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Abstract

Analysis of biological pathways in
elderly with asthma; sputum
transcriptomic analysis

Byung Keun Kim
Translational Medicine, Department of Medicine
The Graduate School

Seoul National University

Background: Elderly asthma (EA) shows characteristics different from those
of conventional asthma. EA is increasing but its specific pathogenesis remains
unclear. Currently, systems biology is widely used in biological research
because of the rapid advancement of high-throughput technologies. This study
aimed to identify EA-related biological pathways by analyzing genome-wide

gene expression profiles in sputum cells using systems biology techniques.

Methods: We analyzed gene expression profiles in induced sputum of EA
patients and healthy elderly controls. A total of 3,156 gene probes with
significantly different expressions between the two groups were identified. We
performed hierarchical clustering of genes to classify EA patients. Gene set
enrichment analysis (GSEA) and weighted gene co-expression network
analysis (WGCNA) were both performed to provide biological information. We
also replicated our results using public gene expression data available from

i



Gene Expression Omnibus.

Results: Fifty-five EA patients and ten elderly control subjects were enrolled.
Two distinct gene clusters were found. Cluster 1 (n=35) showed a lower
eosinophil proportion in sputum and less severe airway obstruction compared
to cluster 2 (n=20). The replication data set also identified two gene clusters
(Cluster 1" and Cluster 2'). We found five gene sets enriched in cluster 1 and
three gene sets enriched in cluster 2. Among these, we confirmed that two gene
sets were significantly enriched in the replication data set
(OXIDATIVE_PHOSPHORYLATION (OXPHOS) gene set in Cluster 1' and
EPITHELIAL MESENCHYMAL TRANSITION (EMT) gene set in Cluster
2"). These were also enriched in a subgroup analysis that consisted of
individuals who had never smoked. We also found four leading edge genes
(MRPS11, HSPAY9, NUDF4, and ACTAI) in the OXPHOS gene set and two
(SNTB1 and FUCAI) in the EMT gene set. WGCNA revealed four modules in
cluster 1 and 18 modules in cluster 2. The brown module of cluster 1 and the
magenta module of cluster 2were correlated with FEV1/FVC ratio in EA

patients. These two modules were also replicated using the replication data set.

Conclusion: The findings of two distinct gene clusters in EA and different
biological pathways within each gene cluster suggest two different pathogenic
mechanisms underlying EA. We postulate that oxidative stress and cellular
senescence-associated with aging may be important in the development or
progress of EA, and these could be an important development for effectively

treating EA.
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Introduction

The global human society is aging, and the population aged 65 and over is
expected to expand by 150% in the next 35 years (1). Accordingly, elderly
asthma (EA), encompassing asthma in people aged 65 years and over, is
expected to increase dramatically. The estimated prevalence of EA in developed
countries is 6-10% (2). Two-thirds of deaths attributed to asthma occur in

people suffering from EA, and the mortality rate of EA is 7.3 deaths per 100,000

people (3).

Previous reports suggest that EA is phenotypically different from non-elderly
asthma (NEA) (4-6). EA exhibits more heterogeneous characteristics and can
be divided into long-standing asthma, wherein the patients suffer from the
condition since childhood, and late-onset asthma, wherein the symptoms
develop after the sixth decade of life (7). According to recent studies, the
incidence of asthma is increasing and is the highest in elderly individuals, and
more than two-thirds of these cases develop after the individuals reach 40 years
of age (8). EA presents with characteristics different than those of NEA; its
diagnosis is particularly challenging, and the symptoms of this disease often
mimic alternative pathologies of elderly people, such as chronic obstructive
pulmonary disease or congestive heart failure (7). The time required to achieve
peak bronchodilator effect is 30 min, longer than 5-10 min in NEA (9), and the
methacholine provocation test is less useful for the diagnosis of asthma in
patients with a longer duration of asthma (10). Also, in EA patients,
eosinophilic inflammation of airways is associated with airway hyper-
responsiveness, and neutrophilic inflammation is determinant of airflow
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limitation at rest and during bronchoconstriction (11).

