integers with secret integer p, a ciphertext of message
m € [t] is of the form ¢ = pg + te +m or pqg + Zm + e for ¢, e € Z. Each
form of ciphertext is decrypted by

o) e

The decryption function involves the computation of |¢/p| and this should
be evaluated homomorphically for bootstrapping. Since division is very
complicated for homomorphic evaluation, decryption functions of FHESs
over the integers are squashed for efficient bootstrapping. The Squashing
is a procedure of expressing secret value 1/p as a subset sum of public
numbers within very small error, which enable to bootstrap efficiently.
The squashing technique was first introduced in [vDGHV10], and gen-
eralized in [NK15]|. Let x’,0’, and ¢’ be additional parameters satisfying
K > (74 A)/logt (from security of sparse subset sum problem). The dif-

66

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

ference with the previous methods of squashing is using digit extraction
instead of rounding function. Followings are out squashed decryption func-
tion for CLT scheme.

o KeyGen. Generate secret key and public key as same as original
scheme. Set z, = |t**!/p], choose a random ©'-bit vector s with
Hamming weight ¢, and let S = {i : s; = 1}. Choose random inte-

gers u; € [0, 1) such that >,_cu; = .

e Encrypt. ¢* is a ciphertext of a given FHE over the integers. For 1 <
i < @', let w; given by an integer nearest to the value of ¢* - u;/t" "

where n = [log, ¢'] + 3. Output both ¢* and w.

e Decrypt. Output m’ « digitExtrac,,, (D] ssw; + [t"/2]).

Remark 5.2.1. The squashing technique can be applied not only to the
original scheme in [vDGHV 10, /CLT14,|CS15], but also to the batch version
of the scheme by squashing for each p; as in [NK15].

5.2.2 Digit extraction Technique

Let F*(X) be a k-time evaluation of the function F'. In general, F(X) = X!
does not satisfy the following property when t > 2:

F*(x) mod t**' = x mod t VkeN,ze[0,t)nZ.

In [HS15], for the prime ¢ and the positive integer e, they constructed the
polynomial F} .(X) satisfying the above equation for any k& < e. With this
polynomial, we can extract ale’); for 1 < ¢’ < e using similar method in
[GHS12a]. Following lemmas are about existence and construction of the

polynomial F};.(X), which are introduced in [HS15].

67

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Digit Extraction Algorithm:
Input: non-negative integers z and r

Compute z; for 1 < i < r as following :

o = X
T = [l‘ — Ft;(x)]trﬂ
(2 — F7,(x) = tFy ()]
To =
t2
(v — FP (x) = tF7 (21) — *F (22)]
r3 =

t3

[— Fy, () = 303t ()]
tT’

Ty =

Output: z, = ()

Figure 5.2: Digit Extraction Algorithm

Lemma 5.2.1. (Corollary 5.4 in [HS15]) For every prime t, there exists
a sequence of integer polynomial f1, fo,- -+, all of degree <t —1, such that
for every exponent e = 1 and every integer z = zy +t°z1 (20 € [t], 21 € Z),

we have

2=z + Z fi(z0)t" (mod t**1).
i—1

Lemma 5.2.2. (Corollary 5.5 in [HS15]) For every prime t and every
e = 1, there exists a polynomial Fy. of degree p such that the equality
Fyo(z0 +121) = 2z (mod t*Y) holds for every integer 2y, z1 with z € [t]

and every 1 < e <e .

68

&1

| &1

11’

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Using a special polynomial £} ,, we can extract () from x, through
a polynomial for any non-negative integers x and r, by digit extraction
algorithm in Figure 2. Note that the equality in Lemma [5.2.2] implies that

recursively defined x;s are integers.

5.2.3 Homomorphic Digit Extraction in FHE over

the integers
To follow the digit extraction method in |[GHS12b| at FHE over the inte-
gers, additional method to control plaintext space is needed.
Plaintext Space Contraction and Dilation

Let E(m) is a set of ciphertexts which encrypt m with message space
M = Zy. For all HE schemes over the integers, we can construct following

two plaintext space switching functions for 1 <i < k :
PSCon; : Et'm) — E,—i(m),

PSDil; : E_i(m) — E(t'm).

The definitions of these functions are somewhat different depending on the

form of a ciphertext.

Case 1 (¢ = pg+tr+m). In the schemes of [fDGHV10] and [NK15], with
public exact multiplication xq = pqo, plaintext space switching functions

are described as follows:
e PSCon;(c) = [t7"]4, - ¢ mod zo,
e PSDil;(c) = t'c mod .

69

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Correctness of these functions can be checked easily by following equations:

PSCon;(c) = [t ugpq + [t Juol™r + [t]uet’m mod g
= pqd + th i 4 m,
PSDil;(c) = t'pq+t""'r 4+ t'm mod z¢
= pd +t"r +t'm

Case 2 (¢ =pq+ |p/t] -m +r). In the schemes of [CS15] and [CLT14],

the functions PSCon; and PSDil; are identity functions since

Homomorphic digit extraction

The rounding function in the squashed decryption function can be ex-

pressed as follows:

[2 siw;/t"] mod t = Z s;w;/t" + 0.5 mod ¢
= Zs w; + [t"/2])D{n).

Thus, the squashed decryption could be expressed as additions and a digit-
extraction. The problem is how to homomorphically evaluate the function
(X siw; + |t7/2])P(n) where each w; is defined in Section .

Let t be a prime integer, n be a positive integer less than log A\, and M

be a message space. We follow notations in Section about squashing.

70

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

In this Section, we suggest a new bootstrapping method. It works on any

HE over the integers which satisfies following conditions:

1. The form of a decryption function is
|> ssw; /"] mod t or ¢ — | s;w;/t"] mod t
where w; can be computed by public values ¢ and w;.

2. It supports homomorphic operations with M = Z;: for 1 <¢ <n-+1.

3. There exists a polynomial time algorithm HomExt, a function from
En+1(m) to E(mdn);), which is a homomorphic evaluation of digit-

extraction algorithm in Figure |5.2]

Given a HE over the integers satisfying the conditions above, our boot-
strapping method works as diagram below. New parameters s, = 1 and
wo = |t"/2] are included in the summation.

Encz n+1 (Si)a Us
c i Encz,, ., (22 siw;)

Bootstrap HomExt

Encz, (m)

71

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Actually, all HEs over the integers satisfy the above conditions, which
means our method can be applied to all integers-based HEs. In the diagram,
our bootstrapping method consists of two steps: addition and extraction.
Since w; can be computed by public values and the set {Encz, ,(si)} is
given as bootstrapping key, the addition step in this diagram is composed
of homomorphic additions on M = Z;n.+1 and modulus operation. Note
that modulus operation mod #"! is automatically done since the message

space is given by M = Zn+1.

5.3 Bootstrapping for FHE over the inte-

gers

We apply our method on scale-invariant homomorphic encryption scheme
in [CLT14], the CLT scheme, since error growth during homomorphic eval-
uation is linear so that it is suitable to choose low depth parameter for
implementation. Furthermore, as mentioned in remark 1, since PSCon and
PSDil are trivial mapping, the description of HomExt is very simple.

As mentioned above, we need three conditions: squashed decryption
function with M = Z,, homomorphic operations on message spaces Za,
and homomorphic digit extraction technique. The scheme below is almost
same with scale-invariant homomorphic encryption scheme in [CLT14], and

we just extend it to the message space Z; for the prime t¢.

72

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

5.3.1 CLT scheme with M = 7Z,

Scheme Description

In this section, we follow the notation in [CLT14], and describe the scheme
with the message space Z; for the prime ¢. For an n-bit odd integer p and
an integer qq in [0,27/p?), we define the set
Dya = {p> - q+7r: Choose q < [0,qo),r < (—2°,2")}.
o KeyGen,(1*). Generate an odd 7-bit integer p and a 7-bit integer
Ty = qo - p* + ro with 7y < (=2°,2°) nZ and ¢y < [0,27/p?) N Z.
Let vy < Dy for 1 <i< 7,y <D, ,and y =y + |p/t], which is
the encryption of 1. Let z be a vector of length ©, the components
of which have k = 2y + 2 bits of precision following the binary point.
Let s € {0,1}® such that

t- 2"
5~ =(8,2) +¢€ mod (t-27),
p

with |e] < 27". Now define

) b
oc=q p*+r+ lPowersofTwon(S) . ﬁ] ;

where the components of g are randomly chosen from [0, go) N Z and
those of r from (—2°, 2°) n Z. The secret key is sk = {p} and the
public key is pk = {zg,x1, , 2;,y,0,2}.

e Encrypt;(pk,m € [t]). Choose a random subset S < {1,---,7} and

73

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

output

C [m~y+2xi]x0.

€S

Decrypt;(sk, ¢). Output m « lt : I—f] mod ¢.

Add,(pk, c1, c2). Output ¢ < ¢; + ¢ mod xg.

Convert;(pk, ¢). Output ¢’ «— 2 (o, BitDecomp, (c)) where ¢ = (|c -

zi] mod 27)1¢;<o.

Mult;(pk, c1, ¢2). Output ¢ < [Convert(pk, ¢; - ¢2)]4,-

Semantic Security

Security for this scheme is from same problem introduced in [CLT14]. The
only difference is change of message space from Z, to Z;, so we omit this

part.

Conditions on the Parameters

The parameters must satisfy the following conditions for security parame-

ter A and message space Z;:
e p=(A) to avoid brute force attacks on noise |[CN12, (CNT12],

e = p+O(L(log A +1logt)), where L is the depth of multiplication of

the circuits to be evaluated,

e v = w((2n — p)? - log\) to avoid lattice-based attacks [vDGHV10),
CMNT11),

74

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

e ©2 >~ w(log\) to avoid lattice attacks on the subset sum problem
[CMNT11],

e 7=+ 2\ to apply the leftover hash lemma.

5.3.2 Homomorphic Operations with M = Z;.

During bootstrapping, we use homomorphic addition and multiplication
between ciphertexts on the message space M = Z. for 1 < a < log, A. Ho-
momorphic addition and multiplication are described below. Note that xg
is defined in the same manner as in the previous section, and the definition
of Eval is non-deterministic since the method of the evaluation depends on

the formation of a given polynomial.

e Add¢(pk, c1, c2). Output ¢; + ¢ mod xy.
e Multy(pk, c1,cz). Output Convert;(pk, t* - ¢1 - ¢3)

e Eval?(pk, f,c). Output the homomorphic evaluation of the ciphertext
¢ with the polynomial f by operations defined above.

