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Abstract 

Analysis of biological pathways in 
elderly with asthma; sputum 

transcriptomic analysis 
 

Byung Keun Kim 

Translational Medicine, Department of Medicine 

The Graduate School 

Seoul National University 

 

Background: Elderly asthma (EA) shows characteristics different from those 

of conventional asthma. EA is increasing but its specific pathogenesis remains 

unclear. Currently, systems biology is widely used in biological research 

because of the rapid advancement of high-throughput technologies. This study 

aimed to identify EA-related biological pathways by analyzing genome-wide 

gene expression profiles in sputum cells using systems biology techniques. 

Methods: We analyzed gene expression profiles in induced sputum of EA 

patients and healthy elderly controls. A total of 3,156 gene probes with 

significantly different expressions between the two groups were identified. We 

performed hierarchical clustering of genes to classify EA patients. Gene set 

enrichment analysis (GSEA) and weighted gene co-expression network 

analysis (WGCNA) were both performed to provide biological information. We 

also replicated our results using public gene expression data available from 
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Gene Expression Omnibus. 

Results: Fifty-five EA patients and ten elderly control subjects were enrolled. 

Two distinct gene clusters were found. Cluster 1 (n=35) showed a lower 

eosinophil proportion in sputum and less severe airway obstruction compared 

to cluster 2 (n=20). The replication data set also identified two gene clusters 

(Cluster 1` and Cluster 2`). We found five gene sets enriched in cluster 1 and 

three gene sets enriched in cluster 2. Among these, we confirmed that two gene 

sets were significantly enriched in the replication data set 

(OXIDATIVE_PHOSPHORYLATION (OXPHOS) gene set in Cluster 1` and 

EPITHELIAL_MESENCHYMAL_TRANSITION (EMT) gene set in Cluster 

2`). These were also enriched in a subgroup analysis that consisted of 

individuals who had never smoked. We also found four leading edge genes 

(MRPS11, HSPA9, NUDF4, and ACTA1) in the OXPHOS gene set and two 

(SNTB1 and FUCA1) in the EMT gene set. WGCNA revealed four modules in 

cluster 1 and 18 modules in cluster 2. The brown module of cluster 1 and the 

magenta module of cluster 2were correlated with FEV1/FVC ratio in EA 

patients. These two modules were also replicated using the replication data set. 

Conclusion: The findings of two distinct gene clusters in EA and different 

biological pathways within each gene cluster suggest two different pathogenic 

mechanisms underlying EA. We postulate that oxidative stress and cellular 

senescence-associated with aging may be important in the development or 

progress of EA, and these could be an important development for effectively 

treating EA. 
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Introduction 

The global human society is aging, and the population aged 65 and over is 

expected to expand by 150% in the next 35 years (1). Accordingly, elderly 

asthma (EA), encompassing asthma in people aged 65 years and over, is 

expected to increase dramatically. The estimated prevalence of EA in developed 

countries is 6-10% (2). Two-thirds of deaths attributed to asthma occur in 

people suffering from EA, and the mortality rate of EA is 7.3 deaths per 100,000 

people (3). 

Previous reports suggest that EA is phenotypically different from non-elderly 

asthma (NEA) (4-6). EA exhibits more heterogeneous characteristics and can 

be divided into long-standing asthma, wherein the patients suffer from the 

condition since childhood, and late-onset asthma, wherein the symptoms 

develop after the sixth decade of life (7). According to recent studies, the 

incidence of asthma is increasing and is the highest in elderly individuals, and 

more than two-thirds of these cases develop after the individuals reach 40 years 

of age (8). EA presents with characteristics different than those of NEA; its 

diagnosis is particularly challenging, and the symptoms of this disease often 

mimic alternative pathologies of elderly people, such as chronic obstructive 

pulmonary disease or congestive heart failure (7). The time required to achieve 

peak bronchodilator effect is 30 min, longer than 5-10 min in NEA (9), and the 

methacholine provocation test is less useful for the diagnosis of asthma in 

patients with a longer duration of asthma (10). Also, in EA patients, 

eosinophilic inflammation of airways is associated with airway hyper-

responsiveness, and neutrophilic inflammation is determinant of airflow 
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limitation at rest and during bronchoconstriction (11).  

These findings emphasize the observation that the pathogenesis of EA is 

different from that of typical allergic asthma, the latter being influenced by 

atopy, IgE, and Th2 responses. EA is an extraordinarily complex disease, and 

the pathogenesis underlying EA has not been clearly elucidated (12). There are 

several hypotheses concerning the development of EA. The first is based upon 

the relationship between the innate immune response and asthma. 

Environmental exposure to various proteases and to endotoxins such as those 

encountered from cigarette smoking can perpetuate this disease. Also chronic 

infection, colonization by bacteria or fungi, and viral infection can influence 

airway mucosa and accelerate submucosal hypertrophy and airway remodeling 

(12). Innate lymphoid cells (ILCs), a newly identified type of immune cell that 

belongs to the lymphoid lineage but does not respond in an antigen-specific 

manner, could also be a significant mediator of EA development. These cells 

are related to the development of asthma regardless of adaptive immune 

response, particularly in response to several stimuli such as several molecules, 

virus, mycobacterial infection that can cause repetitive epithelial damage (13). 