These findings emphasize the observation that the pathogenesis of EA is
different from that of typical allergic asthma, the latter being influenced by
atopy, IgE, and Th2 responses. EA is an extraordinarily complex disease, and
the pathogenesis underlying EA has not been clearly elucidated (12). There are
several hypotheses concerning the development of EA. The first is based upon
the relationship between the innate immune response and asthma.
Environmental exposure to various proteases and to endotoxins such as those
encountered from cigarette smoking can perpetuate this disease. Also chronic
infection, colonization by bacteria or fungi, and viral infection can influence
airway mucosa and accelerate submucosal hypertrophy and airway remodeling
(12). Innate lymphoid cells (ILCs), a newly identified type of immune cell that
belongs to the lymphoid lineage but does not respond in an antigen-specific
manner, could also be a significant mediator of EA development. These cells
are related to the development of asthma regardless of adaptive immune
response, particularly in response to several stimuli such as several molecules,
virus, mycobacterial infection that can cause repetitive epithelial damage (13).
The second hypothesis concerns the role of microbiome in the development of
EA. Evidence exists illustrating key roles for the microbiome in the
development of asthma. Coupled with effects of immunosenescence and
inflammation, the microbiome in EA is likely to influence the clinical
phenotype observed in practice. If such associations are comparable in the
context of late-onset disease, however, remains to be established (14). Recently,
significant associations between Staphylococcal enterotoxin IgE (SE-IgE)-

sensitization and late-onset asthma have been established (15), and this could
2



be an important clue for understanding the pathogenesis of EA.

As discussed above, a large amount of clinical and experimental evidence
supports the idea that the mechanisms underlying EA are different from those
of conventional NEA. Therefore, the mechanisms underlying EA should be
studied from a new perspective. Given the current prevalence of genome-wide
association studies (GWAS), many researchers are attempting to understand the
pathophysiology and mechanisms regulating diseases by using both genomic
and clinical data. Currently, the study of genetics in human diseases has become
“big data science.” The rapid advancement of high-throughput technologies has
allowed the affordable profiling of genomes, transcripts, proteins, and
metabolites. The systems approach has become much more attractive in the
post-GWAS era (16). Systems biology approaches that integrate various
indicators to facilitate analysis within one system have been widely used in
biological research. As human biology and specific disease conditions cannot
be fully understood in terms of cross-section, systems biology seeks to
determine meaningful signals through objective mathematical analysis
allowing for understanding of the intricate connections among the varied and
large-scale biological data. Recently, methods such as computational
unsupervised cluster analysis techniques, gene set enrichment analysis (GSEA),
and weighted gene co-expression network analysis (WGCNA) have been

widely used for genome expression studies.

Computational unsupervised cluster analysis techniques using co-relation
networks can be performed using a three step process that includes pre-

processing, cluster analysis, and cluster validation (17). This approach has been
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widely used in many applications such as mRNA expression studies. Many
tools for validation of cluster analysis have been used. Pvclust is an add-on
package to assess the uncertainty in hierarchical cluster analysis for the popular
statistical software R. Pvclust can easily perform bootstrap analysis of
clustering for general statistical problems (18). GSEA is an algorithm that
evaluates if a number of genes sharing biological traits are expressed with
statistically significant differences. This technique verifies related genes in a
given set are distributed more toward the top or bottom of a ranked list of
differential expression results between two biologic states than expected by
chance (19). The enrichment score of GSEA is determined by repeatedly
permuting the observed expression-phenotype relationships. The leading edge
of an enriched gene set represents the core biology of interest. Gene co-
expression networks are used to associate genes of unknown function with
biological processes, to prioritize candidate disease genes, or to discern
transcriptional regulatory programs (20). Although they do not provide
information concerning causality, new methods for differential co-expression
analysis can provide clues to identify regulatory genes underlying various
phenotypes. WGCNA is the first co-expression tool and the most widely used
clustering package for co-expression analysis (20, 21). This technique performs
hierarchical clustering and divides each cluster into sub-clusters representing
co-expression modules. The hub gene is a highly connected gene within each
co-expression network, and identification of this gene could provide novel
functional insight into specific disease. NetRep is a rapid and computationally
efficient method that can be used to verify if specific co-expression modules

are preserved in other gene expression datasets without assuming data are
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normally distributed (22).

Gene expression data obtained from specific tissue are advantageous in terms
of exploring the mechanisms underlying specific diseases due to the tissue-
specificity of these data. Gene expression data of asthma can be obtained from
various specimens such as induced sputum, bronchial epithelial cells,
bronchoalveolar lavage fluid, and biopsy specimens. Among these, induced
sputum is a reliable non-invasive specimen of bronchial inflammation in
asthma. It is recognized as a very useful specimen for both research and clinical
applications, and induced sputum aids in both the diagnosis and monitoring of
asthma (23). The evaluation of gene expression profiles of sputum cells has

been applied successfully to understand asthma pathogenesis (24, 25).

The present study examined biological pathways related to EA using
genome-wide gene expression profiles of sputum cells from EA patients. We
selected genes exhibiting significantly different expression profiles between EA
and healthy elderly controls, and we identified two distinct clusters by
hierarchical clustering of these genes. We performed gene set enrichment
analysis (GSEA) and weighted gene co-expression network analysis (WGCNA)
to gain further biological insights into each cluster. Finally, we confirmed that
our findings were replicated in a dependent gene expression profile of sputum
cells obtained from Gene Expression Omnibus (GEO), a publicly available
database of gene expression profiles. To the best of our knowledge, this is the
first study to identify specific biological pathways contributing to EA

pathogenesis using sputum gene expression profiles.