A ciphertext ¢ = ¢ - p* + (t*7* + m) - |p/t*] + r has two kinds of errors, r
and 7*. We call ¢ a ciphertext with noise (p, p*) if |r| < 2° and |r*| < 2°.
Lemmal5.3.1]shows the correctness of Addy and Mult} as well as analysis on
noise growth during the homomorphic operations. We notice that the proof
of Lemma 3 is definitely not new one compared to the proof in |[CLT14];
we only generalize it from the case of ¢ = 2 to the case of arbitrary prime
t.

Lemma 5.3.1. (Noise growth analysis) Let ¢; and co be ciphertexts with
noise (p1,p%) and (p2, p3), respectively. Let p = max(py, p2) and p* =
max(pt, o). Then,

5

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

- Add (pk, c1,c3) is a ciphertext with noise (p + 2, p* + 1)
- Mult{ (pk, c1, c2) is a ciphertext with noise (p + p* + alogt + 8,log ©)

Proof. Let c1, co as below.
c1=qi-p* + |p/t - (my + %) + 1y,

2= g2 P+ [p/t"] - (ma+ t73) + 7.

Then addtion of ¢; and ¢, is

at+e = (g+aq) P+ [p/tY] ([mi+malwe
+t4(rf + 15 +1/0)) + 11+ 7o

= qz-p° + [p/t*] - (mg +1975) + 13

for r§ < 20 + 205 +1 and ry < 2°* + 2°2. The ciphertext of [my + mg]qa is
c3 = [c1+ e2)ey = €1+ co— k- xq for k € {0, 1} since ¢1, ¢3 < xg. Therefore,
c3 < Add{(pk,c1,c2) is a ciphertext ¢z = ¢ - p* + |p/t*] (m + t%7*) + r
satisfying r* < 2¢7 + 25 + 1 and r < 201 + 272 4 200,

Let ¢, ¢o as defined above, and k, [be integers such that |p/t*| = (p—k)/t*
and |p?/t*| = (p* —1)/t*. Then the following equation holds,

cs = g3 PP+ ((p—k)*/t%) (my +1%r7) (ma + t°75) + R
= q¢-p*+((p* = 1)/t") - (mimy mod t*) + R+ R’
= q3-p° + [pQ/t“J - (mymg mod t%) + r3

76

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

where |R| < 3-27-t%-2°" P and |R/| < 2-27-120.2%°" 1-420.920" < 3.9n.{20.92%0%

Therefore, the inequality |rs| < 6 - 27+el8t+,+* holds when assuming
alogt + p* < p.

Now we will analyze the error of ciphertext after processing Convert
procedure. We followed the proof of lemma 1 in [CLT14].

Let [logrs] = ps < n+2alogt+ p+ p* + 3 and ¢ « Convert(cs/t), then

from the equation

p
o= qtrtls 5l

Let ¢’ = BitDecomp, (c), then we have:

— N 2 . / / . p /
c=Ao,cy=2p"-{q,c)+2r,c)+2{|s 2n+1],c>.

since the components of ¢ are bits,

r P ~n_ P 1o P,
2<l’3'ﬁ]ac>_<%'sac>+y2_2_,7<S7C>+V27

where |v5| < © - 7. From the definition of BitDecomp and Powersof Two, we
have (s',) = (s,¢) mod 2" = (s, ¢) + ¢ - 2". Moreover

<s,c>=251{%-zi]+A-2”=ZW+51+A-QW

=Ct—3‘<s,z>+51+A-2”,

for some A € Z and |6;| < ©/2. Using (s,2z) = 2" -t/p* — € — - 2" - t for
some p € Z, and c3 = r3 + |p?/t*] - m + g3 - p?, this gives

7

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

e-2n 2" c
m+1¥r3—736+51+(A—03-,u)-2”.

on
<S7C>=C]3‘2”+t—am—p2.ta

Therefore we can write

on
<s,c>=q1-2’7—|—m't—a+r*

for some r* € Z, with |[r*| < 2°37773. Now we get an equation below:

Pl Ny A
2<l2’l+1 sw,c>—q4 p+m ta+?" 2n~|—u2

with |g4| < ©; namely the components of (p/27!) - s’ are smaller than p

and ¢ is a binary vector. This gives

2l o]) e |£]

with |r¥| < 2,774 Then we obtain

c = 2p*-{q,c)+2r,)+ (t"q +m)- LZ%J +ry

= 2¢" - p*+ (t"q +m) - L%J +7

where [r'| < [r}| + 7020+ < 20371+ 4 p@2rtT < QalogltptrtHT 4 p@oATL

Therefore, ¢ is ciphertext with noise (p + p* + alogt + 8,1og ©) if alogt +

p+pt+5>logn+logO + A

78

&1

| &1

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

5.3.3 Homomorphic Digit Extraction for CLT scheme

During homomorphic digit extraction, we use various message spaces from
L t0 Zyn+1. Let Encg (m) be a ciphertext of m with message space Z
in the form of ¢ - p? + |p/t*| - (m + t* - v*) + r. The following algorithm
represents homomorphic digit extraction with CLT scheme. Note that the

polynomial Fy,, is explained in the section [5.2.2}

HomExt Algorithm (Homomorphic digit extraction):

Input: A ciphertext ¢ of message space Zn+1

Compute¢;; for 0<i<n,0<j<n-—1i:
Co0 < C
ForO0<i<n-—1,

ForO0<j<n—1—-1,

n—i+1
Cij+1 < Evalt (pk, th, C@j)
Ci+1,0 < €00 — Co,i+1 —C15 — " — G

Output: ¢,

Figure 5.3: HomExt Algorithm

To understand the above algorithm, we need to check when we can
change the message space for a fixed ciphertext. In the scale invariant HE
over the integer, since PSDil and PSCon are trivial mapping, Encgz,, (m)
can be treated as Encz, (t““Fm) for k < (. Conversely, if m is a multiple
of t~%, Encg,, (m) can be treated as Encg , (m/t").

The following lemma shows the correctness of the proposed homomor-

phic digit extraction algorithm.

79

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Lemma 5.3.2. (Correctness of HomExt) For given m = by, define b; ;:

i1
bio = (boo — Z t/ by, mod ")/t for 1 <i <,
i=0

bi,j+1 = Ft,n(bi,j) fOT 0<i< n, 0 <] <n-—1.

When we set co = Encg,,.,(boo) and define (c;;) following the HomExt
algorithm, then c¢;o = E”CZtn_iH(bi,O) for 0 < i < n so that the equality
no = Encg,(mW{n)) holds.

Proof. We use induction on i. The statement is clear when ¢ = 0. Suppose

the proposition is true for ¢ < m. Then we have

m—1
Cmo = Co0 — Z Cjm—j
=0
m—1)
= Cy— Z EHCZtn7j+1 (Fg,rrlz_] (bj70)>
=0
m—1 ']
= o= Y, Bncg,,., (FFL (b))
=0
m—1))
= Encg, ., (bo,o - Z t]FtT;LL_](bj:O)>
=0
m—1
= EHCZW_'_1 (bop — Z tjbj7m_j mod tn+1>
=0

= EnCZtn+l (tmbm70) = EnCZtn+lfm (bm,(])

Therefore, this lemma holds for any positive ¢ < n, and this means ¢,y =
Encz, (bno) = Encg, (m®(n)), so this lemma shows the correctness of our

bootstrapping procedure. O

80

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

To sum up, we can homomorphically evaluate digit-extraction, so CLT
scheme satisfies all conditions in section [5.2.3} namely, our method can be
applied to CLT scheme. Now we introduce the explicit explanation of the

application of our method on the scheme.

5.3.4 Our Method on the CLT scheme

For an 7-bit odd integer p and integer qo in [0,27/p?), we define the set

Dpyo = 10 < [0,q0), 7 < (=27,2") : Output p’q + r}.

o KeyGen?(1%). Generate pk = {xg, 21, - ,z,,0, 2} as in Section m
Choose a random a ©’-bit vector s’ with Hamming weight #’, and let
S" = {i : s, = 1}. Choose a random integer u; € [0,#*™!) such that
Yicsr Wi = [t"T1/p]. For n = [log, '] + 3, generate

p
tn—i—l

Ui:(h"p2+l J‘SQ‘H”@'

and vy = q-p*+ [tnﬂlj % +7r, where ¢, ¢; € [0, qo) and r,r; € (—2°,2°)
for 1 < i < ©'. The secret key is sk = {p} and the public key is
pk* = {pk, u, v}.

e HomSum;(c,u,v). Generate wy = 1, w; = |c - u;/t" "] mod t"*! for
n = [log, 8] + 3, and output
e/

cd Zvi -w; mod .
i=0

e Bootstrap;(c,u,v). For ¢ < HomSumy(c,u,v), output the new ci-

81

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

phertext HomExt(c).

Conditions on the Parameters

The security of the squashed scheme has been studied in [vDGHV10,
CMNT11, CNT12]. Here, A is a security parameter, and v is as in the

previous section.
e n = [log, 8] + 3 for the correctness of squashed decryption function,
o k' > (y+A)/logt for the correctness of squashed decryption function,

e ©7 >~ w(log) to avoid a lattice-based attack on the subset sum
problem [CMNT11, CNT12],

. (0(,9//2) > 2) to avoid an attack on the sparse subset sum problem

[BIWX11].

5.3.5 Analysis of Proposed Bootstrapping Method

Our analysis can be more tight for binary message space, since the eval-
uation of the polynomial Fi,(X) for ¢ > 2 is relatively hard due to its
complicated form. In this section, we first check the correctness of our
bootstrapping method and analyze the noise growth during bootstrapping
procedure. Also, we compute the number of homomorphic multiplications

in our method, which directly implies the efficiency of our method.

%k

Theorem 5.3.1. For ¢* < Bootstrap(c,u,v), c* is ciphertext with noise

(p2,p5) = (p+ 9 + nlogt(logt + log® + 8)(1 + ¢€), log® + n),

82

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

and ciphertexts ¢ and c* have same message if p* and p3 is smaller than p.
Here € = ("T“ logt +1t+ %) /(logt +1og® +8) and § = (n+ 1) logt +
log(©" + 1).