The second hypothesis concerns the role of microbiome in the development of 

EA. Evidence exists illustrating key roles for the microbiome in the 

development of asthma. Coupled with effects of immunosenescence and 

inflammation, the microbiome in EA is likely to influence the clinical 

phenotype observed in practice. If such associations are comparable in the 

context of late-onset disease, however, remains to be established (14). Recently, 

significant associations between Staphylococcal enterotoxin IgE (SE-IgE)-

sensitization and late-onset asthma have been established (15), and this could 
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be an important clue for understanding the pathogenesis of EA. 

As discussed above, a large amount of clinical and experimental evidence 

supports the idea that the mechanisms underlying EA are different from those 

of conventional NEA. Therefore, the mechanisms underlying EA should be 

studied from a new perspective. Given the current prevalence of genome-wide 

association studies (GWAS), many researchers are attempting to understand the 

pathophysiology and mechanisms regulating diseases by using both genomic 

and clinical data. Currently, the study of genetics in human diseases has become 

“big data science.” The rapid advancement of high-throughput technologies has 

allowed the affordable profiling of genomes, transcripts, proteins, and 

metabolites. The systems approach has become much more attractive in the 

post-GWAS era (16). Systems biology approaches that integrate various 

indicators to facilitate analysis within one system have been widely used in 

biological research. As human biology and specific disease conditions cannot 

be fully understood in terms of cross-section, systems biology seeks to 

determine meaningful signals through objective mathematical analysis 

allowing for understanding of the intricate connections among the varied and 

large-scale biological data. Recently, methods such as computational 

unsupervised cluster analysis techniques, gene set enrichment analysis (GSEA), 

and weighted gene co-expression network analysis (WGCNA) have been 

widely used for genome expression studies. 

Computational unsupervised cluster analysis techniques using co-relation 

networks can be performed using a three step process that includes pre-

processing, cluster analysis, and cluster validation (17). This approach has been 
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widely used in many applications such as mRNA expression studies. Many 

tools for validation of cluster analysis have been used. Pvclust is an add-on 

package to assess the uncertainty in hierarchical cluster analysis for the popular 

statistical software R. Pvclust can easily perform bootstrap analysis of 

clustering for general statistical problems (18). GSEA is an algorithm that 

evaluates if a number of genes sharing biological traits are expressed with 

statistically significant differences. This technique verifies related genes in a 

given set are distributed more toward the top or bottom of a ranked list of 

differential expression results between two biologic states than expected by 

chance (19). The enrichment score of GSEA is determined by repeatedly 

permuting the observed expression-phenotype relationships. The leading edge 

of an enriched gene set represents the core biology of interest. Gene co-

expression networks are used to associate genes of unknown function with 

biological processes, to prioritize candidate disease genes, or to discern 

transcriptional regulatory programs (20). Although they do not provide 

information concerning causality, new methods for differential co-expression 

analysis can provide clues to identify regulatory genes underlying various 

phenotypes. WGCNA is the first co-expression tool and the most widely used 

clustering package for co-expression analysis (20, 21). This technique performs 

hierarchical clustering and divides each cluster into sub-clusters representing 

co-expression modules. The hub gene is a highly connected gene within each 

co-expression network, and identification of this gene could provide novel 

functional insight into specific disease. NetRep is a rapid and computationally 

efficient method that can be used to verify if specific co-expression modules 

are preserved in other gene expression datasets without assuming data are 
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normally distributed (22). 

Gene expression data obtained from specific tissue are advantageous in terms 

of exploring the mechanisms underlying specific diseases due to the tissue-

specificity of these data. Gene expression data of asthma can be obtained from 

various specimens such as induced sputum, bronchial epithelial cells, 

bronchoalveolar lavage fluid, and biopsy specimens. Among these, induced 

sputum is a reliable non-invasive specimen of bronchial inflammation in 

asthma. It is recognized as a very useful specimen for both research and clinical 

applications, and induced sputum aids in both the diagnosis and monitoring of 

asthma (23). The evaluation of gene expression profiles of sputum cells has 

been applied successfully to understand asthma pathogenesis (24, 25).  

The present study examined biological pathways related to EA using 

genome-wide gene expression profiles of sputum cells from EA patients. We 

selected genes exhibiting significantly different expression profiles between EA 

and healthy elderly controls, and we identified two distinct clusters by 

hierarchical clustering of these genes. We performed gene set enrichment 

analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) 

to gain further biological insights into each cluster. Finally, we confirmed that 

our findings were replicated in a dependent gene expression profile of sputum 

cells obtained from Gene Expression Omnibus (GEO), a publicly available 

database of gene expression profiles. To the best of our knowledge, this is the 

first study to identify specific biological pathways contributing to EA 

pathogenesis using sputum gene expression profiles.  
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Methods 

This study was approved by the Seoul National University Hospital Review 

Board (1608-101-786), and informed consent was obtained from all study 

participants.  

