

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Engineering

Deep Network Regularization

with Representation Shaping

딥네트워크 레귤러라이저의 역할:

레프레젠테이션과

February 2019

Graduate School of

Convergence Science and Technology

Seoul National University

 Program in Digital Contents and Information

Daeyoung Choi

Abstract

The statistical characteristics of learned representations such as correlation and

representational sparsity are known to be relevant to the performance of deep learning

methods. Also, learning meaningful and useful data representations by using regulariza-

tion methods has been one of the central concerns in deep learning. In this dissertation,

deep network regularization using representation shaping are studied. Roughly, the

following questions are answered: what are the common statistical characteristics of rep-

resentations that high-performing networks share? Do the characteristics have a causal

relationship with performance? To answer the questions, five representation regularizers

are proposed: class-wise Covariance Regularizer (cw-CR), Variance Regularizer (VR),

class-wise Variance Regularizer (cw-VR), Rank Regularizer (RR), and class-wise Rank

Regularizer (cw-RR). Significant performance improvements were found for a variety

of tasks over popular benchmark datasets with the regularizers. The visualization of

learned representations shows that the regularizers used in this work indeed perform

distinct representation shaping. Then, with a variety of representation regularizers, a few

statistical characteristics of learned representations including covariance, correlation,

sparsity, dead unit, and rank are investigated. Our theoretical analysis and experimental

results indicate that all the statistical characteristics considered in this work fail to show

any general or causal pattern for improving performance. Mutual information I(z;x)

and I(z;y) are examined as well, and it is shown that regularizers can affect I(z;x)

and thus indirectly influence the performance. Finally, two practical ways of using

representation regularizers are presented to address the usefulness of representation

regularizers: using a set of representation regularizers as a performance tuning tool and

enhancing network compression with representation regularizers.

Keywords: deep learning, representation learning, deep neural network, regularization

Student number: 2015-30722

i

Table of Contents

Chapter 1. Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions . 4

Chapter 2. Generalization, Regularization, and Representation in Deep Learn-

ing 8

2.1 Deep Networks . 8

2.2 Generalization . 9

2.2.1 Capacity, Overfitting, and Generalization 11

2.2.2 Generalization in Deep Learning 12

2.3 Regularization . 14

2.3.1 Capacity Control and Regularization 14

2.3.2 Regularization for Deep Learning 16

2.4 Representation . 18

2.4.1 Representation Learning . 18

2.4.2 Representation Shaping . 20

Chapter 3. Representation Regularizer Design with Class Information 26

3.1 Class-wise Representation Regularizers: cw-CR and cw-VR 27

3.1.1 Basic Statistics of Representations 27

3.1.2 cw-CR . 29

3.1.3 cw-VR . 30

3.1.4 Penalty Loss Functions and Gradients 30

3.2 Experiments . 32

3.2.1 Image Classification Task 33

3.2.2 Image Reconstruction Task 36

3.3 Analysis of Representation Characteristics 36

3.3.1 Visualization . 36

ii

3.3.2 Quantitative Analysis . 37

3.4 Layer Dependency . 39

Chapter 4. Representation Characteristics and Their Relationship with Per-

formance 42

4.1 Representation Characteristics . 43

4.2 Experimental Results of Representation Regularization 46

4.3 Scaling, Permutation, Covariance, and Correlation 48

4.3.1 Identical Output Network (ION) 48

4.3.2 Possible Extensions for ION 51

4.4 Sparsity, Dead Unit, and Rank . 55

4.4.1 Analytical Relationship . 55

4.4.2 Rank Regularizer . 56

4.4.3 A Controlled Experiment on Data Generation Process 58

4.5 Mutual Information . 62

Chapter 5. Practical Ways of Using Representation Regularizers 65

5.1 Tuning Deep Network Performance Using Representation Regularizers 65

5.1.1 Experimental Settings and Conditions 66

5.1.2 Consistently Well-performing Regularizer 67

5.1.3 Performance Improvement Using Regularizers as a Set 68

5.2 Enhancing Network Compression Using Representation Regularizers 68

5.2.1 The Need for Network Compression 72

5.2.2 Three Typical Approaches for Network Compression 73

5.2.3 Proposed Approaches and Experimental Results 74

Chapter 6. Discussion 79

6.1 Implication . 79

6.1.1 Usefulness of Class Information 79

6.1.2 Comparison with Non-penalty Regularizers: Dropout and Batch

Normalization . 81

iii

6.1.3 Identical Output Network 82

6.1.4 Using Representation Regularizers for Performance Tuning . 82

6.1.5 Benefits and Drawbacks of Different Statistical Characteristics

of Representations . 83

6.2 Limitation . 85

6.2.1 Understanding the Underlying Mechanism of Representation

Regularization . 85

6.2.2 Manipulating Representation Characteristics other than Covari-

ance and Variance for ReLU Networks 86

6.2.3 Investigating Representation Characteristics of Complicated

Tasks . 86

6.3 Possible Future Work . 88

6.3.1 Interpreting Learned Representations via Visualization 88

6.3.2 Designing a Regularizer Utilizing Mutual Information 89

6.3.3 Applying Multiple Representation Regularizers to a Network . 90

6.3.4 Enhancing Deep Network Compression via Representation

Manipulation . 92

Chapter 7. Conclusion 93

Bibliography 94

Appendix 103

A Principal Component Analysis of Learned Representations 104

B Proofs . 110

Acknowlegement 113

iv

List of Tables

3.1 Penalty loss functions and gradients of the representation regularizers. 29

3.2 Error performance (%) for CIFAR-10 CNN model. 33

3.3 Error performance (%) for CIFAR-100 CNN model. 33

3.4 Error performance (%) for ResNet-32/110 (CIFAR-10). 35

3.5 Mean squared error of deep autoencoder. 35

3.6 Quantitative evaluations of representation characteristics. 39

4.1 Representation characteristics. 43

4.2 Penalty loss functions of representation regularizers. 47

4.3 Statistical characteristics of learned representations. 48

4.4 Comparison of statistical characteristics for linear and ReLU layers. . 52

4.5 Statistical characteristics of representations transformed by CPNs. . . 54

5.1 Default architecture hyperparameters of CIFAR-10/100 CNN model. . 67

5.2 Condition experiment results for CIFAR-10 CNN model. 69

5.3 Condition experiment results for MNIST MLP model. 70

5.4 Condition experiment results for CIFAR-100 CNN model. 71

v

List of Figures

2.1 An illustration of a multilayer perceptron. 10

2.2 The relationship between model complexity and error. 13

2.3 An example of a hidden layer activation matrix in a deep network. . . 22

2.4 An example of two hidden layer activation matrices separated by a class

label in a deep network. 24

3.1 A single unit’s activation histogram and two randomly chosen units’

activation scatter plots for MNIST. 28

3.2 Visualization of the learned representations for MNIST. 38

3.3 Layer dependency of representation regularizers on MNIST MLP and

CIFAR-10 CNN models. 40

3.4 Layer dependency of representation regularizers on CIFAR-10 CNN

model. 40

4.1 Visualization of the learned representations for a 6-layer MLP trained

with MNIST dataset. 44

4.2 Illustration of an ION. 50

4.3 Activation histogram of a unit (RR and cw-RR) for MNIST. 59

4.4 Scatter plot of two units (RR and cw-RR). 59

4.5 Effect of L1R (L1 Representation Regularizer). 60

4.6 Effect of RR (Rank Regularizer). 61

4.7 Mutual information and generalization error 63

5.1 The sensitivity of different compression methods on the number of

remaining singular values. 76

5.2 The sensitivity of different compression methods on the number of

remaining eigenvalues. 78

vi

A.1 The top three principal components of learned representations (Baseline,

L1R). 104

A.2 The top three principal components of learned representations (L1W,

and L2W). 105

A.3 The top three principal components of learned representations (Dropout,

Batch normalization). 106

A.4 The top three principal components of learned representations (CR,

cw-CR). 107

A.5 The top three principal components of learned representations (VR,

cw-VR). 108

A.6 The top three principal components of learned representations (RR,

cw-RR). 109

vii

Chapter 1. Introduction

Despite the recent success of deep learning in a wide range of applications, in-depth

understanding of deep learning is still under its early phase of research, and it has

become a critical and timely topic. Toward a better understanding of deep learning,

a variety of theoretical and empirical approaches have been proposed, and some of

them have made a meaningful progress. Statistical learning theory, approximation

theory, information theory, optimization, and deep representations are some of the

topics that are being actively discussed in the research community. Based on the recent

theoretical studies of deep learning, this dissertation focuses on the deep representations.

In this chapter, we begin this dissertation with the research background and motivation

followed by a summary of the contributions.

1.1. Background and Motivation

Theoretical understanding of deep learning is essential in research, and the properties

of high-performing networks obtained from theoretical analysis can be beneficial for

designing new network architectures. Many works have been performed to understand

deep networks, but a deep network is still considered as a black-box model. This is

because a deep network typically has a few million parameters and nonlinear activation

functions thus making it highly nonconvex. Furthermore, it is difficult to describe a

deep network because a real-world dataset almost always cannot be written in a clean

mathematical form.

A deep network consists of multiple hidden layers including hidden units (neurons)

between input and output layers, and nonlinear activation functions are used to capture

the complicated relationship between the input and output. After the architecture and

hyperparameters of a deep network are defined, the network is trained by applying a

backpropagation algorithm. The trained network is a deterministic function of the input,

1

and the input data flow from the input layer to the output layer through hidden layers.

Therefore, the trained network can be considered as a Markov chain that consists of

consecutive hidden representations of the input data. That is, the network encodes and

decodes the input data and hidden representations. By doing this, the hidden layers

automatically capture the underlying explanatory factors of data related to a task, which

is the main reason why deep learning methods often outperform the other machine

learning algorithms even after applying hand-crafted feature engineering.

It is well known that a larger network with more hidden layers and units often

performs better than a smaller network. This is because the expressivity of deep network

increases by adding more hidden layers and units. As a result, the network can capture

task-relevant information from input data more easily and efficiently and form a better

representation via the advantages of distributed and deep representations. Thus, deep

networks are designed to have more than a few million parameters for obtaining good

performance in practice. For example, ResNet-110 model, one of the state-of-the-art

network architectures, has 1.7 million parameters (He et al. 2016).

The potential drawback of the large network is that overfitting could occur because

the number of parameters significantly exceeds the number of training data. Surprisingly,

overfitting rarely happens for the large network. The ResNet-110 model is trained

using only 50,000 training samples but still has a small generalization error, which

can be estimated as the difference between training error and test error. This small

generalization error is difficult to explain with statistical learning theory that says a much

smaller number of training data samples compared to the number of model parameters

often leads to overfitting. It has been commonly believed that overfitting rarely occurs in

deep networks because stochastic gradient descent implicitly regularizes the networks,

and explicit regularization methods such as L2 weight decay and dropout (Srivastava et

al. 2014) decrease the excess capacity of the networks. However, recent experimental

work by Zhang et al. (2016) revealed that deep networks having small generalization

error have large enough capacity to memorize random labels and randomly generated

2

data. Furthermore, the performance gain by using explicit regularization methods is

relatively very small compared to the performance obtained by the stochastic gradient

decent alone. Therefore, it can be concluded that regularizers are not the main reason

for the excellent generalization of deep networks and do not seem to play the same

roles like those of traditional machine learning regularizers that limit the complexity of

learning models.

