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Abstract

Bootstrapping Methods for

Homomorphic Encryption

Kyoohyung Han

Department of Mathematical Sciences

The Graduate School

Seoul National University

After Gentry’s blueprint on homomorphic encryption (HE) scheme, var-

ious efficient schemes have been suggested. For unlimited number of op-

erations between encrypted data, the bootstrapping process is necessary.

There are only few works on bootstrapping procedure because of the com-

plexity and inefficiency of bootstrapping. In this paper, we propose various

method and techniques for improved bootstrapping algorithm, and we ap-

ply it to logistic regression on large scale encrypted data.

The bootstrapping process depends on based homomorphic encryption

scheme. For various schemes such as BGV, BFV, HEAAN, and integer-

based scheme, we improve bootstrapping algorithm. First, we improved

bootstrapping for BGV (HElib) and FV (SEAL) schemes which is imple-

mented by Microsoft Research and IMB respectively. The key process for

bootstrapping in those two scheme is extracting lower digits of plaintext

in encrypted state. We suggest new polynomial that removes lowest digit
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of input, and we apply it to bootstrapping with previous method. As a

result, both the complexity and the consumed depth are reduced. Second,

bootstrapping for multiple data needs homomorphic linear transformation.

The complexity of this part is Opnq for number of slot n, and this part

becomes a bottleneck when we use large n. We use the structure of linear

transformation which is used in bootstrapping, and we decompose the ma-

trix which is corresponding to the transformation. By applying recursive

strategy, we reduce the complexity to Oplog nq. Furthermore, we suggest

new bootstrapping method for integer-based HE schemes which are based

on approximate greatest common divisor problem. By using digit extrac-

tion instead of previous bit-wise approach, the complexity of bootstrapping

algorithm reduced from Oppolypλqq to Oplog2 λq. Our implementation for

this process shows 6 seconds which was about 3 minutes.

To show that bootstrapping can be used for practical application, we

implement logistic regression on encrypted data with large scale. Our target

data has 400, 000 samples, and each sample has 200 features. Because of

the size of the data, direct application of homomorphic encryption scheme

is almost impossible. Therefore, we decide the method for encryption to

maximize the effect of multi-threading and SIMD operations in HE scheme.

As a result, our homomorphic logistic regression takes about 16 hours

for the target data. The output model has 0.8 AUROC with about 80%

accuracy. Another experiment on MNIST dataset shows correctness of our

implementation and method.

Key words: homomorphic encryption, privacy protection, bootstrapping

Student Number: 2013-20250
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Chapter 1

Introduction

1.1 Homomorphic Encryption

Homomorphic Encryption (HE) allows computations on encrypted data,

and this can be used to evaluate in an untrusted party. The concept of

this scheme is proposed by Rivest et al. [RAD78] with a concrete scheme.

Since 2009, however, all proposed schemes are broken by various attacks.

At 2009, Gentry introduced the first HE scheme based on ideal lattice

problem [Gen09]. After that, there has been a large collection of works (e.g.,

[BGV12, Bra12, FV12, BLLN13, vDGHV10, CLT14, CS15, CKKS17]),

with huge performance improvements.

These schemes follow Gentry’s original blueprint, where each cipher-

text is associated with a certain amount of “noise”. The ratio between

ciphertext moduli and the noise grows as homomorphic evaluations are

performed. When the ratio is over some threshold, decryption will fail to

give the correct result. For this reason, if no additional measure is taken,

one set of parameters can only evaluate circuits of a bounded depth. This

1



CHAPTER 1. INTRODUCTION

approach is called leveled homomorphic encryption (LHE) and is used in

a many works.

Bootstrapping

However, if we wish to homomorphically evaluate functions of arbitrary

complexity using one single set of parameters, then we need a procedure

to lower the noise without decryption process. This can be done via Gen-

try’s brilliant bootstrapping technique. Roughly speaking, bootstrapping a

ciphertext in some given scheme means running its own decryption algo-

rithm homomorphically, using an encryption of the secret key. The result

is a new ciphertext which encrypts the same message while having lower

noise when the depth of decryption function is small enough for evaluation.

The decryption function of existing HE schemes consists of modulo

or division operation which is not conveniently supported by the scheme

itself. Hence, in order to perform bootstrapping, one either needs to find

another representation of modulo or division, or design some scheme which

can handle its decryption circuit more comfortably. Among the best works

on bootstrapping implementations, the work of Halevi and Shoup [HS15],

which optimized and implemented bootstrapping over the scheme of Brak-

erski, Gentry and Vaikuntanathan (BGV), is arguably still the state-of-

the-art in terms of throughput, ciphertext/message size ratio and flexible

plaintext moduli. For example, they were able to bootstrap a vector of size

1024 over GF p216q within 5 minutes.

Another approach for bootstrapping is using approximate homomor-

phic encryption scheme [CKKS17]. This scheme supports operations be-

tween encrypted data approximately, and this scheme can be used for

evaluation of encrypted complex numbers. By using complex number as

2



CHAPTER 1. INTRODUCTION

plaintext, we use various analytic tools to simplify modulo operations. In

[CHK`18], they convert modulo operation to sine function with the condi-

tion that input is close to some integer. This condition can be satisfied in

most of the HE scheme, we just need to start bootstrapping little bit early.

In this work, they reports that their bootstrapping takes only 2 minutes

to bootstrapping a vector of size 128 over C.

Despite of various works, bootstrapping procedure is considered as a

very expensive operation. In case of bootstrapping for BGV scheme, when

the plaintext modulus reaches 28, bootstrapping still takes a few hours to

perform. The reason is mainly due to a digit extraction procedure, whose

cost grows significantly with the plaintext modulus. The Fan-Vercauteran

(FV) scheme, a scale-invariant variant of BGV, has also been implement in

[LP16, AMBG`16] and used in applications. We are not aware of any pre-

vious implementation of bootstrapping for FV. Furthermore, homomorphic

linear transformation which is used to bootstrap multiple number of plain-

text is also bottleneck for efficient bootstrapping. In [CHK`18], the linear

transformation part takes 456 seconds with overall timing 524 seconds.

In this paper, we solve those problems in bootstrapping. First, faster

digit extraction algorithm in encrypted state is proposed and this is used for

improve bootstrapping in both BGV and FV schemes with implementation

of bootstrapping in FV scheme. Second, we improve linear transformation

part of bootstrapping by understanding it as variant of discrete Fourier

transformation (DFT) and convert it in sense of fast Fourier transforma-

tion.

3



CHAPTER 1. INTRODUCTION

1.2 Machine Learning on Encrypted Data

Suppose multiple financial institutions want to predict credit scores of

their customers. Although each institution could independently learn a

prediction model using various machine learning techniques, they may be

able to collectively learn a better model by considering all of their data

together for training. However, it is risky in terms of data security to share

financial data between institutions, being even illegal in many countries.

Homomorphic encryption (HE), an encryption scheme that allows arbi-

trary computations on encrypted data, can be used to solve this dilemma.

Using HE, multiple institutions can share their data in an encrypted form

and run machine learning algorithms on the encrypted data without ever

decrypting. This HE-based approach is flexible in that the training com-

putation can be delegated to any party (or even an untrusted third party)

without revealing the training data (other than their own). This flexibil-

ity is desirable, as other approaches require additional assumptions and

conditions that may not be realizable in practice.

Despite many advantages, however, HE has not been used for computation-

intensive tasks such as machine learning (especially on the training phase),

having been thought to be impractical due to its large computation over-

head. Indeed, basic operations (e.g., addition or multiplication) on ci-

phertexts are several (i.e., three to seven) orders of magnitude slower

than the corresponding operations on plaintexts even in the state-of-the-

art [GHS12b, HS15, CKKS17, vDGHV10, BV14, BV11, Bra12, BGV12,

LATV12, CLT14, DM15]. Moreover, some complex operations may cause

additional overhead when they are reduced to a combination of basic oper-

ations.∗ For example, fractional number (e.g., fixed-point or floating-point)

∗Most of HE schemes support only basic operations like addition and multiplication

4



CHAPTER 1. INTRODUCTION

arithmetic operations on ciphertexts are quite expensive, as they involve

bit-manipulation operations that are expressed as complex arithmetic cir-

cuits of a large depth.

In addition to the sheer amount of computation, the use of various

complex operations, such as floating-point arithmetic and non-polynomial

functions (e.g., sigmoid), makes it challenging to apply HE to machine

learning algorithms. Indeed, HEs have been applied to machine learning al-

gorithms only in non-realistic settings [GLN12, KSK`18] where only small-

size training datasets over a small number of features are considered; or,

they have been applied only on the prediction phase [BLN14, BPTG15,

GBDL`16, LLH`17, CdWM`17, JVC18, BMMP17] where the amount of

computation is much smaller than that of the training phase.

1.3 List of Papers

This thesis contains the results of the following papers.

• [CH18] Hao Chen, Kyoohyung Han: Homomorphic Lower Digits Re-

moval and Improved FHE Bootstrapping. Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques.

Springer, Cham, 2018.

• [CHH18] Jung Hee Cheon, Kyoohyung Han, Minki Hhan. Faster Ho-

momorphic DFT and Improved Bootstrapping for FHE. IACR Cryp-

tology ePrint Archive, 2018.

as built-in, and require other operations to be represented in the form of a combination
of the built-in operations.
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• [CHK17] Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim.

Faster Bootstrapping of FHE over the integers, IACR Cryptology

ePrint Archive, 2017:79, 2017.

• [HHCP18] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and

Deajun Park. Efficient Logistic Regression on Large Encrypted Data.

will be appeared at Innovative Applications of Artificial Intelligence

Conference (IAAI), 2019.
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Chapter 2

Background

2.1 Notation

rns “ t0, 1, ¨ ¨ ¨ , n´ 1u, and Zn is treated as rns in this paper. a mod p for

a P R is a unique number P r0, pq such that a ´ pa mod pq is an integer

multiple of p. tas is the nearest integer of a, and rasp is a unique integer

in p´p{2, p{2s such that a´ rasp is a multiple of p. aptqxry :“ ak for a non-

negative integer a “
ř

ait
i and ai P rts. When t “ 2, we omit the subscript

t.

Column vectors are written by bold and lower case letters and matrices

are written by bold and upper case letters. The entries of bold face is

denoted as v “ pv0, v1, ¨ ¨ ¨ , vn´1q
T and M “ pMi,jq1ďi,jďn. We sometimes

take modular n for indices of vector or matrices, and omit the transpose

operator T . The entry-wise multiplication of two vectors v1 and v2 is

denoted by v1dv2 which is called Hadamard multiplication. For the given

vector v with length n, diagipvq is n by n matrix M such that Mj,j`i “ vj

for 0 ď j ă n and all other entries are zero. We will omit the index i of diag

7



CHAPTER 2. BACKGROUND

when i “ 0. On the other hand, for n by n matrix M , diagipM q denotes a

length n vector pM0,i,M1,1`i, ¨ ¨ ¨ ,Mn´1,n´1`iq. rotipvq is left shifted vector

with index i, this means that the result vector is pvi, vi`1, . . . , vi´1q. When

the index i is negative, it means right shifting with index ´i.

We sometimes use the special order of indices called bit-reversal order.

It is defined by ordering the indices in increasing order of the reverse of

binary representations that are padded so that each of these binary repre-

sentation has the same length. For example, bit-reversal order of the given

array pa0, a1, a2, a3q is pa0, a2, a1, a3q (because bit-reversed index is follows:

p00p2q, 10p2q, 01p2q, 11p2qq “ p0, 2, 1, 3q).

2.2 Homomorphic Encryption

Fully homomorphic encryption (FHE) is an encryption scheme that allows

arbitrary computation on ciphertexts without decryption. The first secure

FHE (based on the hardness assumption of a plausible number-theoretic

problem) was proposed by Gentry [Gen09]. He first constructed a scheme,

so-called somewhat homomorphic encryption (SHE), that allows a limited

number of addition and multiplication operations.∗ A notable aspect of the

scheme is the addition of a random noise for each encryption. To address

the limitation of computation, he proposed the so-called bootstrapping pro-

cedure that converts a ciphertext with large noise into another ciphertext

with the same plaintext but small noise. Using the bootstrapping, he con-

structed an FHE scheme on top of the SHE scheme.

Various FHE schemes have been proposed since Gentry’s construction.

Their message spaces are either Zp or a vector space over Zp. In a bit-wise

∗Note that an arbitrary computation can be composed of addition and multiplication
on Z2.

8



CHAPTER 2. BACKGROUND

FHE (p “ 2), bit-manipulation and bootstrapping are efficient, but inte-

ger arithmetic is not. In a word-wise FHE (p " 2), however, the integer

arithmetic is efficient as long as the result is smaller than p. Recently, an

approximate FHE scheme has been proposed by [CKKS17]. The scheme,

called HeaAn, supports efficient approximate computation. In addition to

addition and multiplication, it supports a rounding operation, called rescal-

ing, that is essential for approximate real arithmetic (e.g., floating-point

arithmetic).

2.3 Ring Learning with Errors

The ring learning with errors (RLWE) problem was firstly introduced by

Lyubaskevsky, Peikert and Regev [LPR10]. The definition of this problem

is as follows:

Definition 2.3.1 (RLWE, definition 4 in [BGV12]). FOr security param-

eter λ, let fpxq “ xd ` 1 where d “ dpλq is a power of 2. Let q “ qpλq ě 2

be an integer. Let R “ Zrxs{pfpxqq and let Rq “ R{qR. Let χ “ χpλq be a

distribution over R. The RLWEd,q,χ problem is to distinguish the following

two distributions: In the first distribution, one samples pai, biq uniformly

from R2
q. In the second distribution, one first draws sÐ Rq uniformly and

then samples pai, biq P R2
q by sampling ai Ð Rq uniformly, ei Ð χ, and

setting bi “ ai ¨ s ` ei. The RLWEd,q,χ assumption is that the RLWEd,q,χ

problem is infeasible.

Usually, the noise distribution χ is used as discrete Gaussian distribution.

This Gaussian distribution might need to be “ellipsoidal” for certain re-

ductions [LPR10]. And, secret key is sampled in χ instead of Rq uniformly.

9



CHAPTER 2. BACKGROUND

For efficiency of bootstrapping and HE scheme, secret key is samples as

sparse binary which has small number of non-zero coefficients in t´1, 1u.

2.4 Approximate GCD

The approximate greatest common divisor (AGCD) problem was firstly

introduced in [vDGHV10]. Computing GCD of two value can be done

easily using Euclidean algorithm. when the given values has noise, the

hardness of the problem grows. The definition of the problem is follows:

Definition 2.4.1 (Approximate GCD). For a odd positive integer p, we

define the following distribution over γ-bit integers:

Dγ,ρppq :“ tq Ð ZX r0, 2γ{pq, r Ð ZX p´2ρ, 2ρq : output x “ pq ` ru

The pρ, η, γq´approximate GCD problem is: given polynomially many sam-

ples from Dγ,ρppq for a randomly chose η-bit odd integer p, output p.

Based on the hardness of this problem, various homomorhic encryp-

tion schemes were proposed [vDGHV10, CCK`13, NK15]. For more faster

homomorphic operations, a variant of this problem is also used in [CLT14].

Definition 2.4.2 (Variant of AGCD). For a odd positive integer p, we

define the following distribution over γ-bit integers:

Dγ,ρppq :“
 

q Ð ZX r0, 2γ{p2
q, r Ð ZX p´2ρ, 2ρq : output x “ p2q ` r

(

The pρ, η, γq´approximate GCD problem is: given polynomially many sam-

ples from Dγ,ρppq for a randomly chose η-bit odd integer p, output p.

10
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Remark 2.4.1. The difference is just using p2 instead of p. Note that

original AGCD problem has reduction between learning with error problem

while the variant of AGCD does not.

11



Chapter 3

Lower Digit Removal and

Improved Bootstrapping

In this chapter, we aim at improving the efficiency of bootstrapping under

large prime power plaintext moduli. We used a family of low degree lowest-

digit-removal polynomials to design an improved algorithm to remove v

lowest base-p digits from integers modulo pe. Our new algorithm has depth

v log p` log e, compared to pe´ 1q log p in previous work.

We then applied our algorithm to improve the digit extraction step

in the bootstrapping procedure for FV and BGV schemes. Let h “ ||s||1

denote the 1-norm of the secret key, and assume the plaintext space is a

prime power t “ pr. Then for FV scheme, we achieved bootstrapping depth

log h ` log logpphtq. In case of BGV, we have reduced the bootstrapping

degree from log h`2 logptq to log h` log t. We provided a first implementa-

tion of the bootstrapping functionality for FV scheme in the SEAL library

[LP16]. We also implemented our revised digit extraction algorithm in HE-

lib which can directly be applied to improve HElib bootstrapping for large

12
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plaintext modulus pr.

We also introduced a light-weight mode of bootstrapping which we call

the “slim mode” by restricting the plaintexts to a subspace. In this mode,

messages are vectors where each slot only holds a value in Zpr instead

of a degree-d extension ring. The slim mode might be more applicable in

some use-cases of FHE, including machine learning over encrypted data.

We implemented the slim mode of bootstrapping in SEAL and showed that

in this mode, bootstrapping is about d times faster, hence we can achieve

a similar throughput as in the full mode.

3.1 Basis of BGV and BFV scheme

First, we introduce some notations. Both BGV and FV schemes are ini-

tialized with integer parameters m, t and q. Here m is the cyclotomic field

index, t is the plaintext modulus, and q is the coefficient modulus. Note

that in BGV, it is required that pt, qq “ 1.

Let φmpxq denote the m-th cyclotomic polynomial and let n denote

its degree. We use the following common notations R “ Zrxs{pφmpxqq,
Rt “ R{tR, and Rq “ R{qR. In both schemes, the message is a polynomial

mpxq in Rt, and the secret key s is an element of Rq. In practice, s is

usually taken to be ternary (i.e., each coefficient is either -1, 0 or 1) and

often sparse (i.e., the number of nonzero coefficients of s are bounded by

some h ! n). A ciphertext is a pair pc0, c1q of elements in Rq. Following is

relation between c0 and c1 for each scheme:

BGV: c0 “ ´c1s` te`m for c1 Ð Rq and noise eÐ DGpσq,

FV: c0 “ ´c1s`
q
t
m` e for c1 Ð Rq and noise eÐ DGpσq.

13
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Decryption formula. The decryption of both schemes starts with a

dot-product with the extended secret key p1, sq. In BGV, we have

c0 ` c1s “ mpxq ` tv ` αq,

and decryption returns mpxq “ ppc0 ` c1sq mod qq mod t. In FV, the

equation is

c0 ` c1s “ ∆mpxq ` v ` αq

and decryption formula is mpxq “ t
pc0`c1sq mod q

∆
s.

Plaintext space. The native plaintext space in both schemes is Rt,

which consists of polynomials with degree less than n and integer coef-

ficients between 0 and t ´ 1. Additions and multiplications of these poly-

nomials are performed modulo both φmpxq and t.

A widely used plaintext-batching technique [SV14] turns the plaintext

space into a vector over certain finite rings. Since batching is used exten-

sively in our bootstrapping algorithm, we recall the details here. Suppose

t “ pr is a prime power, and assume p and m are co-prime. Then φmpxq

mod pr factors into a product of k irreducible polynomials of degree d.

Moreover, d is equal to the order of p in Z˚m, and k is equal to the size of

the quotient group Z˚m{xpy. For convenience, we fix a set S “ ts1, . . . , sku

of integer representatives of the quotient group. Let fpxq be one of the

irreducible factors of φmpxq mod pr, and consider the finite extension ring

E “ Zprrxs{pfpxqq.

Then all primitive m-th roots of unity exist in E. Fix ζ P E to be one such

14
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root. Then we have a ring isomorphism

Rt Ñ Ek

mpxq ÞÑ pmpζs1q,mpζs2q, . . . ,mpζskqq

Using this isomorphism, we can regard the plaintexts as vectors over E, and

additions/multiplications between the plaintexts are executed coefficient-

wise on the components of the vectors, which are often called slots.

In the reset of the paper, we will move between the above two ways of

viewing the plaintexts, and we will distinguish them by writing them as

polynomials (no batching) and vectors (batching). For example, Enc(mpxq)

means an encryption of mpxq P Rt, whereas Encppm1, . . . ,mkqq means a

batch encryption of a vector pm1, . . . ,mkq P E
k.