Methods

This study was approved by the Seoul National University Hospital Review
Board (1608-101-786), and informed consent was obtained from all study

participants.

1. Discovery data set

Asthma was diagnosed according to the Global Initiative for Asthma
guidelines. Elderly patients with asthma, who were older than 65 years and
exhibited symptoms and signs suggesting chronic airway diseases and
reversible airflow limitation or airway hyper-responsiveness were recruited
from the Seoul National University Hospital, Seoul, Korea. Chronic signs and
symptoms were defined based on current (past 12 months) episodic respiratory
symptoms including dyspnea, coughing, wheezing, and sputum. Reversible
airflow limitation was defined as the ratio of forced expiratory volume in the
first second (FEV1) to forced vital capacity (FVC) being below 0.7 with FEV1
increased more than 12% and 150ml after bronchodilator use, or FEV1 being
increased more than 15% spontaneously or after treatment. Airway hyper-
responsiveness was assessed by the methacholine provocation test when the
provocative concentration 20% (PC20) was below 16mg / ml. (26). As acute
exacerbation by various causes is also likely to alter gene expression in induced
sputum, patients with severe comorbidities who were unable to perform the

study or who could not obtain induction sputum in a stable state were excluded.



Healthy elderly controls without asthma (n = 10) were recruited by
advertisement. None of the healthy controls exhibited respiratory symptoms,
sputum eosinophilia, abnormality on chest radiography, or obstructive
pulmonary function test results. Three of the control patients were smokers (one
current smoker and two ex-smokers). Baseline assessment at recruitment
included sex, age, height, weight, smoking status, and previous medical history.
Exclusion criteria included recent (past month) respiratory tract infection,
recent change in maintenance therapy, and recent asthma exacerbation;
however, to reflect real-life situations, smoking status was not considered as an
exclusion criterion. Sputum induction and processing were performed as

previously described (27).

2. Gene expression arrays

We collected induced sputum prior to drug administration when patient
disease condition was stable to minimize drug effect. Collection of induced
sputum was performed in accordance with a previously described method (28).
Cells were stored at -80°C until use. RNA was extracted from induced sputum
samples using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Gene
expression levels were measured using the GeneChip Human Gene 2.0 ST
(Affymetrix, Santa Clara, CA, US). We removed probes exhibiting poor
chromosome annotation and probes within the X or Y chromosome. We then
performed VST transformation and quantile normalization, respectively, to

reduce the effects of technical noise and to ensure that the distribution of



expression levels for each array was closer to a normal distribution.

3. Statistical analysis

Figure 1 shows an overview of the statistical analysis. A total of 3,156 gene
probes showing significantly (P < 0.05) different expressions between EA and
healthy elderly controls were used for further analysis. To search for
meaningful information patterns and dependencies in gene expression data, we
performed hierarchical clustering using the Pvclust package in R version 3.4.3
(www.r-project.org). P-values indicate how strongly clusters are supported by
the data (18). An approximate and unbiased P-value greater than 95% was used
to define a cluster. Comparison of the phenotype between two clusters was also
performed. Pearson’s chi square test and Fisher’s exact test were to determine
categorical variable, and #-test and Mann-Whitney U test were used for the

continuous variable.

We next performed GSEA using the GSEA software (version 3.0) provided
by the Broad Institute (Boston, MA, USA) to compare the leading edge subsets
of each cluster as previously described (19). We used the hallmark gene sets
(H collection) obtained from the Molecular Signatures Database (MSigDB,
version 6.0), and we defined significantly enriched gene sets as those with a
false discovery rate threshold of less than 0.05. We also performed WGCNA on
gene expression datasets of two clusters (21). Using 3156 gene probes, we
characterized unsigned correlation networks and determined their relationship

to each other. We also found gene modules within each cluster. Modules were
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defined as groups of highly interconnected genes (29). We computed eigengene
values for the modules identified, and we performed linear regression analysis
to search phenotype-associated gene modules that were significantly related to
the target phenotype (29). GSEA based on Reactome pathway database was

also done with individual genes of each gene modules we found.

4. Replication data set

A dependent gene expression profile of sputum cells (GSE41863) obtained
from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863)
was used to replicate our results. The dataset contains gene expression data
from 118 patients diagnosed with moderate-to-severe asthma and 21 control
subjects. To identify markers associated with various asthma subtypes, sputum
samples were collected from asthmatics and healthy controls and subjected to
expression profiling using Affymetrix HG-U133Plus2.0. From this profile, we
selected 20 subjects aged 65 years or older (15 asthmatics and 5 healthy

controls).