Zhang et al. (2016) fueled the research in deep learning generalization, and many

researchers have actively investigated the topic recently (Arpit et al. 2017; Krueger et al.

2017; Hoffer, Hubara, and Soudry 2017; Wu, Zhu, and E 2017; Dziugaite and Roy 2017;

Dinh et al. 2017). Some research focuses on the theoretical generalization bound, and

information-theoretic approaches (Shwartz-Ziv and Tishby 2017; Achille and Soatto

2018a; Saxe et al. 2018) have become popular in the deep learning theory field as

well. These works have mostly focused on the reason for the excellent generalization

performance that might have been caused by the implicit regularization via the stochastic

gradient descent, but the roles of explicit regularization in deep networks have not been

sufficiently studied yet. As mentioned above, training a deep network is a process to

learn hidden representation. Each regularizer builds a representation that has different

characteristics, so the characteristics of learned representations can have a connection

with the performance of deep networks. Also, we might be able to use the characteristics

to design high-performing networks if they exist. To this end, we first need to understand

representation characteristics in-depth. In this dissertation, we study representation

regularization of deep networks using representation shaping and mainly focus on

design and the relationship between representation characteristics and performance.

In practice, developing a way to improve a task performance or build an efficient

network based on an understanding of deep representation characteristics has become

one of the important topics. As mentioned above, deep networks have numerous weight

parameters, and thus there are many ways to build different networks with a comparable

number of parameters. The types of layers, the number of hidden layers and units are

3

the typical hyperparameters in deep learning, and the choice of hyperparameters, of

course, can significantly affect the performance of deep learning models. Besides these

architecture hyperparameters, there exist a variety of regularization methods that can

be applied to deep networks and that can be considered as hyperparameters. If we

consider multiple representation regularizers that manipulate each of representation

characteristic, the regularizers can be used as hyperparameters. Plus, their combinations

and penalty loss weights can significantly affect performance, too. Another practical

way of using representation regularization is the network compression, and it can be

used to build an efficient network. As mentioned above, deep networks are usually

highly overparameterized, so unimportant parameters can be removed with a small or

even no performance loss. By applying regularization methods that alter representation

characteristics of deep networks, corresponding weight parameters can be compressed

more efficiently. In this dissertation, motivated by the need for improving performance

and building efficient networks, we propose two practical ways of using the regularizers

as a tuning tool and network compression method.

1.2. Contributions

The main contributions of this dissertation are summarized as follows.

Chapter 3

Introduction of three new representation regularizers We introduce two repre-

sentation regularizers that utilize class information. Class-wise Covariance Regularizer

(cw-CR) and class-wise Variance Regularizer (cw-VR) reduce per-class covariance and

variance, respectively. In this work, their penalty loss functions are defined, and their

gradients are analyzed and interpreted. Also, we investigate Variance Regularizer (VR)

that is cw-VR’s all-class counterpart. Intuitively, reducing the variance of each unit’s

activations does not make sense unless it is applied per class, but we have tried VR for

4

the sake of completeness and found that VR is useful for performance enhancement.

cw-CR’s all-class counterpart, Covariance Regularizer (CR), is analyzed as well, but

CR turns out to be the same as DeCov that was already studied in-depth (Cogswell et

al. 2016).

Performance improvement with the new representation regularizers Rather than

trying to find a single case of beating the state-of-the-art record, we performed an

extensive set of experiments on the most popular datasets (MNIST, CIFAR-10, CIFAR-

100) and architectures (MLP, CNN). Additionally, ResNet-32/110 (He et al. 2016)

were tested as an example of a sophisticated network, and an image reconstruction

task using deep autoencoder was tested as an example of a different type of task. We

have tested a variety of scenarios with different optimizers, number of classes, network

size, and data size. The results show that our representation regularizers outperform

the baseline (no regularizer) and L1/L2 weight regularizers for almost all the scenarios

that we have tested. More importantly, class-wise regularizers (cw-CR, cw-VR) usually

outperformed their all-class counterparts (CR, VR). Typically cw-VR was the best

performing regularizer, and cw-VR achieved the best performance for the autoencoder

task, too.

Effects of representation regularization Through visualizations and quantitative

analyses, we show that the new representation regularizers indeed shape representa-

tions in the ways that we have intended. The quantitative analysis of representation

characteristics, however, indicates that each regularizer affects multiple representation

characteristics together and therefore the regularizers cannot be used to control a single

representation characteristic without at least mildly affecting some other representation

characteristics.

Chapter 4

Identical Output Networks and Covariance and correlation of deep representa-

tions We show that for a deep network NA, there exist infinitely many Identical

5

Output Networks (IONs) whose representation characteristics such as covariance and

correlation are completely different from NA’s but whose output for any given input x

is the same asNA’s. The stronger part of the results holds only for linear layers, but the

empirical results suggest that the findings are applicable to ReLU layers as well. The

existence of IONs implies that some of the representation characteristics should not be

quoted as the reason for superior performance.

Sparsity, dead unit, and rank of deep representations We consider sparsity, dead

unit, and rank to show that only loose relationships exist among the three representation

characteristics. A higher sparsity or additional dead units do not imply a better or worse

performance when the rank of representation is fixed. In particular, we develop Rank

Regularizer (RR) that can control the stable rank of the representation and use the

regularizer to empirically show that the number of independent factors in the data

generation process does not support why one should use regularizers that encourage

sparsity or lower rank.

Information-theoretic characteristics Mutual information I(z;x) and I(z;y) are

investigated. Unlike the statistical characteristics of learned representation, mutual

information directly measures the amount of useful and useless information using the

joint density functions. When twelve different regularizers were tried on an MNIST

image classification task, the resulting I(z;x) and classification performance showed a

strong correlation.

Chapter 5

Tuning deep network performance by using representation regularizers We

compared the effects of twelve different regularizers on differently conditioned learning

tasks (tasks with a fixed dataset, less training data samples, a smaller or larger layer

width, different optimizers, or fewer target labels). We tested over MNIST, CIFAR-

10, and CIFAR-100 datasets, and tried several architectures. The investigation results

show that none of the twelve regularizers consistently outperforms for any conditioned

6

learning task. While some of the regularizers perform very well, the well-performing

regularizers are changed even by making a single change in the task constraint. Some

of the existing works that compared against only a few regularizers to derive or imply a

general conclusion might need to be revisited for a deeper investigation.

Enhancing network compression by using representation regularizers We showed

that network compression could be enhanced by applying cw-VR to representations

and RR to weight parameters. First, since some of the representation regularizers such

as cw-VR and VR make representation compact, it can be expected that corresponding

weight matrices are also compact, meaning that they have low rank. Therefore, they

can be better compressed than those networks without any regularization. Second, RR

can be applied to weight matrices to make the matrices lower rank, and thus resulting

in better compression. Our results show that deep networks became better compressed

by applying regularizations for both cases.

7

Chapter 2. Generalization, Regularization, and

Representation in Deep Learning

In this work, we aim for an in-depth understanding of deep network regularization

using representation shaping. To this end, we briefly review recent literature related

to generalization, regularization, and representation in deep learning, and explain the

relationship between the three and this work. We begin this chapter by describing the

settings and terminologies of a deep network.

2.1. Deep Networks

Applying appropriate network architecture for datasets and tasks is known to be one

of the most important factors contributing to the success of deep learning tasks. In

applications such as image recognition (Krizhevsky, Sutskever, and Hinton 2012;

Farabet et al. 2013; Tompson et al. 2014; Szegedy et al. 2015) and speech recognition

(Mikolov et al. 2011; Hinton et al. 2012; Sainath et al. 2013), specific architectures such

as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

worked very well and led to the success of deep learning. However, the basis of all these

network architectures is a Multilayer Perceptron (MLP) also called deep feedforward

networks.

A deep network consists of multiple hidden layers, and a single processing layer is

composed of multiple hidden units. A single parameter of a deep network is defined

as a pair of units in two consecutive layers. That is, the connection from one unit (i)

to another unit (j) is defined as wi,j , and bias is defined as b. Data used to train the

deep network is expressed as a pair of input x and label y for supervised learning. It is

assumed that this data is selected from distribution D to i.i.d. In this work, we mainly

focus on supervised learning, which is one of the machine learning problems. The cost

8

function (loss function) of a supervised deep network has the form L((w,b),x,y),

which measures how well the true label fits for the input point x. The cost function is

defined differently depending on the task. For example, cross-entropy is usually used in

classification tasks, and Root Mean Squared Error (RMSE) is often used in regression

problems.

A deep network differs from other machine learning models in that the input x

corresponding to a feature is usually not the result of hand-craft feature engineering.

Often, raw data is fed into the network, and the representation (activation vector) z of

each layer is formed as task-relevant information. Therefore, forming informative z

well is closely linked to the high performance of deep learning tasks. The characteristics

of representation z can be manipulated via representation shaping to improve task

performance. Also, nonlinear activation functions play an important role because it

helps a deep network learns a complicated relationship between the input and output. An

activation function is applied to pre-activations element-wisely so affects the shape of

representations. Among a range of activation functions, Rectified Linear Unit (ReLU)

often provides better performance than others such as sigmoid and tanh activation

functions. In this work, we only consider ReLU activation function.

2.2. Generalization

Machine learning has been defined in a variety of ways depending on fields that use

machine learning. One of the widely used definitions is Tom M. Mitchell’s (Michalski,

Carbonell, and Mitchell 2013), “A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P if its performance

at tasks in T, as measured by P, improves with experience E.” In practice, experience

E means that a computer program learns regular patterns in training data and then

generalizes them for unseen data. Therefore, there can exist multiple models that

perfectly fit the training data, but only some of them generalize well. Among the

models, finding one that generalizes better than others is a key in machine learning.

9

Figure 2.1. An illustration of a multilayer perceptron. This network is for solving a

binary classification task. The network includes one input layer with seven scalar values

and four hidden layers containing five units each, and the last hidden layer indicates

the output layer. Note that typical deep networks are much larger than this example

depending on input data types and network capacity required for a task. Each edge is

a weight parameter describing the relationship between two units of two consecutive

layers. All the edges between two layers form a weight matrix W that maps from a

layer to the next layer. The bias (intercepter) parameters associated with each layer are

omitted.

10

However, in deep learning, there often exist a large number of networks that generalize

comparably well. This is because there are a lot of local minima in the weight space.

An intuitive example is weight space symmetry. Another example is the scaling of

incoming weight and rescaling of its outgoing weight. We will define Identical Output

Network (ION) to generalize these cases to linear layers and show that ReLU networks’

IONs are somewhat limited in Chapter 4. The number of weight parameters of a deep

network is usually far more significant than the number of data samples used for

training the network. However, the network with excessive capacity still generalizes

well. That is, the network rarely leads to overfitting, which is against statistical learning

theory. To better understand the generalization of deep learning, we first briefly review

the relationship between model capacity and generalization. Then, we explain recent

research on generalization in deep learning.

2.2.1. Capacity, Overfitting, and Generalization

In machine learning, a model is trained with some given training data by minimizing

empirical risk. This model training can be considered as an optimization process to

find model parameters for fitting the given training data. Therefore, training error does

not tell us how well it will work for new and previously unobserved data. The goal of

machine learning is to minimize generalization error. The expected value of the error on

unseen input data is called generalization error. We often estimate the generalization

error by measuring the difference between the training error and test error because we

almost always do not know the true joint probability distribution of input and output

data. Test data are assumed to be selected from the same distribution as that of training

data with i.i.d assumption but are gathered separately from the training data. When the

test data is not available, we estimate test error by measuring validation error.