Modulus switching. Modulus switching is a technique which scales a

ciphertext pc0, c1q with modulus q to another one pc10, c
1
1q with modulus

q1 that decrypts to the same message. In BGV, modulus switching is a

necessary technique to reduce the noise growth. Modulus switching is not

strictly necessary for FV, at least if used in the LHE mode. However, it will

be of crucial use in our bootstrapping procedure. More precisely, modulus

switching in BGV requires q and q1 to be both co-prime to t. For simplicity,

suppose q ” q1 ” 1p mod tq. Then c1i equals the closest integer polynomial

to q1

q
c such that c1i ” ci mod t. For FV, q and q1 do not need to be co-prime

to t, and modulus switching simply does scaling and rounding to integers,

i.e., c1i “ tq1{qcis.

We stress that modulus switching slightly increase the noise-to-modulus

ratio due to rounding errors in the process. Therefore, one can not switch

to arbitrarily small modulus q1. On the other hand, in bootstrapping we

15
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often like to switch to a small q1. The following lemma puts a lower bound

on the size of q1 for FV (the case for BGV is similar).

Lemma 3.1.1. Suppose c0` c1s “ ∆m`v`aq is a ciphertext in FV with

|v| ă ∆{4. if q1 ą 4tp1`||s||1q, and pc10, c
1
1q is the ciphertext after switching

the modulus to q1, then pc10, c
1
1q also decrypts to m.

Proof. We define the invariant noise to be the term vinv such that

t

q
pc0 ` c1sq “ m` vinv ` rt.

Decryption is correct as long as ||vinv|| ă
1
2
. Now introducing the new

modulus q1, we have

t

q1

ˆ

q1

q
c0 `

q1

q
c1s

˙

“ m` vinv ` tr

for some integer r. Taking nearest integers of the coefficients on the left

hand side, we arrive at

t

q1

ˆ

t
q1

q
c0s` t

q1

q
c1ss

˙

“ m` vinv ` tr ` δ,

with the rounding error ||δ|| ď t{q1p1`||s||1q. Thus the new invariant noise

is

vinv1 “ vinv ` δ

We need ||δ|| ă 1{4 for correct decryption. Hence the lower bound on q1 is

q1 ą 4tp1` ||s||1q.

16



CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

We remark that although the requirement in BGV that q and t are co-

prime seems innocent, it affects the depth of the decryption circuit when

t is large. Therefore, it results in an advantage for doing bootstrapping in

FV over BGV. We will elaborate on this point later.

Multiply and divide by p in plaintext space. In bootstrapping, we

will use following functionalities: dividing by p, which takes an encryption

of pm mod pe and returns an encryption of m mod pe´1, and multiplying

by p which is the inverse of division. In BGV scheme, multiply by p can

be realized via a fast scalar multiplication pc0, c1q Ñ pppc0q mod q, ppc1q

mod qq. In the FV scheme, these operations are essentially free, because if

c0 ` c1s “ t
q

pe´1 um` v ` qα, then the same ciphertext satisfies c0 ` c1s “

t
q
pe

upm ` v ` v1 ` qα for some small v1. In the rest of the paper, we will

omit these operations, assuming that they are free to perform.

3.2 Improved Digit Extraction Algorithm

The previous method for digit extraction used certain lifting polynomials

with good properties. We used a family of “lowest digit removal” poly-

nomials which have a stronger lifting property. We then combined these

lowest digit removal polynomials with the lifting polynomials to construct

a new digit removal algorithm.

For convenience of exposition, we use some slightly modified notations

from [HS15]. Fix a prime p. Let z be an integer with (balanced) base-p

expansion z “
ře´1
i“0 zip

i. For integers i, j ě 0, we use zi,j to denote any

integer with first base-p digit equal to zi and the next j digits zero. In

other words, we have zi,j ” zi mod pj`1.

17
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Previous Method

The bootstrapping procedure in [HS15] consists of five main steps: modulus

switching, dot product (with an encrypted secret key), linear transform,

digit extraction, and another “inverse” linear transform. Among these, the

digit extraction step dominates the cost in terms of both depth and work.

Hence we will focus on optimizing the digit extraction. Essentially, we need

the following functionality.

DigitRemovepp, e, vq : fix prime p, for two integers v ă e and an input

u mod pe, let u “
ř

uip
i with |ui| ď p{2 when p is odd (and ui “ 0, 1

when p “ 2), returns

uxv, . . . , e´ 1y :“
e´1
ÿ

i“v

uip
i.

We say this functionality “removes ” the v lowest significant digits in

base p from an e-digits integer. To realize the above functionality over

homomorphically encrypted data, the authors in [HS15] constructed some

special polynomials Fep¨q with the following lifting property.

Lemma 3.2.1 (Corollary 5.5 in [HS15]). For every prime p and e ě 1

there exist a degree p-polynomial Fe such that for every integer z0, z1 with

z0 P rps and every 1 ď e1 ď e we have Fepz0 ` p
e1z1q “ z0 pmod pe

1`1q.

For example, if p “ 2, we can take Fepxq “ x2. One then uses these

lifting polynomials Fe to extract each digit ui from u in a successive fashion.

The digit extraction procedure is defined in Figure 1 in [HS15] and can be

visualized in the following diagram.
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Figure 3.1: Previous Method for Digit Extraction

In Figure 3.1, the top-left digit is the input. This algorithm starts with

the top row. From left to right, it recursively applies the lifting polynomial

to obtain all the digits in area 2. Then the digits in area 1 on the next row

can be obtained from subtracting all digits in area 2 on the same diagonal

from the input and then dividing by p. When this procedure concludes,

the pi, jq-th digit of the diagram will be ui,j. In particular, digits on the

final diagonal will be ui,e´1´i. Then we can compute

uxv, ¨ ¨ ¨ , e´ 1y “ u´
v´1
ÿ

i“0

ppi ¨ ui,e´1´iq.

New Method

We first stress that in the above method, it is not enough to obtain the

ui mod p. Rather, one requires ui,e´1´i. The reason is one has to clear the

higher digits to create numbers with base -p expansion pui, 0, 0, . . . , 0
loooomoooon

e´i´1

q, oth-

erwise it will mess up the u1i for i1 ą i. Previously, to obtain ui,j, one needs

to apply the lifting polynomial j times. Fortunately, there is a polyno-

mial of lower degree with the same functionality, as shown in the following

lemma.
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Lemma 3.2.2. Let p be a prime and e ě 1. Then there exists a polynomial

f of degree at most pe´1qpp´1q`1 such that for every integer 0 ď x ă pe,

we have

fpxq ” x´ px mod pq mod pe,

where |x mod p| ď pp´ 1q{2 when p is odd.

Proof. We complete the proof sketch in [Gri17] by adding in the necessary

details. To begin, we introduce a function

FApxq :“
8
ÿ

j“0

p´1qj
ˆ

A` j ´ 1

j

˙ˆ

x

A` j

˙

.

This function FApxq converges on every integer, and for M P Z,

FApMq “

$

&

%

1 if M ą A

0 otherwise.

Define f̂pxq as

f̂pxq “ p
8
ÿ

j“1

Fj¨ppxq “
8
ÿ

m“p

apmq

ˆ

x

m

˙

. (3.2.1)

We can verify that the function f̂pxq satisfies the properties in the lemma

(for the least residue system), but its degree is infinite. So we let

fpxq “

pe´1qpp´1q`1
ÿ

m“p

apmq

ˆ

x

m

˙

.

Now we will prove that the polynomial fpxq has p-integral coefficients and

has the same value with f̂pxq for x P Zpe .
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Claim: fpxq has p-integral coefficients and apmq
`

x
m

˘

is multiple of pe for all

x P Z when m ą pe´ 1qpp´ 1q ` 1.

Proof: If we rewrite the equation 3.2.1,

f̂pxq “ p
8
ÿ

j“1

Fj¨ppxq “ p
8
ÿ

j“1

˜

8
ÿ

i“0

p´1qi
ˆ

jp` i´ 1

i

˙ˆ

x

jp` i

˙

¸

.

By replacing the jp` i to m, we arrive at the following equation:

apmq “ p
8
ÿ

k“1

p´1qm´kp
ˆ

m´ 1

m´ kp

˙

.

In the equation, we can notice that the term p´1qm´kp
`

m´1
m´kp

˘

is the coeffi-

cient of Xm´pk in the Taylor expansion of p1 `Xq´kp. Therefore, apmq is

actually the coefficient of Xm in the Taylor expansion of
ř8

k“1 pX
kpp1 `

Xq´kp.

8
ÿ

k“1

pXkp
p1`Xq´kp “ p

8
ÿ

k“1

p
X

X ` 1
q
kp
“ p

p1`Xqp

p1`Xqp ´Xp

We can get a m-th coefficient of Taylor expansion from following equation:

p
p1`Xqp

p1`Xqp ´Xp
“ p

p1`Xqp

1`BpXq
“ pp1`Xqpp1´BpXq `BpXq2 ´ ¨ ¨ ¨ q.

Because BpXq is multiple of pX, the coefficient of Xm can be obtained

from a finite number of powers of BpXq. We can also find out the degree

of BpXq is p´ 1, so

Degppp1`Xqpp1´BpXq` ¨ ¨ ¨ ` p´1qpe´2qBpXqpe´2q
qq “ pe´ 1qpp´ 1q` 1.
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Hence these terms do not contribute to Xm. This means that apmq is m-th

coefficient of

pp1`XqpBpXqe´1
8
ÿ

i“0

p´1qiBpXqi

which is multiple of pe (since BpXq is multiple of p). �

By the claim above, the p-adic valuation of apmq is larger than m
p´1

and

it is trivial that the p-adic valuation of m! is less than m
p´1

. Therefore, we

proved that the coefficients of fpxq are p-integral. Indeed, we proved that

apmq
`

x
m

˘

is multiple of pn for any integer when m ą pe´1qpp´1q`1. This

means that f̂pxq “ fpxq mod pe for all x P Zpe .
As a result, the degree pe ´ 1qpp ´ 1q ` 1 polynomial fpxq satisfies

the conditions in lemma for the least residue system. For balanced residue

system, we can just replace fpxq by fpx` pp´ 1q{2q.

Note that the above polynomial fpxq removes the lowest base-p digit in

an integer. It is also desirable sometimes to “retain” the lowest digit, while

setting all the other digits to zero. This can be easily done via gpxq “

x ´ fpxq. In the rest of the paper, we will denote such polynomial that

retains the lowest digit in the balanced base-p representation by Ge,ppxq

(or Gepxq if p is clear from context). In other words, if x P Zpe and x ” x0

mod p with |x0| ď p{2, then Gepxq “ x0 mod pe.

Example 3.2.1. When e “ 2, we have fpxq “ ´xpx ´ 1q ¨ ¨ ¨ px ´ p ` 1q

and G2pxq “ x´ fpx` pp´ 1q{2q.

We recall that in the previous method, it takes degree pe´i´1 and pe´

i ´ 1q evaluations of polynomials of degree p to obtain ui,e´i. With our

lowest digit removing polynomial, it only takes degree pe´ i´1qpp´1q`1.

As a result, by combining the lifting polynomials and lowest digit removing
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polynomials, we can make the digit extraction algorithm faster with lower

depth.

Figure 3.2 illustrates how our new digit removal algorithm works. First,

each digit in area 2 is obtained by evaluating a lifting polynomial to the

entry on its left. Then, the digits in area 3 on each row are obtained by

evaluating the remaining lowest digit polynomial to the left-most digit on

its row. Digits in area 1 are obtained by subtracting all the digits in area 2

on the same diagonal from the input, and dividing by p. Finally, in order

to remove the v lowest digits, we subtract all the digits in area 3 from the

input.

Figure 3.2: New Digit Extraction

We remark that the major difference of this procedure is that we only

need to populate the top left triangle of side length v, plus the right most

v-by-1 diagonal, where as the previous method needs to populate the entire

triangle of side length e.

Moreover, the digits in area 3 (in Figure 3.2) has lower depth: in the

previous method, the i-th red digit is obtained by evaluating lift polynomial

pe´i´1q times, hence its degree is pe´i´1 on top of the i-th element of digit

in area 1. However, in our method, its degree is only pp´ 1qpe´ i´ 1q ` 1

on top of the i-th element of digit in area 1, which has degree at most pi.

The total degree of the algorithm is bounded by the maximum degree over
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Algorithm 1: Removing v lowest digits from x P Zpe
Data: x P Zpe

Result: x´ rxspv mod pe

// Fipxq : lifting polynomial with Fipx`Opp
iqq “ x`Oppi`1q

// Gipxq : lowest digit retain polynomial with Gipxq “ rxsp mod pi

1 Find largest ` such that p` ă pp´ 1qpe´ 1q ` 1;
2 Initialize res “ x;
3 for i P r0, vq do

// evaluate lowest digit retain polynomial

4 Ri “ Ge´ipx
1q ; // Ri “ xi mod pe´i

5 Ri “ Ri ¨ p
i ; // Ri “ xip

i mod pe

6 if i ă v ´ 1 then
7 Li,0 = F1px

1q ; // evaluate lifting polynomial

8 end
9 for j P r0, `´ 2q do

10 if i` j ă v ´ 1 then
11 Li,j`1 = Fj`2pLi,jq

12 end

13 end
14 if i ă v ´ 1 then
15 x1 “ x;
16 for j P r0, i` 1q do
17 if i´ j ą `´ 2 then
18 x1 “ x1 ´Rj

19 end
20 else
21 x1 “ x1 ´ Lj,i´j

22 end

23 end

24 end
25 res “ res´Ri;

26 end
27 return res;

all the digits in area 3, that is

max
0ďiăr

`

pi ¨ ppe´ 1´ iq ¨ pp´ 1q ` 1q
˘

.

Since each individual term is bounded by e ¨ pv, the total degree of the

24



CHAPTER 3. LOWER DIGIT REMOVAL AND IMPROVED
BOOTSTRAPPING

procedure is at most e ¨ pv. This is lower than pe´1 in the previous method

when v ď e´ 2 and p ą e.

Comparison.

We discuss one further optimization to remove v lowest digits in base p

from an e-digit integer. If ` is an integer such that p` ą pp´ 1qpe´ 1q ` 1,

then instead of using lifting polynomials to obtain the `-th digit, we can

just use the result of evaluating the Gi polynomial (or, the red digit) to

obtain the green digit in the next row. This saves some work and also lowers

the depth of the overall procedure. This optimization is incorporated into

Algorithm 1.

The depth and computation cost of Algorithm 1 is summarized in The-

orem 3.2.1. The depth is simply the maximum depth of all the removed

digits. To determine the computational cost to evaluate Algorithm 1 ho-

momorphically, we need to specify the unit of measurement. Since scalar

multiplication is much faster than FHE schemes than ciphertext multi-

plication, we choose to measure the computational cost by the number

of ciphertext multiplications. The Paterson-Stockmeyer algorithm [PS73]

evaluates a polynomial of degree d with „
?

2d non-constant multiplica-

tions, and we use that as the base of our estimate.

Theorem 3.2.1. Algorithm 1 is correct. Its depth is bounded above by

logpepvq “ v logppq ` logpeq.

The number of non-constant multiplications is asymptotically equal to
?

2pev.

Table 3.1 compares the asymptotic depth and number of non-constant

multiplications between our method for digit removal and the method of
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Method Depth No. ciphertext multiplications

[HS15] e logppq 1
2
e2
?

2p

This work v logppq ` logpeq
?

2pev

Table 3.1: Complexity of DigitRemovepp, e, vq

[HS15]. From the table, we see that the advantage of our method grows

with the difference e´ v. In the bootstrapping scenario, we have e´ v “ r,

the exponent of the plaintext modulus. Hence, our algorithm compares

favorably for larger values of r.

3.3 Bootstrapping for BGV and BFV Scheme

The bootstrapping for FV scheme follows the main steps from [HS15] for

the BGV scheme, while we make two modifications in modulus switching

and digit extraction. First, we review the procedure in [HS15].

Modulus Switching. One fixes some q1 ă q and compute a new cipher-

text c1 which encrypts the same plaintext but has much smaller size.

Dot product with bootstrapping key. Here we compute homomor-

phically the dot product xc1, sy, where s is an encryption of a new secret

key s1 under a large coefficient modulus Q and a new plaintext modulus

t1 “ pe. The result of this step is an encryption of m ` tv under the new

parameters ps1, t1, Qq.
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Linear Transformation. Let d denote the multiplicative order of p in

Z˚m and k “ n{d be the number of slots supported in plaintext batching.

Suppose the input to linear transform is an encryption of
řn´1
i“0 aix

i, then

the output of this step is d ciphertexts C0, . . . , Cd´1, where Cj is a batch

encryption of pajk, ajk`1, . . . , ajk`k´1q.

Digit Extraction. When the above steps are done, we obtain d cipher-

texts, where the first ciphertext is a batch encryption of

pm0 ¨ p
e´r
` e0,m1 ¨ p

e´r
` e1, ¨ ¨ ¨ ,mk´1 ¨ p

e´r
` ek´1q.

Assuming that |ei| ď
pe´r

2
for each i, we will apply Algorithm 1 to remove

the lower digits ei, resulting in d new ciphertexts encrypting ∆mi for 0 ď

i ă n in their slots. Then we perform a free division to get d ciphertexts,

encrypting mi in their slots.

Inverse Linear Transformation. Finally, we apply another linear trans-

formation which combines the d ciphertexts into one single ciphertext en-

crypting mpxq.

3.3.1 Our modifications

BFV scheme

Suppose t “ pr is a prime power, and we have a ciphertext pc0, c1q modulo

q. Here, instead of switching to a modulus q1 co-prime to p as done in BGV,

we switch to q1 “ pe, and obtain ciphertext pc10, c
1
1q such that

c10 ` c
1
1s “ pe´rm` v ` αpe.
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Then, one input ciphertext to the digit extraction step will be a batch

encryption

Encpppe´rm0 ` v0, . . . , p
e´rmk ` vkqq

under plaintext modulus pe. Hence this step requires DigitRemovepp, e, e´

rq.

BGV scheme

To apply our ideas to the digit extraction step in BGV bootstrapping, we

simply replace the algorithm in [HS15] with our digit removal Algorithm

1.

Comparison

The major difference in the complexities of bootstrapping between the

two schemes comes from the parameter e. In case of BFV, we can choose

(roughly) e “ r ` logpp||s||1qq. On the other hand, the estimate of e for

correct bootstrapping in [HS15] for the BGV scheme is

e ě 2r ` logpp||s||1q.

We can analyze the impact of this difference on the depth of digit removal,

and therefore on the depth of bootstrapping. Setting v “ e ´ r in Theo-

rem 3.2.1, the depth for the BGV case is

pr ` logpp||s||1q log p` logp2r ` logpp||s||1qq.

Substituting r “ logpptq into the above formula and throwing away lower

order terms, we obtain the improved depth for the digit extraction in step
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BGV bootstrapping as

log t` logp||s||1q ` logplogppt
2
¨ ||s||1qq « log t` logp||s||1q.

Note that the depth grows linearly with the logarithm of the plaintext

modulus t. On the other hand, the depth in the FV case turns out to be

logp||s||1q ` logplogppt ¨ ||s||1qq.

which only scales with log log t. This is smaller than BGV in the large

plaintext modulus regime.

We can also compare the number of ciphertext multiplications needed

for the digit extraction procedures. Replacing v with e ´ r in the second

formula in Theorem 3.2.1 and letting e “ 2r ` logpp||s||1q for BGV (resp.

e “ r ` logpp||s||1q for BFV), we see that the number of ciphertext multi-

plications for BGV is asymptotically equal to

?
2p

plog pq3{2
¨ p2 logptq ` logp||s||1qq

1{2
¨ plogptq ` logp||s||1qq.

In the BFV case, the number of ciphertext multiplications is asymp-

totically equal to

?
2p

plog pq3{2
plogptq ` logp||s||1qq

1{2 logp||s||1qq.

Hence when t is large, the digit extraction procedure in bootstrapping

requires less work for BFV than BGV.