 

1. Discovery data set 

Asthma was diagnosed according to the Global Initiative for Asthma 

guidelines. Elderly patients with asthma, who were older than 65 years and 

exhibited symptoms and signs suggesting chronic airway diseases and 

reversible airflow limitation or airway hyper-responsiveness were recruited 

from the Seoul National University Hospital, Seoul, Korea. Chronic signs and 

symptoms were defined based on current (past 12 months) episodic respiratory 

symptoms including dyspnea, coughing, wheezing, and sputum. Reversible 

airflow limitation was defined as the ratio of forced expiratory volume in the 

first second (FEV1) to forced vital capacity (FVC) being below 0.7 with FEV1 

increased more than 12% and 150ml after bronchodilator use, or FEV1 being 

increased more than 15% spontaneously or after treatment. Airway hyper-

responsiveness was assessed by the methacholine provocation test when the 

provocative concentration 20% (PC20) was below 16mg / ml. (26). As acute 

exacerbation by various causes is also likely to alter gene expression in induced 

sputum, patients with severe comorbidities who were unable to perform the 

study or who could not obtain induction sputum in a stable state were excluded. 
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Healthy elderly controls without asthma (n = 10) were recruited by 

advertisement. None of the healthy controls exhibited respiratory symptoms, 

sputum eosinophilia, abnormality on chest radiography, or obstructive 

pulmonary function test results. Three of the control patients were smokers (one 

current smoker and two ex-smokers). Baseline assessment at recruitment 

included sex, age, height, weight, smoking status, and previous medical history. 

Exclusion criteria included recent (past month) respiratory tract infection, 

recent change in maintenance therapy, and recent asthma exacerbation; 

however, to reflect real-life situations, smoking status was not considered as an 

exclusion criterion. Sputum induction and processing were performed as 

previously described (27). 

 

2. Gene expression arrays 

We collected induced sputum prior to drug administration when patient 

disease condition was stable to minimize drug effect. Collection of induced 

sputum was performed in accordance with a previously described method (28). 

Cells were stored at -80°C until use. RNA was extracted from induced sputum 

samples using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Gene 

expression levels were measured using the GeneChip Human Gene 2.0 ST 

(Affymetrix, Santa Clara, CA, US). We removed probes exhibiting poor 

chromosome annotation and probes within the X or Y chromosome. We then 

performed VST transformation and quantile normalization, respectively, to 

reduce the effects of technical noise and to ensure that the distribution of 
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expression levels for each array was closer to a normal distribution.  

   

3. Statistical analysis 

Figure 1 shows an overview of the statistical analysis. A total of 3,156 gene 

probes showing significantly (P < 0.05) different expressions between EA and 

healthy elderly controls were used for further analysis. To search for 

meaningful information patterns and dependencies in gene expression data, we 

performed hierarchical clustering using the Pvclust package in R version 3.4.3 

(www.r-project.org). P-values indicate how strongly clusters are supported by 

the data (18). An approximate and unbiased P-value greater than 95% was used 

to define a cluster. Comparison of the phenotype between two clusters was also 

performed. Pearson’s chi square test and Fisher’s exact test were to determine 

categorical variable, and t-test and Mann-Whitney U test were used for the 

continuous variable. 

We next performed GSEA using the GSEA software (version 3.0) provided 

by the Broad Institute (Boston, MA, USA) to compare the leading edge subsets 

of each cluster as previously described  (19). We used the hallmark gene sets 

(H collection) obtained from the Molecular Signatures Database (MSigDB, 

version 6.0), and we defined significantly enriched gene sets as those with a 

false discovery rate threshold of less than 0.05. We also performed WGCNA on 

gene expression datasets of two clusters (21). Using 3156 gene probes, we 

characterized unsigned correlation networks and determined their relationship 

to each other. We also found gene modules within each cluster. Modules were 
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defined as groups of highly interconnected genes (29). We computed eigengene 

values for the modules identified, and we performed linear regression analysis 

to search phenotype-associated gene modules that were significantly related to 

the target phenotype (29). GSEA based on Reactome pathway database was 

also done with individual genes of each gene modules we found. 

 

4. Replication data set 

A dependent gene expression profile of sputum cells (GSE41863) obtained 

from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863) 

was used to replicate our results. The dataset contains gene expression data 

from 118 patients diagnosed with moderate-to-severe asthma and 21 control 

subjects. To identify markers associated with various asthma subtypes, sputum 

samples were collected from asthmatics and healthy controls and subjected to 

expression profiling using Affymetrix HG-U133Plus2.0. From this profile, we 

selected 20 subjects aged 65 years or older (15 asthmatics and 5 healthy 

controls).  

We also selected 3,264 gene probes (P < 0.05) that are differently expressed 

form normal elderly subjects and performed cluster analysis. From the gene 

probes, two clusters were identified. Using these gene probes, GSEA based on 

hallmark gene sets of MSigDB was also performed in the same manner. We 

compared GSEA results obtained from the discovery and replication datasets, 

and we searched pathways and individual genes that may participate in the 

pathogenesis of EA. We also tested if gene modules from our two clusters were 
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present in the public database. R package “NetRep” was used for this analysis, 

and this approach can quantify the preservation of gene co-expression modules 

across different datasets and can produce unbiased p-values based on a 

permutation approach to score module preservation without assuming normal 

distribution of data (22).   
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Results 

1. Baseline characteristics 

Fifty-five patients with EA were enrolled and their phenotypic data and gene 

expression profile in induced sputum were collected. Based on the differential 

gene expression patterns of sputum cells, two distinct clusters were identified 

excluding three outliers. Cluster 1 consisted of 35 patients and cluster 2 

consisted of 20 patients. (Figure 2 and Figure 3). Cluster 1 featured a 

significantly lower proportion of eosinophils in the sputum and less severe 

airway obstruction as measured by the post-bronchodilator (BD) ratio of the 

forced expiratory volume in one second and forced vital capacity (FEV1/FVC) 

compared to cluster 2. Although it was not statistically significant, patients in 

cluster 2 were older and have longer duration of diseases than patients in cluster 