Since both training and test data are assumed to be collected from the same dis-

tribution, their expected errors are the same as well for some fixed model parameters.

Apparently, model parameters are not fixed before training time; instead, model pa-

11

rameters are learned using training data during training time. As mentioned above,

since training is an optimization process using given training data, several models

that perfectly fit the training data or that have small training error exist. For example,

multiple machine learning algorithms have the same zero training error, and even the

same algorithms with different hyperparameters can have the same zero error. This can

be possible if the algorithms have enough capacity to fit all the training data and noise

perfectly, which means that they may not perform well on the test data as shown in

Figure 2.2. This challenge is called overfitting, which occurs when generalization error

is too large. (On the contrary, underfitting occurs when a model is too small to fit the

training data so does not obtain a sufficiently low training error.) Now, the question is

how to choose a model that has a small generalization error. We explain this in the next

section.

2.2.2. Generalization in Deep Learning

As mentioned in the previous subsection, classical learning theory relates generalization

ability with the capacity of hypotheses (Vapnik 1999). Deep hypothesis spaces are

more advantageous over shallow hypothesis spaces so can have better ability to fit a

broad range of functions and generalizability (Pascanu, Montufar, and Bengio 2014;

Montufar et al. 2014; Telgarsky 2016). However, it seems that the theory on model

capacity control does not apply to deep learning. Real-life deep learning generalizes well

even if it has a large number of parameters. Therefore, the capacity of a deep network

can be considered to be larger than other machine learning algorithms. Considering

that the number of samples is usually much smaller than the number of parameters,

it is astonishing that overfitting rarely occurs. Long-term belief on this mystery is

that stochastic gradient descent implicitly reduces the excess capacity of the network.

Another is that explicit regularization methods such as weight decay and dropout help

reduce the capacity. However, recently, Zhang et al. (2016) empirically showed that

the capacity of deep learning models is large enough to memorize the entire training

12

Figure 2.2. The relationship between model complexity and error. The training error

monotonically decreases as model complexity increases (blue line). The test error

decreases like the training error does but begins to increase as model complexity

becomes too high (red line). It is therefore important to find the lowest possible test

error by cross-validation techniques. This may not be true for real-life deep learning.

Oftentimes, the test error of deep networks monotonically reduces while with increasing

the number of weight parameters, which is considered as model complexity in deep

networks (green line) .

samples, and performance improvement using explicit regularization methods such

as L2 weight decay and dropout seems a tuning effect. Arpit et al. (2017) further

empirically investigated memorization and generalization in deep networks.

To better understand the generalization of deep learning, researchers try to find a

correlation between a common property of high-performing networks and generalization

performance. Neyshabur et al. (2017) examined some of the complexity measures such

13

as norm, robustness, and sharpness for explaining generalization of deep learning.

They concluded that a single measure cannot fully explain the generalization of a

deep network. In this work, we seek properties that high-performing networks share.

However, we more focus on the properties of deep representations than those of weight

parameters. We investigate the causal relationship between the statistical characteristics

of deep representations and performance in great detail in Chapter 4.

2.3. Regularization

In the previous section, we briefly introduced the concept of capacity, overfitting, and

generalization. In this section, we elucidate regularization that is a strategy to prevent

overfitting and reduce generalization error. We explain regularization methods for deep

learning and also discuss the roles of deep network regularization.

2.3.1. Capacity Control and Regularization

Among models with comparable training performance, some of them may overfit

to the training data depending on their capacity, which leads to poor generalization

performance. As presented in the previous section, we want to build a model that

performs well on unseen data such that better generalization is achieved. Generally,

overfitting can be avoided by controlling model capacity, which can be done in many

ways.

A method to prevent overfitting can be categorized into two strategies. First, the

function class can be restricted to minimize empirical risk. It is reasonable to limit

the class of functions to consider because there are too many models that perfectly fit

training data. In statistical learning theory, the amount of overfitting can be lessened

by using more training data or applying less complex algorithms. Therefore, simple

models tend to be preferred for preventing overfitting. More importantly, choosing

proper hypothesis space which closely matches the underlying complexity of the

14

learning task is required. For example, the degree of polynomials can be controlled to

fit true joint probability distribution in linear regression appropriately. Another example

is to choose a proper number of hidden layers and units to capture true underlying

explanatory factors for a learning task in deep learning.

Capacity can be controlled by explicitly penalizing the model as well. In machine

learning, extra information is added to a learning task to choose a particular model

that fits well, which is closely related to the next method. The second method is to

alter the learning criterion (cost or objective function), which is called regularization in

general. Adding a regularization term to control model complexity is very popular in

both traditional machine learning and deep learning. Regularization is related to the no

free lunch theorem which tells us that no single machine learning algorithm universally

performs well on all tasks (Wolpert and Macready 1997). Therefore, even though

the algorithm used is the same (the function class is restricted), one with different

hyperparameters or capacity can be preferred. Among the two strategies for preventing

overfitting, we focus on regularization in this work.

For regularization, a model with large capacity can be chosen first, and a regularizer

can then be applied to the model to reduce its capacity. A typical way to regularize the

model is to add penalty terms such as Ridge regression (Hoerl and Kennard 1970) and

the Lasso (Tibshirani 1996). More specifically, Ridge regression adds the L2-norm loss

to the objective function (J). Then, the modified objective function (J̃) can be written

as follows.

J̃(w) = J(w) + λ‖w‖2 , (2.1)

wherewww is a parameter vector, and λ is a regularization parameter that balances between

the two terms. By tuning λ, one can choose the proper trade-off between fitting and

complexity. When λ is chosen to be large, the model capacity becomes small. As a

result, training performance may degrade a little, but generalization performance can

improve greatly.

Of course, L2 norm regularization is one choice among a range of regularization

15

methods. One definition of regularization by Goodfellow, Bengio, and Courville (2016)

is “any modification we make to a learning algorithm that is intended to reduce its

generalization error but not its training error.” Their definition is not limited to the

capacity control of the machine learning algorithm. Instead, they focus on prior knowl-

edge or preference for learning models and generalization performance improvement

by expressing prior knowledge or preference. By this definition, even multitask learning

and adversarial training can be considered as regularization methods.

In this work, we mainly focus on how to regularize deep networks by adding penalty

terms on representations. This approach is different from conventional penalty methods

on weight parameters; this approach indirectly imposes a complicated penalty on weight

parameters via representation regularization. We will review details of deep network

regularization using representations in the next section. Now, we take a closer look at

regularization for deep learning in the next subsection.

2.3.2. Regularization for Deep Learning

When deep learning methods are used, we hope that our deep learning model closely

approximates the true target function. However, it is easily seen that we usually do not

know the true target function or true data-generating process because the domains of

deep learning applications such as image, audio, and language are too complicated. We,

therefore, often choose an overly complex model and regularize it to have a proper

capacity (neither underfitting nor overfitting happens).

From the viewpoint of standard regularization, the complexity of deep networks can

be controlled in various ways in order to avoid overfitting. As in the example provided

in the previous subsection, a very simple and widely used way is adding the L2 loss

of deep network weights to the cost function and choosing proper coefficient λ to

control the complexity of the network. By doing this, validation performance of the

deep network is improved, and it has been believed that the improvement is a result

of controlling the complexity of the network. However, Zhang et al. (2016) showed

16

that the regularized network performs better than the original network for real data

but still has enough capacity to fit random label data perfectly, meaning zero training

error. Therefore, we cannot conclude that the capacity of the network is reduced, and

less complexity provides a performance improvement. Furthermore, the performance

improvement by the weight decay was reasonably small, so they argued that explicit

regularization methods such as weight decay, data augmentation, and dropout are more

like tuning methods unlike regularization methods of machine learning.

The examples of deep learning regularization are quite broad. Deep learning regu-

larization includes standard regularization such as L1 and L2 penalty loss on parameters

called weight decay, and parameter sharing and tying are often implemented as a deep

network architecture like CNNs. Early stopping and data augmentation are popular

techniques to improve generalization performance. As in the definition shown in the

previous subsection, even noise injection and an ensemble of networks can be a regular-

ization method if generalization performance is improved by the method. In this work,

among all possible regularization methods, we focus on some popular ones in practice.

Some related works are as follows.

The classic regularizers apply L2 (Hoerl and Kennard 1970) and L1 (Tibshirani

1996) penalties to the weights of models, and they are widely used for deep networks

as well. Wen et al. (2016) extended L1 regularizers by using group lasso to regularize

the structures of a deep network (i.e., filters, channels, filter shapes, and layer depth).

Srivastava et al. (2014) devised dropout that randomly applies activation masking over

the units. By doing this, co-adaptation among hidden units is reduced, and overfitting

can be lessened. While dropout is applied in a multiplicative manner, Glorot, Bordes,

and Bengio (2011) used L1 penalty regularization on the activations to encourage sparse

representations. XCov proposed by Cheung et al. (2015) minimizes the covariance

between autoencoding units and label encoding units of the same layer such that

representations can be disentangled. Batch normalization (BN) proposed by Ioffe and

Szegedy (2015) exploits mini-batch statistics to normalize activations. It was developed

17

to accelerate training speed by preventing internal covariate shift, but it was also found

to be a useful regularizer. In line with batch normalization, weight normalization,

developed by Salimans and Kingma (2016), uses mini-batch statistics to normalize

weight vectors. Layer normalization proposed by Ba, Kiros, and Hinton (2016) is

an RNN version of batch normalization, where they compute the mean and variance

used for normalization from all of the summed inputs to the units in a layer on a

single training case. There are many other publications on deep network regularization

techniques, but we still do not fully understand how they really affect performance.

Regularization methods using deep network representations are reviewed in the next

section.

2.4. Representation

It is well known that the success of deep learning stems from the ability of deep

learning algorithms to construct task-relevant data representations automatically. To

further benefit from the ability, many researchers have actively studied representation

learning which is one of the central topics in the field of machine learning. In this

section, we briefly introduce representation learning, representation shaping, and then

review studies related to representation shaping in detail.

2.4.1. Representation Learning

Extracting useful information from data is a key to building high performing supervised

classifiers and other predictors. In the same way, discovering underlying explanatory

factors in data is important for building generative models. In traditional machine

learning, these are usually done by hand using human domain knowledge, which

is called feature engineering. Feature engineering is often beneficial to achieve high

performance but often quite time and effort consuming. More importantly, it has become

harder to capture underlying explanatory factors with hand-craft feature engineering

18

in a variety of complex sensory data used in artificial intelligence applications such as

images, audio signals, and languages.

On the contrary, representation learning allows a system to capture useful infor-

mation from the data automatically thus removes the need for explicit manual feature

engineering. Representation learning methods learn data representation (features) and

utilize them to perform a machine learning task. However, the objective of representa-

tion learning might be less clear than that of supervised learning. A few conventional

examples are as follows. Principle Component Analysis (PCA) and Independent Com-

ponent Analysis (ICA) are popular techniques that capture low-dimensional features and

independent factors in data. A variety of clustering methods including k-mean clustering

can discover the underlying structure of data so can be considered as representation

learning methods.