For completeness, we also analyze the original digit extraction method

in BGV bootstrapping. Recall that the previous algorithm has depth pe´

1q log p, and takes about 1
2
e2 homomorphic evaluations of polynomials of
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Method Depth No. ciphertext multiplications

[HS15] (BGV) 2 logptq ` logphq
?
2p

2plog pq2 p2 logptq ` logphqq2

This work (BGV) logptq ` logphq
?
2p

plog pq3{2
p2 logptq ` logphqq1{2plogptq ` logphqq

This work (FV) log logptq ` logphq
?
2p

plog pq3{2
plogptq ` logphqq1{2 logphq

Table 3.2: Asymptotic complexity of digit extraction step in bootstrapping.
Here h “ ||s||1 is the 1-norm of the secret key, and t “ pr is the plaintext
modulus.

degree p. If we use the Paterson-Stockmeyer method for polynomial evalua-

tion, then the total amount of ciphertext multiplications is roughly 1
2
e2
?

2p.

Plugging in the lower bound e ě 2r` logpp||s||1q, we obtain an estimate of

depth and work needed for the digit extraction step in the original BGV

bootstrapping method in [HS15]. Table 3.2 summarizes the cost for three

different methods.

Fixing p and h in the last column of Table 3.2, we can see how the

number of multiplications grows with log t. The method in [HS15] scales

by plog tq2, while our new method for BGV improves it to plog tq3{2. In the

FV case, the number of multiplications scales by only plog tq1{2.

Remark 3.3.1. As another advantage of our revised BGV bootstrapping,

we make a remark on security. From Table 3.2, we see that in order for

bootstrapping to be more efficient, it is advantageous to use a secret key

with smaller 1-norm. For this reason, both [HS15] and this work choose to

use a sparse secret key, and a recent work [APS15] shows that sparseness

can be exploited in the attacks. To resolve this, note that it is easy to keep

the security level in our situation: since our method reduces the overall

depth for the large plaintext modulus case, we could use a smaller modulus
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q, which increases the security back to a desired level.

3.4 Slim Bootstrapping Algorithm

The bootstrapping algorithm for BFV and BGV is expensive also due to

the d repetitions of digit extraction. For some parameters, the extension

degree d can be large. However, many interesting applications requires

arithmetic over Zpr rather than its degree-d extension ring, making it hard

to utilize the full plaintext space.

Therefore we will introduce one more bootstrapping algorithm which is

called “slim” bootstrapping. This bootstrapping algorithm works with the

plaintext space Zkt , embedded as a subspace of Rt through the batching

isomorphism.

This method can be adapted using almost the same algorithm as the

original bootstrapping algorithm, except that we only need to perform one

digit extraction operation, hence it is roughly d times faster than the full

bootstrapping algorithm. Also, we need to revise the linear transformation

and inverse linear transformation slightly. We give an outline of our slim

bootstrapping algorithm below.

Inverse Linear Transformation. We take as input a batch encryption

of pm1 . . . ,mkq P Zkpr . In the first step, we apply an “inverse” linear trans-

formation to obtain an encryption of m1 ` m2x
d ` . . . ` mkx

dpk´1q. This

can be done using k slot permutations and k plaintext multiplications.

Modulus Switching and Dot product. These two steps are exactly

the same as the full bootstrapping procedure. After these steps, we obtain
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Enc(m0 +m1x
d + · · ·+mk−1x

d(k−1))

Enc(m0;m1;m2; · · · ;mk−1)

Enc(m(x) · pe−r + e(x))

Modulus Switching and Dot Product

Enc(m0 · p
e−r + e0; · · · ;mk−1 · p

e−r + ek−1)

Digit Extraction

LinearTransformation

InverseLinearTransformation

Enc(m0;m1;m2; · · · ;mk−1)

#

#

#

#

Figure 3.3: slim bootstrapping

a (low-noise) encryption of

p∆m1 ` v1 ` p∆m2 ` v2qx
d
` . . .` p∆mk ` vkqx

dpk´1q
q.

Linear Transformation. In this step, we apply another linear transfor-

mation consisting of k slot permutations and k scalar multiplications to

obtain a batch encryption of p∆m1`v1, . . . ,∆mk`vkq. Details of this step

can be found in the below.

Digit extraction. Then, we apply digit-removal algorithm to remove the

noise coefficients vi, resulting in a batch encryption of p∆m1, . . . ,∆mkq. We

then execute the free division and obtain a batch encryption of pm1, . . . ,mkq.

This completes the slim bootstrapping process.
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Optimizing Linear Transformation for Slim Bootstrapping

In our slim mode of bootstrapping, we used a linear transform which has

the following property: the input is an encryption of
ř

mix
i, and the out-

put is a batch encryption of pm0,md, . . . ,mdpk´1qq. A straightforward im-

plementation of this functionality requires n slot permutations and n scalar

multiplications. However, in the case when n is a power of 2, we can break

down the linear transform into two parts, which we call coefficient selection

and sparse linear transform. This reduces the number of slot permutations

to logpdq ` k and the number of scalar multiplications to k.

Coefficient Selection. The first part of the optimized linear transform

functionality can be viewed as a coefficient selection. This process gets

input Enc(mpxq) and outputs Encpm1pxqq with m1pxq “
řn{d´1
i“0 mid ¨x

id. In

other words, it selects the coefficients of mpxq where the exponents of x

are divisible by d. The following algorithm is specified to the case when n

is a power of two . Using the property that xn “ ´1 in the ring R, we can

construct an automorphism φi of R such that

φi : X2i
Ñ Xn`2i

“ ´X2i .

For example, φ0p¨q negates all odd coefficients, because φ0 maps X to ´X.

This means that 1
2
pφ0pmpxqq`mpxqq will remove all odd terms and double

the even terms. Using this property, we construct a recursive algorithm

which return m1pxq “
řn{d´1
i“0 mid ¨ x

id for power of two d.

• For given mpxq, First compute m0pxq “ mpxq ` φ0pmpxqq.

• Recursively compute mipxq “ φipmi´1pxqq ` mi´1pxq for 1 ď i ď

log2 d.
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• Return m1pxq “ d´1 ¨mlog2 d mod t for plain modulus t.

The function φi : X Ñ X
n`2i

2i can be evaluated homomorphically by using

the same technique used in slot permutation. Another operation is just

multiplying by d´1 mod t. Hence we can obtain Encpm1pxqq. This process

needs log d slot permutations and additions.

Sparse Linear Transform. The desired functionality of the sparse lin-

ear transform is: take as input an encryption c of
ř

mix
id and output a

batch encryption of pm0,m1 . . . ,mk´1q. We claim that this functionality

can be expressed as
řk´1
i“0 λiσsipcq, where λi are pre-computed polynomials

in Rt and the si form a set of representatives of Z˚m{xpy. This is because

the input plaintext only has k nonzero coefficients m0, . . . ,mk´1. Hence for

each i it is possible to write mi as a linear combination of the evaluations

of the input at k different roots of unity. Therefore, this step only requires

k slot permutations and k plaintext multiplications. We can also adapt the

babystep-giantstep method to reduce the number of slot permutations to

Op
?
kq, and we omit further details.

3.5 Implementation Result

We implemented both the full mode and the slim mode of bootstrapping for

BFV in the SEAL library. We also implemented our revised digit extraction

procedure in HElib. Since SEAL only supports power-of-two cyclotomic

rings, and p needs to be co-prime to m in order to use batching, we can

not use p “ 2 for SEAL bootstrapping. Instead, we chose p “ 127 and

p “ 257 because they give more slots among primes of reasonable size.

The following tables in this section illustrate some results. We used
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sparse secrets with hamming weight 64 and 128, and we estimated security

levels using Martin Albrecht’s LWE estimator [APS15].

Digit Extraction

We implemented Algorithm 1 in HElib and compared with the results of

the original HElib implementation for removing v digits from e digits. From

Table 3.3, we see that for e ě v`2 and large p, our digit removal procedure

can outperform the current HElib implementation in both depth and work.

Therefore, for these settings, we can replace the digit extraction procedure

in the recryption function in HElib, and obtain a direct improvement on

after level and time for recryption.

[HS15] Our Method

pp, e, vq Timing (sec) Before/After
level

Timing (sec) Before/After
level

p2, 11, 5q 15 23/3 16 23/10
p2, 21, 13q 264 56/16 239 56/22
p5, 6, 3q 49.5 39/5 30 39/13
p17, 4, 2q 61.2 38/5 35.5 38/14
p31, 3, 1q 26.3 32/8 12.13 32/18
p127, 3, 1q 73.2 42/3 38 42/20

Table 3.3: Comparison of digit removal algorithms in HElib (Toshiba
Portege Z30t-C laptop with 2.6GHz CPU and 8GB memory)

When p “ 2 and r, e are small, the current HElib implementation can be

faster due to the fact that the lifting polynomial is Fepxq “ x2 and squaring

operation is faster than generic multiplication. Also, when e “ v ` 1, i.e.,

the task is to remove all digits except the highest one, our digit removal

method has similar performance as the HElib counterpart.
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Bootstrapping for BFV scheme

Table 3.4 and 3.5 present timing results for the full and slim modes of

bootstrapping for BFV implemented in SEAL. In both tables, the column

labeled “recrypt init. time” shows the time to compute the necessary data

needed in bootstrapping. The “recrypt time” column shows the time it

takes to perform one bootstrapping. The before (resp. after) level shows

the maximal depth of circuit that can be evaluated on a freshly encrypted

ciphertext (resp. freshly bootstrapped ciphertext). Here Rppr, dq denotes a

finite ring with degree d over base ring Zpr , and GFpprq denotes the finite

field with pr elements.

Comparing the corresponding entries from Table 3.4 and 3.5, we see

that the slim mode of bootstrapping is either close to or more than d

times faster than the full mode.

Parameters Result

n log q Plaintext
Space

Slots Security Before
/After
Level

Recrypt
Time
(sec)

Memory
usage
(GB)

Recrypt
init.
time
(sec)

16384 558 GFp127256q 64 92.9 24/7 2027 8.9 193
16384 558 GFp257128q 128 92.9 22/4 1381 7.5 242
32768 806 Rp1272, 256q 64 126.2 32/12 21295 27.6 658
32768 806 Rp2572, 128q 128 126.2 23/6 11753 26.6 732

Table 3.4: Time table for bootstrapping for BFV scheme, hw=128 (Intel(R)
Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)
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Parameters Result

n log q Plaintext
Space

Number
of
Slots

Security
Pa-
rame-
ter

Before
/After
level

Recrypt
init
time
(sec)

Memory
usage
(GB)

Recrypt
Time
(sec)

16384 558 Z127 64 92.9 23/10 57 2.0 6.75
32768 806 Z1272 64 126.2 25/11 59 2.0 30.2
32768 806 Z1273 64 126.2 20/6 257 8.9 34.5
16384 558 Z257 128 92.9 22/7 59 2.0 10.8
32768 806 Z257 128 126.2 31/15 207 7.4 36.8
32768 806 Z2572 128 126.2 23/7 196 7.4 42.1

Table 3.5: Time table for slim bootstrapping for BFV scheme, hw=128
(Intel(R) Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)
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Chapter 4

Faster Homomorphic DFT and

Improved Bootstrapping

In this chapter, we study the fast linear transformations for special struc-

tured matrices. First, we propose a new way to evaluate discrete Fourier

transformation for a given packed ciphertext. Our method only needs

Oplog nq number of homomorphic operations while the previous method

requires Op
?
nq rotations and Opnq constant vector multiplications for n

the length of input vector.

We factorize the DFT matrix into log2 n sparse block diagonal matri-

ces using the Cooley-Tukey factorization with radix 2. We observe that

each factor has only three diagonal vectors, and each log2 k consecutive

multiplication of those factors has p2k ´ 1q diagonal vectors. Therefore,

homomorphic DFT evaluation is converted to logk n number of homomor-

phic matrix multiplications for matrix with p2k ´ 1q diagonal vectors for

an arbitrary integer k dividing n.

From SIMD operation of HE schemes, evaluating matrices with d di-
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agonal vector in encrypted state can be done with Op
?
dq homomorphic

rotations and d homomorphic constant vector multiplications using the

baby-step algorithm. So, we obtain a homomorphic DFT algorithm which

needs Op
?
k log nq number of homomorphic rotations and Opk log nq num-

ber of homomorphic constant vector multiplications with Oplogk nq con-

stant vector multiplication depth. In addition, we can obtain a trade-off

between depth and complexity by adjusting k.

Second, we apply the same matrix decomposition strategy into sparse

diagonal matrices to improve the linear transformations in bootstrapping

for HeaAn. We decompose corresponding matrices recursively, similarly to

the Cooley-Tukey algorithm. As a result we obtain the same improvement

in the linear transformations in bootstrapping: Op
?
k log nq homomorphic

rotations and Opk log nq homomorphic constant vector multiplications with

Oplogk nq constant vector multiplication depth for plaintext vector length

n.

We also implement our method using the approximate homomorphic

encryption library [snu18] to show the improvements. Our implementa-

tion shows that the homomorphic DFT with length 213 only takes about

8 seconds when k “ 2. This results shows a more than 150ˆ performance

improvement compared to previous works on homomorphic DFT (or FFT)

[CKKS17, CSV17, CSVW16]. On the other hand, the bootstrapping pro-

cedure for HeaAn using our linear transformation algorithm only takes 2

minutes for C32768 plaintext space with 8-bit precision. This result yields

an amortized rate per bits of 0.45ms, less than one millisecond. The pre-

vious algorithm takes 26 hours in the same setting, which is only realistic

for a small number of slots.

39



CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

4.1 Basis of HEAAN scheme

In our chapter, we will focus on the DFT on complex field. For this rea-

son, we need homomorphic encryption for complex arithmetic. At 2017,

homomorphic encryption scheme for approximate number arithmetic is

proposed by Cheon et al. [CKKS17] which is called HeaAn. The ciphertext

is pc0, c1q P Rq as in BGV and FV schemes with following relation:

c0 “ ´c1s` t∆ ¨ms` e for m P RrXs, eÐ DGpσq.

The plaintext structure of this scheme is CN{2 for polynomial ring dimen-

sion N , and it is suitable for our purpose. More precisely, encoded polyno-

mial mpxq “
řN´1
i“0 fiX

i for given plaintext m can be computed as follows:

f “ pfiq0ďiăN “
1
N
pU

T
¨m`UT ¨mq. For given polynomial mpxq, decoded

vector m can be compute as follows: U ¨ f such that f “ pfiq0ďiăN for

mpxq “
řN´1
i“0 fiX

i. Following is description of the matrix U :

U “

»

—

—

—

—

—

–

1 w0 w2
0 ¨ ¨ ¨ wN´1

0

1 w1 w2
1 ¨ ¨ ¨ wN´1

1

...
...

...
. . .

...

1 wN{2´1 w2
N{2´1 ¨ ¨ ¨ wN´1

N{2´1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

This scheme supports various kinds of homomorphic operations. Let cti

is encrypted ofmi P CN{2 for i “ 0, 1. Functions in below are homomorphic

operations in the scheme.

• encryptpm; ∆q: return encryption of m using scaling factor ∆.

• addpct0, ct1q: return encryption of m0 `m1.
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• constAddpm, ct0q: return encryption of m`m0.

• multpct0, ct1q: return encryption of m0 dm1.

• constMultpm, ct0q: return encryption of mdm0.

• leftRotatepct0, idxq: return encryption of m1 “ rotipm0q.

• rightRotatepct0, idxq: return encryption of m1 “ rot´ipm0q.

4.2 Homomorphic DFT

In this section, we briefly review the previous approach to evaluate DFT

with homomorphic encryption (HE) and describe our new homomorphic

DFT algorithm. We propose new homomorphic DFT algorithm and also

hybrid algorithm that combines our new method with previous approach.

4.2.1 Previous Approach

In [HS15], they proposed faster linear transformation (» NTT) for boot-

strapping when the input size of φpmq (here m is product of co-prime

integers mi). They understand one variable polynomial ring as multivari-

ate with special basis which is called powerful basis. This approach shows

that DFT with dimension m can be split to several number of DFT with

mi for co-prime mis.

On the other hand, in the case of power of prime dimension, there is no

specialized algorithm for homomorphic DFT. Previously known approaches

apply a general homomorphic linear transform with DFT matrix to the ci-

phertext [CKKS17, CH18]. We review the key ideas of these approaches.
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HE schemes support Hadamard multiplication and rotation for the plain-

text vector. The following equation shows a representation of matrix-vector

multiplication via Hadamard multiplications and rotations.

M ¨ v “

n
ÿ

i“0

diagipM q d rotipvq

“
ÿ̀

i“0

k
ÿ

j“0

diagki`jpM q d rotki`jpvq

“
ÿ̀

i“0

rotki

˜

k
ÿ

j“0

rot´kipdiagki`jpM qq d rotjpvq

¸

The first line gives a simple way to compute homomorphic matrix-vector

multiplication which requires Opnq rotations and Hadamard multiplica-

tions. Based on the third line of the equation, we can achieve an algorithm

so-called baby-step giant-step (BSGS) to matrix-vector multiplication with

Op
?
nq rotations of ciphertexts.

4.2.2 Our method

Now we will introduce our method for fast homomorphic DFT. In this

section, we will mainly consider DFT with bit-reversed output DFTNR
n and

its inverse (the letter NR stands for normal to reversal). In addition, we

will describe the method to extend our method to input bit-reversed case

and its inverse in the last part of this section. We focus on the power-of-

two dimension case while our method can be generalized to other power

of prime dimensions, because power-of-two cases are appropriate to our

applications and, moreover, easy to describe.
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The starting point of our method is to observe that the multiplication

between matrix and encrypted vector can be much faster when the matrix

only has the small number of non-zero tdiagipM qu0ďiăn. Bit-reversed order

DFT matrix can be decomposed to sparse matrices, and this property is

used to fasten the discrete Fourier transform. Our observation is that those

sparse matrices have small number of non-zero tdiagip¨qu0ďiăn (exactly two

or three non-zero vectors).

The DFT matrix factorization

Let DFTNR
n be a matrix corresponding to the DFT algorithm with input

length n with bit-reversed output. The following equation shows that the

matrix representation of recursive FFT Cooley-Tukey algorithm [CT65].

DFT
NR
n “

„

DFTNR
n{2 DFTNR

n{2

DFTNR
n{2 ¨Wn{2 ´DFTNR

n{2 ¨Wn{2



“

„

DFTNR
n{2 0

0 DFTNR
n{2



¨

„

In{2 In{2

Wn{2 ´Wn{2



where the matrix W n{2 “ diagp1, ωn, ω
2
n, ¨ ¨ ¨ , ω

n{2´1
n q and ωn “ e2πi{n. If

we adapt this equation repeatedly, we can decompose the DFT matrix

DFTNR
n to log2 n number of matrices. The following matrix illustrates the

specific form of matrices in the recursive formula:

D
pnq
k “

»

—

—

—

—

—

—

—

–

«

In{k In{k

W n{k ´W n{k

ff

¨ ¨ ¨ 0

...
. . .

...

0 0

«

In{k In{k

W n{k ´W n{k

ff

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cnˆn. (4.2.1)

which has k{2 number diagonal blocks. The recursive equation above im-
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plies

DFTNR
n “Dpnq

n ¨D
pnq
n{2 ¨ ¨ ¨ ¨ ¨D

pnq
2 . (4.2.2)

Remark 4.2.1. As noted above, decomposing DFT matrices into sparse

diagonal matrices is possible for other power-of-prime cases and this in-

duces a fast homomorphic DFT algorithm for power-of-prime dimension.

This fact can be obtained by using general Cooley-Tukey algorithm.

Homomorphic DFT.

We recall the representation of matrix and vector multiplication via Hadamard

multiplication and vector shifting:

M ¨ v “
n
ÿ

i“0

diagipMq d rotipvq.

The matrix-vector multiplication algorithm based on this form is especially

efficient for the matrix M with only small number of non-zero diagonal

vector. Namely, diagipMq is a non-zero vector only for small number of i’s.

We call this matrix by sparse-diagonal matrix. For sparse diagonal matrix

M , we don’t need to compute rotipvq for those i’s satisfying diagipM q “ 0.

Therefore, the required number of shifting in naive approach is at most the

number of non-zero diagonal vectors that the matrix M has.

Lemma 4.2.1. diagkpD
pnq

2i
q is nonzero only for k “ 0,˘n{2i.

Proof. See Equantion (4.2.1).

From Lemma 4.2.1, multiplication between matrix D
pnq

2i
and vector v
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can be represented as follows:

D
pnq

2i
¨ v “ diag0pD

pnq

2i
q d v ` diagn{2ipD

pnq

2i
q d rotn{2ipvq

` diagn´n{2ipD
pnq

2i
q d rot´n{2ipvq.