1. Detailed characteristics of the two clusters are provided in Table 1.  

 

2. Gene set enrichment analysis (GSEA) 

We performed a GSEA of our gene probes in each cluster to identify the 

interactions of functionally related biologic processes. With hallmark gene sets 

in MSigDB, we found several significant pathways (Table 2 and Figure 4). Five 

gene sets were significantly enriched in cluster 1 

[OXIDATIVE_PHOSPHORYLATION (OXPHOS), 

UNFOLDED_PROTEIN_RESPONSE (UPR), MYC_TARGETS_V1, 

DNA_REPAIR, and ADIPOGENESIS] and three gene sets were significantly 



12 

 

enriched in cluster 2 [EPITHELIAL_MESENCHYMAL_TRANSITION 

(EMT), MYOGENESIS, and KRAS_SIGNALING_DN]. This result shows 

biologic support that gene expression profile of our two cluster is statistically 

different and clues that pathologic process of asthma phenotype might be 

different. 

 

3. Subgroup analysis with patients who have never 

smoked 

We also analyzed with patients who have never smoked. Based on the 

differential gene expression patterns of sputum cells, a total of 29 patents was 

separated with two clusters (nineteen patients in cluster 1 and ten patients in 

cluster 2) (Figure 5). We performed GSEA with the result and we found two 

significant pathway in each of the two clusters. 

UNFOLDED_PROTEIN_RESPONSE (UPR) and 

OXIDATIVE_PHOSPHORYLATION (OXPHOS) gene sets were enriched in 

cluster 1 and MYOGENESIS and 

EPITHELIAL_MESENCHYMAL_TRANSITION (EMT) gene sets were 

enriched in cluster 2 (Figure 6). With analysis only with never smokers, two 

gene sets in cluster 1 showed statistical significance but they did not after 

correction of multiple comparisons (Table 3) 

 

4. Validation of gene sets from GSEA analysis 
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In the replication analysis, hierarchical clustering of gene expression patterns 

also revealed two clusters (cluster 1` with 8 EA patients and cluster 2` with 7 

EA patients, Figure 7). Clinical characteristics of each cluster are shown in 

Table 4. GSEA identified eight gene sets (OXPHOS, 

ESTROGEN_RESPONSE_EARLY, E2F_TARGETS, MYC_TARGETS_V1, 

FATTY_ACID_METABOLISM, MYC_TARGETS_V2, 

ESTROGEN_RESPONSE_LATE, and DNA_REPAIR) were significantly 

enriched in cluster 1 and three gene sets (TNFA_SIGNALING_VIA_NFKB, 

INFLAMMATORY_RESPONSE, and EMT) in cluster 2` (Table 5 and Figure 

8). The OXPHOS gene set was significantly enriched in both cluster 1 and 

cluster 1` and the EMT gene set in both cluster 2 and cluster 2`.  

 

5. Relationship between phenotype and replicated gene 

sets 

To assess the potential functional relevance of the replicated gene sets, the 

leading edge genes of gene sets enriched in both discovery and replication 

dataset (Table 6) were summarized into a single metagene metric using a 

principal component analysis. Then, the correlations between the first principal 

component (PC1) and serum uric acid levels and post-BD FEV1/FVC values 

were measured in each cluster. Circulating uric acid is a major antioxidant that 

might help protect against oxidative stress (30). The post-BD FEV1/FVC value 

is an indirect indicator of airway remodeling (31). Levels of serum uric acid 

were lower in cluster 1 with a borderline significance (P = 0.083) compared to 



14 

 

cluster 2, whereas post-BD FEV1/FVC values were significantly higher in 

cluster 1 (P = 0.008) (Figure 9). PC1 of leading edge genes in the OXPHOS 

gene set showed a negative correlation with serum uric acid levels (P = 0.075) 

only in cluster 1 (Figure 10). Meanwhile, PC1 of leading edge genes in the EMT 

gene set showed a significantly negative correlation with post-BD FEV1/FVC 

values (P = 0.005) only in cluster 2 (Figure 10). For individual gene, we found 

4 genes (MRPS11, HSPA9, NDUFB4, and ACAT1) in the leading edge genes 

of the OXPHOS gene set and 2 genes (SNTB1 and FUCA1) in leading edge 

genes of the EMT gene set belonged to genes which showed more than 1.5 

log2-fold expression difference between cluster 1 and cluster 2 with P values 

less than 0.01 (Figure 11).  

 

6. Weighted gene co-expression network analysis 

(WGCNA) and modules correlates with phenotype of 

cluster 

Applying WGCNA to the 3,156 genes of two clusters, we identified four 

modules in cluster 1 and 18 modules in cluster 2. (Figure 12) The size of 

modules were various ranging from 62 (lightgreen module in cluster 2) to 1728 

genes (grey module in cluster 1). Grey module is group of genes which could 

not be assigned to a module and they were not considered for further analysis. 

Among modules identified, FEV1/FVC ratio correlates significantly with 

brown module of cluster 1 (P value = 0.003632) and magenta module of cluster 

2. (P value = 0.03697). After multiple regression with other phenotypic variable 
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including BMI, symptom duration, FVC, FEV1 and cellular profile of induced 

sputum, the association between FEV1/FVC and brown module of cluster 1 

(P=0.0347) and magenta module of cluster 2 (P value=0.003117) remained 

statistically significant (Figure 13). GSEA based on Reactome database with 

individual genes of two modules identified two gene sets which were 

significantly enriched (CELL_CYCLE gene set in brown module of cluster 1 

and SIGNALING_BY_GPCR gene set in magenta module of cluster 2) (Figure 

14). 