Deep learning methods such as multilayer perceptrons, autoencoders, and other

forms of neural networks can be collectively considered as representation learning

methods. Deep learning methods can automatically capture task-relevant information

in the data by forming hidden layer representation so significantly reduce the effort

needed for feature engineering. Distributed, disentangled, and deep nature of deep

network representations are known to be a primary reason why deep learning methods

form a good representation that is one making learning task easier. For example, CNNs

capture from low to high-level concepts of images by forming multiple convolutional

layers. An autoencoder discovers underlying disentangled factors in the data by multiple

nonlinear transformations of the input. Generative Adversarial Networks (GANs) can

even generate new data samples by controlling independent factors.

In practice, it is important to learn a good representation by applying new archi-

tectures, optimization techniques, and regularization methods. One possible way is

to shape representation by using penalty regularization on representations. Learned

representations can become helpful for the task by manipulating their statistical char-

acteristics such as correlation and representational sparsity. In the next subsection, we

19

introduce a few representation shaping strategies and class-wise regularization methods

to improve task performance and interpretability of deep representations.

2.4.2. Representation Shaping

In statistics, the shape of a distribution can be described by either descriptive language

like the descriptive term ‘bell-shaped’ or quantitative measures such as modality and

kurtosis (Mood 1950). In deep learning, our interest is how activations of a hidden unit

are encoded. In other words, the distribution of hidden unit activations is considered

important because it may tell us how a deep network efficiently encodes and decodes

input data to capture task-relevant information. The extension to high dimensional

distribution (hidden layer activations) is, of course, more important but is often difficult

to understand intuitively and visually.

In statistics, describing the shape of the distribution itself is often considered more

important than changing its shape. However, in deep learning, it would be interesting to

alter the shape of the distribution such that statistical characteristics of representations

are manipulated and uncover the relationship between its shape and task performance.

To the best of our knowledge, there is no formal definition of altering the shape of

distribution in statistics (it seems that a definition is not needed). In deep learning,

generally speaking, representation shaping can be defined as forcing constraints on

representations to have some desired properties using prior knowledge on the data and

task. For example, we can shape representations to have multi-modal features or a high

kurtosis value. Representation shaping can be divided into two approaches. First, a

particular operation to shape representation such as dropout and batch normalization

can be added to a layer or unit in deep networks. The second approach is to penalize

hidden activations by adding a penalty term like the L1 penalty on representation to

the cost function to encourage sparser representations. In this work, we mainly focus

on the second approach. In this subsection, we introduce a few representation shaping

strategies and class-wise shaping methods as well.

20

Penalty Regularization on Representations

Like placing a penalty on weights, a penalty can be placed on representations, the

activations of hidden units in a deep network. For example, L1 penalty regularization on

activations is widely used to enforce representational sparsity. Of course, L1 penalty on

representations is only one choice of representation regularizers, and a representation

penalty term can be in any form that reflects a preference for a model. Figure 2.3

illustrates an example of a hidden layer activation matrix in a deep network. Two

examples of statistical properties that can be shaped are as follows. We first consider

the distribution of a single hidden unit. Activation distribution can be altered to increase

kurtosis for the stability of the activation distribution just like the purpose of batch

normalization. This regularization, of course, can hurt classification performance when

a loss weight is too large. When considering two hidden units’ distributions together,

cross-covariance of activations of two units can be regularized for linearly independent

representations. This shaping aims to discover underlying independent factors, so may

be beneficial for density estimation tasks.

The objective function (J̃) with a representation regularization term can be written

as follows.

J̃(w) = J(w) + λΩ(z), (2.2)

where z is an activation vector, λ is a regularization parameter that balances between

two terms, and Ω is a representation penalty function. This equation has the same

form as that of weight regularization except that it has z instead of w in the penalty

term. Therefore, weight parameters are indirectly penalized by the representation

regularization term.

Some of the existing regularization methods explicitly shape representations by

adopting a penalty regularization term. DeCov by Cogswell et al. (2016) is a penalty

regularizer that minimizes the off-diagonals of a layer’s representation covariance

matrix. DeCov reduces the co-adaptation of a layer’s units by encouraging the units to

21

Figure 2.3. An example of a hidden layer activation matrix (representation) in a deep

network. The network has six units (I) in the hidden layer and a mini-batch size of eight

(N) in this example. A statistic of a single unit and a statistical relationship between

two units can be computed by using the hidden layer activation matrix. Calculated

statistics of representations can be added to the objective function of deep network such

that representations can be regularized to manipulate the statistics.

be decorrelated. In this work, it is called CR (Covariance Regularizer) for consistency. A

recent work by Liao et al. (2016) used a clustering based regularization that encourages

parsimonious representations. In their work, similar representations in sample, spatial,

and channel dimensions are clustered and used for regularization such that similar

representations are encouraged to become even more similar. While their work can be

22

applied to both supervised and unsupervised tasks, our work utilizes a much simpler

and computationally efficient method of directly using class labels during training to

avoid k-means like clustering. Littwin and Wolf (2018) proposed a new regularization

term called Variance Consistency Loss (VCL) that is used for stabilizing the variance of

the activations so that the variance of each mini-batch is close to each other. As a result

of applying their VCL, learned representations have several different modes in a single

hidden unit, and performance is often improved. However, they have not shown that the

modes correspond to each class, so why their regularization is helpful for improving

performance seems unclear.

Representation Regularization Using Class Information

When a statistical characteristic is desired, often an adequate regularizer can be designed

and applied during the training phase. Typically, such a regularizer aims to manipulate

a statistical characteristic over all classes together. For classification tasks, however,

it might be advantageous to enforce the desired characteristic for each class such

that different classes can be better distinguished. Surprisingly, true class information

has not been commonly used directly for regularization methods. Traditionally, class

information has been used only for evaluating the correctness of predictions and the

relevant cost function terms. Some of the recent works, however, have adopted the

class-wise concept in more sophisticated ways. In those works, class information is

used as a switch or for emphasizing the discriminative aspects over different classes.

Wen et al. (2016b) developed a regularizer called ‘center loss’ that reduces the

activation vector distance between representations and their corresponding class centers

for face recognition tasks. Yang et al. (2018) designed a loss function named ‘pro-

totype loss’ that improves a representation’s intra-class compactness for enhancing

the robustness of CNN. Another recent work by Belharbi et al. (2017) directly uses

class labels to encourage similar representations per class as in our work, but it is

computationally heavy. Besides the pair-wise computation, two optimizers are used

23

Figure 2.4. An example of two hidden layer activation matrices separated by a class

label in a deep network. An activation matrix Z is the same as the matrix in Figure

2.3. Each color refers to a different class. In this example, there are two classes, and Z

is divided into two activation matrices. As mentioned in the caption of Figure 2.3, a

statistic of a single unit and a statistical relationship between two units can be calculated

using Z, but they are computed class-wise in this example. Calculated statistics of

representations per class can be added to the objective function of the deep network so

that representations can be regularized to manipulate the class-wise statistics.

for handling the supervised loss term and the hint term separately. Class information is

used for autoencoder tasks as well. Shi et al. (2016) implicitly reduced the intra-class

variation of reconstructed samples by minimizing pair-wise distances among same

24

class samples. In this work, like the strategies listed above, our cw-VR and cw-CR

use class information to control the statistical characteristics of representations. We

first consider the distribution of a single hidden unit where class information is used.

Variances of activations per class can be regularized (cw-VR). This regularization

aims to encourage more separable representation per class, which may lead to better

classification performance. Class-wise regularization can be applied to a pair of hidden

units as well to decorrelate representations (cw-CR). Even though our methods are

similar to methods above in terms of using class information, our methods are different

in some points. Our methods are simple because they use only one optimizer and are

computationally efficient because they require only neuron-wise calculations while not

requiring pair-wise computations.

25

Chapter 3. Representation Regularizer Design with

Class Information

For deep learning, a variety of regularization techniques have been developed by

focusing on the weight parameters. A classic example is the use of L2 (Hoerl and

Kennard 1970) and L1 (Tibshirani 1996) weight regularizers. They have been popular

because they are easy to use, computationally light, and often result in performance

enhancements. Another example is the parameter sharing technique that enforces the

same weight values as in the Convolutional Neural Networks (CNNs). Regularization

techniques that focus on the representation (the activations of the units in a deep

network), however, have been less popular even though the performance of deep

learning is known to depend on the learned representation heavily.

For representation shaping (regularization), some of the promising methods for

performance and interpretability include (Cogswell et al. 2016; Glorot, Bordes, and

Bengio 2011; Liao et al. 2016). Glorot, Bordes, and Bengio (2011) consider increasing

representational sparsity, Cogswell et al. (2016) focus on reducing covariance among

hidden units, and Liao et al. (2016) force parsimonious representations using k-means

style clustering. While all of them are effective representation regularizers, none of

them explicitly use class information for the regularization. A few recent works (Wen

et al. 2016b; Yang et al. 2018; Belharbi et al. 2017) do utilize class information, but

their approaches are based on hidden layer activation vectors. Among them, the method

by Belharbi et al. (2017) is computationally expensive because pair-wise dissimilarities

need to be calculated among the same class samples in each mini-batch.

In this work, two computationally light representation regularizers, cw-CR (class-

wise Covariance Regularizer) and cw-VR (class-wise Variance Regularizer), that utilize

class information are introduced and studied. We came up with the design ideas by

observing typical histograms and scatter plots of deep networks as shown in Figure

26

3.1. In Figure 3.1(b), different classes substantially overlap even after the training

is complete. If we directly use class information in regularization, as opposed to

using it only for cross-entropy cost calculation, we can specifically reduce overlaps or

pursue a desired representation characteristic. An example of cw-CR reducing class-

wise covariance is shown in Figure 3.1(c), and later we will show that cw-VR can

notably reduce class-wise variance resulting in minimal overlaps. The two class-wise

regularizers are very simple and computationally efficient, and therefore can be easily

used as L1 or L2 weight regularizers that are very popular.

3.1. Class-wise Representation Regularizers: cw-CR and cw-

VR

In this section, we first present basic statistics of representations. Then, three repre-

sentation regularizers, cw-CR, cw-VR, and VR are introduced with their penalty loss

functions and gradients. Interpretations of the loss functions and gradients are provided

as well.

3.1.1. Basic Statistics of Representations

For the layer l, the output activation vector of the layer is defined as zl = max(W>
l zl−1+

bl, 0) using Rectified Linear Unit (ReLU) activation function. Because we will be fo-

cusing on the layer l for most of the explanations, we drop the layer index. Then, zi is

the ith element of z (i.e. activation of ith unit).

To use statistical properties of representations, we define mean of unit i, µi, and

covariance between unit i and unit j, ci,j , using the N samples in each mini-batch.

µi =
1

N

∑
n

zi,n (3.1)

ci,j =
1

N

∑
n

(zi,n − µi)(zj,n − µj) (3.2)

27

Figure 3.1. A single unit’s activation histogram (upper three plots) and two randomly

chosen units’ activation scatter plots (lower three plots) for MNIST. For a 6-layer

Multilayer Perceptron (MLP), the fifth layer’s representation vectors calculated using

10,000 test samples were used to generate the plots. For the baseline model, a substantial

overlap among different classes can be observed at the time of initialization as shown

in (a). Even after 50 epochs of training, still, a substantial overlap can be observed as

shown in (b). When class information is used to regularize the representation shapes, the

overlap is significantly reduced as shown in (c). Note that a slight correlation between

each pair of classes can be observed in the scatter plot of (b), but not in that of (c) due

to the use of cw-CR. The figures are best viewed in color.