Therefore, DFTNR
n ¨v can be computed recursively as

ślog2 n
i“1 D

pnq

2i
¨v, where

each multiplication can be done with Op1q number of Hadamard multipli-

cation and shifting. The overall number of operations is Oplog nq homo-

morphic shiftings and Hadamard multiplications with constant plaintext

vectors. The Algorithm 2 shows our homomorphic DFT algorithm in detail

with notations in Section 4.1.

Algorithm 2: Homomorphic DFTNR
n algorithm

Data: Ciphertext ctxt such that Decpctxt, skq “m P Cn

1 for 1 ď i ď log2 n do

2 ctxt0 Ð constMultpdiag0pD
pnq

2i
q, ctxtq;

3 ctxt1 Ð leftRotatepctxt, n{2iq;
4 ctxt2 Ð rightRotatepctxt, n{2iq;

5 ctxt1 Ð constMultpdiagn{2ipD
pnq

2i
q, ctxt1q;

6 ctxt2 Ð constMultpdiagn´n{2ipD
pnq

2i
q, ctxt2q;

7 ctxt Ð addpctxt0, ctxt1q;
8 ctxt Ð addpctxt, ctxt2q;

9 end

In each loop of the Algorithm 2, there are two homomorphic rotations

and three homomorphic constant vector multiplications. Furthermore, left

rotation by n{2 and right rotation by n{2 is same. For this reason, we do

not need to compute right and left rotations for i “ 1 case. This will reduce

one homomorphic rotation. As a result, our algorithm needs p2 log2 n´ 1q

number of homomorphic rotation and p3 log2 nq number of homomorphic
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constant vector multiplications.

Trade-off between depth and complexity.

While our method is fairly efficient with respect to the number of oper-

ations, the required depth with respect to constant multiplication is also

increased by Oplog2 nq. In this respect, we adapt additional parameter r

which is called radix to generalize our method. Our generalized method

gives trade-off between the number of steps and complexity of homomor-

phic DFT.

Assume that log2 n is even and recall the matrix decomposition of DFT

matrix:

DFTNR
n “ Dpnq

n ¨D
pnq
n{2 ¨D

pnq
n{4 ¨D

pnq
n{8 ¨ ¨ ¨ ¨ ¨D

pnq
16 ¨D

pnq
8 ¨D

pnq
4 ¨D

pnq
2

“ pDpnq
n ¨D

pnq
n{2q ¨ pD

pnq
n{4 ¨D

pnq
n{8q ¨ ¨ ¨ pD

pnq
4 ¨D

pnq
2 q.

This equation give a factorization of DFT matrix into log4 n number of

matrices of the form

D
pn;4q
i “ pD

pnq

22i
¨D

pnq

22i´1q for 1 ď i ď log4 n.

We also can define similar term for r “ 2k by

D
pn;rq
j “D

pnq

rj
¨D

pnq

rj{2
¨ ¨ ¨ ¨ ¨D

pnq

rj´1¨2

for 1 ď j ď logr n and k| log2 n. This factorization allows us to compute

DFT in a new way. To analyze the efficiency, we observe some properties

of these matrices.
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Lemma 4.2.2. The multiplication of i-th diagonal matrix and j-th diago-

nal matrix is i`j-th diagonal matrix. More precisely, the following equation

holds

diagipaq ¨ diagjpbq “ diagi`jpad rotipbqq.

Proof. Trivial.

Lemma 4.2.3. Let Dk be a multiplication of k consecutive matrices in

Equation 4.2.2:

Dk “D
pnq

2s`k
¨D

pnq

2s`k´1 ¨ ¨ ¨ ¨ ¨D
pnq

2s`1 .

Then at most 2k`1´1 diagonals of D is nonzero vector. Further, the indices

of nonzero diagonals form arithmetic progression.

Proof. Lemma 4.2.2 clearly holds. To show Lemma 4.2.3, we decompose

D
pnq
2t into diag´n{2tpD

pnq
2t q`diag0pD

pnq
2t q`diagn{2tpD

pnq
2t q as in Lemma 4.2.1.

By Lemma 4.2.2, the index of Dk that is non-zero is of the form

es`1 ¨
n

2s`1
` es`2 ¨

n

2s`2
` ¨ ¨ ¨ ` es`t ¨

n

2s`t
,

where ei P t´1, 0, 1u for s ` 1 ď i ď s ` t. These indices are multiple of

n{2s`t, and the absolute value of it is bounded by
řs`t
j“s`1 n{2

j “ p2t ´

1qn{2s`t.

According to Lemma 4.2.3, the number of nonzero diagonal of D
pn;rq
j is

2r´1 for j ą 1 and r for j “ 1. Thus the required number of homomorphic

multiplication and slot shifting to compute multiplication of encryption of

v and D
pn;rq
j is less than 2r ´ 1 “ Oprq for radix r, respectively. By re-

cursively multiplying D
pn;rq
j to v, we obtain a new algorithm to compute
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homomorphic DFT which requires Opr logr nq homomorphic rotations and

constant vector multiplications while has Oplogr nq depth. Overall, we ob-

tain depth-efficiency trade-off using larger radix. We note that we assumed

that the used radix is a divisor of log2 n, but this condition can be removed

by considering dynamic radices for each recursive step.

4.2.3 Hybrid method

An interesting observation in Lemma 4.2.3 is that the indices of D
pn;rq
j

forms an arithmetic progression. We call this property regular. Here we

show that this property yield a hybrid method of our homomorphic DFT

algorithm and baby-step giant-step (BSGS) algorithm. To do this, we apply

a BSGS matrix-vector multiplication method for sparse diagonal matrixM

with arithmetic progression indices as follows:

t
ÿ

i“1

mi d rot`ipvq “

k1´1
ÿ

i“0

k2
ÿ

j“1

mik2`j d rot`¨pik2`jqpvq

“

k1´1
ÿ

i“0

rotlk2i

˜

k2
ÿ

j“1

rot´lb2ipmik2`jq d rot`jpvq

¸

where mi “ diag`ipM q and k1k2 “ t.

In this BSGS method we can obtain a matrix multiplication M ¨ v

by Opk1 ` k2q rotations and Optq constant multiplications. We remark

that we can vary the choice of k1 and k2 by increasing t and add zero

diagonals. For this reason, we can say that the hybrid method needs Op
?
tq

homomorphic rotations and Optq number of homomorphic constant vector

multiplications. The Table 4.1 shows comparison our methods with other

techniques.
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Naive BSGS Ours Hybrid

# Hadamard Mult Opnq Opnq Opr logr nq Opr logr nq
# Slot Shifting Opnq Op

?
nq Opr logr nq Op

?
r logr nq

Depth 1 1 Oplogr nq Oplogr nq

Table 4.1: Comparison: homomorphic operation number and depth con-
sume for homomorphic DFT with radix r

Remark 4.2.2. Another advantage of our method is that it highly reduces

the size of public key for operations. While the previous BSGS method

requires Op
?
nq rotation key, our method only needs Opr logr nq number

of rotation key.

4.2.4 Implementation Result

We implemented our DFT algorithm using HeaAn library [snu18]. HeaAn li-

brary supports batch encodings, or encoding for vectors, for complex plain-

text space thus it is suitable for our target; discret Fourier transform. All

of experiments in this paper are done at the PC having 32 number of In-

tel(R) Xeon(R) CPU E5-2620 v4 2.10 GHz CPU (each CPU has 8 cores)

and 64GB RAM. We used multi-threding with 8 number of threads.

The following HeaAn parameter setting is what we used in the experi-

ment for our homomorphic DFT algorithm.

‚ qL “ 2440: the largest ciphertext modulus.

‚ N “ 215: the dimension of polynomial ring R.

‚ ∆ “ pk “ 230: scaling factor which is used to make integer polynomial

in encryption and constant vector multiplication both.

‚ σ “ 3.2, ρ “ 0.5, and h “ 64: distribution related parameters.
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Figure 4.1: Timming results for
various radix setting with dimen-
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Figure 4.2: Timming results for
various dimension setting with
radix r “ 4

Note that the expected security of this parameter setting is about 128 bit

following the LWEestimator [APS15].

The Figure 4.1 and 4.2 show timing results for various setting. In case

of the first one, radix varies from 2 to 16 with the fixed dimension of input

vector 212. In case of the second one, dimension varies from 26 to 212 with

the fixed radix 4.

By the effect of baby-step giant-step method, the left one of the Fig-

ure 4.1 and 4.2 shows that timing does not increase a lot when we in-

crease the radix. And, the right figure shows that timing increase linearly

to logarithm of the dimension n. Therefore, we can get a homomorphic

DFT algorithm which is significantly faster and similar depth consume. In

our experiment, we compare the result with DFT on un-encrypted vector.

We use average of |ai ´ bi| for all 0 ď i ă n as difference between two

length n vector a and b. The difference between DFT on encrypted and

un-encrypted state in our experiment is 2´9 to 2´10. We can reduce this

difference by using larger ∆ “ pk.
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There are a few previous implementation results about homomorphic

DFT. In [CSV17], there homomorphic DFT takes about 22 minutes for

n “ 213 with 8-bit precision. In [CKKS17], it takes about 22 minutes with

same length. But these works focus on amortized time by put each element

of the input vector in different ciphertext. We note that our results shows

about 200 times faster than previous one.

4.3 Improved Bootstrapping for HEAAN

In this section, we explain about linear transformations in bootstrapping

for approximate homomorphic encryption scheme. And, we give an im-

proved transformation algorithms for such linear transform using our ho-

momorphic DFT which provides an improved bootstrapping procedure for

approximate homomorphic encryption.

4.3.1 Linear Transformation in Bootstrapping

The bootstrapping procedure for approximate homomorphic encryption

in [CHK`18] can be divided as following steps:

1. Put polynomial coefficients in plaintext slots,

2. Evaluate exponent function,

3. Extract Imaginary part,

4, Switch back to the coefficient representation.

The transformations in the first and the last step are called CoeffToSlot

and SlotToCoeff respectively. In [CHK`18], the authors use the index i of
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slots corresponding to 5k pmod 2Nq for 0 ď k ď N{2 by considering w5k

2N

as in Encode map. To transform coefficients of polynomial representation

of plaintext into slots, we should construct two encodings since there are

only N{2 slots while the number of coefficients is N .

Let tpxq “ t0 ` t1x ` ¨ ¨ ¨ tN´1x
N´1 be a polynomial representation

of encoding with messages z “ pz0, ¨ ¨ ¨ , zN{2´1q in slots, and let v “

pt0, ¨ ¨ ¨ , tN´1q “ pv0,v1q be its vector representation. Suppose that U be

the encoding matrix defined in Section 4.1 and parsed into rU 0|U 1s for N{2

by N{2 matrices U k’s. Then the following equation holds by definition of

encoding map, which yields the SlotToCoeff map,

z “ U ¨

«

v0

v1

ff

“ U 0 ¨ v0 `U 1 ¨ v1.

Note that i ¨U 0 “ U 1 and U´1
0 “ 2

N
¨U 0

T
hold. Using this, we can obtain

that

vk “
1

N

´

U k
T
¨ z `UT

k ¨ z
¯

for k “ 0, 1.

This equation corresponds to CoeffToSlot map.

4.3.2 Improved CoeffToSlot and SlotToCoeff

We now describe a modified linear transforms for bootstrapping. We mainly

focus on how to decompose the matrix U into sparse diagonal matrices.

To obtain this, the bit-reversal permutation matrix R works a central role

in this method. Note that the order of the slots after CoeffToSlot does not

play any role in the bootstrapping. For this reason, we replace U k to V k

52



CHAPTER 4. FASTER HOMOMORPHIC DFT AND IMPROVED
BOOTSTRAPPING

which is row permuted by R:

V k “ U k ¨R for k “ 0, 1.

As in U , the relation V 1 “ i ¨ V 0 holds. For this reason, we focus on

the matrix decomposition of V 0 using recursive relation; this induces the

decomposition of V 1. Let revnpiq denotes bit-reversal permutation of i with

size n.

Lemma 4.3.1. Let Sn “
´

ω
5i¨revnpjq
4n

¯

0ďi,jăn
. Then, V 0 “ SN{2 and fol-

lowing equation holds:

Sn “

«

I W n

I ´W n

ff

¨

«

Sn{2 0

0 Sn{2

ff

for W n “ diagpω5i

4nq0ďiăn.

Proof. V 0 “ SN{2 is clear by definition. Let’s start the proof with the

following claim. Here v2paq is the maximal integer k such that 2k is a

divisor of integer a.

Claim: v2p5
e ´ 1q “ v2peq ` 2 holds for a positive integer e.

Proof: This claim can be proven using the mathematical induction on v2peq.

�

To prove the recursive formula, it suffices to show the following equa-

tion:

Sn “

«

Sn{2 W n ¨ Sn{2

Sn{2 ´W n ¨ Sn{2.

ff

Let Sn “ psi,jq0ďi,jăn, i.e. si,j “ ω
5i¨revnpjq
4n . The following equations show

the above equation. Note that 4n is a power of two integer.
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1. si,j “ si`n{2,j for all i and for 0 ď j ă n{2: this is equivalent to

4n|p5pi`n{2q ¨revnpjq´5i ¨revnpjqq. By the claim v2p5
n{2´1q “ v2pn{2q`

2 “ v2p2nq holds and revnpjq is even for j ă n{2. Combining this we

obtain the desired result is induced.

2. si,j “ ´si`N{2,j for all i and for n{2 ď j ă n: as in the above, it is

equivalent to v2p5
pi`n{2q ¨ revnpjq ´ 5i ¨ revnpjqq “ v2p2nq. It is showed

by v2p5
n{2´1q “ v2pn{2q`2 “ v2p2nq and revnpjq is odd for j ě n{2.

3. si,j`N{2 “ si,j ¨ω
5i

4n for all i and 0 ď j ă n{2: this is clear by definition

of revn.

If we combine these cases, we can easily show that the recursive relation

of S holds.

By adapting Lemma 4.3.1 repeatedly, we can decompose V 0 to log2 n

number of matrices as in Equation 4.2.2. The following matrix illustrates

the specific form of matrices in the recursive formula:

E
pnq
k “

»

—

—

—

—

—

—

—

–

«

In{k W n{k

In{k ´W n{k

ff

¨ ¨ ¨ 0

...
. . .

...

0 0

«

In{k W n{k

In{k ´W n{k

ff

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cnˆn. (4.3.3)

which has k{2 number diagonal blocks. Lemma 4.3.1 implies

V 0 “ E
pN{2q
2 ¨E

pN{2q
4 ¨E

pN{2q
8 ¨ ¨ ¨E

pN{2q
N{2 .

These factor matrices have exactly the same structure with D
pnq
k , so we

can apply our method in previous section (from radix to hybrid method).
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Furthermore, we can also multiply the inverse of V 0 in encrypted state, as

in the same way to the inverse DFT matrix case.

Now we will describe two linear transformations, CoeffToSlot and Slot-

ToCoeff, using V 0 , V ´1
0 and its conjugations. As we noted above, V 1 “

i¨V 0 and further V ´1
k “ 2

N
V k

T
hold as in the case ofU for k “ 0, 1. There-

fore, CoeffToSlot with bit-reversed result and SlotToCoeff with bit-reversed

input are computed as follows for tk “ R ¨ vk for k “ 0, 1:

t0 “
1

2

´

V ´1
0 ¨ z ` V ´1

0 ¨ z
¯

, t1 “ ´
1

2
i
´

V ´1
0 ¨ z ´ V ´1

0 ¨ z
¯

,

z “ V 0 ¨ pt0 ` i ¨ t1q.

Optimization

We can further improve the efficiency of the bootstrapping in light of hoist-

ing, i.e. by computing the common part first or last. More precisely, for

CoeffToSlot, compute V ´1
0 ¨z first and compute other parts using conjuga-

tion. Therefore, t0 and t1 can be computed from z in 2
?
r logrpN{2q homo-

morphic operations for the radix r. For SlotToCoeff, we compute pt0` i ¨t1q

first and multiply V 0. This also needs only 2
?
r logrpN{2q number of ho-

momorphic operations.

Remark 4.3.1. Our technique can be applied for bootstrapping of pn{2q-

sparsely packed ciphertext in [CHK`18]. The plaintext space of sparse

packed ciphertext is ZrY s{pY n ` 1q for Y “ XN{n. So, we just need to

replace ω2N to ω2n.
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4.3.3 Implementation Result

Use one of the parameter sets which is in the previous work [CHK`18] for

easier comparison. And, we run the previous method which is implemented

in HeaAn library [snu18] in the same machine for fare comparison (with

recently release version v2.1). The PC information is same as the previous

implementation in Section 4.2.4.

‚ q0 “ 241: the smallest ciphertext modulus (before bootstrapping).

‚ qL “ 21240: the largest ciphertext modulus.

‚ N “ 216: the dimension of polynomial ring R.

‚ ∆ “ pk “ 231: scaling factor which is used to make integer polynomial

in encryption and constant vector multiplication both.

‚ σ “ 3.2, ρ “ 0.5, and h “ 64: distribution related parameters.

‚ r “ 7 which is the number of iteration in sin evaluation.

The Table 4.2 shows implementation result of bootstrapping using our

linear transformation and previous method. To maximize the effect of our

method, we used number of slots as the largest one (“ N{2).

Key Gen Linear Trans Eval sin Total

Previous 25 hours 26 hours 30 sec 26 hours
Ours 44 sec 97 sec 30 sec 127 sec

Table 4.2: Timing of Bootstrapping with comparison for C32768 plaintext
space. Here amortized time means that bootstrapping time per one com-
plex element. Both works gives about 2´7 additive error while bootstrap-
ping.
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The timing results for linear transformation time shows about 700 times

faster result than previous one. We use radix 32 which means each lin-

ear transformation consumes 3 p“ log32 215q constant vector multiplication

depth. As a result, the modulus of the return ciphertext is 468 bits which

means 14 depth computation can be done after bootstrapping. In the pre-

vious method, the modulus of the return ciphertext is 632 bits which means

19 depth computation can be done after bootstrapping.

Another advantage of our method is key generation time. Key genera-

tion includes public key generation for various rotations and pre-encodings

for diagonal vectors. In the previous method, they need to encode for

N{2p“ 32768q number of constant vectors for each linear transformation.

The number of rotation key is 2
a

N{2 which is quite large compare to

2
?
k logkN{2 in our case. In the experiment, this problem makes their key

generation time slower and the size of pre-encoded vector and public keys

to be huge. Previous method need 800GB to save them and 7GB for ours.

Remark 4.3.2. In this paper, we only consider the linear transformation

part of bootstrapping. But we can use improved evaluation strategy for sine

as in [CCS18]. This paper use Chebyshev approximation method instead of

double angle plus Taylor approximation. This method gives better accuracy

and the depth is reduced with slightly larger complexity.
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Faster Bootstrapping for FHE

over the integers

In this chapter, we proposed new bootstrapping method for fully homo-

morphic encryption over the integers. The first FHE over the integers

was proposed by van Dijk et al. [vDGHV10], and it was extended to

the batch version [CCK`13] and the non-binary message space version

[NK15]. Furthermore, following the scale-invariant technique of a lattice-

based FHE [BGV12], so called the modulus switching technique, Coron et

al. [CLT14] succeeded to construct a scale-invariant FHE over the integers.

In FHEs over the integers with the secret integer p P Z`, the message

m P Zt is encrypted into an integer c “ pq ` te `m, pq ` tp{tsm ` e or

p2q`tp{tspm`trq`e according to the schemes [vDGHV10, CS15, CLT14],

where the q, r, e are uniform randomly chosen integers from some pre-

scribed intervals. Hence the bootstrapping procedure is to homomorphi-
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cally evaluate the decryption function

m “ t
t

p
¨ cs mod t or c´ p ¨ t

c

p
s mod t.

The complicated division by p can be relaxed by using the hardness as-

sumption of the sparse subset sum problem (SSSP): 1{p «
řΘ
i“1 siyi mod t

for secret bit si P t0, 1u, public rational number yi P r0, tq of κ-bit precision

with κ ą log |c| ` λ and Θ “ Õpλ4q. In that case, the decryption function

is reduced to

m “

[

Θ
ÿ

i“1

si
wi
tn´1

W

mod t or c´ p ¨

[

Θ
ÿ

i“1

si
wi
tn

W

mod t,

where n “ Oplogt λq and wi “ tc ¨ yi ¨ t
ns mod tn`1.