Proof. (HomSum) Note that v; = ¢; - p* + |p/t"™']| - s; + r; and vy =
q-p*+ |p/t"T - [t7/2] + r with ¢, ¢ € [0,q) and r, r; € (=2°,2°) for
1 <i< 0. Soif ¢y < HomSum(c,u,v), then ¢ = ¢ - p*> + |p/t"] -
(X siw; + |t"/2]) mod " + r*¢n) 4 o for |1 = |Z?:I1 wir; + 1| <
(0 + 1)2e+(n+hlost and |r*| < ©'. Therefore, cpq is a ciphertext with
noise (p1, pf) = (p+(n+1)logt+1log(©'+1), log ©) whose message space
iS Ziyn+1.

(HomExt) Let ¢;; is a ciphertext with noise (p, p;;), then the equations
poo = p+ (n+ 1)logt +1og(©" + 1) and pi, = log® holds by above

HomSum procedure. By applying Lemma [5.3.1], we can set
pio = max{po;, -, pi—11} + 24, pzo =log® +ilogt

for 1 < i < n. First, we will show the equality

maX{po,iH? T ,Pi,l} = Pia

holds for 0 < ¢ < n — 1. Since ¢;;—j41 = Eval?_jﬂ(pk,Ft,n,cj,i_j) for
0 < j <4, it is sufficient to compare noise increase of c;;_; after Multy.
For 1 < j < i — 1, the increase of first noise of c¢;;_; is less than or
equal to log©® + (n + 1) logt + 8, and the increase of noise of ¢; is pf, +
(n—i+1)logt +8 = logO® + (n + 1)logt + 8. Therefore, the equality

max{poi+1, - ,pi1} = pia holds and we can get

Pio = Pi—1,1 + 21.

83

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Second, we will analyze the noise increase in while evaluating F} ,,. Note
that the polynomial F},, is of degree ¢ and its coefficients are bounded by
t"*1. Then, we can regard each term of F, ,, is contained by at most ¢ times
of multiplications, so we get p;—11 = pi—10 + [logt] - (logt - (n —i+2) +

log © + 8) + t[logt]. Now, we obtain a recursion formula:
Pio = Pi—1,0 + [10g t] . (logt . (n —1+ 2) + log© + 8)

+t[log t] + 2i.
The consequence of the recursion formula is

n? + 3n

Pno = Poo t+ logzt . + nlogt(log® + 8)
+ntlogt +n® + 2n

= poo + nlogt(logt+1log® + 8)(1 +¢)

for € = ("T“ logt +t+ %) /(logt +log © + 8).
(Correctness) Let Enc%c " (m) be a set of ciphertext with message m € M =
Z and error (p, p*). Then our bootstrapping process can be described as

below diagram.

HomExt T
Em__g;loge(n” —x> Em_-gl'rjl (X sjw; + |t /2] mod t”-+1)
tn+1
Bootstrap H01Msb
- -
E'I'u:g2 P2 (m) E]‘lt.‘gf.pz (3 sjw; + |_£n /2] mod t“+1](t)(n})

Top side of the diagram was proved in 1. HomSum. Also, Lemma [5.3.2

84

A&

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

and 2. HomExt exactly signify the right side of the diagram, and the dis-
cussion in Section [5.3.3 shows the equality m = (3] s;w; + |t"/2] mod
"1 ®{n) holds so that bottom side of the diagram is proved.

[

Since the first noise grows approximately (logt + log © + 8) per each

multiplication, we can think of the degree of Bootstrap function is

2n10gt(1+e)+el _ O()\1+6+#1gt) _ O(/\1+52)

where ¢, = {(n + 1)logt + log(©" + 1)}/(logt + log © + 8).

Theorem 5.3.2. The number of multiplication operations in our boot-
strapping algorithm is O(n(n + 1)/2) = O(log® \).

Proof. We will treat ¢ as a constant, so the number of multiplication while
evaluating polynomial F} ,, is constant. The number of evaluation k is equal
to 1424 -+n = n(n+1)/2; thus, the number of multiplication operations
is O(n(n+1)/2). O

As a result, in our bootstrapping method, the number of homomorphic
multiplications is O(log® \) and multiplicative degree is O(A'*¢). Compar-
ing to the previous methods including the result in [NK15], O(*) mul-
tiplications, our method shows significantly improved result within the
framework of efficiency. In addition to theoretical analysis, we will explain
the implementation result of our bootstrapping method applying to the

CLT scheme in next section.

85

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

5.4 Implementation Result

While implementing our bootstrapping method, we use word decomposi-
tion and the powers of word instead of BitDecomp and Powersof Two with
word size w = 32. Moreover, in order to use a public key of reasonable
size, we compress the ciphertext using the same method as in [CMNT11].
We implement our bootstrapping method and check the running time of
Bootstrap. Furthermore, for precise comparison with other FHEs, we im-
plement the homomorphic evaluation of the AES-128 circuit, which has
emerged lately as a standard homomorphic evaluation circuit. We encrypt

messages bit-wisely while AES evaultion as in [CLT14].

1. Parameters (¢ = 500, A = 72).

- AGCD parameters: n = 192, v = 3.8 x 10°, p = 52
- Convert parameters: © = 1500, 6 = 100

- Bootstrap parameters: © = 8000, #' = 15
2. Efficiency.

- The number of Add: 8000 + 10
- The number of Mult: 8

- Error size after bootstrapping: 122 bit
3. AES evaluation.

- Bootstrap Time : 6.7 x 128 sec (128 ciphertexts)
- SubByte Time : 128 sec

86

CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

- Total AES Time : 4020 sec
- Relative Time (Total AES Time / {): 8 sec

Remark 5.4.1. Implementations of our bootstrapping method and homo-
morphic evaluation of AES circuit were progressed on a desktop with eight
core Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz processors and 16GB
RAM using C++ and GMP 6.0.0]G*96].

This result shows that bootstrapping process can be done with only 8
number of homomorphic multiplications. Our bootstrapping procedure for
one ciphertext takes about 6 seconds. This result is faster than previous
results in FHE over the integers [CMNT11, vDGHV10, (CCK™ 13|, and also
compatable with the result in [HS15], 320 seconds for 16000-bit message
space. Comparing to the results of homomorphic evaluation of AES circuit
in [CCK™13}|CLT14], 13 minutes and 23 seconds per block at security level
A = 72, homomorphic evaluation of AES circuit applying our bootstrap-
ping method takes 8 seconds per block on a 8-core machine at 3.4 GHz
for the same security level. This implementation of homomorphic evalua-
tion of AES circuit is the first case that using small depth parameter with

bootstrapping can be faster than using large depth without bootstrapping.

87

Chapter 6

Logistic Regression on Large

Encrypted Data

In this chapter, we present an efficient algorithm for logistic regression on
encrypted data, and demonstrate its practical feasibility against realistic
size datasets, for the first time to the best of our knowledge. We evaluate
our algorithm against a real, private financial dataset consisting of 422,108
samples over 200 features. Our implementation successfully learned a qual-
ity model in ~17 hours on a single machine, where we tested it against a
validation set of 844,217 samples and obtained a sufficient Kolmogorov
Smirnov statistic value of 50.84. The performance is “only” two to three
orders of magnitude slower than that of plaintext learning, which is encour-
aging, considering the inherent computational overhead of HEs. We also
executed our algorithm on the public MNIST dataset for more detailed
evaluation, and it took ~2 hours to learn an encrypted model with 96.4%
accuracy. Below we describe the principal techniques used in our efficient

logistic regression algorithm on a large encrypted dataset.

88

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Approximate HE. Our algorithm leverages the recent advances of (word-
wise) approzimate HE schemes and the approximate bootstrapping method
to reduce the computational overhead. The approximate HE can quickly
compute approximated results of complex operations, avoiding the bit-
manipulation overhead. Similarly, the approximate bootstrapping can ef-
ficiently bootstrap a ciphertext at the cost of additional approximation
noise.

While both the approximate HE and the approximate bootstrapping
can reduce the computational overheads, they have the disadvantage of
introducing an additional noise for each computation step. Even if it is
small, the noise may affect the overall machine learning performance (e.g.,
the convergence rate and accuracy), but it had not been clear how critical
the small noise is. We empirically show that the additional noise is not sig-
nificant to deteriorate the accuracy of a learned model and the convergence
rate. Indeed, our finding is consistent with the results of low-precision train-
ing approaches in the literature [DSFRO17, [ZLK™*16, GAGN15, CBD14]
which have also empirically shown that small approximation (round-off)

errors due to the low-precision are manageable.

HE-Optimized, Vectorized Logistic Regression Algorithm. The
approximate HE scheme we use also supports the packing method [CKKS17]
which can further reduce the computation overhead. In the packed HEs,
a single ciphertext represents an encryption of a vector of plaintexts, and
ciphertext operations correspond to point-wise operations on plaintext vec-
tors, so-called single instruction multiple data (SIMD) operations.

To maximize the benefits of the packed scheme, we vectorize our logis-

tic regression algorithm to utilize the SIMD operations as much as possi-

89

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

ble. For example, the inner product operation is represented as a SIMD-
multiplication followed by a sequence of rotations and SIMD-additions.
Moreover, we carefully tune the vectorized algorithm to minimize redun-
dant computations caused by the use of the SIMD operations, reduce the
depth of nested multiplications, and minimize the approximation noises by

reordering operations.

Parallelized Bootstrapping. One of the most expensive operations of
HEs is the bootstrapping operation (even with the approximate bootstrap-
ping method). This operation needs to be periodically executed during the
entire computation. In logistic regression, for example, it should be exe-
cuted every few iterations, and dominates the overall training time. It is
critical for performance to optimize the bootstrapping operation.

We design our algorithm to parallelize the bootstrapping operation. It
splits a ciphertext into multiple smaller chunks and executes bootstrapping
on each chunk in parallel, achieving a significant speedup of the overall
performance. Moreover, we carefully design the packing of training data
(see below) so that our algorithm continues to use the chunks without
merging them in the next training iterations, which additionally saves time

it takes to reconstruct a ciphertext from the chucks.

HE-Optimized, Efficient Partition of Training Data. As mentioned
above, we pack multiple plaintexts in a single ciphertext, and it is criti-
cal for performance how to pack (i.e., partition) the training dataset. The
training data can be seen as an n x m matrix with n samples and m
features. A naive encoding would pack each row (or column) into a cipher-
text, resulting in a total of n (or m) ciphertexts. This encoding, however,

is not efficient, since it either does not utilize the maximum capacity of

90

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

the ciphertexts, or requires too much capacity, increasing the computation
overhead drastically.