We also selected 3,264 gene probes (P < 0.05) that are differently expressed
form normal elderly subjects and performed cluster analysis. From the gene
probes, two clusters were identified. Using these gene probes, GSEA based on
hallmark gene sets of MSigDB was also performed in the same manner. We
compared GSEA results obtained from the discovery and replication datasets,
and we searched pathways and individual genes that may participate in the

pathogenesis of EA. We also tested if gene modules from our two clusters were
9



present in the public database. R package “NetRep” was used for this analysis,
and this approach can quantify the preservation of gene co-expression modules
across different datasets and can produce unbiased p-values based on a
permutation approach to score module preservation without assuming normal

distribution of data (22).
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Results
1. Baseline characteristics

Fifty-five patients with EA were enrolled and their phenotypic data and gene
expression profile in induced sputum were collected. Based on the differential
gene expression patterns of sputum cells, two distinct clusters were identified
excluding three outliers. Cluster 1 consisted of 35 patients and cluster 2
consisted of 20 patients. (Figure 2 and Figure 3). Cluster 1 featured a
significantly lower proportion of eosinophils in the sputum and less severe
airway obstruction as measured by the post-bronchodilator (BD) ratio of the
forced expiratory volume in one second and forced vital capacity (FEV1/FVC)
compared to cluster 2. Although it was not statistically significant, patients in
cluster 2 were older and have longer duration of diseases than patients in cluster

1. Detailed characteristics of the two clusters are provided in Table 1.

2. Gene set enrichment analysis (GSEA)

We performed a GSEA of our gene probes in each cluster to identify the
interactions of functionally related biologic processes. With hallmark gene sets
in MSigDB, we found several significant pathways (Table 2 and Figure 4). Five
gene sets were significantly enriched in cluster 1
[OXIDATIVE PHOSPHORYLATION (OXPHOS),
UNFOLDED PROTEIN RESPONSE  (UPR), MYC TARGETS VI,

DNA_ REPAIR, and ADIPOGENESIS] and three gene sets were significantly
11



enriched in cluster 2 [EPITHELIAL MESENCHYMAL TRANSITION
(EMT), MYOGENESIS, and KRAS SIGNALING DN]. This result shows
biologic support that gene expression profile of our two cluster is statistically
different and clues that pathologic process of asthma phenotype might be

different.

3. Subgroup analysis with patients who have never

smoked

We also analyzed with patients who have never smoked. Based on the
differential gene expression patterns of sputum cells, a total of 29 patents was
separated with two clusters (nineteen patients in cluster 1 and ten patients in
cluster 2) (Figure 5). We performed GSEA with the result and we found two
significant pathway in each of the two clusters.
UNFOLDED_ PROTEIN_ RESPONSE (UPR) and
OXIDATIVE PHOSPHORYLATION (OXPHOS) gene sets were enriched in
cluster 1 and MYOGENESIS and
EPITHELIAL MESENCHYMAL TRANSITION (EMT) gene sets were
enriched in cluster 2 (Figure 6). With analysis only with never smokers, two
gene sets in cluster 1 showed statistical significance but they did not after

correction of multiple comparisons (Table 3)

4. Validation of gene sets from GSEA analysis
12



In the replication analysis, hierarchical clustering of gene expression patterns
also revealed two clusters (cluster 1° with 8 EA patients and cluster 2* with 7
EA patients, Figure 7). Clinical characteristics of each cluster are shown in
Table 4. GSEA  identified eight gene sets (OXPHOS,
ESTROGEN_RESPONSE EARLY, E2F TARGETS, MYC TARGETS VI,
FATTY ACID _METABOLISM, MYC _TARGETS V2,
ESTROGEN_RESPONSE LATE, and DNA REPAIR) were significantly
enriched in cluster 1 and three gene sets (TNFA_SIGNALING VIA NFKB,
INFLAMMATORY_RESPONSE, and EMT) in cluster 2" (Table 5 and Figure
8). The OXPHOS gene set was significantly enriched in both cluster 1 and

cluster 1* and the EMT gene set in both cluster 2 and cluster 2°.