 

7. Validation of gene sets from WGCNA and enriched 

pathways 

Among four modules identified in cluster 1 of discovery dataset, two 

modules (module 1 and 3, P value = 0.00319968 and 0.00209979, respectively) 

were significantly preserved in cluster 2` of replication dataset with NetRep 

analysis (P value = 0.00319968 and 0.00209979, respectively) (Figure 15). Also, 

four modules in cluster 2 of discovery dataset were preserved in cluster 1` 

(Module 1, 6, 9, and 13, P value = 0.00039996, 0.00009999, 0.00079992 and 

0.02329767, respectively). Brown module of cluster 1 and magenta module of 

cluster in cluster 2 also preserved in the replication cohort. Thus, we denoted 

them as the significant eigengene sets that shows phenotypic difference in 

elderly asthma. Table 7 shows genes consists brown module of cluster 1 and 

magenta module in cluster 2. 
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Table 7. Genes consists (A) brown module of cluster 1 and (B) magenta 

module in cluster 2. 

(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

DUOXA1 EYA2 RIMS1 MUC5B
TMC5 CLIC6 GSTA1 PTPRF
CX3CL1 RIBC2 UBXN10 COLCA2
CDH3 CHL1 PERP LAYN
CDH1 UPK1B CLDN4 TSPAN1
ATP2C2 EFHB STEAP2 CYP4B1
FA2H PLXNB1 CFTR MUC15
ST6GALNAC1 LRIG1 PTPRZ1 DCDC1
DSG2 MUC13 AGR2 CACHD1
SERPINB5 CP COBL KRT18
SERPINB11 PFN2 IQUB C12orf74
CAPN9 PLCH1 GRHL2 KRT5
CHST9 MECOM EYA1 LRIG3
SERPINB4 C1orf194 DNAI1 ATP12A
CYP2F1 CCDC39 PIGR SOX21-AS1
MED25 SLC34A2 ASS1 NEK5
CXCL17 SPARCL1 NFIB SLITRK6
DRC1 ADH1C IRF6 DZIP1
EPCAM ADH7 TNC AK7
DAW1 MARVELD2 ENAH SIX1
EFEMP1 SELENBP1 PLEKHS1
WFDC2 CAP2 ENKUR

kc1 module 3 gene
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(B) 

 

 

CHTOP HOXD9 PRICKLE4 KLF6
ARID3B PRDM2 GATAD2B DNAJB12
MAN2A2 SLC11A1 C6orf106 LINC00294
INO80 TMEM198 USP42 ATG13
PARP6 TLDC2 CREB5 SLC22A9
DDR2 SLC23A2 KCTD7 RBM14
TCF25 EWSR1 BCL7B CARS
CES5A HMGXB4 GIGYF1 ZNF195
SMCR8 EP300 TNFSF18 CPSF7
ZNF830 LOC388882 MKRN1 LOC100133315
NPL SF3A1 ZNF746 LOC100049716
RPS6KB1 DUSP18 PHYHIP PFDN5
AA06 NR2C2 FAM214B SP1
MIR205HG LOC100129550 KLF9 PCBP2
LINC00511 CC2D1B FAM120AOS PSMD9
TGIF1 LPP ZFP37 LOC414300
ARF1 DCP1A SH2D3C PRPF3
GATAD2A NPY2R WDR37 SMAD9
WTIP PCBD2 DHTKD1 RCBTB2
MED25 ANKHD1 LOC439994 IRS2
DDX39A CXCL14 WBP1L TOX4
ZNF329 PDLIM7 TAF5 MAPK1IP1L
LINC00486 HMGN4 MXI1 RGS6

kc2 module 9 gene



28 

 

Figure 1. Overview of analysis 
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Figure 3. Heat map of two gene clusters identified in the discovery dataset 
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Figure 7. Two gene clusters identified in the replication dataset 
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Figure 11. Volcano plot displaying differential expressed genes. Four genes 

(MRPS11, HSPA9, NUDF4, and ACTA1) belong to the leading edge genes of the 

OXPHOS gene set and two genes (SNTB1 and FUCA1) belong to the leading edge 

genes of the EMT gene set. 
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Discussion 

Using gene expression profiles derived from sputum cells, we identified 3,156 gene 

probes showing different expression profiles between EA patients and healthy elderly 

controls. Using those gene probes, we could identify two molecular clusters within 

the EA patients. Cluster 1 showed a significantly lower proportion of eosinophils in 

the sputum and less severe airway obstruction compared to cluster 2. GSEA revealed 

that different biologic pathways were enriched in each cluster, implying that distinct 

and discriminative pathogenic mechanisms may exist. Although it was not 

statistically significant after correction using multiple comparisons, two pathways in 

cluster 1 of the discovery dataset (UPR, and OXPHOS) were also enriched according 

to subgroup analysis of individuals who had never smoked. Additionally, similar to 

the discovery dataset, the OXPHOS gene set was significantly enriched in one cluster 

and the EMT gene set was significantly enriched in the other cluster. WGCNA 

revealed several modules that differed between cluster 1 and 2. The brown module of 

cluster 1 and the magenta module of cluster 2 showed significant correlation with the 

FEV1/FVC ratio, and there were significantly different phenotypes between two 

modules. Those two modules obtained from the discovery dataset were preserved in 

the replication dataset after NetRep analysis, and we observed genes consistent with 

each module. With individual genes with two modules by WGCNA analysis of each 

cluster, we found two enriched gene sets (CELL_CYCLE gene set and 

SIGNALING_BY_GPCR gene set). 