In the previous methods [vDGHV10, NK15], each si is encrypted under

a HE with message space Zt, so we need to expand each wi t-adically and

each digits of siwi are encrypted separately. As a result, each of digits of

siwi are encrypted as different ciphertexts, so the homomorphic evaluation

of the additions in the decryption circuit should be done digit-wisely. In

that case, a large number of carry computations are required, which results

in Õpλ4q homomorphic multiplication in the bootstrapping. One possible

approach to avoid this massive homomorphic multiplication is to encrypt

si with a HE with plaintext space as large as wi. However, in that case,

log t-bit should be homomorphically extracted and this is regarded as a

problem as hard as bootstrapping.

Overview of our Bootstrapping method. The idea of our new boot-

strapping method is to use a homomorphic encryption scheme with var-

ious message spaces. Let us denote EncMpmq be a ciphertext of mes-

59



CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

sage m under an encryption with plaintext space M. For a given boot-

strapping key pbkiq1ďiďΘ “ pEncZtn`1 psiqq1ďiďΘ, the output of the ho-

momorphic additions for bootstrapping is the ciphertext ĉ of the form

ĉ “
řΘ
i“1wi ¨bki “ EncZtn`1 pm ¨t

n`
řn´1
j“0 zj ¨t

jq for some integers zj P r0, tq.

To complete the bootstrapping process, it is required to compute the ci-

phertext c “ EncZtpmq from the ciphertext ĉ.

For this, we first suggest plaintext space contraction and dilation func-

tions over the ciphertexts of HEs over the integers.

PSConi : EncZ
tk
pm ¨ tiq Ñ EncZ

tk´i
pmq for 1 ď i ă k,

PSDili : EncZ
tk´i
pmq Ñ EncZ

tk
pm ¨ tiq for 1 ď i ă k,

which do not affect error growth. In case of lattice-based FHEs, these tech-

niques already exist and bootstrapping can be done efficiently by exploiting

them. In this paper, we suggest PSCon and PSDil techniques for HEs over

the integers. With these techniques, we can homomorphically extract n-th

digit of pm ¨ tn`
řn´1
i“0 zi ¨ t

iq in HEs over the integers using a gap-increasing

polynomial Ft,npXq suggested by Halevi and Shoup [HS15], which satisfies

the following equation:

Ft,npx ¨ t
k
` aq “ y ¨ tk`1

` a for a P r0, tq X Z, x, y P Z.

The overview of homomorphic digit extraction with the functions PSCon

and PSDil in HE schemes over the integers are follows. For digit extraction,

we need to compute ci “ EncZtn´i`1
ptxi ` ziq for 0 ď i ď n and xi P Z.
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Assume that following ciphertexts are given:

c0 “ EncZtn`1 ptx0 ` z0q

c1 “ EncZtn ptx1 ` z1q

...

ci´1 “ EncZtn´i`2
ptxi´1 ` zi´1q.

By pi ´ jq time evaluating Ft,npXq for each cj and using PSDil technique,

we can get c1j “ EncZtn`1 pyjt
i`1 ` zjt

jq for each j P t0, 1, ¨ ¨ ¨ , i ´ 1u. By

subtraction and PSCon technique, we get ci “ EncZtn´i`1
ptxi` ziq. Now we

can get ci from cj for 1 ď j ď i ´ 1, so we can compute cn “ EncZtpmq

recursively. The figure below is our bootstrapping process with simple case

of n “ 2 and t “ 2.

As you can see in Figure 1, our bootstrapping process is simpler than

previous works which are very hard to describe. In our implementations

for the security parameter λ “ 72, we set parameters n “ 5 and t “ 2,

which are very small.

[NK15] Our Method
Degree Opλq Opλ1`εq

#.Hommult Opλ4 log6 λq Oplog2 λq

Table 5.1: Comparison with NK15 method

Faster bootstrapping method. We propose a faster bootstrapping

method for FHEs over the integers than previous methods [vDGHV10,

NK15]. Since the complexity of long integers addition depends on both the

length and the number of the integers, the number of multiplications in
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Figure 5.1: Our bootstrapping process for simple case. Note that F2,npXq “
X2 for all n P N. Here star shape denotes some integer of which we do not
need to consider the exact value.

previous works relies on the large parameter Θ “ Õpλ4q. Contrary to that,

the complexity of homomorphic digit extraction only depends on the small

parameter n “ Oplog λq, and this difference makes our method efficient.

Table 5.1 below is a comparison with the previous method [NK15]. Note

that the small constant ε is consequence of using the large message space

Ztn`1 .

An implementation on the CLT scheme. The CLT scheme has the

fastest homomorphic multiplication algorithm among the HEs over the

integers, and the ciphertext form of the scheme is appropriate to apply our

method. Therefore, we apply our method on the CLT scheme, and provide a

precise noise analysis of the bootstrapping procedure. Our implementation
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on the CLT scheme takes about 6 seconds for a 500-bit message space

with a 80-bit security. This result is far superior comparing to the previous

result in [CCK`13], 13 minutes for a 500-bit message space.

Homomorphic evaluation of AES circuit. Due to the inefficiency

of bootstrapping, homomorphic evaluations of AES circuit with leveled or

scale-invariant FHEs so far have been implemented without bootstrapping.

Contrary to the previous works, we implement a homomorphic evaluation

of an AES-128 circuit using our bootstrapping method on the CLT scheme

with low depth parameters. In our implementation, the evaluation takes

about 8 seconds per block, and this result is faster than the result in

[CLT14] without bootstrapping (with large depth parameters), 26 seconds

per block. Furthermore, this is the first time that homomorphic evalua-

tion of AES circuit with bootstrapping is more efficient than homomorphic

evaluation of AES circuit without bootstrapping.

5.1 Basis of FHE over the integers

In this section, we will introduce HE scheme based on integer problems.

DGHV and CS schemes are based on AGCD problem and CLT scheme

is based on variant of the problem. We note that our new method for

bootstrapping can be adapted to all these three schemes. But we will focus

on CLT scheme which is the most efficient integer based HE scheme. We

follow the notation from original paper [CLT14], and describe the scheme

with the message space Zt for a positive integer t ∗. For an η-bit odd integer

∗Original schemes are described with plaintext space Z2, but the extension to Zt is
trivial.
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p and an integer q0 in r0, 2γ{p2q, we define a distribution as follows:

Dρp,q0 “ tp
2
¨ q ` r : Choose q Ð r0, q0q, r Ð p´2ρ, 2ρqu.

Note that this distribution is hard to distinguish with uniform distribution

in r0, 2γq based on the variant of AGCD problem in Section 2.4. Followings

are brief description of CLT scheme (for more information see [CLT14]).

KeyGentp1λq. Generate an odd η-bit integer p and a γ-bit integer x0 “

q0 ¨ p
2` r0 with r0 Ð p´2ρ, 2ρqXZ and q0 Ð r0, 2γ{p2qXZ. Let xi Ð D̃ρp,q0

for 1 ď i ď τ , y1 Ð D̃ρp,q0 , and y “ y1 ` tp{tu, which is the encryption of 1.

Let z be a vector of length Θ, the components of which have κ “ 2γ ` 2

bits of precision following the binary point. Let s P t0, 1uΘ such that

t ¨ 2η

p2
“ xs, zy ` ε mod pt ¨ 2ηq,

with |ε| ď 2´κ. Now define

σ “ q ¨ p2
` r `

Y

PowersofTwoηpsq ¨
p

2η`1

U

,

where the components of q are randomly chosen from r0, q0qXZ and those

of r from p´2ρ, 2ρq X Z. The secret key is sk “ tpu and the public key is

pk “ tx0, x1, ¨ ¨ ¨ , xτ , y,σ, zu.

Encrypttppk,m P rtsq. Choose a random subset S Ă t1, ¨ ¨ ¨ , τu and out-

put

cÐ rm ¨ y `
ÿ

iPS

xisx0 .
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Decrypttpsk, cq . Output mÐ

Y

t ¨ c
p

U

mod t.

Addtppk, c1, c2q. Output c1 Ð c1 ` c2 mod x0.

Converttppk, cq. Output c1 Ð 2 ¨ xσ,BitDecompηpcqy where c “ ptc ¨

zis mod 2ηq1ďiďΘ.

Multtppk, c1, c2q. Output c1 Ð rConvertppk, c1 ¨ c2qsx0 .

Remark 5.1.1. Small difference with original scheme is using plaintext

Zt and xs, zy ` ε is t¨2η

p2
instead of 2η

p2
. This changes the homomorphic

multiplication algorithm as rConvertppk, c1 ¨c2qsx0 instead of rConvertppk, 2 ¨

c1 ¨ c2qsx0 .

Semantic Security

Security for this scheme is from same problem introduced in [CLT14]. The

only difference is change of message space from Z2 to Zt, so we omit this

part. Note that the security of this scheme is from hardness of the variant

of AGCD problem in Section 2.4.

Conditions on the Parameters

The parameters must satisfy the following conditions for security parame-

ter λ and message space Zt:

‚ ρ “ Ωpλq to avoid brute force attacks on noise [CN12, CNT12],

‚ η ě ρ`OpLplog λ` log tqq, where L is the depth of multiplication of

the circuits to be evaluated,
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‚ γ ě ωpp2η ´ ρq2 ¨ log λq to avoid lattice-based attacks [vDGHV10,

CMNT11],

‚ Θ2 ě γ ¨ ωplog λq to avoid lattice attacks on the subset sum problem

[CMNT11],

‚ τ ě γ ` 2λ to apply the leftover hash lemma.

5.2 Decryption Function via Digit Extrac-

tion

5.2.1 Squashed Decryption Function

In the FHEs over the integers with secret integer p, a ciphertext of message

m P rts is of the form c “ pq ` te `m or pq ` p
t
m ` e for q, e P Z. Each

form of ciphertext is decrypted by

ˆ

c´ p ¨

Z

c

p

V˙

mod t or

ˆZ

t

p
¨ c

V˙

mod t.

The decryption function involves the computation of tc{ps and this should

be evaluated homomorphically for bootstrapping. Since division is very

complicated for homomorphic evaluation, decryption functions of FHEs

over the integers are squashed for efficient bootstrapping. The Squashing

is a procedure of expressing secret value 1{p as a subset sum of public

numbers within very small error, which enable to bootstrap efficiently.

The squashing technique was first introduced in [vDGHV10], and gen-

eralized in [NK15]. Let κ1,Θ1, and θ1 be additional parameters satisfying

κ1 ą pγ ` λq{ log t (from security of sparse subset sum problem). The dif-
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ference with the previous methods of squashing is using digit extraction

instead of rounding function. Followings are out squashed decryption func-

tion for CLT scheme.

‚ KeyGen. Generate secret key and public key as same as original

scheme. Set xp “ ttκ
1`1{ps, choose a random Θ1-bit vector s with

Hamming weight θ1, and let S “ ti : si “ 1u. Choose random inte-

gers ui P r0, t
κ1`1q such that

ř

iPS ui “ xp.

‚ Encrypt. c˚ is a ciphertext of a given FHE over the integers. For 1 ď

i ď Θ1, let wi given by an integer nearest to the value of c˚ ¨ ui{t
κ1´n

where n “ rlogt θ
1s` 3. Output both c˚ and w.

‚ Decrypt. Output m1 Ð digitExtracn`1,rp
ř

siwi ` ttn{2sq.

Remark 5.2.1. The squashing technique can be applied not only to the

original scheme in [vDGHV10, CLT14, CS15], but also to the batch version

of the scheme by squashing for each pj as in [NK15].

5.2.2 Digit extraction Technique

Let F kpXq be a k-time evaluation of the function F . In general, F pXq “ X t

does not satisfy the following property when t ą 2:

F k
pxq mod tk`1

“ x mod t @k P N, x P r0, tq X Z.

In [HS15], for the prime t and the positive integer e, they constructed the

polynomial Ft,epXq satisfying the above equation for any k ď e. With this

polynomial, we can extract axe1yt for 1 ď e1 ď e using similar method in

[GHS12a]. Following lemmas are about existence and construction of the

polynomial Ft,epXq, which are introduced in [HS15].
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Digit Extraction Algorithm:

Input: non-negative integers x and r

Compute xi for 1 ď i ď r as following :

x0 “ x

x1 “
rx´ Ft,rpxqstr`1

t

x2 “
rx´ F 2

t,rpxq ´ tFt,rpx1qstr`1

t2

x3 “
rx´ F 3

t,rpxq ´ tF
2
t,rpx1q ´ t

2Ft,rpx2qstr`1

t3

...

xr “
rx´ F r

t,rpxq ´
řr´1
i“1 t

iF r´i
t,r pxiqstr`1

tr

Output: xr “ xptqxry

Figure 5.2: Digit Extraction Algorithm

Lemma 5.2.1. (Corollary 5.4 in [HS15]) For every prime t, there exists

a sequence of integer polynomial f1, f2, ¨ ¨ ¨ , all of degree ď t´ 1, such that

for every exponent e ě 1 and every integer z “ z0 ` t
ez1 (z0 P rts, z1 P Z),

we have

zt ” z0 `

e
ÿ

i“1

fipz0qt
i
pmod te`1

q.

Lemma 5.2.2. (Corollary 5.5 in [HS15]) For every prime t and every

e ě 1, there exists a polynomial Ft,e of degree p such that the equality

Ft,epz0 ` t
e1z1q ” z0 pmod te

1`1q holds for every integer z0, z1 with z0 P rts

and every 1 ď e1 ď e .
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Using a special polynomial Ft,r, we can extract xptqxry from x, through

a polynomial for any non-negative integers x and r, by digit extraction

algorithm in Figure 2. Note that the equality in Lemma 5.2.2 implies that

recursively defined xis are integers.

5.2.3 Homomorphic Digit Extraction in FHE over

the integers

To follow the digit extraction method in [GHS12b] at FHE over the inte-

gers, additional method to control plaintext space is needed.

Plaintext Space Contraction and Dilation

Let Ekpmq is a set of ciphertexts which encrypt m with message space

M “ Ztk . For all HE schemes over the integers, we can construct following

two plaintext space switching functions for 1 ď i ă k :

PSConi : Eptimq Ñ Ek´ipmq,

PSDili : Ek´ipmq Ñ Ekptimq.

The definitions of these functions are somewhat different depending on the

form of a ciphertext.

Case 1 (c “ pq`tr`m). In the schemes of [vDGHV10] and [NK15], with

public exact multiplication x0 “ pq0, plaintext space switching functions

are described as follows:

‚ PSConipcq “ rt
´isx0 ¨ c mod x0,

‚ PSDilipcq “ tic mod x0.
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Correctness of these functions can be checked easily by following equations:

PSConipcq “ rt´isx0pq ` rt
´i
sx0t

kr ` rt´isx0t
im mod x0

“ pq1 ` tk´ir `m,

PSDilipcq “ tipq ` ti`1r ` tim mod x0

“ pq1 ` ti`1r ` tim.

Case 2 (c “ pq ` tp{ts ¨m` r). In the schemes of [CS15] and [CLT14],

the functions PSConi and PSDili are identity functions since

Y p

tk

U

ptm` tkr˚q “
Y p

tk´1

U

pm` tk´1r˚q ` ε,

Y p

tk

U

¨ tm “

Y p

tk´1

U

¨m` ε.

Homomorphic digit extraction

The rounding function in the squashed decryption function can be ex-

pressed as follows:

t
ÿ

siwi{t
ns mod t “ t

ÿ

siwi{t
n
` 0.5u mod t

“ p
ÿ

siwi ` ttn{2uqptqxny.

Thus, the squashed decryption could be expressed as additions and a digit-

extraction. The problem is how to homomorphically evaluate the function

p
ř

siwi ` ttn{2uqptqxny where each wi is defined in Section 5.2.1.

Let t be a prime integer, n be a positive integer less than log λ, andM
be a message space. We follow notations in Section 5.2.1 about squashing.
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In this Section, we suggest a new bootstrapping method. It works on any

HE over the integers which satisfies following conditions:

1. The form of a decryption function is

t
ř

siwi{t
ns mod t or c´ t

ř

siwi{t
ns mod t

where wi can be computed by public values c and ui.

2. It supports homomorphic operations withM “ Zti for 1 ď i ď n`1.

3. There exists a polynomial time algorithm HomExt, a function from

En`1pmq to E1pmxnytq, which is a homomorphic evaluation of digit-

extraction algorithm in Figure 5.2.

Given a HE over the integers satisfying the conditions above, our boot-

strapping method works as diagram below. New parameters s0 “ 1 and

w0 “ ttn{2u are included in the summation.

c EncZtn`1 p
ř

siwiq

EncZtpmq

EncZtn`1 psiq, ui

HomExt
Bootstrap

71



CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

Actually, all HEs over the integers satisfy the above conditions, which

means our method can be applied to all integers-based HEs. In the diagram,

our bootstrapping method consists of two steps: addition and extraction.

Since wi can be computed by public values and the set tEncZtn`1 psiqu is

given as bootstrapping key, the addition step in this diagram is composed

of homomorphic additions on M “ Ztn`1 and modulus operation. Note

that modulus operation mod tn`1 is automatically done since the message

space is given by M “ Ztn`1 .

5.3 Bootstrapping for FHE over the inte-

gers

We apply our method on scale-invariant homomorphic encryption scheme

in [CLT14], the CLT scheme, since error growth during homomorphic eval-

uation is linear so that it is suitable to choose low depth parameter for

implementation. Furthermore, as mentioned in remark 1, since PSCon and

PSDil are trivial mapping, the description of HomExt is very simple.

As mentioned above, we need three conditions: squashed decryption

function with M “ Zt, homomorphic operations on message spaces Zta ,
and homomorphic digit extraction technique. The scheme below is almost

same with scale-invariant homomorphic encryption scheme in [CLT14], and

we just extend it to the message space Zt for the prime t.
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5.3.1 CLT scheme with M “ Zt

Scheme Description

In this section, we follow the notation in [CLT14], and describe the scheme

with the message space Zt for the prime t. For an η-bit odd integer p and

an integer q0 in r0, 2γ{p2q, we define the set

Dρp,q0 “ tp
2
¨ q ` r : Choose q Ð r0, q0q, r Ð p´2ρ, 2ρqu.

‚ KeyGentp1
λq. Generate an odd η-bit integer p and a γ-bit integer

x0 “ q0 ¨ p
2 ` r0 with r0 Ð p´2ρ, 2ρq X Z and q0 Ð r0, 2γ{p2q X Z.

Let xi Ð Dρp,q0 for 1 ď i ď τ , y1 Ð Dρp,q0 , and y “ y1 ` tp{tu, which is

the encryption of 1. Let z be a vector of length Θ, the components

of which have κ “ 2γ`2 bits of precision following the binary point.

Let s P t0, 1uΘ such that

t ¨ 2η

p2
“ xs, zy ` ε mod pt ¨ 2ηq,

with |ε| ď 2´κ. Now define

σ “ q ¨ p2
` r `

Y

PowersofTwoηpsq ¨
p

2η`1

U

,

where the components of q are randomly chosen from r0, q0qXZ and

those of r from p´2ρ, 2ρq X Z. The secret key is sk “ tpu and the

public key is pk “ tx0, x1, ¨ ¨ ¨ , xτ , y,σ, zu.

‚ Encrypttppk,m P rtsq. Choose a random subset S Ă t1, ¨ ¨ ¨ , τu and
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output

cÐ rm ¨ y `
ÿ

iPS

xisx0 .

‚ Decrypttpsk, cq. Output mÐ

Y

t ¨ c
p

U

mod t.

‚ Addtppk, c1, c2q. Output c1 Ð c1 ` c2 mod x0.

‚ Converttppk, cq. Output c1 Ð 2 ¨ xσ,BitDecompηpcqy where c “ ptc ¨

zis mod 2ηq1ďiďΘ.

‚ Multtppk, c1, c2q. Output c1 Ð rConvertppk, c1 ¨ c2qsx0 .

Semantic Security

Security for this scheme is from same problem introduced in [CLT14]. The

only difference is change of message space from Z2 to Zt, so we omit this

part.