5. Relationship between phenotype and replicated gene

sets

To assess the potential functional relevance of the replicated gene sets, the
leading edge genes of gene sets enriched in both discovery and replication
dataset (Table 6) were summarized into a single metagene metric using a
principal component analysis. Then, the correlations between the first principal
component (PC1) and serum uric acid levels and post-BD FEV1/FVC values
were measured in each cluster. Circulating uric acid is a major antioxidant that
might help protect against oxidative stress (30). The post-BD FEV1/FVC value
is an indirect indicator of airway remodeling (31). Levels of serum uric acid

were lower in cluster 1 with a borderline significance (P = 0.083) compared to
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cluster 2, whereas post-BD FEV1/FVC values were significantly higher in
cluster 1 (P = 0.008) (Figure 9). PC1 of leading edge genes in the OXPHOS
gene set showed a negative correlation with serum uric acid levels (P = 0.075)
only in cluster 1 (Figure 10). Meanwhile, PC1 of leading edge genes in the EMT
gene set showed a significantly negative correlation with post-BD FEV1/FVC
values (P = 0.005) only in cluster 2 (Figure 10). For individual gene, we found
4 genes (MRPS11, HSPA9, NDUFB4, and ACAT1) in the leading edge genes
of the OXPHOS gene set and 2 genes (SNTB1 and FUCAL1) in leading edge
genes of the EMT gene set belonged to genes which showed more than 1.5
log2-fold expression difference between cluster 1 and cluster 2 with P values

less than 0.01 (Figure 11).

6. Weighted gene co-expression network analysis
(WGCNA) and modules correlates with phenotype of

cluster

Applying WGCNA to the 3,156 genes of two clusters, we identified four
modules in cluster 1 and 18 modules in cluster 2. (Figure 12) The size of
modules were various ranging from 62 (lightgreen module in cluster 2) to 1728
genes (grey module in cluster 1). Grey module is group of genes which could
not be assigned to a module and they were not considered for further analysis.
Among modules identified, FEV1/FVC ratio correlates significantly with
brown module of cluster 1 (P value = 0.003632) and magenta module of cluster

2. (P value = 0.03697). After multiple regression with other phenotypic variable

14



including BMI, symptom duration, FVC, FEV1 and cellular profile of induced
sputum, the association between FEV1/FVC and brown module of cluster 1
(P=0.0347) and magenta module of cluster 2 (P value=0.003117) remained
statistically significant (Figure 13). GSEA based on Reactome database with
individual genes of two modules identified two gene sets which were
significantly enriched (CELL CYCLE gene set in brown module of cluster 1
and SIGNALING BY_GPCR gene set in magenta module of cluster 2) (Figure
14).

7. Validation of gene sets from WGCNA and enriched
pathways

Among four modules identified in cluster 1 of discovery dataset, two
modules (module 1 and 3, P value = 0.00319968 and 0.00209979, respectively)
were significantly preserved in cluster 2" of replication dataset with NetRep
analysis (P value =0.00319968 and 0.00209979, respectively) (Figure 15). Also,
four modules in cluster 2 of discovery dataset were preserved in cluster 1
(Module 1, 6, 9, and 13, P value = 0.00039996, 0.00009999, 0.00079992 and
0.02329767, respectively). Brown module of cluster 1 and magenta module of
cluster in cluster 2 also preserved in the replication cohort. Thus, we denoted
them as the significant eigengene sets that shows phenotypic difference in
elderly asthma. Table 7 shows genes consists brown module of cluster 1 and

magenta module in cluster 2.
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Table 7. Genes consists (A) brown module of cluster 1 and (B) magenta

module in cluster 2.

(A)

kel module 3 gene
DUOXALI EYA2 RIMSI MUCS5B
TMC5 CLIC6 GSTA1 PTPRF
CX3CL1 RIBC2 UBXN10 COLCA2
CDH3 CHLI PERP LAYN
CDHI1 UPKIB CLDN4 TSPAN1
ATP2C2 EFHB STEAP2 CYP4BI
FA2H PLXNBI1 CFTR MUCI5
ST6GALNACI LRIGI PTPRZ1 DCDCl1
DSG2 MUCI13 AGR2 CACHDI
SERPINB5  CP COBL KRTI8
SERPINB11 PFN2 IQUB C120rf74
CAPN9 PLCH1 GRHL2 KRT5
CHST9 MECOM EYALl LRIG3
SERPINB4  Clorfl194 DNAII ATP12A
CYP2F1 CCDC39 PIGR SOX21-AS1
MED?25 SLC34A2 ASSI NEKS5
CXCL17 SPARCLI NFIB SLITRK6
DRCl1 ADHIC IRF6 DZIP1
EPCAM ADH7 TNC AK7
DAWI MARVELD2 ENAH SIX1
EFEMP1 SELENBP1  PLEKHSI
WEDC2 CAP2 ENKUR
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(B)

ke2 module 9 gene

CHTOP
ARID3B
MAN2A2
INOS&O
PARP6
DDR2
TCF25
CESS5A
SMCRS
ZNF830
NPL
RPS6KB1
AA06
MIR205HG
LINCO00511
TGIF1
ARF1
GATAD2A
WTIP
MED?25
DDX39A
ZNF329
LINCO00486