As mentioned above, induced sputum analysis is a well-known, non-invasive, and 
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reliable method used to evaluate inflammation, gene expression, and proteomics in 

airway disease including asthma (23). There are several studies that analyzed the gene 

expression profile of induced sputum using systems biology methodology. Yan et al. 

performed the first study in 2015 using a systems biological method to study gene 

expression data of induced sputum in asthma patients (32). They performed 

unsupervised clustering analysis and found three distinct clusters. Each of these 

clusters showed statistically significant phenotypic differences, and several genes 

were differentially expressed between the three clusters and control subjects. Kuo and 

his colleagues also evaluated induced sputum of moderate-to-severe asthma patients 

from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases 

Outcomes (U-BIOPRED) cohort (33). They found three transcriptome-associated 

clusters, and co-expression network analysis revealed several hub genes that appeared 

to be important in asthma pathogenesis. They also found several gene pathways that 

were differently enriched according to the enrichment score of gene set variation 

analysis (GSVA). The enriched gene signatures were specific to pathways involving 

IL-13/Th2, ILC1, ILC2, ILC3, Th17, neutrophil activation, inflammasome, ageing, 

and OXPHOS signatures. Lefaudeux et al. also evaluated gene expression in induced 

sputum from asthmatic patients of U-BIOPRED (34). They found four clusters where 

transcriptomics and proteomic data of induced sputum showed phenotypic 

differences. Enrichment analysis was performed using the g:Profiler tool, and several 

enrichment pathways were found through the Kyoto Encyclopedia of Genes and 

Genomes and Reactome databases. 

This is the first study analyzing gene expression profiles in induced sputum from 
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EA patients to evaluate candidate gene pathways affecting the pathogenic mechanism 

of EA. Approximately 70% of EA patients enrolled in the present study displayed 

symptom onset after age 65, and the mean symptom duration was 5 years. These 

findings suggest that EA is not merely a prolongation of NEA, and that aging itself 

may cause susceptibility to the development of asthma, as discussed elsewhere (35). 

In addition to anatomical changes, repetitive and long-standing exposures to 

environmental noxious stimuli cause a pro-inflammatory state in elderly subjects that 

results in aging-associated diseases in combination with oxidative stress (36, 37). The 

OXPHOS system embedded in mitochondria is the final biochemical pathway to 

produce ATP. A defect in the coupling between oxidation and phosphorylation causes 

various pathologic conditions including airway disorders (38-40). At least 70 of the 

OXPHOS subunits are encoded by nuclear genes whose expressions were measured 

in the present study, and certain defects in these genes were linked to several diseases 

(41). The OXPHOS system is an important source of reactive oxygen species (ROS) 

within cells. ROS production contributes to mitochondrial damage in a range of 

pathologic conditions, and this process is also important in redox reactions between 

the organelle to the rest of the cell (42, 43). Oxidative stress has also been linked to 

endoplasmic reticulum (ER) stress and to the activation of the unfolded protein 

response (UPR), leading to the activation of various inflammatory responses and 

dysregulation of the innate immune functions in the airways (44, 45). These prior 

observations support our findings that both the OXPHOS and UPR gene sets were 

significantly enriched in cluster 1. Given the previous suggestions that the OXPHOS 

and UPR systems play specific roles in the pathogenesis of asthma (45, 46), age-

related changes in the OXPHOS and UPR systems may influence the development of 
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asthma in the elderly people. The observed decrease in serum uric acid levels in 

cluster 1 was also interesting. As anti-oxidants may scavenge ROS, an imbalance 

between ROS and anti-oxidant capacity is an important factor determining the effects 

of oxidative stress. Presently, it is not clear if EA patients in cluster 1 possess an 

intrinsic defect in anti-oxidant capacity. Combined with changes in the OXPHOS and 

UPR systems, however, reduced anti-oxidant capacity may contribute to the 

pathogenesis of asthma in the elderly people. Also, genes consisting brown module 

in cluster 1 which is correlated with FEV1/FVC ratio showed enrichment of 

CELL_CYCLE gene set. This also should be important in airway obstruction of EA 

because both OXPHOS and UPR pathway promote apoptosis (47)  

Cluster 2 is characterized by the enrichment of EMT gene sets. EMT describes a 

situation where epithelial and mesenchymal cells can, under certain conditions, alter 

their phenotypes (48), and emerging evidence suggests that EMT is an important 

mechanism contributing to airway remodeling in asthma (49), providing an 

explanation for the lower post-BD FEV1 and post-BD FEV1/FVC ratio in cluster 2 

compared to those in cluster 1. Senescent cells secrete a variety of proteins 

collectively known as the senescence-associated secretory phenotype (SASP), and 

these proteins can induce cellular plasticity and tissue change in a paracrine manner 

(50). Recently, it was reported that SASP might play a causal role in the pathogenesis 

of chronic obstructive pulmonary disease (51, 52). The role of SASP in the 

pathogenesis of asthma in the elderly people has remained completely unknown; 

however, cellular senescence is believed to contribute to cancer progression via EMT 

(53, 54). Cellular senescence observed in the airway may induce EMT and increase 
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the severity of asthma in the elderly people. Genes consisting magenta module in 

cluster 2 which is correlated with FEV1/FVC ratio showed enrichment of 

SIGNALING_BY_GPCR gene set. Downstream signals of G protein-coupled 

receptors are also well-known biologic pathway concerning airway remodeling (55). 