Conditions on the Parameters

The parameters must satisfy the following conditions for security parame-

ter λ and message space Zt:

‚ ρ “ Ωpλq to avoid brute force attacks on noise [CN12, CNT12],

‚ η ě ρ`OpLplog λ` log tqq, where L is the depth of multiplication of

the circuits to be evaluated,

‚ γ ě ωpp2η ´ ρq2 ¨ log λq to avoid lattice-based attacks [vDGHV10,

CMNT11],
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‚ Θ2 ě γ ¨ ωplog λq to avoid lattice attacks on the subset sum problem

[CMNT11],

‚ τ ě γ ` 2λ to apply the leftover hash lemma.

5.3.2 Homomorphic Operations with M “ Zta

During bootstrapping, we use homomorphic addition and multiplication

between ciphertexts on the message spaceM “ Zta for 1 ď a ď logt λ. Ho-

momorphic addition and multiplication are described below. Note that x0

is defined in the same manner as in the previous section, and the definition

of Eval is non-deterministic since the method of the evaluation depends on

the formation of a given polynomial.

‚ Addat ppk, c1, c2q. Output c1 ` c2 mod x0.

‚ Multat ppk, c1, c2q. Output Converttppk, ta´1 ¨ c1 ¨ c2q

‚ Evalat ppk, f, cq. Output the homomorphic evaluation of the ciphertext

c with the polynomial f by operations defined above.

A ciphertext c “ q ¨ p2 ` ptar˚ `mq ¨ tp{tau ` r has two kinds of errors, r

and r˚. We call c a ciphertext with noise pρ, ρ˚q if |r| ă 2ρ and |r˚| ă 2ρ
˚

.

Lemma 5.3.1 shows the correctness of Addat and Multat as well as analysis on

noise growth during the homomorphic operations. We notice that the proof

of Lemma 3 is definitely not new one compared to the proof in [CLT14];

we only generalize it from the case of t “ 2 to the case of arbitrary prime

t.

Lemma 5.3.1. (Noise growth analysis) Let c1 and c2 be ciphertexts with

noise pρ1, ρ
˚
1q and pρ2, ρ

˚
2q, respectively. Let ρ “ maxpρ1, ρ2q and ρ˚ “

maxpρ˚1 , ρ
˚
2q. Then,
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- Addat ppk, c1, c2q is a ciphertext with noise pρ` 2, ρ˚ ` 1q

- Multat ppk, c1, c2q is a ciphertext with noise pρ` ρ˚` a log t` 8, log Θq

Proof. Let c1, c2 as below.

c1 “ q1 ¨ p
2
` tp{tau ¨ pm1 ` t

ar˚1 q ` r1,

c2 “ q2 ¨ p
2
` tp{tau ¨ pm2 ` t

ar˚2 q ` r2.

Then addtion of c1 and c2 is

c1 ` c2 “ pq1 ` q2q ¨ p
2
` tp{tau ¨ prm1 `m2sta

`tapr˚1 ` r
˚
2 ` 1{0qq ` r1 ` r2

“ q3 ¨ p
2
` tp{tau ¨ pm3 ` t

ar˚3 q ` r3

for r˚3 ă 2ρ
˚
1 ` 2ρ

˚
2 ` 1 and r3 ă 2ρ1 ` 2ρ2 . The ciphertext of rm1 `m2s2a is

c3 “ rc1` c2sx0 “ c1` c2´ k ¨ x0 for k P t0, 1u since c1, c2 ă x0. Therefore,

c3 Ð Addat ppk, c1, c2q is a ciphertext c3 “ q ¨ p2 ` tp{tau pm ` tar˚q ` r

satisfying r˚ ă 2ρ
˚
1 ` 2ρ

˚
2 ` 1 and r ă 2ρ1 ` 2ρ2 ` 2ρ0 .

Let c1, c2 as defined above, and k, l be integers such that tp{tau “ pp´kq{ta

and tp2{tau “ pp2 ´ lq{ta. Then the following equation holds,

c3 “ q3 ¨ p
2
` ppp´ kq2{taqpm1 ` t

ar˚1 qpm2 ` t
ar˚2 q `R

“ q3 ¨ p
2
` ppp2

´ lq{taq ¨ pm1m2 mod taq `R `R1

“ q3 ¨ p
2
`
X

p2
{ta

\

¨ pm1m2 mod taq ` r3

76



CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

where |R| ă 3¨2η ¨ta¨2ρ
˚`ρ and |R1| ă 2¨2η ¨t2a¨22ρ˚`t2a¨22ρ˚ ă 3¨2η ¨t2a¨22ρ˚ .

Therefore, the inequality |r3| ă 6 ¨ 2η`a log t`ρ`ρ˚ holds when assuming

a log t` ρ˚ ă ρ.

Now we will analyze the error of ciphertext after processing Convert

procedure. We followed the proof of lemma 1 in [CLT14].

Let rlog r3s “ ρ3 ă η` 2a log t` ρ` ρ˚` 3 and cÐ Convertpc3{tq, then

from the equation

σ “ p2
¨ q ` r ` ts1 ¨

p

2η`1
s

Let c1 “ BitDecompηpcq, then we have:

c “ 2xσ, c1y “ 2p2
¨ xq, c1y ` 2xr, c1y ` 2xts1 ¨

p

2η`1
s, c1y.

since the components of c1 are bits,

2xts1 ¨
p

2η`1
s, c1y “ x

p

2η
¨ s1, c1y ` ν2 “

p

2η
xs1, c1y ` ν2,

where |ν2| ă Θ ¨ η. From the definition of BitDecomp and PowersofTwo, we

have xs1, c1y “ xs, cy mod 2η “ xs, cy ` q2 ¨ 2
η. Moreover

xs, cy “
ÿ

si

Yc3

t
¨ zi

U

`∆ ¨ 2η “
ÿ si ¨ c3 ¨ zi

t
` δ1 `∆ ¨ 2η

“
c3

t
¨ xs, zy ` δ1 `∆ ¨ 2η,

for some ∆ P Z and |δ1| ď Θ{2. Using xs, zy “ 2η ¨ t{p2 ´ ε ´ µ ¨ 2η ¨ t for

some µ P Z, and c3 “ r3 ` tp2{tau ¨m` q3 ¨ p
2, this gives
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xs, cy “ q3 ¨ 2
η
`

2η

ta
m´

` ¨ 2η

p2 ¨ ta
m`

2η

p2
r3 ´

c3

t
ε` δ1 ` p∆´ c3 ¨ µq ¨ 2

η.

Therefore we can write

xs, cy “ q1 ¨ 2
η
`m ¨

2η

ta
` r˚

for some r˚ P Z, with |r˚| ď 2ρ3´η`3. Now we get an equation below:

2
AY p

2η`1
¨ s1

U

, c1
E

“ q4 ¨ p`m ¨
p

ta
` r˚ ¨

p

2η
` ν2

with |q4| ď Θ; namely the components of pp{2η`1q ¨ s1 are smaller than p

and c1 is a binary vector. This gives

2
AY p

2η`1
¨ s1

U

, c1
E

“ ptaq4 `mq ¨
Y p

ta

]

` r˚2

with |r˚2 | ď 2ρ3´η`4. Then we obtain

c “ 2p2
¨ xq, c1y ` 2xr, c1y ` ptaq4 `mq ¨

Y p

ta

]

` r˚2

“ 2q2 ¨ p2
` ptaq4 `mq ¨

Y p

ta

]

` r1

where |r1| ď |r˚2 | ` ηΘ2ρ`1 ď 2ρ3´η`4 ` ηΘ2ρ`1 ă 2a log t`ρ`ρ˚`7 ` ηΘ2λ`1.

Therefore, c is ciphertext with noise pρ` ρ˚ ` a log t` 8, log Θq if a log t`

ρ` ρ˚ ` 5 ą log η ` log Θ` λ.
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5.3.3 Homomorphic Digit Extraction for CLT scheme

During homomorphic digit extraction, we use various message spaces from

Zt to Ztn`1 . Let EncZ
tk
pmq be a ciphertext of m with message space Ztk

in the form of q ¨ p2 `
X

p{tk
\

¨ pm ` tk ¨ r˚q ` r. The following algorithm

represents homomorphic digit extraction with CLT scheme. Note that the

polynomial Ft,n is explained in the section 5.2.2.

HomExt Algorithm (Homomorphic digit extraction):

Input: A ciphertext c of message space Ztn`1

Compute ci,j for 0 ď i ď n, 0 ď j ď n´ i :

c0,0 Ð c
For 0 ď i ď n´ 1,

For 0 ď j ď n´ i´ 1,

ci,j`1 Ð Evaln´i`1
t ppk, Ft,n, ci,jq

ci`1,0 Ð c0,0 ´ c0,i`1 ´ c1,i ´ ¨ ¨ ¨ ´ ci,1

Output: cn,0

Figure 5.3: HomExt Algorithm

To understand the above algorithm, we need to check when we can

change the message space for a fixed ciphertext. In the scale invariant HE

over the integer, since PSDil and PSCon are trivial mapping, EncZ
tk
pmq

can be treated as EncZ
t`
pt`´kmq for k ă `. Conversely, if m is a multiple

of t`´k, EncZ
t`
pmq can be treated as EncZ

tk
pm{t`´kq.

The following lemma shows the correctness of the proposed homomor-

phic digit extraction algorithm.
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Lemma 5.3.2. (Correctness of HomExt) For given m “ b0,0, define bi,j:

bi,0 “ pb0,0 ´

i´1
ÿ

j“0

tj ¨ bj,i´j mod tn`1
q{ti for 1 ď i ď n,

bi,j`1 “ Ft,npbi,jq for 0 ď i ă n, 0 ď j ď n´ i.

When we set c0 “ EncZtn`1 pb0,0q and define pci,jq following the HomExt

algorithm, then ci,0 “ EncZtn´i`1
pbi,0q for 0 ď i ď n so that the equality

cn,0 “ EncZtpm
ptqxnyq holds.

Proof. We use induction on i. The statement is clear when i “ 0. Suppose

the proposition is true for i ă m. Then we have

cm,0 “ c0,0 ´

m´1
ÿ

j“0

cj,m´j

“ c0 ´

m´1
ÿ

j“0

EncZ
tn´j`1

`

Fm´j
t,n pbj,0q

˘

“ c0 ´

m´1
ÿ

j“0

EncZtn`1

`

tjFm´j
t,n pbj,0q

˘

“ EncZtn`1

˜

b0,0 ´

m´1
ÿ

j“0

tjFm´j
t,n pbj,0q

¸

“ EncZtn`1

˜

b0,0 ´

m´1
ÿ

j“0

tjbj,m´j mod tn`1

¸

“ EncZtn`1 pt
mbm,0q “ EncZtn`1´m pbm,0q.

Therefore, this lemma holds for any positive i ď n, and this means cn,0 “

EncZtpbn,0q “ EncZtpm
ptqxnyq, so this lemma shows the correctness of our

bootstrapping procedure.
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To sum up, we can homomorphically evaluate digit-extraction, so CLT

scheme satisfies all conditions in section 5.2.3; namely, our method can be

applied to CLT scheme. Now we introduce the explicit explanation of the

application of our method on the scheme.

5.3.4 Our Method on the CLT scheme

For an η-bit odd integer p and integer q0 in r0, 2γ{p2q, we define the set

Dρp,q0 “ tq Ð r0, q0q, r Ð p´2ρ, 2ρq : Output p2q ` ru.

‚ KeyGen˚t p1
λq. Generate pk “ tx0, x1, ¨ ¨ ¨ , xτ ,σ, zu as in Section 5.3.1.

Choose a random a Θ1-bit vector s1 with Hamming weight θ1, and let

S 1 “ ti : s1i “ 1u. Choose a random integer ui P r0, t
κ`1q such that

ř

iPS1 ui “ ttκ`1{ps. For n “ rlogt θ
1s` 3, generate

vi “ qi ¨ p
2
`

Y p

tn`1

]

¨ s1i ` ri

and v0 “ q ¨p2`
X

p
tn`1

\

¨ t
n

2
`r, where q, qi P r0, q0q and r, ri P p´2ρ, 2ρq

for 1 ď i ď Θ1. The secret key is sk “ tpu and the public key is

pk˚ “ tpk,u,vu.

‚ HomSumtpc,u,vq. Generate w0 “ 1, wi “ tc ¨ ui{t
κ´ns mod tn`1 for

n “ rlogt θ
1s` 3, and output

c1 Ð
Θ1
ÿ

i“0

vi ¨ wi mod x0.

‚ Bootstraptpc,u,vq. For c1 Ð HomSumtpc,u,vq, output the new ci-
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phertext HomExtpc1q.

Conditions on the Parameters

The security of the squashed scheme has been studied in [vDGHV10,

CMNT11, CNT12]. Here, λ is a security parameter, and γ is as in the

previous section.

‚ n “ rlogt θs` 3 for the correctness of squashed decryption function,

‚ κ1 ą pγ`λq{ log t for the correctness of squashed decryption function,

‚ Θ12 ě γ ¨ ωplog λq to avoid a lattice-based attack on the subset sum

problem [CMNT11, CNT12],

‚
`

Θ1

θ1{2

˘

ě 2λ to avoid an attack on the sparse subset sum problem

[BIWX11].

5.3.5 Analysis of Proposed Bootstrapping Method

Our analysis can be more tight for binary message space, since the eval-

uation of the polynomial Ft,npXq for t ą 2 is relatively hard due to its

complicated form. In this section, we first check the correctness of our

bootstrapping method and analyze the noise growth during bootstrapping

procedure. Also, we compute the number of homomorphic multiplications

in our method, which directly implies the efficiency of our method.

Theorem 5.3.1. For c˚ Ð Bootstrappc,u,vq, c˚ is ciphertext with noise

pρ2, ρ
˚
2q “ pρ` δ ` n log tplog t` log Θ` 8qp1` εq, log Θ` nq ,
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and ciphertexts c and c˚ have same message if ρ˚ and ρ˚2 is smaller than p.

Here ε “
´

n`1
2
¨ log t` t` n`2

log t

¯

{plog t` log Θ` 8q and δ “ pn` 1q log t`

logpΘ1 ` 1q.

Proof. (HomSum) Note that vi “ qi ¨ p
2 ` tp{tn`1u ¨ si ` ri and v0 “

q ¨ p2 ` tp{tn`1u ¨ ttn{2u ` r with q, qi P r0, q0q and r, ri P p´2ρ, 2ρq for

1 ď i ď Θ1. So if c0,0 Ð HomSumpc,u,vq, then c0,0 “ q1 ¨ p2 ` tp{tn`1u ¨

pp
ř

siwi ` ttn{2uq mod tn`1 ` r˚tn`1q ` r1 for |r1| “ |
řΘ1

i“1wiri ` r| ă

pΘ1 ` 1q2ρ`pn`1q log t and |r˚| ď Θ1. Therefore, c0,0 is a ciphertext with

noise pρ1, ρ
˚
1q “ pρ`pn`1q log t` logpΘ1`1q, log Θ1q whose message space

is Ztn`1 .

(HomExt) Let ci,j is a ciphertext with noise pρi,j, ρ
˚
i,jq, then the equations

ρ0,0 “ ρ ` pn ` 1q log t ` logpΘ1 ` 1q and ρ˚0,0 “ log Θ1 holds by above

HomSum procedure. By applying Lemma 5.3.1, we can set

ρi,0 “ maxtρ0,i, ¨ ¨ ¨ , ρi´1,1u ` 2i, ρ˚i,0 “ log Θ` i log t

for 1 ď i ď n. First, we will show the equality

maxtρ0,i`1, ¨ ¨ ¨ , ρi,1u “ ρi,1

holds for 0 ď i ď n ´ 1. Since cj,i´j`1 “ Evaln´j`1
t ppk, Ft,n, cj,i´jq for

0 ď j ď i, it is sufficient to compare noise increase of cj,i´j after Multat .

For 1 ď j ď i ´ 1, the increase of first noise of cj,i´j is less than or

equal to log Θ ` pn ` 1q log t ` 8, and the increase of noise of ci,0 is ρ˚i,0 `

pn ´ i ` 1q log t ` 8 “ log Θ ` pn ` 1q log t ` 8. Therefore, the equality

maxtρ0,i`1, ¨ ¨ ¨ , ρi,1u “ ρi,1 holds and we can get

ρi,0 “ ρi´1,1 ` 2i.
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Second, we will analyze the noise increase in while evaluating Ft,n. Note

that the polynomial Ft,n is of degree t and its coefficients are bounded by

tn`1. Then, we can regard each term of Ft,n is contained by at most t times

of multiplications, so we get ρi´1,1 “ ρi´1,0 ` rlog ts ¨ plog t ¨ pn ´ i ` 2q `

log Θ` 8q ` trlog ts. Now, we obtain a recursion formula:

ρi,0 “ ρi´1,0 ` rlog ts ¨ plog t ¨ pn´ i` 2q ` log Θ` 8q

`trlog ts` 2i.

The consequence of the recursion formula is

ρn,0 “ ρ0,0 ` log2 t ¨
n2 ` 3n

2
` n log tplog Θ` 8q

`nt log t` n2
` 2n

“ ρ0,0 ` n log tplog t` log Θ` 8qp1` εq

for ε “
´

n`1
2
¨ log t` t` n`2

log t

¯

{plog t` log Θ` 8q.

(Correctness) Let Encρ,ρ
˚

Z
tk
pmq be a set of ciphertext with message m PM “

Ztk and error pρ, ρ˚q. Then our bootstrapping process can be described as

below diagram.

Top side of the diagram was proved in 1. HomSum. Also, Lemma 5.3.2
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and 2. HomExt exactly signify the right side of the diagram, and the dis-

cussion in Section 5.3.3 shows the equality m “ p
ř

siwi ` ttn{2u mod

tn`1qptqxny holds so that bottom side of the diagram is proved.

Since the first noise grows approximately plog t ` log Θ ` 8q per each

multiplication, we can think of the degree of Bootstrap function is

2n log tp1`εq`ε1 “ Opλ1`ε`
ε1

n log t q “ Opλ1`ε2q

where ε1 “ tpn` 1q log t` logpΘ1 ` 1qu{plog t` log Θ` 8q.

Theorem 5.3.2. The number of multiplication operations in our boot-

strapping algorithm is Opnpn` 1q{2q “ Oplog2 λq.

Proof. We will treat t as a constant, so the number of multiplication while

evaluating polynomial Ft,n is constant. The number of evaluation k is equal

to 1`2`¨ ¨ ¨`n “ npn`1q{2; thus, the number of multiplication operations

is Opnpn` 1q{2q.

As a result, in our bootstrapping method, the number of homomorphic

multiplications is Oplog2 λq and multiplicative degree is Opλ1`εq. Compar-

ing to the previous methods including the result in [NK15], Õpλ4q mul-

tiplications, our method shows significantly improved result within the

framework of efficiency. In addition to theoretical analysis, we will explain

the implementation result of our bootstrapping method applying to the

CLT scheme in next section.

85



CHAPTER 5. FASTER BOOTSTRAPPING FOR FHE OVER THE
INTEGERS

5.4 Implementation Result

While implementing our bootstrapping method, we use word decomposi-

tion and the powers of word instead of BitDecomp and PowersofTwo with

word size w “ 32. Moreover, in order to use a public key of reasonable

size, we compress the ciphertext using the same method as in [CMNT11].

We implement our bootstrapping method and check the running time of

Bootstrap. Furthermore, for precise comparison with other FHEs, we im-

plement the homomorphic evaluation of the AES-128 circuit, which has

emerged lately as a standard homomorphic evaluation circuit. We encrypt

messages bit-wisely while AES evaultion as in [CLT14].

1. Parameters (` “ 500, λ “ 72).

- AGCD parameters: η “ 192, γ “ 3.8ˆ 105, ρ “ 52

- Convert parameters: Θ “ 1500, θ “ 100

- Bootstrap parameters: Θ1 “ 8000, θ1 “ 15

2. Efficiency.

- The number of Add: 8000 + 10

- The number of Mult: 8

- Error size after bootstrapping: 122 bit

3. AES evaluation.

- Bootstrap Time : 6.7 ˆ 128 sec (128 ciphertexts)

- SubByte Time : 128 sec
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- Total AES Time : 4020 sec

- Relative Time (Total AES Time / `): 8 sec

Remark 5.4.1. Implementations of our bootstrapping method and homo-

morphic evaluation of AES circuit were progressed on a desktop with eight

core Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz processors and 16GB

RAM using C++ and GMP 6.0.0[G`96].