28

Table 3.1. Penalty loss functions and gradients of the representation regularizers. All

the penalty loss functions are normalized with the number of units (I) and the number

of classes (K) such that the value of λ can have a consistent meaning. CR and cw-CR

are standardized using the number of distinct covariance combinations.

Penalty loss function Gradient

ΩCR =
2

I(I − 1)

∑
i 6=j

(ci,j)
2 ∂ΩCR

∂zi,n
=

4

NI(I − 1)

∑
j 6=i

ci,j(zj,n − µj)

Ωcw-CR =
2

KI(I − 1)

∑
k

∑
i 6=j

(cki,j)
2 ∂Ωcw-CR

∂zi,n
=

4

KI(I − 1)|Sk|
∑
j 6=i

cki,j(zj,n − µkj), n ∈ Sk

ΩV R =
1

I

∑
i

vi
∂ΩV R

∂zi,n
=

2

NI
(zi,n − µi)

Ωcw-V R =
1

KI

∑
k

∑
i

vki
∂Ωcw-V R

∂zi,n
=

2

KI|Sk|
(zi,n − µki), n ∈ Sk

3.1.2. cw-CR

Here, zi,n is the activation of unit i for nth sample in the mini-batch. From equation

(3.2), variance of i unit can be written as the following.

vi = ci,i (3.3)

When class-wise statistics need to be considered, we choose a single label k from K

labels and evaluate mean, covariance, and variance using only the data samples with

true label k in the mini-batch.

µki =
1

|Sk|
∑
n∈Sk

zi,n (3.4)

cki,j =
1

|Sk|
∑
n∈Sk

(zi,n − µki)(zj,n − µkj) (3.5)

vki = cki,i (3.6)

Here, Sk is the set containing indexes of the samples whose true label is k, and |Sk| is

the cardinality of the set Sk.

cw-CR uses off-diagonal terms of the mini-batch covariance matrix of activations

29

per class as the penalty term: Ωcw-CR =
∑

k

∑
i 6=j(c

k
i,j)

2. This term is added to the

original cost function J , and the total cost function J̃ can be denoted as

J̃ = J + λΩcw-CR(z), (3.7)

where λ is the penalty loss weight (λ ∈ [0,∞)). The penalty loss weight balances

between the original cost function J and the penalty loss term Ω. When λ is equal

to zero, J̃ is the same as J , and cw-CR does not influence the network. When λ is a

positive number, the network is regularized by cw-CR, and the performance is affected.

In practice, we have observed that deep networks with too large λ cannot be trained at

all.

3.1.3. cw-VR

A very intuitive way of enforcing distinguished representations per class is to maximize

the inter-class distances in the representation space. Because inter-class needs to be

maximized, the corresponding penalty term can be inverted or multiplied by -1 before

it is minimized with the original cost function. We tried such approaches, but the

optimization became unstable (failed to converge).

With the design of cw-VR, we naturally invented VR that is the all-class counterpart

of cw-VR. VR minimizes the activation variance of each unit, and it is mostly the

same as cw-VR except for not using the class information. We expected VR to hurt

the performance of deep networks because it encourages all classes to have similar

representation in each unit. VR, however, turned out to be useful for performance

enhancement. We provide a possible explanation in the Experiments section.

3.1.4. Penalty Loss Functions and Gradients

The penalty loss functions of cw-CR and cw-VR are similar to CR and VR, respectively,

except that the values are calculated for each class using the mini-batch samples with

the same class label. Also, gradients of CR and cw-CR are related to those of VR

and cw-VR as shown in Table 3.1. We investigate more details of the equations in the

30

following.

Interpretation of the gradients

Among the gradient equations shown in Table 3.1, the easiest to understand is VR’s

gradient. It contains the term zi,n − µi, indicating that the representation zi,n of each

sample n is encouraged to become closer to the mean activation µi. In this way, each

unit’s variance can be reduced. For cw-VR, the equation contains zi,n − µki instead of

zi,n−µi. Therefore the representation zi,n of a class k sample is encouraged to become

closer to the class mean activation µki . Clearly, the variance reduction is applied per

class by cw-VR.

For CR, the equation is less straightforward. As explained in Cogswell et al. (2016),

a possible interpretation is that the covariance term ci,j is encouraged to be reduced

where zj,n − µj acts as the weight. However, another possible interpretation is that

zj,n is encouraged to become closer to µj just as in the case of VR, where ci,j acts as

the weight. Note that VR’s mechanism is straightforward where each unit’s variance

is directly addressed in the gradient equation of activation i, but CR’s mechanism is

slightly complicated where all variances over all activations of j (j = 1, ..., I , where

j 6= i) are collectively addressed through the summation terms over all j (j = 1, ..., I ,

where j 6= i). Thus, one can interpret CR as a hybrid regularizer that wants either

or both of covariance and variance to be reduced. This can be the reason why the

visualizations of CR and VR are similar as will be shown in Figure 3.2 later.

For cw-CR, it can be interpreted similarly. As in the relationship between VR

and cw-VR, cw-CR is the class-wise counterpart of CR and it can be confirmed in

the gradient equation: cw-CR has cki,j(zj,n − µkj) instead of ci,j(zj,n − µj). As in our

explanation of CR, cw-CR can also be interpreted as trying to reduce either or both of

covariance and variance. The visualizations of cw-CR and cw-VR turn out to be similar

as well.

The interpretations can be summarized as follows. VR and cw-VR aim to reduce

31

activation variance whereas CR and cw-CR additionally aim to reduce covariance. CR

and VR do not distinguish among different classes, but cw-CR and cw-VR explicitly

perform representation shaping per class.

Activation squashing effect

There is another important effect that is not necessarily obvious from the gradient

formulations. For L1W (L1 weight regularization) and L2W (L2 weight regulariza-

tion), the gradients contain the weight terms, and therefore the weights are explicitly

encouraged to become smaller. Similarly, our representation regularizers include the

activation terms zi,n and therefore the activations are explicitly encouraged to become

smaller (when activations become close to zero, the mean terms become close to zero as

well). Thus, a simple way to reduce the penalty loss is to scale the activations to small

values instead of satisfying the balance between the terms in the gradient equations.

This means that there is a chance for the learning algorithm to squash activations just

so that the representation regularization term can be ignored. As we will see later in the

next section, indeed activation squashing happens when our regularizers are applied.

Nonetheless, we will also show that the desired statistical properties are sufficiently

manifested anyway. One might be able to prevent activation squashing with another

regularization technique, but such an experiment was not in the scope of this work.

3.2. Experiments

In this section, we investigate performance improvements of the four representation

regularizers, where baseline, L1W, L2W, CR, cw-CR, VR, and cw-VR are evaluated for

image classification and reconstruction tasks. When a regularizer (including L1W and

L2W) was used for an evaluation scenario, the penalty loss weight λ was determined as

one of {0.001, 0.01, 0.1, 1, 10, 100} using 10,000 validation samples. Once the λ was

determined, performance evaluation was repeated five times.

32

Table 3.2. Error performance (%) for CIFAR-10 CNN model.

Regularizer
Optimizer

Adam Momentum

Baseline 26.64± 0.16 25.78± 0.37

L1W 26.46± 0.39 25.73± 0.40

L2W 25.71± 0.98 26.35± 0.54

CR 24.96± 0.63 26.72± 0.61

cw-CR 22.99± 0.58 25.93± 0.59

VR 21.44± 0.8821.44± 0.8821.44± 0.88 25.01± 0.41

cw-VR 21.58± 0.21 24.42± 0.3124.42± 0.3124.42± 0.31

Table 3.3. Error performance (%) for CIFAR-100 CNN model.

Regularizer
Number of Classes

16 64 100

Baseline 45.75± 0.73 58.02± 0.40 61.26± 0.52

L1W 45.08± 1.53 58.08± 1.18 60.97± 0.64

L2W 45.28± 1.59 57.47± 0.66 60.23± 0.31

CR 44.55± 1.10 56.76± 0.86 59.88± 0.50

cw-CR 43.50± 1.21 54.24± 0.64 57.03± 0.73

VR 42.33± 1.03 54.32± 0.40 57.68± 0.94

cw-VR 41.38± 0.5341.38± 0.5341.38± 0.53 54.23± 1.0654.23± 1.0654.23± 1.06 56.75± 0.6456.75± 0.6456.75± 0.64

3.2.1. Image Classification Task

Three popular datasets (MNIST, CIFAR-10, and CIFAR-100) were used as benchmarks.

An MLP model was used for MNIST, and a CNN model was used for CIFAR-10/100.

The details of the architecture hyperparameters can be found in Chapter 5. All the

regularizers were applied to the fifth layer of the MLP model and the fully connected

33

layer of the CNN model, and the reason will be explained in the Layer Dependency

section. For L1W and L2W, we applied regularization to all the layers as well for

comparison, but the performance results were comparable to when applied to the

fifth layer. Mini-batch size was increased to 500 for CIFAR-100 such that class-wise

operations can be appropriately performed but was kept at the default value of 100 for

MNIST and CIFAR-10. We have tested a total of 20 scenarios where the choice of an

optimizer, number of classes, network size, or data size was varied.

The results for two CIFAR-10 CNN scenarios are shown in Table 3.2 and three

CIFAR-100 CNN scenarios are shown in Table 3.3. The rest of the scenarios including

full cases of MNIST MLP can be found in Chapter 5. In the Table 3.2 and Table 3.3, it

can be seen that cw-VR achieves the best performance in 4 out of 5 cases and class-wise

regularizers perform better than their all-class counterparts except for one case. For the

scenarios shown in Table 3.3, we initially guessed that the performance of class-wise

regularizers would be sensitive to the number of classes, but cw-VR performed well

for all three cases. As for the 20 scenarios that were tested, the best performing one

was cw-VR for 11 cases, VR for 5 cases, cw-CR for 2 cases, and CR for 1 case. L1W

and L2W were never the best performing one, and the baseline (no regularization)

performed the best for only one case.

As mentioned earlier, in general, VR did not hurt performance compared to the

baseline. There are two possible explanations. First, representation characteristics other

than variance are affected together by VR (see Table 3.6 in the next section), and VR

might have indirectly created a positive effect. Second, the cross-entropy term limits

how much VR performs variance reduction, and the overall effects might be more

complicated than a simple variance reduction.

To test a sophisticated and advanced deep network architecture, we tried the four

representation regularizers on ResNet-32/110. ResNet is known as one of the best

performing deep networks for CIFAR-10, and we applied the four representation

regularizers to the output layer without modifying the network’s architecture or hyper-

34

Table 3.4. Error performance (%) for ResNet-32/110 (CIFAR-10). We perform ResNet-

110 experiment five times and report ‘best (mean±std)’ as in He et al. (2016).

Model & Regularizer He et al. Ours

ResNet-32 7.51 7.39

ResNet-32 + CR 7.27

ResNet-32 + cw-CR 7.21

ResNet-32 + VR 7.22

ResNet-32 + cw-VR 7.17

ResNet-110 6.43 (6.61±0.16) 6.12 (6.31±0.14)

ResNet-110 + CR 6.17 (6.26±0.05)

ResNet-110 + cw-CR 6.10 (6.18±0.10)

ResNet-110 + VR 6.10 (6.17±0.05)

ResNet-110 + cw-VR 6.00 (6.18±0.15)

Table 3.5. Mean squared error of deep autoencoder.