We design an efficient partition of training data in which a sub n’ x m/
matrix is packed into a single ciphertext, where the size of the matrix is set
to the maximum capacity of each ciphertext, and m’ is set to align with
the aforementioned parallelization technique, avoiding an extra overhead

of the ciphertext reconstruction.

Approximating Non-Polynomial Functions As mentioned earlier,
non-polynomial functions are computationally expensive in HEs. We mit-
igate this performance overhead issue by approximating them as poly-
nomials. A sigmoid function, for example, is replaced by its polynomial
approximation in our training algorithm. Note that, however, an approx-
imation at a point such as Taylor expansion is not adequate for logistic
regression (and machine learning in general) since the deviation could be
too large at other points. Instead, we use an interval approximation whose
difference on the interval is minimized in terms of least squares. Com-
bined with a proper input normalization, the interval approximation has

provided sufficient precision for logistic regression in our experiment.

6.1 Basis of Logistic Regression

Logistic regression is a machine learning algorithm to learn a model for
classification. We focus on the binary classification throughout this paper

for the simplicity of the presentation. In logistic regression, we consider

91

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

the following model:

Pr(Y = 0|X =)
bgL%Oﬂqu:uw =, (Le)

whereff
1

]_ —+ 6_<w7(17w)>
67<w7(17w)>

]_ —|— 6_<w1(17w)>

Pr(Y = 1|X = x) =

Pr(Y = 0|X = z) =

for an input vector X of d features, a class Y, a weight vector w € R+!,
The goal of the logistic regression training, given m samples {(x;, ;) }m,
is to find a weight vector w that minimizes the negative log likelihood

function ¢(w) = —< - log L(w), where:

th 2;) - (1 — hop(;))
with hy(2;) = o({w, (1,2;))) and o(x) = 1/(14+e~*). Since ¢(w) is convex,
we can use the gradient descent method to find the vector w that minimizes
{(w). The gradient descent method for logistic regression is formulated as

the following recurrence relation:
w1 = w; — o Ayl(w;)

for a learning rate a. The gradient of the log likelihood function is as

follows:

1 m
Apl(w) = ——
w mz <zlﬂw>) zZ

*We write ¢, -) for the inner product, and (1,) for a vector extended with 1 from
x.

92

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

where z; =y - (1, x;) €e R*™! and y} = 2y, — 1 € {—1,1}.

6.2 Logistic Regression on Encrypted Data

In this section, we explain our algorithm for efficient logistic regression
on encrypted data. We first present a baseline (plaintext) algorithm of
the logistic regression training, designed to be friendly to homomorphic
evaluation (Section . Then we explain how to optimize the baseline
algorithm to be efficiently evaluated in HEs.

6.2.1 HE-friendly Logistic Regression Algorithm

We first explain our baseline algorithm of the logistic regression training,
as shown in Algorithm [3, that we will further optimize in the next section.
We design the baseline algorithm to be friendly to homomorphic evaluation
by avoiding the use of certain types of computations that are expensive in
HEs.

Mini-Batch Gradient Descent. We adopt the mini-batch gradient de-
scent method, where we set the mini-batch size according to the number of
slots in a packed ciphertext. We do not consider the stochastic gradient de-
scent method since it does not utilize the maximum capacity of the packed
ciphertext. Also, we do not consider the full-batch gradient descent method
since it requires too many and/or large ciphertexts for each iteration when

the training dataset is large.

Nesterov Accelerated Gradient Optimizer. We adopt Nesterov ac-

celerated gradient (NAG) as the gradient descent optimization method. We

93

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

-y =1/(1+ exp(—z))
—y = 0.5+ 0.152 — 0.001523

1.5" 3
y=05+7%+7%

—051 1 1 1 1 1 — |
-8 -6 -4 -2 0 2 4 6 8

Figure 6.1: Sigmoid (the first) and its two approximations using the least
squares fitting method (the second) and the Taylor expansion (the third).

choose NAG among the various optimization methods, since it provides de-
cent optimization performance without using the division operation that

is expensive in HEs. The NAG can be formulated as follows:

Wiy1 = Uy =7 Awf(vi)
vigr = (1=m) wipr + 0w
where w; and v; are two weight vectors to be updated for each iteration

i, Ayl(v;) is the gradient of the log likelihood function (as given in Sec-
tion , and v and 7 are parameters.

Polynomial Approximation of Activation Function. An essential

step of the logistic regression training is to apply an activation function,

e.g., the sigmoid function o(z) = 1/(1 + e~*). Since non-polynomials are

94

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

very expensive to evaluate in HEs, we consider its (low-degree) polynomial
approximation ¢’ as an alternative in our algorithm. We use the least
squares fitting method to approximate the sigmoid function. The least
squares fitting polynomial provides a sufficient approximation within the
given interval. Figure[6.1] for example, plots the original sigmoid function,
its least squares fitting polynomial (of degree 3) within the interval [—8, §],
and its Taylor expansion (of degree 3) at the point z = 0. Note that the
Taylor polynomial provides an accurate approximation only around the
given point, while the least squares fitting polynomial provides a good

approximation in a wider range.

Algorithm 3: HE-friendly logistic regression algorithm

Data: Mini-batches of training data {Z;} where Z; € R™*/ (i.c., the
mini-batch size is m), parameters v and 7, the number of
iterations K, and a polynomial approximation of sigmoid o’

Result: Weight vectors w,v € R/

1 Initialize weight vector: w,v < 0 for k in [1..K] do

2 Select a mini-batch Z; (in order, or at random);

3 a=/27 v,

4 for j in [1..m] do

5

6

7

| by =0'(ay)

end

A=Y Zflwt —v—y Aot = (1—n) w4y w
w=w" v=v"

end

o]

Baseline Algorithm. The Algorithm [3]shows the resulting baseline al-
gorithm. Note that each sample (row) z; of the training data Z; is struc-
tured by z; = vy - (1,x;) € R/, where ¢, = 2y; — 1 € {-1,1}, and =,

and y; are the original input samples and its class output, respectively (as

95

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

described in Section .

6.2.2 HE-Optimized Logistic Regression Algorithm

Now we optimize the baseline algorithm (Algorithm |3) to be efficiently
evaluated in HEs against large encrypted data. Specifically, we optimize the
body of the main iteration loop (lines of Algorithm [3). Conceptually,
the optimization consists of two parts: vectorization using homomorphic
SIMD operations, and fine-tuning the evaluation order. In this section, we
explain the first part, which will result in the vectorized body of the main
iteration loop as shown in Algorithm [} We will explain the second part in
the next section.

Let us first define some notations. For two matrices A and B, we write
A+ B and Ao B to denote the addition and the element-wise multiplication
(i.e., Hadamard product) of A and B, respectively. Also, we write A°* to

denote the element-wise exponentiation, i.e., A" = {aj;} for A = {a;}.

Partition and Encryption of Training Data

Assume that the training data {z;;} consists of n samples over f — 1
features, throughout this section. This data can be seen as an n x f matrix

Z including the target {y;} as follows:

[z[0][0], 2[0][1], o 2fo)f-1]]
[0, =[], 2 -1]
Z = .
| 2[n— 1000, 2[n—1][1], -+, z[n—1][f - 1]]
96

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

where z[][0] = y; and z[i][j+1] = yi-2;jfor 0 <i<nand 0 < j < f—lm
We divide Z into multiple m x g sub-matrices Z; ; (for 0 < i < n/m

and 0 < j < f/g) as follows:

z[mil[gj], R z[mi][gj + (g — 1)]
4 z[mi + 1][gj], e z[mi +1][gj + (g — 1)]
z[mi+ (m —1][gjl, -, z[mi+ (m—1)][gj+ (¢—1)]

Z; ; is supposed to be packed into a single ciphertext, and thus we set m
and ¢ in a way that utilizes the maximum ciphertext slots, N/2, that is,
m x g = N /2. Also, we set g to the same size of the partition of a weight
vector for the bootstrapping parallelization, which in turn decides m, the
size of a mini-batch block.

To encrypt Z; ; in a single ciphertext, we first represent it in a vector
p; ;-

pilK] = Zu[lk/gl][k mod g] (0<k <g-m)

and encrypt p; ; using the scheme described in Section :
encZ[i][j] = encrypt(p; ;; A.)
Note that we have nf/mg ciphertexts to encrypt the whole training data.

Partition and Encryption of Weight Vectors

We have two weight vectors, w and v, of size f in our logistic regression
algorithm due to the NAG optimization (as shown in Section [6.2.1)). We

divide each of them into multiple sub-vectors, w; and v;, for the purpose

fWe have y; - x;; instead of x; ; for a simpler representation of the gradient descent
method, as described in Section [6.1] This representation also has an advantage for
computing a gradient A, ¢(v;) over ciphertexts.

97

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

of the bootstrapping parallelization. Then we construct matrices, W; and
V;, each of which consists of m duplicates of each of sub-vectors, w; and

v;, as follows:

wlgi], wlgi+1], -, wlgi+(g—1)]
Wi _ wlgi], wlgi+1], -, wlgi+ (g —1)]
| wgi], wlgi+1], -+, wl[gi+(g—1)]]
[vlgi]. wlgi+1], - wlgi+ (- 1))
. vlgi, wlgi+1], -, wlgi+(g—1)]
Lolgil, vlgi+ 1], -, wlgi+ (9 - D]

We write encW|i] and encV[i] to denote encryptions of these matrices. We

initialize them to be an encryption of a zero vector.

Homomorphic Evaluation of Inner Product

One of the essential operations of logistic regression is the inner prod-
uct. If we have m samples over g features, then for each iteration, we
have to compute m inner products on vectors of size g, where each inner
product requires ¢? multiplication and g — 1 addition operations, that is,
m - (g*-mult + g-add) operations in total. Now we will show an optimized,
batch inner product method using SIMD-addition, SIMD-multiplication,
and rotation operations, which requires only two SIMD-multiplication op-
erations and 2 log g rotation-and-SIMD-addition operations to compute the

m inner products, that is, 2 - SIMDmult + 2log g - (rot + SIMDadd) in to-

98

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

tal. This batch method is extremely efficient in the packed HEs where
SIMD operations provide high throughput at no additional cost compared
to non-SIMD operations.