HOXD9
PRDM2
SLCI1ALl
TMEM198
TLDC2
SLC23A2
EWSR1
HMGXB4
EP300
LOC388882
SF3A1
DUSP18
NR2C2
LOC100129550
CC2D1B
LPP
DCPIA
NPY2R
PCBD2
ANKHD1
CXCL14
PDLIM7
HMGN4

PRICKLE4
GATAD2B
C6orf106
USP42
CREB5
KCTD7
BCL7B
GIGYF1
TNFSF18
MKRN1
ZNF746
PHYHIP
FAM214B
KLF9

FAMI120A0S

ZFP37
SH2D3C
WDR37
DHTKDI1
LOC4399%4
WBPIL
TAFS5

MXI1

KLF6
DNAJBI12
LINC00294
ATGI13
SLC22A9
RBM14
CARS
ZNF195
CPSF7
LOC100133315
LOC100049716
PFDN5

SP1

PCBP2
PSMD9
LOC414300
PRPF3
SMAD9
RCBTB2
IRS2

TOX4
MAPKIIPIL
RGS6
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Figure 1. Overview of analysis
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Figure 2. Two gene clusters identified in the discovery dataset. Three outliers (Pt5, Pt21, and Pt28) were excluded from analysis.
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Figure 3. Heat map of two gene clusters identified in the discovery dataset
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Figure 7. Two gene clusters identified in the replication dataset
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Figure 11. Volcano plot displaying differential expressed genes. Four genes
(MRPS11, HSPA9, NUDF4, and ACTAT1) belong to the leading edge genes of the

OXPHOS gene set and two genes (SNTB1 and FUCA1) belong to the leading edge

genes of the EMT gene set.
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Discussion

Using gene expression profiles derived from sputum cells, we identified 3,156 gene
probes showing different expression profiles between EA patients and healthy elderly
controls. Using those gene probes, we could identify two molecular clusters within
the EA patients. Cluster 1 showed a significantly lower proportion of eosinophils in
the sputum and less severe airway obstruction compared to cluster 2. GSEA revealed
that different biologic pathways were enriched in each cluster, implying that distinct
and discriminative pathogenic mechanisms may exist. Although it was not
statistically significant after correction using multiple comparisons, two pathways in
cluster 1 of the discovery dataset (UPR, and OXPHOS) were also enriched according
to subgroup analysis of individuals who had never smoked. Additionally, similar to
the discovery dataset, the OXPHOS gene set was significantly enriched in one cluster
and the EMT gene set was significantly enriched in the other cluster. WGCNA
revealed several modules that differed between cluster 1 and 2. The brown module of
cluster 1 and the magenta module of cluster 2 showed significant correlation with the
FEVI/FVC ratio, and there were significantly different phenotypes between two
modules. Those two modules obtained from the discovery dataset were preserved in
the replication dataset after NetRep analysis, and we observed genes consistent with
each module. With individual genes with two modules by WGCNA analysis of each
cluster, we found two enriched gene sets (CELL CYCLE gene set and
SIGNALING BY_ GPCR gene set).

As mentioned above, induced sputum analysis is a well-known, non-invasive, and
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reliable method used to evaluate inflammation, gene expression, and proteomics in
airway disease including asthma (23). There are several studies that analyzed the gene
expression profile of induced sputum using systems biology methodology. Yan et al.
performed the first study in 2015 using a systems biological method to study gene
expression data of induced sputum in asthma patients (32). They performed
unsupervised clustering analysis and found three distinct clusters. Each of these
clusters showed statistically significant phenotypic differences, and several genes
were differentially expressed between the three clusters and control subjects. Kuo and
his colleagues also evaluated induced sputum of moderate-to-severe asthma patients
from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases
Outcomes (U-BIOPRED) cohort (33). They found three transcriptome-associated
clusters, and co-expression network analysis revealed several hub genes that appeared
to be important in asthma pathogenesis. They also found several gene pathways that
were differently enriched according to the enrichment score of gene set variation
analysis (GSVA). The enriched gene signatures were specific to pathways involving
IL-13/Th2, ILC1, ILC2, ILC3, Th17, neutrophil activation, inflammasome, ageing,
and OXPHOS signatures. Lefaudeux et al. also evaluated gene expression in induced
sputum from asthmatic patients of U-BIOPRED (34). They found four clusters where
transcriptomics and proteomic data of induced sputum showed phenotypic
differences. Enrichment analysis was performed using the g:Profiler tool, and several
enrichment pathways were found through the Kyoto Encyclopedia of Genes and

Genomes and Reactome databases.