Regularizer Mean Squared Error

Baseline 1.44× 10−2 ± 3.36× 10−4

CR 1.29× 10−2 ± 2.44× 10−4

cw-CR 1.22× 10−2 ± 3.63× 10−4

VR 1.29× 10−2 ± 5.16× 10−4

cw-VR 1.19× 10−2 ± 2.48× 10−41.19× 10−2 ± 2.48× 10−41.19× 10−2 ± 2.48× 10−4

parameters. The results are shown in Table 3.4. All four turned out to have positive

effects where cw-VR showed the best performance again.

35

3.2.2. Image Reconstruction Task

To test a completely different type of task, we examined an image reconstruction task

where autoencoders are used. Class information is used for representation regulariza-

tion only. A 6-hidden layer autoencoder with a standard L2 objective function was

used. Representation regularizers were only applied to the third layer because the

representations of the layer are considered as latent variables. The other experiment

settings are the same as the image classification tasks in the previous subsection. The

reconstruction error of the baseline is 1.44× 10−2 and become reduced to 1.19× 10−2

when cw-VR is applied. Result details can be found in Table 3.5. As in the classification

tasks, class-wise regularizers performed better than their all-class counterparts.

3.3. Analysis of Representation Characteristics

In this section, we investigate representation characteristics when the regularizers are

applied.

3.3.1. Visualization

In Figure 3.2, the 50th epoch plots of Figure 3.1 are shown for the baseline and

four representation regularizers. L1W and L2W are excluded because their plots are

very similar to those of the baseline. Principle Component Analysis (PCA) was also

performed over the learned representations, and the plots in the bottom row show the

top three principal components of the representations (before ReLU). The first thing that

can be noticed is that the representation characteristics are quite different depending

on which regularizer is used. Apparently, the regularizers are effective at affecting

representation characteristics. In the first row, it can be seen that cw-VR minimizes the

activation overlaps among different classes as intended. Because the gradient equation

of cw-CR is related to that of cw-VR, cw-CR also shows reduced overlaps. CR and VR

still show substantial overlaps because class information was not used by them. In the

36

second row, a linear correlation can be observed in the scatter plot of the baseline, but

such a linear correlation is mostly removed for CR as expected. For VR, still, linear

correlations can be observed. For cw-CR and cw-VR, it is difficult to judge because

many points do not belong to the main clusters and their effects on correlation are

difficult to guess. As we will see in the following quantitative analysis section, in fact,

the correlation was not reduced for cw-CR and cw-VR. In the third row, it can be

seen that the cw-VR has the least overlaps when the first three principal components

are considered. Interestingly, a needle-like shape can be observed for each class in

the cw-VR’s plot. The plots using learned representations after ReLU are included in

Appendix A. Overall, cw-VR shows the most distinct shapes compared to the baseline.

3.3.2. Quantitative Analysis

For the same MNIST task that was used to plot Figure 3.1 and Figure 3.2, the quantita-

tive values of representation characteristics were evaluated and the results are shown

in Table 3.6. Each is calculated using only positive activations and is the average of

representation statistics. For example, ACTIVATION_AMPLITUDE is the mean of posi-

tive activations in a layer. In the third column (ACTIVATION_AMPLITUDE), it can be

confirmed that indeed the four representation regularizers cause activation squashing.

Nonetheless, the error performance is improved as shown in the second column. For

CR, covariance is supposed to be reduced. In the fourth column (COVARIANCE), it can

be confirmed that the covariance of CR is much smaller than that of the baseline. The

small value, however, is mostly due to the activation squashing. In the fifth column

(CORRELATION), the normalized version of covariance is shown. The correlation of

CR is confirmed to be smaller than that of the baseline, but the reduction rate is much

smaller compared to the covariance that was affected by the activation squashing. In

any case, CR indeed reduces correlation among hidden units. For cw-CR, class-wise

correlation (CW_CORRELATION) is expected to be small, and it is confirmed in the

sixth column. The value 0.19, however, is larger than CR’s 0.15 or VR’s 0.17. This is

37

Fi
gu

re
3.

2.
V

is
ua

liz
at

io
n

of
th

e
le

ar
ne

d
re

pr
es

en
ta

tio
ns

fo
rM

N
IS

T.
Th

e
pl

ot
s

in
to

p
an

d
m

id
dl

e
ro

w
s

w
er

e
ge

ne
ra

te
d

in
th

e
sa

m
e

w
ay

as
in

th
e

Fi
gu

re
3.

1.
T

he
pl

ot
s

in
th

e
bo

tto
m

ro
w

sh
ow

th
e

to
p

th
re

e
pr

in
ci

pl
e

co
m

po
ne

nt
s

of
th

e
re

pr
es

en
ta

tio
ns

.

38

Table 3.6. Quantitative evaluations of representation characteristics.

Regularizer Test error (%) ACTIVATION_AMPLITUDE
COVARIANCE

(CR)
CORRELATION

(CR)
CW_CORRELATION

(cw-CR)
VARIANCE

(VR)
N_CW_VARIANCE

(cw-VR)

Baseline 2.85± 0.11 4.93 2.08 0.27 0.21 9.05 1.33

L1W 2.85± 0.06 4.53 1.95 0.28 0.22 7.78 1.33

L2W 3.02± 0.40 4.76 2.23 0.29 0.21 8.38 1.36

CR 2.50± 0.05 0.50 0.01 0.19 0.15 0.04 1.37

cw-CR 2.49± 0.10 0.63 0.02 0.31 0.19 0.06 0.95

VR 2.65± 0.11 1.35 0.15 0.26 0.17 0.58 1.52

cw-VR 2.42± 0.062.42± 0.062.42± 0.06 0.63 0.02 0.36 0.25 0.05 0.74

an example where not only cw-CR but also other representation regularizers end up

reducing CW_CORRELATION because the regularizers’ gradient equations are related.

For VR, the variance should be reduced. In the seventh column (VARIANCE), the

variance of VR is indeed much smaller than that of the baseline, but again other repre-

sentation regularizers have even smaller values because their activation squashing is

more severe than that of VR. For cw-VR, a class-wise variance is supposed to be small.

Normalized class-wise variance is shown in the last column (N_CW_VARIANCE), and

it is confirmed that cw-VR is capable of reducing N_CW_VARIANCE. (Normalization

was performed by mapping activation range of each hidden unit to [0,10] such that

activation squashing effect can be removed.)

3.4. Layer Dependency

In the previous sections, we have consistently applied the representation regularizers to

the upper layers that are closer to the output layer. This is because we have found that it

is better to target the upper layers, and two exemplary results are shown in Figure 3.3.

In Figure 3.3 (a), the performance improvement becomes larger as the representation

regularization targets upper layers. In fact, the best performance is observed when the

output layer is regularized. In Figure 3.3 (b) and 3.4, similar patterns can be seen over

the convolutional layers, but the performance degrades when applied to fully connected

or output layers. This phenomenon is probably relevant to how representations are

39

(a) MNIST (b) CIFAR-100

Figure 3.3. Layer dependency of representation regularizers on MNIST MLP and

CIFAR-10 CNN models. The x-axis indicates layers where regularizers are applied. CR

and cw-CR are excluded in (b) due to the high computational burden of applying them

to the convolutional layers.

Figure 3.4. Layer dependency of representation regularizers on CIFAR-10 CNN model.

The x-axis indicates layers where regularizers are applied. CR and cw-CR are excluded

because of the high computational burden of applying them to the convolutional layers.

40

developed in deep networks. Because the lower layers often represent many simpler

concepts, regularizing the shapes of representations can be harmful. For the upper layers,

a smaller number of more complex concepts are represented and therefore controlling

representation characteristics (e.g., reduction of activation overlaps) might have a better

chance to improve the performance.

41

Chapter 4. Representation Characteristics and Their

Relationship with Performance

A learned representation can significantly affect the performance of deep networks,

and the representation’s distributed and deep natures are the essential elements for the

success of deep learning (Bengio, Courville, and Vincent 2013). As a consequence,

deep networks have a greater expressiveness compared to the other machine learning

algorithms (Hinton 1986) or shallow networks (Montufar et al. 2014; Telgarsky 2015;

Eldan and Shamir 2016; Raghu et al. 2017). Besides the distributed and deep natures

that have been intensively studied, a hidden layer’s representation characteristics are

considered to be important as well. Nonetheless, a relatively smaller number of studies

have been completed on the topic, and the goal of this work is to understand the

representation characteristics better. Therefore, the meaning of representation in this

work is restricted to the activation vector of a single hidden layer and a unit refers to a

neuron of the hidden layer.

A few previous studies considered manipulating statistical characteristics of rep-

resentations such as reducing covariance among hidden units (Cogswell et al. 2016;

Xiong et al. 2016), encouraging representational sparsity (Glorot, Bordes, and Bengio

2011), or forcing parsimonious representations via clustering (Liao et al. 2016). In

some of the similar works, a popular argument has been that the representation regu-

larization reduces the generalization error via altering a representation characteristic.

This argument, however, has not been rigorously studied. Another popular argument

has been the reduction of effective capacity via regularization. This argument has been

recently examined by Zhang et al. (2016) where they empirically show that explicit

regularization methods like L2 weight decay and dropout do not sufficiently limit the

effective capacity of deep networks.

Since a novel information-theoretic analysis method was proposed for deep learning

42

Table 4.1. Representation characteristics.

Characteristic Symbol Expression

ACTIVATION AMPLITUDE ¯|z| Ei[| zl,i |]

COVARIANCE c̄ Ei 6=j [ci,j], where ci,j , {Cl}i,j = E[(zl,i−µzl,i)(zl,j −µzl,i)]

CORRELATION ρ̄ Ei 6=j [ρi,j], where ρi,j , {Cl}i,j/σzl,iσzl,j = E[(zl,i−µzl,i)(zl,j −µzl,i)]/σzl,iσzl,j
SPARSITY Ps Ei,n[1(znl,i)], where 1 is an indicator function whose output is 1 only when znl,i = 0

DEAD UNIT Pd

Ei[1(zl,i)], where 1 is an indicator function whose output is 1 only when znl,i = 0

for all n = 1, .., N

RANK r rank(Cl); numerical evaluations are approximated as the stable rank‖Cl‖2F /‖Cl‖22
MUTUAL INFORMATION Ix I(zl;x)

MUTUAL INFORMATION Iy I(zl;y)

(Shwartz-Ziv and Tishby 2017; Tishby and Zaslavsky 2015), information-theoretic

characteristics of representation have become an important research topic. In their work,

mutual information I(zl;x) and I(zl;y) are used to address the learning dynamics and

generalization of deep learning, where zl is the hidden layer l’s representation, x is

the input, and y is the output. It is further discussed that a good representation is the

one that contains a minimal amount of information from the input while containing a

sufficient amount of information from the output. In Achille and Soatto (2018a), the

Information Bottleneck Lagrangian (Tishby, Pereira, and Bialek 1999) is decomposed

into the sum of a cross-entropy term and a regularization term. The regularization term

turns out to be I(zl;x) that needs to be minimized. Some of the recent works will be

additionally addressed in Section 4.5.

4.1. Representation Characteristics

In this section, we briefly address the most popular statistical characteristics and

information-theoretic characteristics of representations. Consider a neural network

NA whose architecture A is fixed and the weights for the lth layer are given by {Wl}

and {bl} after training. Notation-wise, we simply write NA = (W,b) to define a

network and y or NA(x) to refer to its deterministic output for a given input x. The

43

Fi
gu

re
4.