The batch inner product method is as follows. Suppose we want to com-
pute Z - v where Z € R™*9 and v € RY. Assume that ¢ is a power of twoﬂ
First, we construct a matrix V' that consists of m duplicate row-vectors
of v as described in Section |6.2.2] Then, we can compute the Hadamard

product, Z o V', by conducting a single SIMD-multiplication as follows:

[Z[1[) - ol1], Z[02]-of2], -, Z[1[g] - vlg] |
oy | 210, 2[2][21-1)[21, . Z[2][g] - v[g]
| Z[m][1]-o[1], Z[m][2] o[2], -, Z[m][g] v[g]|

Now, we need to compute the summation of the columns, which becomes
the inner product result. We can compute the summation by repeating
the rotation-and-addition operations log g times as follows. Let Lrot;(A)
be a matrix obtained by rotating each element of A to the left by 7. Then,
recursively evaluating the following recurrence relation starting from A© =
A will give us A9, in logg steps, whose first column is the summation of

the columns of A:

tOtherwise, we can pad zero columns in the end to make it a power of two.

99

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

AR — ACY 4 Loty (AY) =

2 2wl oli] e -

Note that the other columns except the first are garbage, denoted by —, in
the above. We can clean up the garbage columns by multiplying the zero
vectors, and then duplicate the first column by applying the rotation-and-
addition method. See Algorithm [5| for the complete details.

Algorithm 4: SumRowVec: summation of row-vectors
Data: Matrix A with size f x g for a power of two f
Result: Matrix R with size f x g

1 R:=A;

2 for 0 <i <log, f do

3 | R=Lrotys(R)+ R;

4

5

end
return R

Note that we can compute the summation of row-vectors in a simi-
lar way, as shown in Algorithm [l Below we illustrate the results of two

procedures, SumRowVec and SumColVec:

SumRowVec(A) =

100

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Algorithm 5: SumColVec: summation of column-vectors
Data: Matrix A with size f x g for a power of two ¢
Result: Matrix R with size f x g

1 R:=Afor 0<i<log,gdo

2 | R=Lroty(R)+ R

3 end

4 D ={D,;}, where D, ; = 1 if j = 0 and 0 otherwise;

5 R= RoD;

6 for 0 <i <log,g do

7 ‘ R := Rrotyi(R) + R;

8 end

9 return R

SumColVec(A) = g

for A = {am-} S]fog‘

Vectorized Algorithm

Algorithm [6] shows the resulting vectorized body of the main iteration
loop using the approaches described so far in this section. At line [6] we
use the least squares fitting polynomial approximation of sigmoid, y =
0.5 + 0.152 — 0.00152* (depicted in Figure [6.1)). The bold symbols and
numbers denote m x g matrices that consist of duplicates of corresponding
elements. Note that the approximated sigmoid function is evaluated only
once per iteration even with the partitioned weight vectors. Also, note that

the two loops of iterating over the partitioned weight vectors can be run

101

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Algorithm 6: Vectorized body of the iteration loop

W N =

© oo N o O

10
11
12

13

Data: Matrices Z;, W;, and V; for 0 < j < f/g
Result: Matrices VVJr and VJJr for 0 <j < f/g
for 0<j< f/gdo

M; =Z;0V;;

Mj = SumCoIVec(Mj) ;
end

Zf/g M

S 0.5 1+ 0.15 0 M — 0.0015 0 M :
for 0<j< f/gdo

Sj =So Zj)

A; = SumRowVec(S5;) ;

VjJr = (1—17)01/1/;r +moW;;
end
return W+ and V+ for0<j< f/g

in parallel.

6.2.3 Further Optimization

Now we explain the further optimization made on the top of Algorithm [f]

by fine-tuning the evaluation order to minimize both the depth and the

noise of multiplications. Our final HE-optimized algorithm is given in Al-

gorithm [7]ff

Minimizing Multiplication Depth

In homomorphic evaluation, minimizing the depth of nested multiplica-

tions is critical to optimize the performance. The larger the multiplica-

§The definitions of encSumRowVec and encSumColVec are provided in Appendix.

102

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

tion depth, the larger the ciphertext modulus and/or the more often the
bootstrapping operation needs to be executed. A large ciphertext modulus
significantly increases the computation overhead, and the bootstrapping
operation is very expensive. For example, when computing z", a naive
method would require the nested multiplications of depth n — 1, but an
optimized method such as the square-and-multiply method would require
only the multiplication depth of logn.

We further optimize Algorithm [6] by minimizing the multiplication
depth. A naive evaluation of Algorithm [0 requires the multiplication depth
of 7. We reduce the depth to 5, by using the square-and-multiply method
with further adjusting the evaluation order. This depth reduction allows us
to reduce the size of the ciphertext modulus, improving the performance.
Note that our depth minimization method will achieve a bigger depth re-
duction as a larger-degree polynomial is used in the sigmoid approximation
(at line [f] in Algorithm [6)).

Depth
"h \ / K \ v
1 M;j=ZjoV; Zy =(y-e3)o 2y = (=v-c1) 0 Z;
2 M =3}, SumColVec(M;) zy
l T |
3 M//:MOQ_Q M/:MOZ;-”
c3

o T l :

4 V;<W;" =Vj+SumRowVec(G;),Gj = M' o M" + Z}; —— Z; W;

v \
5 Wj+ ‘/j+:(1—7])OWJ~++770Wj

Figure 6.2: An optimized evaluation circuit of Algorithm@

Figure illustrates our optimized evaluation of Algorithm [6] using

103

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

the depth minimization method. The circuit is layered by the multipli-
cation depth (in the left-hand side), where each layer consists of either
normal multiplication (mult) or constant multiplication (constMult), with
zero or more addition (add) operations. The solid arrow denotes the input
wiring, and the dotted arrow denotes the value propagation. Since the cir-
cuit is layered by only the multiplication depth, the inputs of the addition
operation are put in the same layer (e.g., as shown in the fourth layer).
Algorithm [7] incorporates this optimized evaluation circuit.

For the given inputs V;, Z;, and ij the first layer computes M; =
Z;oV; (corresponding to the line[2)in Algorithm [6), and Z" = (—v-¢1) 0 Z;
and Z” = (v - ¢3) o Z; (corresponding to the partial computation of the
lines [6], |8 and [10). The second layer computes M = ;(SumColVec(1M;))
(corresponding to the lines[3and). The third layer computes M’ = MoZ"”
and M" = M — 2. The fourth layer computes G = M’ o M" + 7' and
W = V; + SumRowVec(G). The fifth layer computes V;" = (1 —n) o
W' + 1o W;. Note that SumRowVec(G) computed in the fourth layer
effectively computes —y o A; (at line [10[in Algorithm @m Also note that
the computation of SumRowVec(G) requires only the multiplication depth
of 3, while a naive evaluation of —y o A; would require the multiplication
depth of 5. In general, if we use a degree n polynomial approximation (at
line |§| in Algorithm @, our depth minimization method will reduce the
multiplication depth from O(n) to O(logn).

YIndeed, the whole evaluation circuit consists of duplicates of the presented circuit
for each j being arranged side-by-side, which effectively parallelizes the loops in Algo-
rithm

ISumRowVec (G) = SumRowVec(M' o M” + Z') = SumRowVec((M o (y-c3) 0 Z;) o
(M2 — 2) 4 (= - ¢1) 0 Z;) = SumRowVec(—v - Zj o (¢1 + cg 0 M — c3 0 M°?)) =

C3

SumRowVec(—y - Z; 0 S) = SumRowVec(—y - S;) = —y o SumRowVec(S;) = —yo A;

104

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Minimizing Approximation Noise

Recall that the approximate HE used in our algorithm introduces an ad-
ditional noise for each homomorphic operation. Even the homomorphic
rotation and rescaling operations introduce the noise. We further optimize
our algorithm to minimize the noise by reordering the evaluation order of
homomorphic operations. For example, the rescaling operation has an effect
of reducing the previously introduced noise. Reordering the rescaling oper-
ations, thus, can reduce the overall accumulated noise. Let us illustrate the
approach. Suppose we want to multiply two ciphertexts ¢; = Enc(my) and
co = Enc(my), and rotate the multiplication result. Let mg = (m; o my).

A naive way of computing that would have the following evaluation order:

c3 = Mult(Enc(my), Enc(ms)) = Enc(mg - A + €;)
¢y = Rescale(cs, A) = Enc(ms + €1/A + €3)

¢s = Rotate(cy, i) = Enc(Lrot;(m3) + €1/A + €3 + €3)

where A is the scaling factor, and ¢; is the noise. However, we can reduce
the final noise by adjusting the evaluation order, i.e., by swapping the

rescaling operation and the rotation operation, as follows:

c3 = Mult(Enc(m;), Enc(ms)) = Enc(ms - A + €;)
¢, = Rotate(cs, i) = Enc(Lrot;(ms3) - A + €1 + €)

¢t = Rescale(c, A) = Enc(Lrot;(m3) + (€1 + €2)/A + €3)

Note that the final noise is reduced from €;/A + € + €3 to (€1 + €2)/A + €3.

Since €, « A, this optimization effectively removes es.

105

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Algorithm 7: HE-optimized body of the iteration loop

Data: Ciphertexts encZ;, encW;, and encV; for 0 < j < f/g, and
parameters WBits and pB|ts
Result: Ciphertexts encW; and encV; for 0 < j < f/g
for 0 <j < f/g do
encM; = rescale(mult(encZ;, encV,;), wBits);
ench = encSumColVec(encM;, pBits);
end
encM = Zf/ encM;;
encM” = rescale(mult(encM, encM), wBits)
encM” = cAdd(encM”, —100, wBits) for 0 < j < f/g do
7 encZ’ = constMult(encZ;, —v o 0.5, wBits)
encZ” = constMult(encZ;, vy o 0.0015, wBits)
encZ" = modDownTo(encZ"” encM)
encM’ = rescale(mult(encM, encZ"”), wBits)
encG = rescale(mult(encM’, encM”), wBits)
encG = add(encG, modDownTo(encZ’, encG))
encG = encSumRowVec(encG)
encW; = add(encG, modDownTo(encV;, encG))
encW,; = modDownTo(encW;, encW]-*)
encW;, = constMult(encW}", 1 — n, pBits)
encWJr = constl\/lult(encW],n pBits)
echJr = add(encW;,,encW;,) encV, = rescale(encV], pBits)

3
encWJr = modDownTo(encW;-r, ech;-r)

W N =

S,

8 end
9 return echJr and encW+ for0<j< f/g

6.3 Evaluation

We evaluate our algorithm of logistic regression on encrypted data against
both a real financial training dataset and the MNIST dataset. Our artifact
is publicly available at [Han1§].