This result shows that bootstrapping process can be done with only 8

number of homomorphic multiplications. Our bootstrapping procedure for

one ciphertext takes about 6 seconds. This result is faster than previous

results in FHE over the integers [CMNT11, vDGHV10, CCK`13], and also

compatable with the result in [HS15], 320 seconds for 16000-bit message

space. Comparing to the results of homomorphic evaluation of AES circuit

in [CCK`13, CLT14], 13 minutes and 23 seconds per block at security level

λ “ 72, homomorphic evaluation of AES circuit applying our bootstrap-

ping method takes 8 seconds per block on a 8-core machine at 3.4 GHz

for the same security level. This implementation of homomorphic evalua-

tion of AES circuit is the first case that using small depth parameter with

bootstrapping can be faster than using large depth without bootstrapping.
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Chapter 6

Logistic Regression on Large

Encrypted Data

In this chapter, we present an efficient algorithm for logistic regression on

encrypted data, and demonstrate its practical feasibility against realistic

size datasets, for the first time to the best of our knowledge. We evaluate

our algorithm against a real, private financial dataset consisting of 422,108

samples over 200 features. Our implementation successfully learned a qual-

ity model in „17 hours on a single machine, where we tested it against a

validation set of 844,217 samples and obtained a sufficient Kolmogorov

Smirnov statistic value of 50.84. The performance is “only” two to three

orders of magnitude slower than that of plaintext learning, which is encour-

aging, considering the inherent computational overhead of HEs. We also

executed our algorithm on the public MNIST dataset for more detailed

evaluation, and it took „2 hours to learn an encrypted model with 96.4%

accuracy. Below we describe the principal techniques used in our efficient

logistic regression algorithm on a large encrypted dataset.
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Approximate HE. Our algorithm leverages the recent advances of (word-

wise) approximate HE schemes and the approximate bootstrapping method

to reduce the computational overhead. The approximate HE can quickly

compute approximated results of complex operations, avoiding the bit-

manipulation overhead. Similarly, the approximate bootstrapping can ef-

ficiently bootstrap a ciphertext at the cost of additional approximation

noise.

While both the approximate HE and the approximate bootstrapping

can reduce the computational overheads, they have the disadvantage of

introducing an additional noise for each computation step. Even if it is

small, the noise may affect the overall machine learning performance (e.g.,

the convergence rate and accuracy), but it had not been clear how critical

the small noise is. We empirically show that the additional noise is not sig-

nificant to deteriorate the accuracy of a learned model and the convergence

rate. Indeed, our finding is consistent with the results of low-precision train-

ing approaches in the literature [DSFRO17, ZLK`16, GAGN15, CBD14]

which have also empirically shown that small approximation (round-off)

errors due to the low-precision are manageable.

HE-Optimized, Vectorized Logistic Regression Algorithm. The

approximate HE scheme we use also supports the packing method [CKKS17]

which can further reduce the computation overhead. In the packed HEs,

a single ciphertext represents an encryption of a vector of plaintexts, and

ciphertext operations correspond to point-wise operations on plaintext vec-

tors, so-called single instruction multiple data (SIMD) operations.

To maximize the benefits of the packed scheme, we vectorize our logis-

tic regression algorithm to utilize the SIMD operations as much as possi-
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ble. For example, the inner product operation is represented as a SIMD-

multiplication followed by a sequence of rotations and SIMD-additions.

Moreover, we carefully tune the vectorized algorithm to minimize redun-

dant computations caused by the use of the SIMD operations, reduce the

depth of nested multiplications, and minimize the approximation noises by

reordering operations.

Parallelized Bootstrapping. One of the most expensive operations of

HEs is the bootstrapping operation (even with the approximate bootstrap-

ping method). This operation needs to be periodically executed during the

entire computation. In logistic regression, for example, it should be exe-

cuted every few iterations, and dominates the overall training time. It is

critical for performance to optimize the bootstrapping operation.

We design our algorithm to parallelize the bootstrapping operation. It

splits a ciphertext into multiple smaller chunks and executes bootstrapping

on each chunk in parallel, achieving a significant speedup of the overall

performance. Moreover, we carefully design the packing of training data

(see below) so that our algorithm continues to use the chunks without

merging them in the next training iterations, which additionally saves time

it takes to reconstruct a ciphertext from the chucks.

HE-Optimized, Efficient Partition of Training Data. As mentioned

above, we pack multiple plaintexts in a single ciphertext, and it is criti-

cal for performance how to pack (i.e., partition) the training dataset. The

training data can be seen as an n ˆ m matrix with n samples and m

features. A naive encoding would pack each row (or column) into a cipher-

text, resulting in a total of n (or m) ciphertexts. This encoding, however,

is not efficient, since it either does not utilize the maximum capacity of
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the ciphertexts, or requires too much capacity, increasing the computation

overhead drastically.

We design an efficient partition of training data in which a sub n1ˆm1

matrix is packed into a single ciphertext, where the size of the matrix is set

to the maximum capacity of each ciphertext, and m1 is set to align with

the aforementioned parallelization technique, avoiding an extra overhead

of the ciphertext reconstruction.

Approximating Non-Polynomial Functions As mentioned earlier,

non-polynomial functions are computationally expensive in HEs. We mit-

igate this performance overhead issue by approximating them as poly-

nomials. A sigmoid function, for example, is replaced by its polynomial

approximation in our training algorithm. Note that, however, an approx-

imation at a point such as Taylor expansion is not adequate for logistic

regression (and machine learning in general) since the deviation could be

too large at other points. Instead, we use an interval approximation whose

difference on the interval is minimized in terms of least squares. Com-

bined with a proper input normalization, the interval approximation has

provided sufficient precision for logistic regression in our experiment.

6.1 Basis of Logistic Regression

Logistic regression is a machine learning algorithm to learn a model for

classification. We focus on the binary classification throughout this paper

for the simplicity of the presentation. In logistic regression, we consider
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the following model:

log

„

PrpY “ 0|X “ xq

PrpY “ 1|X “ xq



“ xw, p1,xqy

where:∗

PrpY “ 1|X “ xq “
1

1` e´xw,p1,xqy

PrpY “ 0|X “ xq “
e´xw,p1,xqy

1` e´xw,p1,xqy

for an input vector X of d features, a class Y , a weight vector w P Rd`1.

The goal of the logistic regression training, given m samples tpxi, yiqum,

is to find a weight vector w that minimizes the negative log likelihood

function `pwq “ ´ 1
m
¨ logLpwq, where:

Lpwq “
m
ź

i“1

hwpxiq
yi ¨ p1´ hwpxiqq

1´yi

with hwpxiq “ σpxw, p1,xiqyq and σpxq “ 1{p1`e´xq. Since `pwq is convex,

we can use the gradient descent method to find the vectorw that minimizes

`pwq. The gradient descent method for logistic regression is formulated as

the following recurrence relation:

wi`1 “ wi ´ α ¨∆w`pwiq

for a learning rate α. The gradient of the log likelihood function is as

follows:

∆w`pwq “ ´
1

m

m
ÿ

i“1

σp´xzi,wyq ¨ zi

∗We write x¨, ¨y for the inner product, and p1,xq for a vector extended with 1 from
x.
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where zi “ y1i ¨ p1,xiq P Rd`1, and y1i “ 2yi ´ 1 P t´1, 1u.

6.2 Logistic Regression on Encrypted Data

In this section, we explain our algorithm for efficient logistic regression

on encrypted data. We first present a baseline (plaintext) algorithm of

the logistic regression training, designed to be friendly to homomorphic

evaluation (Section 6.2.1). Then we explain how to optimize the baseline

algorithm to be efficiently evaluated in HEs.

6.2.1 HE-friendly Logistic Regression Algorithm

We first explain our baseline algorithm of the logistic regression training,

as shown in Algorithm 3, that we will further optimize in the next section.

We design the baseline algorithm to be friendly to homomorphic evaluation

by avoiding the use of certain types of computations that are expensive in

HEs.

Mini-Batch Gradient Descent. We adopt the mini-batch gradient de-

scent method, where we set the mini-batch size according to the number of

slots in a packed ciphertext. We do not consider the stochastic gradient de-

scent method since it does not utilize the maximum capacity of the packed

ciphertext. Also, we do not consider the full-batch gradient descent method

since it requires too many and/or large ciphertexts for each iteration when

the training dataset is large.

Nesterov Accelerated Gradient Optimizer. We adopt Nesterov ac-

celerated gradient (NAG) as the gradient descent optimization method. We
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Figure 6.1: Sigmoid (the first) and its two approximations using the least
squares fitting method (the second) and the Taylor expansion (the third).

choose NAG among the various optimization methods, since it provides de-

cent optimization performance without using the division operation that

is expensive in HEs. The NAG can be formulated as follows:

wi`1 “ vi ´ γ ¨∆w`pviq

vi`1 “ p1´ ηq ¨ wi`1 ` η ¨ wi

where wi and vi are two weight vectors to be updated for each iteration

i, ∆w`pviq is the gradient of the log likelihood function (as given in Sec-

tion 6.1), and γ and η are parameters.

Polynomial Approximation of Activation Function. An essential

step of the logistic regression training is to apply an activation function,

e.g., the sigmoid function σpxq “ 1{p1 ` e´xq. Since non-polynomials are
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very expensive to evaluate in HEs, we consider its (low-degree) polynomial

approximation σ1 as an alternative in our algorithm. We use the least

squares fitting method to approximate the sigmoid function. The least

squares fitting polynomial provides a sufficient approximation within the

given interval. Figure 6.1, for example, plots the original sigmoid function,

its least squares fitting polynomial (of degree 3) within the interval r´8, 8s,

and its Taylor expansion (of degree 3) at the point x “ 0. Note that the

Taylor polynomial provides an accurate approximation only around the

given point, while the least squares fitting polynomial provides a good

approximation in a wider range.

Algorithm 3: HE-friendly logistic regression algorithm

Data: Mini-batches of training data tZiu where Zi P Rmˆf (i.e., the
mini-batch size is m), parameters γ and η, the number of
iterations K, and a polynomial approximation of sigmoid σ1

Result: Weight vectors w,v P Rf

1 Initialize weight vector: w,v Ð 0 for k in r1..Ks do
2 Select a mini-batch Zi (in order, or at random);
3 a “ Zi ¨ v;
4 for j in r1..ms do
5 bj “ σ1pajq
6 end

7 ∆ “
řm´1
j“0 bj ¨ Zirjs w

` “ v ´ γ ¨∆ v` “ p1´ ηq ¨w` ` η ¨w
w “ w`, v “ v`

8 end

Baseline Algorithm. The Algorithm 3 shows the resulting baseline al-

gorithm. Note that each sample (row) zi of the training data Zi is struc-

tured by zi “ y1i ¨ p1,xiq P Rf , where y1i “ 2yi ´ 1 P t´1, 1u, and xi

and yi are the original input samples and its class output, respectively (as
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described in Section 6.1).

6.2.2 HE-Optimized Logistic Regression Algorithm

Now we optimize the baseline algorithm (Algorithm 3) to be efficiently

evaluated in HEs against large encrypted data. Specifically, we optimize the

body of the main iteration loop (lines 2–7 of Algorithm 3). Conceptually,

the optimization consists of two parts: vectorization using homomorphic

SIMD operations, and fine-tuning the evaluation order. In this section, we

explain the first part, which will result in the vectorized body of the main

iteration loop as shown in Algorithm 6. We will explain the second part in

the next section.

Let us first define some notations. For two matrices A and B, we write

A`B and A˝B to denote the addition and the element-wise multiplication

(i.e., Hadamard product) of A and B, respectively. Also, we write A˝k to

denote the element-wise exponentiation, i.e., A˝k “ taki,ju for A “ tai,ju.

Partition and Encryption of Training Data

Assume that the training data txi,ju consists of n samples over f ´ 1

features, throughout this section. This data can be seen as an nˆf matrix

Z including the target tyiu as follows:

Z “

»

—

—

—

—

—

–

zr0sr0s, zr0sr1s, ¨ ¨ ¨ , zr0srf ´ 1s

zr1sr0s, zr1sr1s, ¨ ¨ ¨ , zr1srf ´ 1s
...

zrn´ 1sr0s, zrn´ 1sr1s, ¨ ¨ ¨ , zrn´ 1srf ´ 1s

fi

ffi

ffi

ffi

ffi

ffi

fl
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where zrisr0s “ yi and zrisrj`1s “ yi ¨xi,j for 0 ď i ă n and 0 ď j ă f´1.†

We divide Z into multiple m ˆ g sub-matrices Zi,j (for 0 ď i ă n{m

and 0 ď j ă f{g) as follows:

Zi,j “

»

—

—

—

—

—

–

zrmisrgjs, ¨ ¨ ¨ , zrmisrgj ` pg ´ 1qs

zrmi` 1srgjs, ¨ ¨ ¨ , zrmi` 1srgj ` pg ´ 1qs
...

zrmi` pm´ 1qsrgjs, ¨ ¨ ¨ , zrmi` pm´ 1qsrgj ` pg ´ 1qs

fi

ffi

ffi

ffi

ffi

ffi

fl

Zi,j is supposed to be packed into a single ciphertext, and thus we set m

and g in a way that utilizes the maximum ciphertext slots, N{2, that is,

m ˆ g “ N{2. Also, we set g to the same size of the partition of a weight

vector for the bootstrapping parallelization, which in turn decides m, the

size of a mini-batch block.

To encrypt Zi,j in a single ciphertext, we first represent it in a vector

pi,j:

pi,jrks “ Zi,jrtk{gusrk mod gs p0 ď k ă g ¨mq

and encrypt pi,j using the scheme described in Section 4.1:

encZrisrjs “ encryptppi,j; ∆zq

Note that we have nf{mg ciphertexts to encrypt the whole training data.

Partition and Encryption of Weight Vectors

We have two weight vectors, w and v, of size f in our logistic regression

algorithm due to the NAG optimization (as shown in Section 6.2.1). We

divide each of them into multiple sub-vectors, wi and vi, for the purpose

†We have yi ¨ xi,j instead of xi,j for a simpler representation of the gradient descent
method, as described in Section 6.1. This representation also has an advantage for
computing a gradient ∆w`pviq over ciphertexts.
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of the bootstrapping parallelization. Then we construct matrices, Wi and

Vi, each of which consists of m duplicates of each of sub-vectors, wi and

vi, as follows:

Wi “

»

—

—

—

—

—

–

wrgis, wrgi` 1s, ¨ ¨ ¨ , wrgi` pg ´ 1qs

wrgis, wrgi` 1s, ¨ ¨ ¨ , wrgi` pg ´ 1qs
...

wrgis, wrgi` 1s, ¨ ¨ ¨ , wrgi` pg ´ 1qs

fi

ffi

ffi

ffi

ffi

ffi

fl

Vi “

»

—

—

—

—

—

–

vrgis, vrgi` 1s, ¨ ¨ ¨ , vrgi` pg ´ 1qs

vrgis, vrgi` 1s, ¨ ¨ ¨ , vrgi` pg ´ 1qs
...

vrgis, vrgi` 1s, ¨ ¨ ¨ , vrgi` pg ´ 1qs

fi

ffi

ffi

ffi

ffi

ffi

fl

We write encWris and encVris to denote encryptions of these matrices. We

initialize them to be an encryption of a zero vector.

Homomorphic Evaluation of Inner Product

One of the essential operations of logistic regression is the inner prod-

uct. If we have m samples over g features, then for each iteration, we

have to compute m inner products on vectors of size g, where each inner

product requires g2 multiplication and g ´ 1 addition operations, that is,

m ¨ pg2 ¨mult`g ¨addq operations in total. Now we will show an optimized,

batch inner product method using SIMD-addition, SIMD-multiplication,

and rotation operations, which requires only two SIMD-multiplication op-

erations and 2 log g rotation-and-SIMD-addition operations to compute the

m inner products, that is, 2 ¨ SIMDmult ` 2 log g ¨ prot ` SIMDaddq in to-
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tal. This batch method is extremely efficient in the packed HEs where

SIMD operations provide high throughput at no additional cost compared

to non-SIMD operations.

The batch inner product method is as follows. Suppose we want to com-

pute Z ¨ v where Z P Rmˆg and v P Rg. Assume that g is a power of two.‡

First, we construct a matrix V that consists of m duplicate row-vectors

of v as described in Section 6.2.2. Then, we can compute the Hadamard

product, Z ˝ V , by conducting a single SIMD-multiplication as follows:

Z ˝ V “

»

—

—

—

—

—

–

Zr1sr1s ¨ vr1s, Zr1sr2s ¨ vr2s, ¨ ¨ ¨ , Zr1srgs ¨ vrgs

Zr2sr1s ¨ vr1s, Zr2sr2s ¨ vr2s, ¨ ¨ ¨ , Zr2srgs ¨ vrgs
...

...
. . .

...

Zrmsr1s ¨ vr1s, Zrmsr2s ¨ vr2s, ¨ ¨ ¨ , Zrmsrgs ¨ vrgs

fi

ffi

ffi

ffi

ffi

ffi

fl

Now, we need to compute the summation of the columns, which becomes

the inner product result. We can compute the summation by repeating

the rotation-and-addition operations log g times as follows. Let LrotipAq

be a matrix obtained by rotating each element of A to the left by i. Then,

recursively evaluating the following recurrence relation starting fromAp0q “

A will give us Apgq, in log g steps, whose first column is the summation of

the columns of A:

‡Otherwise, we can pad zero columns in the end to make it a power of two.
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Ap2
k`1q

“ Ap2
kq
` Lrot2kpA

p2kq
q “

»

—

—

—

—

—

–

Σ2k`1

i“1 Zr1sris ¨ vris ¨ ¨ ¨ ´

Σ2k`1

i“1 Zr2sris ¨ vris ¨ ¨ ¨ ´

...
. . .

...

Σ2k`1

i“1 Zrmsris ¨ vris ¨ ¨ ¨ ´

fi

ffi

ffi

ffi

ffi

ffi

fl

Note that the other columns except the first are garbage, denoted by ´, in

the above. We can clean up the garbage columns by multiplying the zero

vectors, and then duplicate the first column by applying the rotation-and-

addition method. See Algorithm 5 for the complete details.

Algorithm 4: SumRowVec: summation of row-vectors

Data: Matrix A with size f ˆ g for a power of two f
Result: Matrix R with size f ˆ g

1 R :“ A;
2 for 0 ď i ă log2 f do
3 R “ Lrotg¨2ipRq `R;
4 end
5 return R

Note that we can compute the summation of row-vectors in a simi-

lar way, as shown in Algorithm 4. Below we illustrate the results of two

procedures, SumRowVec and SumColVec:

SumRowVecpAq “

»

—

—

—

—

—

–

ř

i arisr1s, ¨ ¨ ¨ ,
ř

i arisrgs
ř

i arisr1s, ¨ ¨ ¨ ,
ř

i arisrgs
... ,

. . . ,
...

ř

i arisr1s, ¨ ¨ ¨ ,
ř

i arisrgs

fi

ffi

ffi

ffi

ffi

ffi

fl
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Algorithm 5: SumColVec: summation of column-vectors

Data: Matrix A with size f ˆ g for a power of two g
Result: Matrix R with size f ˆ g

1 R :“ A for 0 ď i ă log2 g do
2 R “ Lrot2ipRq `R
3 end
4 D “ tDi,ju, where Di,j “ 1 if j “ 0 and 0 otherwise;
5 R “ R ˝D;
6 for 0 ď i ă log2 g do
7 R :“ Rrot2ipRq `R;
8 end
9 return R

SumColVecpAq “

»

—

—

—

—

—

–

ř

j ar1srjs, ¨ ¨ ¨ ,
ř

j ar1srjs
ř

j ar2srjs, ¨ ¨ ¨ ,
ř

j ar2srjs
... ,

. . . ,
...

ř

j arf srjs, ¨ ¨ ¨ ,
ř

j arf srjs

fi

ffi

ffi

ffi

ffi

ffi

fl

for A “ tai,ju P Rfˆg.