1.
V

is
ua

liz
at

io
n

of
th

e
le

ar
ne

d
re

pr
es

en
ta

tio
ns

fo
ra

6-
la

ye
rM

L
P

tr
ai

ne
d

w
ith

M
N

IS
T

da
ta

se
t.

A
si

ng
le

un
it’

s
ac

tiv
at

io
n

hi
st

og
ra

m
(u

pp
er

pl
ot

s)
an

d
tw

o
ra

nd
om

ly
ch

os
en

un
its

’
ac

tiv
at

io
n

sc
at

te
r

pl
ot

s
(l

ow
er

pl
ot

s)
ar

e
sh

ow
n

fo
r

th
e

fif
th

la
ye

r’
s

re
pr

es
en

ta
tio

n,
w

he
re

ea
ch

co
lo

r
co

rr
es

po
nd

s
to

a
di

ff
er

en
tc

la
ss

.T
he

pl
ot

s
w

er
e

ge
ne

ra
te

d
us

in
g

10
,0

00
te

st
sa

m
pl

es
of

M
N

IS
T

da
ta

se
t.(

U
pp

er
)I

tc
an

be
se

en
th

at
th

e
ba

se
lin

e
ha

s
a

la
rg

e
cl

as
s-

w
is

e
va

ri
an

ce
an

d
in

te
r-

cl
as

s
ov

er
la

ps
,a

nd
B

N
an

d
C

R
(o

ri
gi

na
lly

kn
ow

n
as

D
eC

ov
sh

ow
si

m
ila

rp
ro

pe
rt

ie
s.

D
ro

po
ut

lo
ok

s
co

m
pl

et
el

y
di

ff
er

en
tw

he
re

ac
tiv

at
io

n
va

lu
es

ar
e

m
or

e
sp

re
ad

ou
tf

or
th

e

ac
tiv

e
cl

as
se

s.
L1

R
(L

1
R

ep
re

se
nt

at
io

n
re

gu
la

riz
er

)t
yp

ic
al

ly
al

lo
w

on
ly

on
e

or
tw

o
cl

as
se

s
to

be
ac

tiv
at

ed
pe

ru
ni

t.
(L

ow
er

)W
hi

le
th

e

ba
se

lin
e

sh
ow

s
m

od
es

tl
in

ea
ri

ty
,t

he
ot

he
rs

sh
ow

qu
ite

di
ff

er
en

tr
ep

re
se

nt
at

io
n

ch
ar

ac
te

ri
st

ic
s

de
pe

nd
in

g
on

th
e

ch
oi

ce
of

re
gu

la
ri

ze
r.

D
ro

po
ut

sh
ow

s
an

ex
tr

em
el

y
hi

gh
cl

as
s-

w
is

e
co

rr
el

at
io

n,
bu

tB
N

sh
ow

s
ve

ry
lo

w
co

rr
el

at
io

n.
C

R
sh

ow
s

al
m

os
tn

o
co

rr
el

at
io

n.
Si

nc
e

L
1R

in
cr

ea
se

s
sp

ar
si

ty
on

re
pr

es
en

ta
tio

n,
a

cl
as

s
is

ac
tiv

at
ed

ov
er

at
m

os
to

ne
of

th
e

tw
o

ra
nd

om
ly

ch
os

en
un

its
.

44

layer index l is omitted when the meaning is obvious. The lth layer’s activation vector

for the given input x is noted as zl(x) or simply zl, and the ith element of zl is noted

as zl,i. The mean, variance, and standard deviation of zl,i are defined as µzl,i , vzl,i ,

and σzl,i , respectively. The covariance of zl is defined as Cl. Then, the basic represen-

tation characteristics can be summarized as in Table 4.1. Six of them are statistical

characteristics, and the last two are information-theoretic characteristics.

Previous studies on statistical characteristics are often based on regularizers. Sri-

vastava et al. (2014) address dropout for preventing co-adaptation among hidden units

by randomly putting zeros in a layer’s activation vector. Ioffe and Szegedy (2015)

explain batch normalization (BN) that reduces internal covariate shift via normalizing

activations of each unit to speed up network training. Cogswell et al. (2016) suggest

DeCov that utilizes a penalty loss function to reduce activation covariance among

hidden units. Choi and Rhee (2018) consider an extension to class-wise regularization

and provides four representation regularizers. Glorot, Bordes, and Bengio (2011) ex-

plain L1 representation regularization, called L1R in this work, that applies L1 penalty

on activations. These representation regularization methods have distinct effects on

representation characteristics, and examples of the learned representations are shown in

Figure 4.1.

Because the true distribution of data is not accessible, the numerical results in the

following sections are evaluated using the empirical distribution of the test dataset.

Then, the expectations in Table 4.1 are with respect to the empirical distribution. For

instance, Cl is calculated as the covariance matrix of N activation vectors {z1l , ..., zNl }

where znl corresponds to the activation vector for the n’th test data sample, xn. Rank

can be calculated by examining Cl, but often there are tiny eigenvalues that hinder a

proper assessment of the rank. Therefore, we evaluate stable rank instead, and it will

be explained further in Section 4.4. Two information-theoretic characteristics, I(zl;x)

and I(zl;y), are estimated using upper and lower bounds (Kolchinsky and Tracey

2017; Kolchinsky, Tracey, and Wolpert 2017). Further details are provided in Section

45

4.5. Rectified Linear Unit (ReLU) is the only activation function that is considered

in this work. When ReLU is used, ACTIVATION AMPLITUDE, COVARIANCE, and

CORRELATION are calculated using only the positive activation values such that the

numerical evaluations can provide meaningful insights on what is happening to the

non-zero representation values.

4.2. Experimental Results of Representation Regularization

We investigate the statistical characteristics of the learned representations when different

regularizers are applied. We used the same network and dataset as the ones used for

generating Figure 4.1. All the regularizers were applied only to the fifth layer, and

the representation characteristics were calculated using the fifth layer as well. The

penalty loss functions and their description are summarized in Table 4.2, and typical

evaluation results of statistical characteristics are shown in Table 4.3. We can confirm

that the statistical characteristics targeted by each representation regularizer are indeed

manipulated as expected (Bold). In particular, Rank Regularizer (RR) and class-wise

Rank Regularizer (cw-RR) designed in this work to regularize the stable rank work as

expected. The two weight regularizers (L1W: L1 Weight Regularizer, L2W: L2 Weight

Regularizer) have similar characteristic values as the baseline’s, and this can be taken

for granted because the regularizers do not directly regularize representations. A few

conventional beliefs mentioned in this work are quantitatively confirmed or disproved

as well. A large number of dead units is known to be harmful because they do not

contribute toward improving the performance of deep networks. Our result shows even

39% of DEAD UNIT caused by L1R does not hurt the performance, which is in line

with our analysis in Section 4.4. For dropout, COVARIANCE is reduced as in Cogswell

et al. (2016), but CORRELATION is actually increased compared to the baseline. In

fact, COVARIANCE is reduced simply because ACTIVATION AMPLITUDE is reduced as

mentioned in Section 4.3, and the correlation between two active units is actually made

larger by applying dropout. Therefore, it cannot be said that the relationship between

46

Table 4.2. Penalty loss functions of representation regularizers. All the penalty loss

functions are normalized with the number of units and the number of classes when they

are used in our experiments such that the value of λ can have a consistent meaning.

CR and cw-CR are standardized using the number of distinct covariance combinations.

Note that the normalization terms are excluded in this table. We put a superscript k to

define a class-wise statistic that is calculated using only class k’s samples out of a total

of K labels in the mini-batch. Class-wise mean, covariance, and variance are defined in

Chapter 3.

Penalty loss function Description on regularization term

ΩCR =
∑
i 6=j

(ci,j)
2 Covariance of representations calculated from all-class samples.

Ωcw-CR =
∑
k

∑
i 6=j

(cki,j)
2 Covariance of representations calculated from the same class samples.

ΩV R =
∑
i

vi Variance of representations calculated from all-class samples.

Ωcw-V R =
∑
k

∑
i

vki Variance of representations calculated from the same class samples.

ΩL1R =
∑
n

∑
i

|zni | Absolute amplitude of representations calculated from all-class samples.

ΩRR =
‖Z‖2F
‖Z‖22

Stable rank of representations calculated from all-class samples.

Ωcw-RR =
∑
k

∥∥∥Zk
∥∥∥2
F∥∥∥Zk
∥∥∥2
2

Stable rank of representations calculated from the same class samples.

a pair of neurons becomes weaker by applying dropout. This is in contrary to the

‘reduction of co-adaptation’ idea. Note that we have excluded the inactive neurons for

the evaluations. If the inactive ones are included with their zero values, the covariance

and correlation values will be different.

47

Table 4.3. Statistical characteristics of learned representations.

Regularizer Test Error (%) ACTIVATION AMPLITUDE COVARIANCE CORRELATION SPARSITY DEAD UNIT RANK

Baseline 2.85 4.93 2.08 0.27 0.34 0.13 2.41

L1W 2.85 4.53 1.95 0.28 0.29 0.01 2.32

L2W 3.02 4.76 2.23 0.29 0.34 0.09 2.26

Dropout 2.70 2.72 0.87 0.42 0.58 0.06 2.75

BN 2.81 1.35 0.24 0.28 0.52 0.00 5.14

CR 2.50 0.50 0.01 0.19 0.40 0.03 7.12

cw-CR 2.49 0.63 0.02 0.31 0.51 0.07 3.60

VR 2.65 1.35 0.15 0.26 0.40 0.08 3.92

cw-VR 2.42 0.63 0.02 0.36 0.53 0.06 3.90

L1R 2.35 1.29 0.03 0.40 0.97 0.39 5.94

RR 2.81 7.23 226.2 0.90 0.43 0.18 1.00

cw-RR 2.57 10.31 96.3 0.91 0.31 0.22 1.00

4.3. Scaling, Permutation, Covariance, and Correlation

After training is completed for a deep network NA, the output of the network becomes

a deterministic function of the input x. Without an activation function, i.e. a linear

layer, zl = WT
l zl−1 +bl. When ReLU is applied to layer l, the activation vector

becomes zl = ReLU(WT
l zl−1 +bl) = max(WT

l zl−1 +bl, 0). In this section, we

investigate the most flexible affine transformation that can be applied to a layer’s

representation zl without influencing the output NA(x) for any arbitrary input vector

x. While complicated transformations over multiple layers can be explored, we limit

our focus to manipulating only the weights of layer l and layer l + 1 for the analytical

tractability. Because scaling and permutation are well known results, covariance and

correlation are the main focus of this section.

4.3.1. Identical Output Network (ION)

We first consider a linear layer l. For a linear layer, it turns out that any affine trans-

formation can be applied as long as the transformation does not cause an information

48

loss.

Theorem 1. (ION for a linear layer) For a deep network NA = (W, b) whose layer

l is linear, there exists ÑA = (W̃, b̃) that satisfy the following conditions:

∀x, NA(x) = ÑA(x); (4.1)

∀x, z̃l = Q(zl−m), (4.2)

where Q is any nonsingular square matrix of a proper size and m is any vector of a

proper size.