106

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

6.3.1 Logistic Regression on Encrypted Financial Dataset

We executed our algorithm on a private, real financial dataset to evaluate

the efficiency and the scalability of our algorithm on a large dataset.

Training Dataset

The encrypted dataset we consider to evaluate our logistic regression algo-
rithm is the real consumer credit information maintained by a credit re-
porting agency. The dataset (for both training and validation), randomly
sampled by the agency, consists of 1,266,325 individuals’ credit information
over 200 features that are used for credit rating. Examples of the features
are the loan information (such as the number of credit loans and personal
mortgages), the credit card information (such as the average amount of
credit card purchases and cash advances in the last three months), and
the delinquency information (such as the days of credit card delinquency).
The samples are labeled with a binary classification that refers to whether

each individual’s credit rating is below the threshold.

HE Scheme Parameters

We use two scaling factors A = 239 and A, = 2%, where A is the regular
scaling factor (for mult) and A, is the constant scaling factor (for const-
Mult) that is used for multiplying constant matrices and scalars such as n
and «. We have the number of ciphertext slots N /2 = 21,

We set the initial ciphertext modulus @ for the weight vectors W and

V as follows:

log, @ =5+ wBits + I- (3 -wBits + 2 - pBits)

107

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

where wBits = log, A and pBits = log, A.. The above formula is derived
from the fact that each iteration reduces (3 - wBits + 2 - pBits)-bits of
the ciphertext modulus (see Section and Figure for more details).
Here, I is the number of iterations per bootstrapping operation; that is,
the bootstrapping operation is executed every I iterations. We have I =
5. Also, we set the largest ciphertext modulus @’ for the bootstrapping,
according to the HeaAn scheme |[CHK™18, jsnul§|, as follows: log, Q' =
log, @ + 24 + 14 - (9 + wBits).

Experimental Results

Data Performances

Financial No. Samples (training) 422,108 Accuracy 80%
No. Samples (validation) 844,217 AUROC 0.8
No. Features 200 K-S value 50.84
No. Iterations 200 Public Key Size ~ 2 GB
Learning Rate 0.01 Encrypted Block Size 4.87 MB
Block Size (mini-batch) 512 Running Time 1060 min

Table 6.1: Result of machine learning on encrypted data

We executed our logistic regression algorithm on the encrypted train-
ing set of 422,108 samples over 200 features. Having 200 iterations, it took
1,060 minutes to learn an encrypted model, i.e., ~5 minutes per itera-
tion on average, in a machine with IBM POWERS (8 cores, 4.0GHz) and
256GB RAM. We sent the learned model to the data owner, and they de-
crypted and evaluated it on the validation set of 844,217 samples, having
80% accuracy and the KS value of 50.84. They confirmed that it provides
a sufficient accuracy compared to their internal model learned using the

plaintext dataset[™] and also our learned model gives appropriate weights

** According to their report, it took several minutes to learn a model on the plaintext

108

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

on the important features (e.g., delinquency, loan, and credit card infor-
mation) as expected.

Tabel [6.1]shows the detailed result of our experiment. We set the learn-
ing rate to be 0.01, and the mini-batch size to be 512. The ciphertext size of
each mini-batch block is 4.87 MB, and thus the total size of the encrypted
dataset is ~4 GB = 4.87 MB x (422,108 / 512). The public key size is ~2
GB.

6.3.2 Logistic Regression on Encrypted MINIST Dataset

We executed our logistic regression algorithm on the public MNIST dataset

to provide a more detailed evaluation.

Training Dataset and Parameters

We took the MNIST dataset [LCB99|, and restructured it for the binary
classification problem between 3 and 8. We compressed the original images
of 28 x 28 pixels into 14 x 14 pixels, by compressing 2 x 2 pixels to their
arithmetic mean. The restructured dataset consists of 11,982 samples of
the training dataset and 1,984 samples of the validation dataset.

We use the same principle for setting the HE scheme parameters as
shown in Section [6.3.1 We set A = 2% A, = 2% and I = 3. Also, we
approximate the sigmoid function with the interval [—16, 16] by the least
squares fitting polynomial of degree 3, y = 0.5 — 0.0843z + 0.0002z3.

109

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

Data Performances

MNIST No. Samples (training) 11,982 Accuracy 96.4%
No. Samples (validation) 1,984 AUROC 0.99
No. Features 196 K-S value N/A
No. Iterations 32 Public Key Size ~ 1.5 GB
Learning Rate 1.0 Encrypted Block Size 3.96 MB
Block Size (mini-batch) 1024 Running Time 132 min

Table 6.2: Result of machine learning on encrypted data

Experimental Results

We encrypted the MNIST dataset and executed our logistic regression
algorithm. Table [6.2] shows the result. With 32 iterations, our logistic al-
gorithm took 132 minutes to learn an encrypted model. The average time
for each iteration is ~4 minutes, which is similar to that of the financial
dataset, as expected. We decrypted the learned model and evaluated it on

the validation dataset, obtaining 96.4% accuracym

Microbenchmarks

We also executed our logistic regression algorithm on the plaintext dataset,
and compared the result to that of the ciphertext learning. Recall that the
approximate HE used in our algorithm introduces the approximation noise
for each computation step, but it had not been clear how much the noise
affects the overall training process. To evaluate the impact of the approx-
imation noise on the overall learning performance (e.g., the convergence
rate and accuracy), we measured the accuracy for each iteration for both

plaintext and ciphertext training, and compared those results. Figure [6.3

using the same algorithm, and the model provides the KS value of 51.99.

T The accuracy seems to be lower than the usual, but the difference is mainly due to
the image compression, not because of the approximation noise. See Section and
Figure for more details.

110

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

T T T
—— Plaintext
0.98 [-| —=— Encrypted 7

0.96

0.94

Accuracy

0.92

| | | | | |
088) 10 15 20 25 30

Tteration Number

Figure 6.3: Comparison between encrypted and plaintext training

shows the comparison result. It shows that the accuracy for each iteration
in the ciphertext training is marginally different from that of the plaintext,
especially in the early stage of the training process, but they eventually
converged at the final step. This result implies that the additional noise in-
troduced by the approximate HE evaluation is not significant to deteriorate
the accuracy of a learned model and the training performance.

We also evaluate the effect of the precision of the polynomial approx-
imation of sigmoid. We executed the same algorithm (on the plaintext)
with three different sigmoid approximations: the original sigmoid (i.e., no
approximation), the least squares fitting polynomial, and the Taylor ex-
pansion polynomial (depicted in Figure . Figure and show the
comparison of accuracy between them. It shows that the approximation
error of the least fitting polynomial is not significant, resulting in only
the marginal difference of accuracy. However, the approximation error of
the Taylor expansion polynomial is so large that it fails to learn a model;

that is, the accuracy decreases as the number of iteration increases, and

111

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

eventually it becomes 0 (i.e., an invalid model).

0.97 |]
0.96 |-
>
20951
=
3
< 094
0.93# —+—Least Squares Fitting | |
' —=— Sigmoid
0.92 L ! \ : -
15 20 25 30

Iteration Number

Figure 6.4: Comparison between sigmoid and least squares fitting (of degree
3)

6.3.3 Discussion

It is not straightforward to provide the fair comparison of our performance
with those of the related works, since the previous HE-based approaches
are not capable of admitting such realistic size training datasets considered
in this paper, and the MPC-based approaches do not support the same
flexibility in the usage scenarios as ours. As a rough comparison, however,
the recent MPC-based approach |[MZ17] will take minuteﬂ to learn a
model on the MNIST dataset used in this paper, which is one or two
orders of magnitude faster than ours. We note that, however, the MPC-

based approach requires the additional assumption in the usage scenarios

HThe time is obtained by extrapolating their experimental result on the MNIST
dataset.

112

CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

—— Taylor Expansion
—&-Least Squares Fitting

Accuracy

5 10 15 20
Iteration Number

Figure 6.5: Comparison between Taylor expansion between least squares
fitting (both of degree 3)

that either the number of participants is small, or the two servers do not
collude.

Our algorithm requires the number of iterations to be provided in ad-
vance, which is inevitable due to the security of the underlying HE schemes.
In our experiment on the financial data, the number was obtained by asking
the data owner to provide a rough bound. We note that, however, one can
use our algorithm in an interactive way that the data owners decrypt the
learned model periodically (e.g., every 100 iterations), and decide whether
to proceed further or not, depending on the quality of the model at the

moment.

113

Chapter 7
Conclusions

In this paper, we propose various bootstrapping methods for fully homo-
morphic encryption. In case of Ring-based FHE such as BGV and FV, we
propose new homomorphic lower digit removal algorithm. And, this algo-
rithm is used as one of the key part in bootstrapping. If we compare with
previous one, the complexity reduce from O(log? \) to O(log™® \). We also
improve linear transformation part in bootstrapping. we decompose the
given linear transformation by log n number of sparse matrices for number
of slots n. Multiplying this sparse matrix to encrypted vector only needs
O(1) number of homomorphic operations, and this leads the complexity
of the linear transformation to O(logn) which was O(n) in the previous
method. In case of FHE over the integers, we represent the decryption
function using digit extraction algorithm which can be homomorphically
evaluated only with O(log® \) operations. With those efficient bootstrap-
ping processes, we made a privacy preserving logistic regression algorithm
for large scaled data. Training for 400,000 x 200 financial data which is
encrypted takes 16 hours with 80% accuracy.

114

Bibliography

[AMBG*16] Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien

[APS15]

[BGV12]

[BIWX11]

[BLLN13]

Guinet, Marc-Olivier Killijian, and Tancrede Lepoint.
NFLIib: NTT-based fast lattice library. In Cryptographers’
Track at the RSA Conference, pages 341-356. Springer, 2016.

Martin R Albrecht, Rachel Player, and Sam Scott. On the
concrete hardness of learning with errors. Journal of Mathe-
matical Cryptology, 9(3):169-203, 2015.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) fully homomorphic encryption without bootstrap-
ping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 309-325. ACM, 2012.

Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and
Ning Xie. The complexity of linear dependence problems in
vector spaces. In ICS, pages 496-508, 2011.

Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved security for a ring-based fully homomor-

phic encryption scheme. In Cryptography and Coding, pages
45-64. Springer, 2013.

115

BIBLIOGRAPHY

[BLN14]

[BMMP17]

[BPTG15]

[Bral2]

[BV11]

[BV14]

[CBD14]

Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private
predictive analysis on encrypted medical data. Journal of
biomedical informatics, 50:234-243, 2014.