Therefore, it should be important in development of airway obstruction of EA patients 

of cluster 2. 

Four leading edge genes (NDUFB4, HSPA9, MRPS11, and ACAT1) (Figure 11) of 

the OXPHOS gene set exhibited significantly dominant enrichment in cluster 1. All 

these genes were involved in the expression of mitochondrial enzymes or proteins. 

NUDFB4 is a subunit of NADH dehydrogenase, and its expression was increased in 

smoking associated severe asthmatics (56, 57). Similar to the present study, it has 

been reported that a considerable portion of elderly patients with asthma were former 

or current smokers (5, 6). HSPA9 is a gene involved in the expression of the 

intracellular hsp-70 group, and this gene showed significant association with 

stimulation of PM 2.5 to bronchial epithelial cell of  the small airway of smokers 

(58). MRPS11 encodes a mitochondrial ribosomal protein that is overexpressed in IL-

6 stimulated bronchial epithelial cell (59). No studies exist regarding the relationship 

between the ACAT1 gene and asthma or airways. Thus, these genes appear to be 

associated with airway responses to noxious substances, and these genes are likely to 

be related to the mechanism of elderly asthma, especially in cluster 1 of our study 

when compared to the phenotype of cluster 2. Two genes of the EMT gene set 

(FUCA1 and SNTB1) (Figure 11) were identified as leading edge genes, with 

significantly dominant enrichment in cluster 2. IFN-γ increases the expression of the 
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FUCA1 gene and α-L-fucosidase, which is the final product of FUCA1 gene (60). 

Increased α-L-fucosidase blocks wound repair in primary airway epithelium (61). It 

is well established that a delay in airway epithelial damage is associated with airway 

remodeling (62). In general, IFN-γ is known to block Th2 inflammation in the airway 

of asthmatics; however, mouse models of chronic airway inflammation induced by 

prolonged allergen challenge indicate that IFN-γ can be increased to promote airway 

remodeling (63). Therefore, given the phenotype, FUCA1 may act as a key gene in 

elderly asthma, especially in cluster 2 of our study. The SNTB1 gene encodes a 

subunit of the dystrophin-associated protein complex. This complex is known to 

affect the maturation of airway smooth muscle (64), but other than that, little is known 

concerning the effects of the SNTB1 gene in the context of the asthmatic airway. 

As mentioned above, innate immunity induced by repetitive insult to airway 

epithelium is presented as a possible hypothesis for EA pathogenesis, and UPR can 

function to integrate cell survival with the need to respond to and clear pathogens and 

infected cells from airways (65). The UPR integrates the metabolic challenge of 

producing large amounts of complex proteins of the innate immune system (66). Also, 

the OXPHOS system is involved in the activation of group 2 ILCs in airway 

inflammation that results in increased fatty acid oxidation (FAO)-dependent 

OXPHOS (67). These finding provide evidence that enriched gene pathways in 

cluster 1 may be related to EA pathogenesis via innate immunity. The other possible 

explanation for EA pathogenesis is to the observation of SE-IgE sensitization in late 

onset asthma. That phenotype of asthma is characterized by less atopy, increased 

sinus disease, higher eosinophilia, and more severe asthma. This phenotype also 
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shows a higher prevalence of chronic rhinosinusitis and nasal polyposis (15). The 

genetic pathway and phenotype exhibited by cluster 2 may be related to this 

phenotype. Although we did not find any specific pathway directly related to 

eosinophil biology, a previous report indicated that eosinophils promoted EMT of 

bronchial epithelial cells (68), and a significantly elevated sputum eosinophil 

proportion was observed in cluster 2. Therefore, airway eosinophilia may play an 

important role in the pathogenesis underlying cluster 2. Additionally, changes in EMT 

markers were observed in epithelial cells of nasal polyp and chronic rhinosinusitis 

(69, 70) . 

We aimed to identify biological pathways encompassing only EA, and thus, we did 

not consider asthma-COPD overlap (ACO) as a subtype of EA in this study. If we 

define ACO as exhibiting a post-BD FEV1/FVC < 0.7 along with classical symptoms 

of chronic bronchitis or signs of emphysema with chest radiography or pulmonary 

function test (71), the proportion of ACO is higher in cluster 2 (28.6 % vs 55.5%). 

Although the difference exhibited a borderline significance (P = 0.083), the present 

study raised new insight into understanding ACO in the elderly participants. It is 

established that ACO is a common clinical problem in the elderly people (72). 

Therefore, large scale studies to examine possible associations between biological 

pathways enriched in cluster 2 and ACO are necessary. 