This is the first study analyzing gene expression profiles in induced sputum from
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EA patients to evaluate candidate gene pathways affecting the pathogenic mechanism
of EA. Approximately 70% of EA patients enrolled in the present study displayed
symptom onset after age 65, and the mean symptom duration was 5 years. These
findings suggest that EA is not merely a prolongation of NEA, and that aging itself
may cause susceptibility to the development of asthma, as discussed elsewhere (35).
In addition to anatomical changes, repetitive and long-standing exposures to
environmental noxious stimuli cause a pro-inflammatory state in elderly subjects that
results in aging-associated diseases in combination with oxidative stress (36, 37). The
OXPHOS system embedded in mitochondria is the final biochemical pathway to
produce ATP. A defect in the coupling between oxidation and phosphorylation causes
various pathologic conditions including airway disorders (38-40). At least 70 of the
OXPHOS subunits are encoded by nuclear genes whose expressions were measured
in the present study, and certain defects in these genes were linked to several diseases
(41). The OXPHOS system is an important source of reactive oxygen species (ROS)
within cells. ROS production contributes to mitochondrial damage in a range of
pathologic conditions, and this process is also important in redox reactions between
the organelle to the rest of the cell (42, 43). Oxidative stress has also been linked to
endoplasmic reticulum (ER) stress and to the activation of the unfolded protein
response (UPR), leading to the activation of various inflammatory responses and
dysregulation of the innate immune functions in the airways (44, 45). These prior
observations support our findings that both the OXPHOS and UPR gene sets were
significantly enriched in cluster 1. Given the previous suggestions that the OXPHOS
and UPR systems play specific roles in the pathogenesis of asthma (45, 46), age-

related changes in the OXPHOS and UPR systems may influence the development of
50



asthma in the elderly people. The observed decrease in serum uric acid levels in
cluster 1 was also interesting. As anti-oxidants may scavenge ROS, an imbalance
between ROS and anti-oxidant capacity is an important factor determining the effects
of oxidative stress. Presently, it is not clear if EA patients in cluster 1 possess an
intrinsic defect in anti-oxidant capacity. Combined with changes in the OXPHOS and
UPR systems, however, reduced anti-oxidant capacity may contribute to the
pathogenesis of asthma in the elderly people. Also, genes consisting brown module
in cluster 1 which is correlated with FEV1/FVC ratio showed enrichment of
CELL_CYCLE gene set. This also should be important in airway obstruction of EA

because both OXPHOS and UPR pathway promote apoptosis (47)

Cluster 2 is characterized by the enrichment of EMT gene sets. EMT describes a
situation where epithelial and mesenchymal cells can, under certain conditions, alter
their phenotypes (48), and emerging evidence suggests that EMT is an important
mechanism contributing to airway remodeling in asthma (49), providing an
explanation for the lower post-BD FEV1 and post-BD FEV1/FVC ratio in cluster 2
compared to those in cluster 1. Senescent cells secrete a variety of proteins
collectively known as the senescence-associated secretory phenotype (SASP), and
these proteins can induce cellular plasticity and tissue change in a paracrine manner
(50). Recently, it was reported that SASP might play a causal role in the pathogenesis
of chronic obstructive pulmonary disease (51, 52). The role of SASP in the
pathogenesis of asthma in the elderly people has remained completely unknown;
however, cellular senescence is believed to contribute to cancer progression via EMT
(53, 54). Cellular senescence observed in the airway may induce EMT and increase
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the severity of asthma in the elderly people. Genes consisting magenta module in
cluster 2 which is correlated with FEVI/FVC ratio showed enrichment of
SIGNALING _BY_GPCR gene set. Downstream signals of G protein-coupled
receptors are also well-known biologic pathway concerning airway remodeling (55).
Therefore, it should be important in development of airway obstruction of EA patients

of cluster 2.

Four leading edge genes (NDUFB4, HSPA9, MRPS11, and ACATI) (Figure 11) of
the OXPHOS gene set exhibited significantly dominant enrichment in cluster 1. All
these genes were involved in the expression of mitochondrial enzymes or proteins.
NUDFB4 is a subunit of NADH dehydrogenase, and its expression was increased in
smoking associated severe asthmatics (56, 57). Similar to the present study, it has
been reported that a considerable portion of elderly patients with asthma were former
or current smokers (5, 6). HSPA9 is a gene involved in the expression of the
intracellular hsp-70 group, and this gene showed significant association with
stimulation of PM 2.5 to bronchial epithelial cell of the small airway of smokers
(58). MRPS11 encodes a mitochondrial ribosomal protein that is overexpressed in IL-
6 stimulated bronchial epithelial cell (59). No studies exist regarding the relationship
between the ACATI gene and asthma or airways. Thus, these genes appear to be
associated with airway responses to noxious substances, and these genes are likely to
be related to the mechanism of elderly asthma, especially in cluster 1 of our study
when compared to the phenotype of cluster 2. Two genes of the EMT gene set
(FUCAI and SNTBI) (Figure 11) were identified as leading edge genes, with
significantly dominant enrichment in cluster 2. IFN-y increases the expression of the
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FUCAI gene and a-L-fucosidase, which is the final product of FUCAI gene (60).
Increased a-L-fucosidase blocks wound repair in primary airway epithelium (61). It
is well established that a delay in airway epithelial damage is associated with airway
remodeling (62). In general, IFN-y is known to block Th2 inflammation in the airway
of asthmatics; however, mouse models of chronic airway inflammation induced by
prolonged allergen challenge indicate that IFN-y can be increased to promote airway
remodeling (63). Therefore, given the phenotype, FUCAI may act as a key gene in
elderly asthma, especially in cluster 2 of our study. The SNTBI gene encodes a
subunit of the dystrophin-associated protein complex. This complex is known to
affect the maturation of airway smooth muscle (64), but other than that, little is known