Florian Bourse, Michele Minelli, Matthias Minihold, and
Pascal Paillier. Fast homomorphic evaluation of deep dis-

cretized neural networks. Cryptology ePrint Archive, Report
2017/1114, 2017.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi
Goldwasser. Machine learning classification over encrypted
data. In NDSS, volume 4324, page 4325, 2015.

Zvika Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In CRYPTO,
pages 868-886, 2012.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomor-
phic encryption from ring-LWE and security for key depen-
dent messages. In Advances in Cryptology-CRYPTO 2011,
pages 505-524. Springer, 2011.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully
homomorphic encryption from (standard) LWE. SIAM Jour-
nal on Computing, 43(2):831-871, 2014.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Training deep neural networks with low precision
multiplications. arXiv preprint arXiv:1412.7024, 2014.

116

BIBLIOGRAPHY

[CCK*13]

[CCS18]

[CAWM*17]

[CH18]

[CHH18]

[CHK17]

[CHK*18]

Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim,
Moon Sung Lee, Tancrede Lepoint, Mehdi Tibouchi, and
Aaram Yun. Batch fully homomorphic encryption over the
integers. In Advances in Cryptology-EUROCRYPT 20185,
pages 315-335. Springer, 2013.

Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved
bootstrapping for approximate homomorphic encryption.
TACR Cryptology ePrint Archive, 2018:1043, 2018.

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram,
Constance Morel, and Emmanuel Prouff. Privacy-preserving
classification on deep neural network. ITACR Cryptology
ePrint Archive, 2017:35, 2017.

Hao Chen and Kyoohyung Han. Homomorphic Lower Dig-
its Removal and Improved FHE Bootstrapping. In Annual
International Conference on the Theory and Applications of

Cryptographic Techniques, pages 315-337. Springer, 2018.

Jung Hee Cheon, Kyoohyung Han, and Minki Hhan. Faster
Homomorphic DFT and Improved Bootstrapping for FHE.
TACR Cryptology ePrint Archive, 2018:1073, 2018.

Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim.
Faster bootstrapping of FHE over the integers. TACR Cryp-
tology ePrint Archive, 2017:79, 2017.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim,
and Yongsoo Song. Bootstrapping for approximate homo-

morphic encryption. In Annual International Conference on

117

BIBLIOGRAPHY

[CKKS17]

[CLT14]

[CMNT11]

[CN12]

[CNT12]

the Theory and Applications of Cryptographic Techniques,
pages 360—-384. Springer, 2018.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. Homomorphic encryption for arithmetic of approx-
imate numbers. In International Conference on the The-
ory and Application of Cryptology and Information Security,
pages 409-437. Springer, 2017.

Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Ti-
bouchi. Scale-invariant fully homomorphic encryption over
the integers. In Public-Key Cryptography—PKC' 2014, pages
311-328. Springer, 2014.

Jean-Sébastien Coron, Avradip Mandal, David Naccache,
and Mehdi Tibouchi. Fully homomorphic encryption over the
integers with shorter public keys. In Advances in Cryptology—
CRYPTO 2011, pages 487-504. Springer, 2011.

Yuanmi Chen and Phong @ Nguyen. Faster algorithms for
approximate common divisors: Breaking fully-homomorphic-
encryption challenges over the integers. In Advances in
Cryptology-EUROCRYPT 2012, pages 502-519. Springer,
2012.

Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi.
Public key compression and modulus switching for fully ho-
momorphic encryption over the integers. In Advances in
Cryptology-EUROCRYPT 2012, pages 446-464. Springer,
2012.

118

BIBLIOGRAPHY

[CS15]

[CSV17]

[CSVW16]

[CT65]

[DM15]

[DSFRO17]

Jung Hee Cheon and Damien Stehlé. Fully homomophic
encryption over the integers revisited. In Advances in
Cryptology-EUROCRYPT 2015, pages 513-536. Springer,
2015.

Anamaria Costache, Nigel P Smart, and Srinivas Vivek.
Faster homomorphic evaluation of discrete fourier trans-
forms. In International Conference on Financial Cryptog-

raphy and Data Security, pages 517-529. Springer, 2017.

Anamaria Costache, Nigel P Smart, Srinivas Vivek, and
Adrian Waller. Fixed-point arithmetic in she schemes. In
International Conference on Selected Areas in Cryptography,
pages 401-422. Springer, 2016.

James W Cooley and John W Tukey. An algorithm for the
machine calculation of complex fourier series. Mathematics
of computation, 19(90):297-301, 1965.

Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping
homomorphic encryption in less than a second. In Advances
in Cryptology—-FUROCRYPT 2015, pages 617-640. Springer,
2015.

Christopher De Sa, Matthew Feldman, Christopher Ré,
and Kunle Olukotun. Understanding and optimizing asyn-
chronous low-precision stochastic gradient descent. In Pro-

ceedings of the 44th Annual International Symposium on
Computer Architecture, pages 561-574. ACM, 2017.

119

BIBLIOGRAPHY

[FV12]

[G*96]

[GAGN15]

[GBDL*16]

[Gen09]

[GHS12a]

[GHS12b)]

Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144, 2012.

Torbjorn Granlund et al. The gnu multiple precision arith-
metic library. TMG Datakonsult, Boston, MA, USA, 2(2),
1996.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan. Deep learning with limited numerical
precision. In International Conference on Machine Learning,
pages 1737-1746, 2015.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on

Machine Learning, pages 201-210, 2016.

Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In STOC, volume 9, pages 169-178, 2009.

Craig Gentry, Shai Halevi, and Nigel P Smart. Better boot-
strapping in fully homomorphic encryption. In Public Key
Cryptography—PKC' 2012, pages 1-16. Springer, 2012.

Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic
evaluation of the AES circuit. In CRYPTO 2012, pages 850~
867. Springer, 2012.

120

BIBLIOGRAPHY

[GLN12]

[Gril7]

[Han18§]

[HHCP18]

[HS15]

[IVC18]

[KSK*+18]

Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml
confidential: Machine learning on encrypted data. In Inter-
national Conference on Information Security and Cryptology,

pages 1-21. Springer, 2012.

Michael Griffin. Lowest degree of polynomial that re-
moves the first digit of an integer in base p. https://
mathoverflow.net/q/269282 (version: 2017-05-08), 2017.

Kyoohyung Han. Homomorphic Logistic Regression on En-
crypted Data. https://github.com/HanKyoohyung/HELR,
2018.

Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Dae-
jun Park. Efficient Logistic Regression on Large Encrypted
Data. TACR Cryptology ePrint Archive, 2018:662, 2018.

Shai Halevi and Victor Shoup. Bootstrapping for HElib. In
Advances in Cryptology-EUROCRYPT 2015, pages 641-670.
Springer, 2015.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework for se-
cure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), Baltimore, MD, 2018.
USENIX Association.

Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and
Jung Hee Cheon. Logistic regression model training based

on the approximate homomorphic encryption. 2018.

121

https://mathoverflow.net/q/269282
https://mathoverflow.net/q/269282
https://github.com/HanKyoohyung/HELR

BIBLIOGRAPHY

[LATV12]

[LCBYY]

[LLH*17]

[LP16]

[LPR10]

[MZ17]

[NK15]

Adriana Lépez-Alt, Eran Tromer, and Vinod Vaikun-
tanathan. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In Proceedings of
the forty-fourth annual ACM symposium on Theory of com-
puting, pages 1219-1234. ACM, 2012.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
The MNIST Database of Handwritten Digits, 1999.

Ping Li, Jin Li, Zhengan Huang, Chong-Zhi Gao, Wen-Bin
Chen, and Kai Chen. Privacy-preserving outsourced classifi-
cation in cloud computing. Cluster Computing, pages 1-10,
2017.

Kim Laine and Rachel Player. Simple encrypted arithmetic
library-SEAL (v2. 0). Technical report, Technical report,
September, 2016.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. In Annual
International Conference on the Theory and Applications of

Cryptographic Techniques, pages 1-23. Springer, 2010.

Payman Mohassel and Yupeng Zhang. Secureml: A system
for scalable privacy-preserving machine learning. In Security
and Privacy (SP), 2017 IEEE Symposium on, pages 19-38.
IEEE, 2017.

Koji Nuida and Kaoru Kurosawa. (Batch) fully homomorphic

encryption over integers for non-binary message spaces. In

122

BIBLIOGRAPHY

[PS73]

[RAD7S]

[snul8]

[SV14]

[VDGHV10]

[ZLK"16]

Advances in Cryptology—-EUROCRYPT 2015, pages 537-555.
Springer, 2015.

Michael S Paterson and Larry J Stockmeyer. On the number
of nonscalar multiplications necessary to evaluate polynomi-
als. SIAM Journal on Computing, 2(1):60-66, 1973.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos.
On data banks and privacy homomorphisms. 1978.

snucrypto. HEAAN. https://github.com/snucrypto/
HEAAN, 2018.

Nigel P Smart and Frederik Vercauteren. Fully homomorphic
SIMD operations. Designs, codes and cryptography, pages 1—
25, 2014.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over the in-
tegers. In Advances in cryptology-EUROCRYPT 2010, pages
24-43. Springer, 2010.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu,
and Ce Zhang. The zipml framework for training models with
end-to-end low precision: The cans, the cannots, and a little
bit of deep learning. arXiv preprint arXiv:1611.05402, 2016.