Vectorized Algorithm

Algorithm 6 shows the resulting vectorized body of the main iteration

loop using the approaches described so far in this section. At line 6, we

use the least squares fitting polynomial approximation of sigmoid, y “

0.5 ` 0.15x ´ 0.0015x3 (depicted in Figure 6.1). The bold symbols and

numbers denote mˆg matrices that consist of duplicates of corresponding

elements. Note that the approximated sigmoid function is evaluated only

once per iteration even with the partitioned weight vectors. Also, note that

the two loops of iterating over the partitioned weight vectors can be run
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Algorithm 6: Vectorized body of the iteration loop

Data: Matrices Zj, Wj, and Vj for 0 ď j ă f{g
Result: Matrices W`

j and V `j for 0 ď j ă f{g

1 for 0 ď j ă f{g do
2 Mj “ Zj ˝ Vj ;
3 Mj “ SumColVecpMjq ;

4 end

5 M “
řf{g
j“0Mj ;

6 S “ 0.5` 0.15 ˝M ´ 0.0015 ˝M˝3 ;
7 for 0 ď j ă f{g do
8 Sj “ S ˝ Zj ;
9 ∆j “ SumRowVecpSjq ;

10 W`
j “ Vj ´ γ ˝∆j ;

11 V `j “ p1´ ηq ˝W`
j ` η ˝Wj ;

12 end
13 return W`

j and V `j for 0 ď j ă f{g

in parallel.

6.2.3 Further Optimization

Now we explain the further optimization made on the top of Algorithm 6

by fine-tuning the evaluation order to minimize both the depth and the

noise of multiplications. Our final HE-optimized algorithm is given in Al-

gorithm 7.§

Minimizing Multiplication Depth

In homomorphic evaluation, minimizing the depth of nested multiplica-

tions is critical to optimize the performance. The larger the multiplica-

§The definitions of encSumRowVec and encSumColVec are provided in Appendix.
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tion depth, the larger the ciphertext modulus and/or the more often the

bootstrapping operation needs to be executed. A large ciphertext modulus

significantly increases the computation overhead, and the bootstrapping

operation is very expensive. For example, when computing xn, a naive

method would require the nested multiplications of depth n ´ 1, but an

optimized method such as the square-and-multiply method would require

only the multiplication depth of log n.

We further optimize Algorithm 6 by minimizing the multiplication

depth. A naive evaluation of Algorithm 6 requires the multiplication depth

of 7. We reduce the depth to 5, by using the square-and-multiply method

with further adjusting the evaluation order. This depth reduction allows us

to reduce the size of the ciphertext modulus, improving the performance.

Note that our depth minimization method will achieve a bigger depth re-

duction as a larger-degree polynomial is used in the sigmoid approximation

(at line 6 in Algorithm 6).

Depth
0 Vj Zj Wj

1 Mj “ Zj ˝ Vj Z3j “ pγ ¨ c3q ˝ ZjZ
1
j “ p´γ ¨ c1q ˝ Zj

2 M “
ř

j SumColVecpMjq Z3j

3 M2 “M˝2 ´ c2
c3

M 1 “M ˝ Z3j

4 Vj Gj “M 1 ˝M2 ` Z 1j WjZ 1jW`
j “ Vj ` SumRowVecpGjq

5 V `j “ p1´ ηq ˝W`
j ` η ˝WjW`

j

Figure 6.2: An optimized evaluation circuit of Algorithm 6

Figure 6.2 illustrates our optimized evaluation of Algorithm 6 using
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the depth minimization method. The circuit is layered by the multipli-

cation depth (in the left-hand side), where each layer consists of either

normal multiplication (mult) or constant multiplication (constMult), with

zero or more addition (add) operations. The solid arrow denotes the input

wiring, and the dotted arrow denotes the value propagation. Since the cir-

cuit is layered by only the multiplication depth, the inputs of the addition

operation are put in the same layer (e.g., as shown in the fourth layer).

Algorithm 7 incorporates this optimized evaluation circuit.

For the given inputs Vj, Zj, and Wj,
¶ the first layer computes Mj “

Zj ˝Vj (corresponding to the line 2 in Algorithm 6), and Z 1 “ p´γ ¨ c1q˝Zj

and Z3 “ pγ ¨ c3q ˝ Zj (corresponding to the partial computation of the

lines 6, 8, and 10). The second layer computes M “ ΣjpSumColVecpMjqq

(corresponding to the lines 3 and 5). The third layer computesM 1 “M˝Z3

and M2 “ M˝2 ´ c2
c3

. The fourth layer computes G “ M 1 ˝M2 ` Z 1 and

W`
j “ Vj ` SumRowVecpGq. The fifth layer computes V `j “ p1 ´ ηq ˝

W`
j ` η ˝ Wj. Note that SumRowVecpGq computed in the fourth layer

effectively computes ´γ ˝∆j (at line 10 in Algorithm 6).‖ Also note that

the computation of SumRowVecpGq requires only the multiplication depth

of 3, while a naive evaluation of ´γ ˝∆j would require the multiplication

depth of 5. In general, if we use a degree n polynomial approximation (at

line 6 in Algorithm 6), our depth minimization method will reduce the

multiplication depth from Opnq to Oplog nq.

¶Indeed, the whole evaluation circuit consists of duplicates of the presented circuit
for each j being arranged side-by-side, which effectively parallelizes the loops in Algo-
rithm 6.
‖SumRowVec (G) = SumRowVecpM 1 ˝M2 ` Z 1q = SumRowVecppM ˝ pγ ¨ c3q ˝ Zjq ˝

pM˝2 ´ c2
c3
q ` p´γ ¨ c1q ˝ Zjq = SumRowVecp´γ ¨ Zj ˝ pc1 ` c2 ˝ M ´ c3 ˝ M

˝2qq =
SumRowVecp´γ ¨ Zj ˝ Sq = SumRowVecp´γ ¨ Sjq = ´γ ˝ SumRowVecpSjq = ´γ ˝∆j
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Minimizing Approximation Noise

Recall that the approximate HE used in our algorithm introduces an ad-

ditional noise for each homomorphic operation. Even the homomorphic

rotation and rescaling operations introduce the noise. We further optimize

our algorithm to minimize the noise by reordering the evaluation order of

homomorphic operations. For example, the rescaling operation has an effect

of reducing the previously introduced noise. Reordering the rescaling oper-

ations, thus, can reduce the overall accumulated noise. Let us illustrate the

approach. Suppose we want to multiply two ciphertexts c1 “ Encpm1q and

c2 “ Encpm2q, and rotate the multiplication result. Let m3 “ pm1 ˝m2q.

A naive way of computing that would have the following evaluation order:

c3 “ MultpEncpm1q,Encpm2qq “ Encpm3 ¨∆` ε1q

c4 “ Rescalepc3,∆q “ Encpm3 ` ε1{∆` ε2q

c5 “ Rotatepc4, iq “ EncpLrotipm3q ` ε1{∆` ε2 ` ε3q

where ∆ is the scaling factor, and εi is the noise. However, we can reduce

the final noise by adjusting the evaluation order, i.e., by swapping the

rescaling operation and the rotation operation, as follows:

c3 “ MultpEncpm1q,Encpm2qq “ Encpm3 ¨∆` ε1q

c14 “ Rotatepc3, iq “ EncpLrotipm3q ¨∆` ε1 ` ε2q

c15 “ Rescalepc14,∆q “ EncpLrotipm3q ` pε1 ` ε2q{∆` ε3q

Note that the final noise is reduced from ε1{∆` ε2` ε3 to pε1` ε2q{∆` ε3.

Since ε2 ! ∆, this optimization effectively removes ε2.
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Algorithm 7: HE-optimized body of the iteration loop

Data: Ciphertexts encZj, encWj, and encVj for 0 ď j ă f{g, and
parameters wBits and pBits

Result: Ciphertexts encW`
j and encV`j for 0 ď j ă f{g

1 for 0 ď j ă f{g do
2 encMj “ rescalepmultpencZj, encVjq,wBitsq;
3 encMj “ encSumColVecpencMj, pBitsq;

4 end

5 encM “
řf{g
j“0 encMj;

6 encM2
“ rescalepmultpencM, encMq,wBitsq

encM2
“ cAddpencM2,´100,wBitsq for 0 ď j ă f{g do

7 encZ1 “ constMultpencZj,´γ ˝ 0.5,wBitsq
encZ3 “ constMultpencZj,γ ˝ 0.0015,wBitsq
encZ3 “ modDownTopencZ3, encMq
encM1

“ rescalepmultpencM, encZ3q,wBitsq
encG “ rescalepmultpencM1, encM2

q,wBitsq
encG “ addpencG,modDownTopencZ1, encGqq
encG “ encSumRowVecpencGq
encW`

j “ addpencG,modDownTopencVj, encGqq
encWj “ modDownTopencWj, encW`

j q

encW`
j,1 “ constMultpencW`

j ,1´ η, pBitsq
encW`

j,2 “ constMultpencWj,η, pBitsq
encV`j “ addpencW`

j,1, encW`
j,2q encV`j “ rescalepencV`j , pBitsq

encW`
j “ modDownTopencW`

j , encV`j q

8 end
9 return encV`j and encW`

j for 0 ď j ă f{g

6.3 Evaluation

We evaluate our algorithm of logistic regression on encrypted data against

both a real financial training dataset and the MNIST dataset. Our artifact

is publicly available at [Han18].
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6.3.1 Logistic Regression on Encrypted Financial Dataset

We executed our algorithm on a private, real financial dataset to evaluate

the efficiency and the scalability of our algorithm on a large dataset.

Training Dataset

The encrypted dataset we consider to evaluate our logistic regression algo-

rithm is the real consumer credit information maintained by a credit re-

porting agency. The dataset (for both training and validation), randomly

sampled by the agency, consists of 1,266,325 individuals’ credit information

over 200 features that are used for credit rating. Examples of the features

are the loan information (such as the number of credit loans and personal

mortgages), the credit card information (such as the average amount of

credit card purchases and cash advances in the last three months), and

the delinquency information (such as the days of credit card delinquency).

The samples are labeled with a binary classification that refers to whether

each individual’s credit rating is below the threshold.

HE Scheme Parameters

We use two scaling factors ∆ “ 230 and ∆c “ 215, where ∆ is the regular

scaling factor (for mult) and ∆c is the constant scaling factor (for const-

Mult) that is used for multiplying constant matrices and scalars such as η

and γ. We have the number of ciphertext slots N{2 “ 215.

We set the initial ciphertext modulus Q for the weight vectors W and

V as follows:

log2Q “ 5` wBits` I ¨ p3 ¨ wBits` 2 ¨ pBitsq

107



CHAPTER 6. LOGISTIC REGRESSION ON LARGE ENCRYPTED
DATA

where wBits “ log2 ∆ and pBits “ log2 ∆c. The above formula is derived

from the fact that each iteration reduces p3 ¨ wBits ` 2 ¨ pBitsq-bits of

the ciphertext modulus (see Section 6.2.3 and Figure 6.2 for more details).

Here, I is the number of iterations per bootstrapping operation; that is,

the bootstrapping operation is executed every I iterations. We have I “

5. Also, we set the largest ciphertext modulus Q1 for the bootstrapping,

according to the HeaAn scheme [CHK`18, snu18], as follows: log2Q
1 “

log2Q` 24` 14 ¨ p9` wBitsq.

Experimental Results

Data Performances

Financial No. Samples (training) 422,108 Accuracy 80%
No. Samples (validation) 844,217 AUROC 0.8
No. Features 200 K-S value 50.84
No. Iterations 200 Public Key Size « 2 GB
Learning Rate 0.01 Encrypted Block Size 4.87 MB
Block Size (mini-batch) 512 Running Time 1060 min

Table 6.1: Result of machine learning on encrypted data

We executed our logistic regression algorithm on the encrypted train-

ing set of 422,108 samples over 200 features. Having 200 iterations, it took

1,060 minutes to learn an encrypted model, i.e., „5 minutes per itera-

tion on average, in a machine with IBM POWER8 (8 cores, 4.0GHz) and

256GB RAM. We sent the learned model to the data owner, and they de-

crypted and evaluated it on the validation set of 844,217 samples, having

80% accuracy and the KS value of 50.84. They confirmed that it provides

a sufficient accuracy compared to their internal model learned using the

plaintext dataset∗∗ and also our learned model gives appropriate weights

∗∗According to their report, it took several minutes to learn a model on the plaintext
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on the important features (e.g., delinquency, loan, and credit card infor-

mation) as expected.

Tabel 6.1 shows the detailed result of our experiment. We set the learn-

ing rate to be 0.01, and the mini-batch size to be 512. The ciphertext size of

each mini-batch block is 4.87 MB, and thus the total size of the encrypted

dataset is „4 GB = 4.87 MB ˆ (422,108 / 512). The public key size is „2

GB.

6.3.2 Logistic Regression on Encrypted MNIST Dataset

We executed our logistic regression algorithm on the public MNIST dataset

to provide a more detailed evaluation.

Training Dataset and Parameters

We took the MNIST dataset [LCB99], and restructured it for the binary

classification problem between 3 and 8. We compressed the original images

of 28 ˆ 28 pixels into 14 ˆ 14 pixels, by compressing 2 ˆ 2 pixels to their

arithmetic mean. The restructured dataset consists of 11,982 samples of

the training dataset and 1,984 samples of the validation dataset.

We use the same principle for setting the HE scheme parameters as

shown in Section 6.3.1. We set ∆ “ 240, ∆c “ 215, and I “ 3. Also, we

approximate the sigmoid function with the interval r´16, 16s by the least

squares fitting polynomial of degree 3, y “ 0.5´ 0.0843x` 0.0002x3.
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Data Performances

MNIST No. Samples (training) 11,982 Accuracy 96.4%
No. Samples (validation) 1,984 AUROC 0.99
No. Features 196 K-S value N/A
No. Iterations 32 Public Key Size « 1.5 GB
Learning Rate 1.0 Encrypted Block Size 3.96 MB
Block Size (mini-batch) 1024 Running Time 132 min

Table 6.2: Result of machine learning on encrypted data

Experimental Results

We encrypted the MNIST dataset and executed our logistic regression

algorithm. Table 6.2 shows the result. With 32 iterations, our logistic al-

gorithm took 132 minutes to learn an encrypted model. The average time

for each iteration is „4 minutes, which is similar to that of the financial

dataset, as expected. We decrypted the learned model and evaluated it on

the validation dataset, obtaining 96.4% accuracy.††

Microbenchmarks

We also executed our logistic regression algorithm on the plaintext dataset,

and compared the result to that of the ciphertext learning. Recall that the

approximate HE used in our algorithm introduces the approximation noise

for each computation step, but it had not been clear how much the noise

affects the overall training process. To evaluate the impact of the approx-

imation noise on the overall learning performance (e.g., the convergence

rate and accuracy), we measured the accuracy for each iteration for both

plaintext and ciphertext training, and compared those results. Figure 6.3

using the same algorithm, and the model provides the KS value of 51.99.
††The accuracy seems to be lower than the usual, but the difference is mainly due to

the image compression, not because of the approximation noise. See Section 6.3.2 and
Figure 6.3 for more details.
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Figure 6.3: Comparison between encrypted and plaintext training

shows the comparison result. It shows that the accuracy for each iteration

in the ciphertext training is marginally different from that of the plaintext,

especially in the early stage of the training process, but they eventually

converged at the final step. This result implies that the additional noise in-

troduced by the approximate HE evaluation is not significant to deteriorate

the accuracy of a learned model and the training performance.

We also evaluate the effect of the precision of the polynomial approx-

imation of sigmoid. We executed the same algorithm (on the plaintext)

with three different sigmoid approximations: the original sigmoid (i.e., no

approximation), the least squares fitting polynomial, and the Taylor ex-

pansion polynomial (depicted in Figure 6.1). Figure 6.4 and 6.5 show the

comparison of accuracy between them. It shows that the approximation

error of the least fitting polynomial is not significant, resulting in only

the marginal difference of accuracy. However, the approximation error of

the Taylor expansion polynomial is so large that it fails to learn a model;

that is, the accuracy decreases as the number of iteration increases, and
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eventually it becomes 0 (i.e., an invalid model).
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Figure 6.4: Comparison between sigmoid and least squares fitting (of degree
3)

6.3.3 Discussion

It is not straightforward to provide the fair comparison of our performance

with those of the related works, since the previous HE-based approaches

are not capable of admitting such realistic size training datasets considered

in this paper, and the MPC-based approaches do not support the same

flexibility in the usage scenarios as ours. As a rough comparison, however,

the recent MPC-based approach [MZ17] will take minutes‡‡ to learn a

model on the MNIST dataset used in this paper, which is one or two

orders of magnitude faster than ours. We note that, however, the MPC-

based approach requires the additional assumption in the usage scenarios

‡‡The time is obtained by extrapolating their experimental result on the MNIST
dataset.
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Figure 6.5: Comparison between Taylor expansion between least squares
fitting (both of degree 3)

that either the number of participants is small, or the two servers do not

collude.

Our algorithm requires the number of iterations to be provided in ad-

vance, which is inevitable due to the security of the underlying HE schemes.

In our experiment on the financial data, the number was obtained by asking

the data owner to provide a rough bound. We note that, however, one can

use our algorithm in an interactive way that the data owners decrypt the

learned model periodically (e.g., every 100 iterations), and decide whether

to proceed further or not, depending on the quality of the model at the

moment.
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Conclusions

In this paper, we propose various bootstrapping methods for fully homo-

morphic encryption. In case of Ring-based FHE such as BGV and FV, we

propose new homomorphic lower digit removal algorithm. And, this algo-

rithm is used as one of the key part in bootstrapping. If we compare with

previous one, the complexity reduce from Oplog2 λq to Oplog1.5 λq. We also

improve linear transformation part in bootstrapping. we decompose the

given linear transformation by log n number of sparse matrices for number

of slots n. Multiplying this sparse matrix to encrypted vector only needs

Op1q number of homomorphic operations, and this leads the complexity

of the linear transformation to Oplog nq which was Opnq in the previous

method. In case of FHE over the integers, we represent the decryption

function using digit extraction algorithm which can be homomorphically

evaluated only with Oplog2 λq operations. With those efficient bootstrap-

ping processes, we made a privacy preserving logistic regression algorithm

for large scaled data. Training for 400, 000 ˆ 200 financial data which is

encrypted takes 16 hours with 80% accuracy.
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국문초록

2009년 Gentry에 의해서 완전동형암호가 처음 설계된 이후로 최적화와 고속화를

위해서 다양한 기법들과 스킴들이 설계되어 왔다. 하지만 동형암호의 연산횟수를

무제한으로 늘리기 위해서 필수적인 재부팅 기법의 효율성 문제로 실제 응용에

적용하기에는 부적합하다는 평가를 많이 받아왔다. 본 논문에서는 재부팅 기법의

고속화를 위한 다양한 기법을 제시하고 이를 실제로 응용분야에 적용하였다.

본 논문에서는 대표적인 동형암호 스킴들에 대한 재부팅 기법에 대한 연구를

수행하였는데, 첫 번째로는 Microsoft Research와 IMB에서 만든 동형암호 라이브

러리인 SEAL과 HElib에적용가능한재부팅기법에대한연구를수행하였다.해당

재부팅 기법에서 핵심적이 과정은 암호화된 상태에서 복호화 함수를 계산하는 부

분이다. 암호된 상태에서 최하위 비트를 추출하는 새로운 방법을 제시하여 재부팅

과정에서소모되는계산량과표현되는다항식의차수를줄이는데에성공하였다.두

번째로는, 비교적 최근에 개발된 근사계산 동형암호인 HEAAN 스킴의 재부팅 기

법을 개선하는 연구를 수행하였다. 2018년에 삼각함수를 이용한 근사법을 통해서

처음 해당 스킴에 대한 재부팅 기법이 제시되었는데, 많은 데이터를 담고있는 암호

문에 대해서는 전처리, 후처리 과정이 계산량의 대부분을 차지하는 문제가 있었다.

해당 과정들을 여러 단계로 재귀적인 함수들로 표현하여 계산량이 데이터 사이

즈에 대해서 로그적으로 줄이는 것에 성공하였다. 추가로, 다른 스킴들에 비해서

많이사용되지는않지만,정수기반동형암호들에대해서도재부팅기법을개선하는

연구를 수행하였고 그 결과 계산량을 로그적으로 줄이는 것에 성공하였다.

마지막으로, 재부팅 기법의 활용성과 사용 가능성을 보이기 위해 실제 데이터

보안을 필요로 하는 기계학습 분야에 적용해보았다. 실제로 400,000건의 금융 데

이터를 이용한 회귀분석을 암호화된 데이터를 이용해서 수행하였다. 그 결과 약 16

시간 안에 80% 이상의 정확도와 0.8 정도의 AUROC 값을 가지는 유의미한 분석

모델을 얻을 수 있었다.

주요어휘: 동형암호, 정보보호, 재부팅

학번: 2013-20250
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