There are a few general limitations to our findings. One is the small number of 

participants. Our results, however, were replicated using an independent data set. This 

was a cross-sectional study, and thus, we cannot know if the pathways identified were 
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the primary cause or the secondary effect of asthma. Second, we used uric acid levels 

as an indirect biomarker to reflect oxidative stress status, as this was easily available 

from routine laboratory examinations. The measurement of additional biomarkers is 

required to confirm our observations. Third, we analyzed gene expression of EA 

patients and found two different biologic pathways. As mentioned above, several 

studies suggest that the pathogenic mechanisms of EA and NEA are different, and 

there is no study which directly compares the biological pathways involved with these 

two subsets of asthma. Therefore, studies to elucidate different genetic mechanisms 

between EA and NEA are required. 

In this study, we identified two distinct molecular clusters using gene expression 

profiles in sputum cells from patients diagnosed with EA. The OXOPHOS and UPR 

gene sets were significantly enriched in one cluster with lower serum levels of uric 

acid. The EMT gene sets were significantly enriched in one cluster with airway 

remodeling defined by lower post-BD FEV/FVC ratios. This is the first study to show 

biologic pathways that are possibly related to EA pathogenesis. EA is an 

extraordinary phenotype of asthma that is characterized as difficult to diagnose and 

manage. It likely involves mechanisms other than those observed in conventional 

asthma. Further studies on these mechanisms and new approaches to examine EA are 

needed. We postulate that genes associated with oxidative-phosphorylation and 

epithelial mesenchymal transition may be important in the development or 

progression of EA, and positive findings from future studies may result in important 

developments in the treatment of EA.  
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서론: 노인 천식은 전형적인 천식과는 다른 특징을 가지고 있다. 노인 

천식의 유병율은 지속적으로 증가하고 있으나 그 병리 기전은 

불분명하다. 본 연구는 객담에서 추출한 유전자 발현을 최근의 새로운 

방법론을 이용하여 분석하고 이를 통하여 노인 천식과 관련된 생물학적 

경로를 규명하고자 한다. 

방법: 노인 천식 환자와 정상 대조군의 유도 객담에서 유전자 발현을 

분석하였다. 두 군 간 차별 발현되는 3156개의 유전자 프로브를 확인하고 

이를 이용하여 계층 클러스터링을 시행하여 노인 천식 환자를 두 

클러스터 (Cluster) 로 구분하였다. Gene set enrichment analysis (GSEA)과 
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Weighted gene co-expression network analysis (WGCNA)를 통하여 유전자 

발현을 분석하였고 노인 천식의 새로운 생물학적 경로를 확인하였다. 

또한 Gene Expression Omnibus (GEO) 에 공개된 유전자 정보를 이용하여 

이러한 결과를 재확인하였다. 

결과: 55명의 노인 천식 환자와 10명의 정상 노인 대조군이 연구에 

참여하였다. 클러스터 분석을 통하여 뚜렷한 두개의 군집이 확인되었다. 

35명의 환자로 구성된 첫번째 군집 (Cluster 1)은 20명의 환자로 구성된 

두번째 군집 (Cluster 2)에 비하여 객담 호산구 분율이 낮고 기도 폐색이 

경미한 특징을 보였다. GEO에 공개된 유전자 정보를 이용하여 클러스터 

분석을 시행하였을 때 역시 두개의 군집이 확인되었다 (Cluster 1`와 

Cluster 2`). GSEA 를 시행하여 Cluster 1에서 5개의 유전자 세트와 

Cluster 2에서 3개의 유전자 세트의 발현이 증가하여 있음을 확인하였다. 

GEO에서 공개된 유전자 정보를 이용하여 같은 방법으로 분석하여 

발현이 증가되어 있는 유전자 군집을 확인하였고 이 중 2개의 유전자 

세트 [Cluster 1` 에서 OXIDATIVE_PHOSPHORYLATION (OXPHOS), Cluster 

2` 에서 EPITHELIAL_MESENCHYMAL_TRANSITION (EMT))가 공통적으로 

발현이 증가되어 있음을 확인하였다. 또한 이 두 유전자 세트는 

비흡연자들만을 대상으로 분석하였을 때도 발현이 증가되어 있었다. 

두개의 유전자 군집을 추가로 분석하였을 때 첫번째 군집의 OXPHOS 
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유전자 세트에서 4개의 leading edge 유전자 (MRPS11, HSPA9, NUDF4, 

ACTA1) 와 두번째 군집의 EMT 유전자 세트에서 2개의 leading edge 

유전자 (SNTB1, FUCA1)를 확인하였다. WGCNA를 통한 분석에서 첫번째 

군집에서 4개, 두번째 군집에서 18개의 모듈을 확인하였고, 첫번째 

군집의 갈색 모듈과 두번째 군집의 자홍색 모듈이 노인 천식 환자의 

FEV1/FVC 비율과 연관이 있음을 확인하였다. 이 두 모듈은 GEO 자료를 

이용한 분석에서도 보존됨을 확인하였다.  

결론: 노인 천식 환자의 객담에서 두개의 뚜렷한 유전자 세트가 각 

군집에서 발현이 증가되어 있음을 확인하였다. 이는 노인 천식의 병리 

기전에서 두개의 다른 생물학적 경로가 작용함을 시사하는 소견이라 할 

수 있겠다. 이는 노인 천식의 발생과 진행에서 중요한 경로로 보이며 

향후 노인 천식의 치료에도 중요할 수 있을 것으로 보인다. 

 

주요어: 군집 분석, 노인 천식, 유전자 경로, Gene set enrichment analysis, 

시스템 생물학, 유전자 전사체 분석, Weighted gene co-expression network 

analysis 
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