123

https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN

i
i

20094 Gentryo] olaA] FAEPL T} AL A
9314 TheFet 71 E ST A7150] AAE o] gt SiAT St
nAgtom Sa)7] geid BEAQl AR He] G84

)
r
©
ol
fu
ﬂ:
ol
lo, to
g 42

= o K

M
2
K
>
Y
Noojo ot B

4z
o,
o oo
lo 2 qju

)
oo
ol
o
N
=
Ir
1z
o
il
ol
o
AL
rir
o,
N
=
i
)
o
M
o
<
3o
L
oo M
I
gl
=
o
oo >
ol
o
4%
L

op r
£

O

i)
e

=2

2
fol

ﬂr_&

ET

g °

aly

offt

oflt
N ol Hr oft [T mn

o
I
el
2
>,
rlr
fu)
Bl
2
ro,
offl
oflh
1%
=S i
Z 1>
oy
ﬂllﬂ
)
ol,
=
4
W)
N
rE
2
0o 2
oL

A=), A HA 2= Microsoft Research@} IMBof| A
2] Q1 SEAL} HElibo]| 287155 A7-9 7|5 of digt
8 71N A Aol A2 Aot AH ol
olth Ao H el A 25t HIEE FE5}
oA AR E = ALt 28 = oA
AR ==, Bl 2] Z|Fof 7iEE ZAHALE 59
Ha MAdshE A5 335ttt 20184
A& g 2ol tigt AR 7]%o] AA|
ol tholiA= A, T4 2Hrgo] A4t :
g e oy DAE AAAR deE= BASHe] ALl HlolE Ato]

1o
i
Mo J
ol re
o -
mlo ol FUIN
O U I
> M o2
ol ol
& > e
N Su}
Su} j'; rr

19 o
=2

T
[1
ot
os
&
i
L
2
ol
el

ou Tl
4 = >
o N
L
rr
4,
ol
ol
4o &
ofl, -

el
>
>
Z
> =

ol ox

,4
i D

Mo M

I
2
o
et

o>, of
N 2
ol fol

0,

ol i 2
1o X
o 3
do =

A

filo

)

N

7

=
Bol AL H A AR, A5 BRU TSl AT AR 7S sk
A7E SAHAT 1 B3 ANFL J

npzeto s, AEY 7

rE
lo,
it
oo
o,
o
>
oo
N
N
or
o,
tlo
HT
S
N
do
:oé
>,
2
iﬁ-‘,
)
,

O s &
= =
g o8¢ SRS FTHE dolE S o g4 st 1 A
Qr
Kl
=2

SHH: 2013-20250

At 2

p——

ol Wy %
MR N gl ol .
ATZL%E ﬂmew_.__duaﬂmai -
1ﬂﬁ§uu ﬂuﬂmﬁnﬂ%%o_ Wzﬁio_aﬂo_},
_.m_7 .]ﬂ.A_a,muL.ﬂm_- HTo_ﬂLllﬂ_m__o,muo_Loe. .
ﬂimL%Huuﬂqm%ﬁma M%%EHE%@U_S_E% =
QEM]Aaajulu_uml_oxnﬂxodluuﬂﬂ; ot_n__ouiuuouomol I
@EMMEQ%@EQQHqA@%m4a%@m%m o)
— —— 1
o Ak 4xﬂmuﬂﬂﬂwm_&a%uﬂﬁ@:_%%b}w =
ﬂﬁ.ﬂL%ﬂuw111_iE.bﬁu_wﬁ%é@%ﬂ%%ﬂﬂ% ~
< mo1oAAoﬂ4LW oa%g.gﬂ.%ﬂ}}_w%
jo 7uﬂﬂ1_mﬂTﬂ._Alc_a__o_|1L_._ou%o_aEduoTZ‘Dl] T 97 T
aﬁgﬁoﬂ%%_a%%ﬂ_ma_au% : R L
%ﬂ%?#ﬂ%ﬂu% 17uio__ﬂuo%maﬂoauﬂ£pu
— _.w_ O_OH,LI@HHTH .._m_w]LOwr__odl]47
o e TOE oo W T B N oGS
G O A L ol gy ® 5w oy
WWﬂﬁﬁla%iﬁzﬁﬂ%q%wJ%ﬂﬁwyﬂ
.%Euﬂum_ﬂﬁqwﬂmjn_wﬂxztdo]qao;m]ueﬁuf]nE.
E._dll]xu’ In_mﬂlﬁﬂ Ho KX L ° = oLtE
uu_%z%uu%m_e%ﬂl.wrurm,llw.%Aw”M_m%ﬂoﬂﬂ
ﬂauqu%ATm.‘_omﬂmquutmu%wﬁeﬂwﬁuumeﬂ,_unulﬁu
_ni _Il_ O_ _.I _.w_wlro O_Lw__o ,m__AmO‘lew_ T o= N o~ N O_.,._‘7|,|o_eﬂ_hﬂo_l
E_Ezfl%ﬂoﬂﬂ o oRE M _X}_Mwﬂ}ﬂ%
— 1.O_|_._ ‘LI‘UI E.Ll‘alq D_l_o,.r—/‘._.o_,o,q_ll O_J_U”
w2 aLL____OWEE__O HH11m}_, U E
%oﬂﬂ,ﬂ}ﬂia;ﬂﬁ#]%xﬁcwow%#,mfﬂﬁnﬁ
],anﬂ_u‘u])_/l =R ,|701_|_:_|__ou,|7 W_lu__wm N
ﬂ ‘m.._ o} ja) O_E 0 _1_ E O_.D o dl,._ X Q%O _'AL — ‘_uﬂ_.o_. ==
___Ezzw_#ﬁﬂ1ﬂ__& K o e Tz~
Eigis ﬂﬂOVOMﬂ%M 4 9¥ o BH B
an) 0_1__.:._ . — 5 = 1_I__o JﬂﬂpﬁeﬂiLE_ELTQOM Jl.EIL7
my W o| 7T o R o m N AR Z0 el o W Bl
] ok o T T K= & I —
%D._Jlx_.ﬂﬂudeiZﬂNﬁoxoiﬂaExﬂﬂﬂm&aﬂ%%o{
%zt@mtaax’7qote_aiﬂﬂ,mFFm%meL_L&rlovzoov_7m_m
5oL %%waﬁ%%ﬁ_zﬂﬂﬂﬁ%mﬂ%
=~ M Ho Br o = X P
o ol - I N o) T sl
CERLRIETRE
= <

	1 Introduction
	1.1 Homomorphic Encryption
	1.2 Machine Learning on Encrypted Data
	1.3 List of Papers .

	2 Background
	2.1 Notation .
	2.2 Homomorphic Encryption
	2.3 Ring Learning with Errors
	2.4 Approximate GCD .

	3 Lower Digit Removal and Improved Bootstrapping
	3.1 Basis of BGV and BFV scheme
	3.2 Improved Digit Extraction Algorithm
	3.3 Bootstrapping for BGV and BFV Scheme
	3.3.1 Our modifications

	3.4 Slim Bootstrapping Algorithm
	3.5 Implementation Result .

	4 Faster Homomorphic DFT and Improved Bootstrapping
	4.1 Basis of HEAAN scheme
	4.2 Homomorphic DFT .
	4.2.1 Previous Approach
	4.2.2 Our method .
	4.2.3 Hybrid method .
	4.2.4 Implementation Result

	4.3 Improved Bootstrapping for HEAAN
	4.3.1 Linear Transformation in Bootstrapping
	4.3.2 Improved CoeffToSlot and SlotToCoeff
	4.3.3 Implementation Result

	5 Faster Bootstrapping for FHE over the integers
	5.1 Basis of FHE over the integers
	5.2 Decryption Function via Digit Extraction
	5.2.1 Squashed Decryption Function
	5.2.2 Digit extraction Technique
	5.2.3 Homomorphic Digit Extraction in FHE over the integers .

	5.3 Bootstrapping for FHE over the integers
	5.3.1 CLT scheme with M Zt . . .
	5.3.2 Homomorphic Operations with M Zt a
	5.3.3 Homomorphic Digit Extraction for CLT scheme . .
	5.3.4 Our Method on the CLT scheme
	5.3.5 Analysis of Proposed Bootstrapping Method

	5.4 Implementation Result .

	6 Logistic Regression on Large Encrypted Data
	6.1 Basis of Logistic Regression
	6.2 Logistic Regression on Encrypted Data
	6.2.1 HE-friendly Logistic Regression Algorithm
	6.2.2 HE-Optimized Logistic Regression Algorithm . . .
	6.2.3 Further Optimization

	6.3 Evaluation .
	6.3.1 Logistic Regression on Encrypted Financial Dataset
	6.3.2 Logistic Regression on Encrypted MNIST Dataset .
	6.3.3 Discussion .

	7 Conclusions
	Abstract (in Korean)
	Acknowledgement (in Korean)

<startpage>11
1 Introduction 1
 1.1 Homomorphic Encryption 1
 1.2 Machine Learning on Encrypted Data 4
 1.3 List of Papers . 5
2 Background 7
 2.1 Notation . 7
 2.2 Homomorphic Encryption 8
 2.3 Ring Learning with Errors 9
 2.4 Approximate GCD . 10
3 Lower Digit Removal and Improved Bootstrapping 12
 3.1 Basis of BGV and BFV scheme 13
 3.2 Improved Digit Extraction Algorithm 17
 3.3 Bootstrapping for BGV and BFV Scheme 26
 3.3.1 Our modifications 27
 3.4 Slim Bootstrapping Algorithm 31
 3.5 Implementation Result . 34
4 Faster Homomorphic DFT and Improved Bootstrapping 38
 4.1 Basis of HEAAN scheme 40
 4.2 Homomorphic DFT . 41
 4.2.1 Previous Approach 41
 4.2.2 Our method . 42
 4.2.3 Hybrid method . 48
 4.2.4 Implementation Result 49
 4.3 Improved Bootstrapping for HEAAN 51
 4.3.1 Linear Transformation in Bootstrapping 51
 4.3.2 Improved CoeffToSlot and SlotToCoeff 52
 4.3.3 Implementation Result 56
5 Faster Bootstrapping for FHE over the integers 58
 5.1 Basis of FHE over the integers 63
 5.2 Decryption Function via Digit Extraction 66
 5.2.1 Squashed Decryption Function 66
 5.2.2 Digit extraction Technique 67
 5.2.3 Homomorphic Digit Extraction in FHE over the integers . 69
 5.3 Bootstrapping for FHE over the integers 72
 5.3.1 CLT scheme with M Zt . . . 73
 5.3.2 Homomorphic Operations with M Zt a 75
 5.3.3 Homomorphic Digit Extraction for CLT scheme . . 79
 5.3.4 Our Method on the CLT scheme 81
 5.3.5 Analysis of Proposed Bootstrapping Method 82
 5.4 Implementation Result . 86
6 Logistic Regression on Large Encrypted Data 88
 6.1 Basis of Logistic Regression 91
 6.2 Logistic Regression on Encrypted Data 93
 6.2.1 HE-friendly Logistic Regression Algorithm 93
 6.2.2 HE-Optimized Logistic Regression Algorithm . . . 96
 6.2.3 Further Optimization 102
 6.3 Evaluation . 106
 6.3.1 Logistic Regression on Encrypted Financial Dataset 107
 6.3.2 Logistic Regression on Encrypted MNIST Dataset . 109
 6.3.3 Discussion . 112
7 Conclusions 114
Abstract (in Korean) 124
Acknowledgement (in Korean) 125
</body>