concerning the effects of the SNTB/ gene in the context of the asthmatic airway.

As mentioned above, innate immunity induced by repetitive insult to airway
epithelium is presented as a possible hypothesis for EA pathogenesis, and UPR can
function to integrate cell survival with the need to respond to and clear pathogens and
infected cells from airways (65). The UPR integrates the metabolic challenge of
producing large amounts of complex proteins of the innate immune system (66). Also,
the OXPHOS system is involved in the activation of group 2 ILCs in airway
inflammation that results in increased fatty acid oxidation (FAO)-dependent
OXPHOS (67). These finding provide evidence that enriched gene pathways in
cluster 1 may be related to EA pathogenesis via innate immunity. The other possible
explanation for EA pathogenesis is to the observation of SE-IgE sensitization in late
onset asthma. That phenotype of asthma is characterized by less atopy, increased
sinus disease, higher eosinophilia, and more severe asthma. This phenotype also
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shows a higher prevalence of chronic rhinosinusitis and nasal polyposis (15). The
genetic pathway and phenotype exhibited by cluster 2 may be related to this
phenotype. Although we did not find any specific pathway directly related to
eosinophil biology, a previous report indicated that eosinophils promoted EMT of
bronchial epithelial cells (68), and a significantly elevated sputum eosinophil
proportion was observed in cluster 2. Therefore, airway eosinophilia may play an
important role in the pathogenesis underlying cluster 2. Additionally, changes in EMT
markers were observed in epithelial cells of nasal polyp and chronic rhinosinusitis

(69, 70) .

We aimed to identify biological pathways encompassing only EA, and thus, we did
not consider asthma-COPD overlap (ACO) as a subtype of EA in this study. If we
define ACO as exhibiting a post-BD FEV1/FVC < (.7 along with classical symptoms
of chronic bronchitis or signs of emphysema with chest radiography or pulmonary
function test (71), the proportion of ACO is higher in cluster 2 (28.6 % vs 55.5%).
Although the difference exhibited a borderline significance (P = 0.083), the present
study raised new insight into understanding ACO in the elderly participants. It is
established that ACO is a common clinical problem in the elderly people (72).
Therefore, large scale studies to examine possible associations between biological

pathways enriched in cluster 2 and ACO are necessary.

There are a few general limitations to our findings. One is the small number of
participants. Our results, however, were replicated using an independent data set. This

was a cross-sectional study, and thus, we cannot know if the pathways identified were
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the primary cause or the secondary effect of asthma. Second, we used uric acid levels
as an indirect biomarker to reflect oxidative stress status, as this was easily available
from routine laboratory examinations. The measurement of additional biomarkers is
required to confirm our observations. Third, we analyzed gene expression of EA
patients and found two different biologic pathways. As mentioned above, several
studies suggest that the pathogenic mechanisms of EA and NEA are different, and
there is no study which directly compares the biological pathways involved with these
two subsets of asthma. Therefore, studies to elucidate different genetic mechanisms

between EA and NEA are required.

In this study, we identified two distinct molecular clusters using gene expression
profiles in sputum cells from patients diagnosed with EA. The OXOPHOS and UPR
gene sets were significantly enriched in one cluster with lower serum levels of uric
acid. The EMT gene sets were significantly enriched in one cluster with airway
remodeling defined by lower post-BD FEV/FVC ratios. This is the first study to show
biologic pathways that are possibly related to EA pathogenesis. EA is an
extraordinary phenotype of asthma that is characterized as difficult to diagnose and
manage. It likely involves mechanisms other than those observed in conventional
asthma. Further studies on these mechanisms and new approaches to examine EA are
needed. We postulate that genes associated with oxidative-phosphorylation and
epithelial mesenchymal transition may be important in the development or
progression of EA, and positive findings from future studies may result in important

developments in the treatment of EA.
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