The first condition says that the two networks generate identical outputs for any

input x. The second condition says that zl can be affinely transformed using any

nonsingular matrix Q. The proof is straightforward and can be found in Appendix B.

While simple, Theorem 1 has significant implications on the representation charac-

teristics of zl. Let’s inspect covariance and correlation (normalized version of covari-

ance) first. If NA is a network that is globally optimal for a task and has at least one

linear layer l, thenNA’s covariance Cl can be whitened to have C̃l = I by choosing m

as the expected mean and Q as a whitening matrix. The resulting network ÑA will have

zero correlation between any pair of units in layer l, but will be globally optimal, too.

In fact, there are infinitely many globally optimal networks with different covariance

characteristics, and one can easily construct an ION with an arbitrary covariance matrix

C̃l as long as its rank is the same as Cl’s rank. With this result, it becomes unclear why

one should pursue a lower correlation when training a deep network. Unless regular-

ization for a low correlation somehow helps optimization to reach a better performing

network, there seems to be no reason to pursue low (or high) correlation.

For dead neurons, a similar claim can be made. If globally optimal NA has no dead

neurons in layer l and Cl is not full rank, one can make an affine transformation to

align the null spaces of Cl to some of the neurons. Then, the resulting network ÑA

will be still globally optimal, but with some dead neurons in layer l. For higher layers

of classification tasks, typically the rank of Cl is close to the number of classes. For

49

(a) Original network (b) ION (transformed network)

Figure 4.2. Illustration of an ION. The representation zl (blue circle) of the original

network in (a) is different from Qzl (red circle) of the ION in (b). However, their upper

layer representations zl+1 (green circle) are the same, so the outputs (y) are identical to

each other.

classification tasks with only 2∼10 classes, it is possible to construct an ION that has as

many dead neurons as the size of Cl’s null space. This can be done without negatively

affecting the performance, and the wisdom of ‘reduce the number of dead neurons’

becomes dubious.

For scaling and permutation, their influences are rather insignificant. As for the

scaling that can affect activation amplitude, it often has no effect on the network’s

performance. For instance, scaled activation amplitude can affect the probability of

classification tasks when softmax is in the last layer, but the class with the highest

probability remains the same anyway. When representation regularizers are used, often

activation amplitude is squashed to reduce the cost of the representation penalty function,

50

but the network can still perform well. As reported in Choi and Rhee (2018), such

an activation squashing can make covariance much smaller, but the effect is removed

when a correlation value is calculated. As for the permutation, it is considered to be

meaningless because the index number itself is not important.

Before discussing further, a similar result is developed for ReLU layers. The

resulting Q, however, is much more limited. The proof can be found in Appendix B as

well.

Theorem 2. (ION for a ReLU layer) For a deep network NA = (W, b) whose

activation function of layer l is ReLU, there exists ÑA = (W̃, b̃) that satisfy the

following conditions:

∀x, NA(x) = ÑA(x); (4.3)

∀x, z̃l = Qzl, (4.4)

where Q is any permuted positive diagonal matrix of a proper size. Furthermore,

it can be shown that any Q that satisfy the above two conditions must be a permuted

positive diagonal matrix.

Using a permuted positive diagonal matrix Q, covariance can be affected by inde-

pendently scaling activation amplitudes of layer l’s units. As explained above, such

scaling is canceled out when calculating correlation and therefore a linear transfor-

mation cannot affect correlation while keeping the output identical. There are a few

possibilities for overcoming the limitations of Theorem 2, and they are discussed in the

following subsection.

For rank and mutual information, the invertible affine transformation has no effect.

They are discussed in the following sections.

4.3.2. Possible Extensions for ION

We discuss three possible extensions for ReLU’s ION.

51

Table 4.4. Comparison of statistical characteristics for linear and ReLU layers. A 7-

layer MLP was used with MNIST dataset, and only the sixth layer was linear, and the

others were ReLU layers. Statistical characteristics of the first layer (ReLU), fifth layer

(ReLU), and the sixth layer (linear) are compared. It can be seen that representation

characteristics of fifth and sixth are very similar because they are both located in the

upper part of the network. Note that the characteristics of the sixth layer were calculated

only using positive activation values for a fair comparison.

Regularizer ACTIVATION AMPLITUDE COVARIANCE CORRELATION SPARSITY DEAD UNIT RANK

Baseline (1st) 1.16 0.08 0.14 0.00 0.00 2.22

Baseline (5th) 2.22 0.45 0.25 0.32 0.07 2.27

Baseline (6th) 2.75 0.62 0.25 0.47 0.00 2.78

Dropout (1st) 0.76 0.04 0.27 0.86 0.00 3.50

Dropout (5th) 2.19 1.23 0.70 0.53 0.00 2.19

Dropout (6th) 1.85 0.97 0.53 0.48 0.01 1.52

BN (1st) 0.80 0.03 0.10 0.49 0.00 4.07

BN (5th) 1.01 0.10 0.19 0.51 0.00 4.59

BN (6th) 1.39 0.19 0.23 0.48 0.00 4.26

52

Insertion of a linear layer One way to overcome the limitations of Q is to insert an

extra linear layer near the target ReLU layer and to consider its implications. When

representation characteristics are analyzed or interpreted, researchers do not care much

about the layer’s activation function, regularization, etc. The activation vector’s repre-

sentation characteristics are the essential components for understanding and assessing

the representations. Therefore, one can apply the insights from Theorem 1 when the

extra linear layer shows similar statistical properties as the ReLU layer. In Table 4.4,

statistical properties of immediately neighboring ReLU and linear layers are compared.

Compared to the representation characteristics of the first ReLU layer, the 5th ReLU

layer and the inserted sixth linear layer show very similar characteristics. Then the

correlation and dead unit characteristics are not so important as the consequence of

Theorem 1, and the same might be conjectured for the 5th ReLU layer.

Comparable Performance Network (CPN) According to Theorem 2, only per-

muted positive diagonal matrices can form IONs. If we ignore the result and apply

an affine transformation in the same way as in the ION of a linear layer, the resulting

network ÑA will not form an ION, but instead, we might be able to find a Comparable

Performance Network (CPN) that achieves a comparable performance while showing

different representation characteristics. We tried this brute-force method, and two sam-

ple results along with the baseline and a positive diagonal matrix case are shown in

Table 4.5. In the first row where Q is identity, the values are for the original network

NA. In the next row, ‘Random positive diagonal,’ uniformly random values between 0

and 1 (U(0, 1)) were used as the diagonal values. Note that this choice of Q satisfies

Theorem 2, and therefore the error performance remains the same while affecting acti-

vation amplitude and covariance only. In the ‘Random with ones in diagonal,’ Q was

chosen as a matrix of random values selected from U(0, 1) with its diagonals replaced

with ones. We randomly generated 100 of such random matrices and selected the one

that resulted in a higher correlation while showing a comparable performance. Despite

the very high correlation of 0.80, the selected network ÑA can perform comparably

53

Table 4.5. Statistical characteristics of representations transformed by CPNs. The

original network is 6-layer MLP on the MNIST dataset, and the 5th layer representations

were transformed. To improve the performance, the weights to the output layer were

fine tuned after applying Q.

Q matrix Test Error (%) ACTIVATION AMPLITUDE COVARIANCE CORRELATION SPARSITY

Identity 2.54 6.79 4.29 0.28 0.36

Random positive diagonal 2.54 3.37 1.04 0.28 0.36

Random with

ones in diagonal
2.76 158.88 723.55 0.80 0.00

Whitening 5.48 1.22 0.96 0.09 0.49

well. In the last row, we applied a whitening filter where Q and m were calculated

while ignoring ReLU. The resulting network does not end up with zero correlation

because the whitening is not perfect in the presence of ReLU. However, the correlation

is considerably reduced to 0.09 from 0.28 while achieving a slightly worse error rate of

5.48%.

To find the examples in Table 4.5, all we had to do was to construct a meaningful

matrix Q or to try 100 random matrices and choose one. The fact that it is an almost

painless job to find a CPN also implies that the relevant representation characteristics

might not be essential for achieving high performance.

Non-affine transformations over multiple layers In the ION derivations, we have

considered only an affine transformation applied to the layers l and l + 1 only. If we

remove the constraints and borrow the results from expressivity of DNN and universal

approximation theorem, it might be possible to derive more powerful and general

results. In the extreme case, one can divide a deep network NA into two parts: NAlower

and NAupper . Then, NAlower
(x) = zl and NA(x) = NAupper(NAlower

(x)). In theory,

54

there exist ÑAlower
and ÑAupper that can result inNA(x) = ÑAupper(ÑAlower

(x)) while

allowing z̃l to have a completely different characteristics compared to zl. Such ÑAlower

and ÑAupper , however, might be infeasibly large or fail to learn in the way we desire.

Therefore, it might be more practical to consider a reasonable extension of Theorem 1

and Theorem 2.

4.4. Sparsity, Dead Unit, and Rank

Sparsity and dead unit have been considered as important representation characteristics.

Rank of Cl, however, has received much less attention so far. In this section, we

investigate the three and show that rank might be the most fundamental characteristic.

4.4.1. Analytical Relationship

In Table 4.1, sparsity is defined as Ps = Ei,n[1(znl,i)]. This can be interpreted as the

probability of znl,i (unit i’s activation for n’th test sample xn) being zero, because

1(znl,i) = 1 when znl,i = 0 and 1(znl,i) = 0 when znl,i 6= 0. Similarly, dead unit is defined

as Pd = Ei[1(zl,i)] and it can be interpreted as the probability of zl,i (unit i’s activation)

being always zero or at least for all M test samples. Because 1(zl,i) ≤ 1(znl,i) for any

pair of (i, n), Pd ≤ Ps can be shown by taking expectations on both sides. The rank

r in Table 4.1 is defined as the rank of Cl. For layer l with M units, this means that

r out of M linearly independent dimensions are used by the codewords {z1l , ..., zNl }

and that the other M − r dimensions form a null space of Cl. When dead units are

considered, MPd units need to be constant zero by the definition of the dead unit and it

implies that at least MPd dimensions need to be included in the null space. Therefore,

MPd ≤M − r. These results can be summarized as below.

Pd ≤ Ps (4.5)

MPd ≤M − r (4.6)

55

Between sparsity Ps and rank r, there is no clear relationship. The codeword znl for a

test sample xn can be very sparse, and yet the set of codewords {z1l , ..., zNl } collectively

might use all of the M dimensions. Conversely, rank r can be very small and yet Ps can

also be very small when {znl,1, ..., znl,M} are strongly correlated and the basis vectors

are not sparse over the M units.

From the viewpoint of signal processing or information theory, sparsity is a property

that is related to individual signals or individual codewords while rank is a property

that is related to the total number of dimensions used by the set of signals or the entire

codebook. Therefore, sparsity is not directly responsible for the efficiency of the signals

or codebook while rank is directly responsible for the efficiency. From the viewpoint

of deep learning, rank can be associated with the maximum number of latent factors

that are independent. As for the dead unit, we know from equation 4.6 that it is upper

bounded as a function of rank. When the bound is met, the value of Pd is merely an

artifact of how the representation vectors {zl} are aligned with the eigenvectors of Cl.

If each neuron is aligned to an eigenmode of Cl, then Pd = 1− r/M will be achieved.

From our experience, however, such a perfect alignment never happens when using the

backpropagation based learning process. This has been true even when L1R or other

advanced representation regularizers were applied. ION, however, can easily meet the

requirement for a linear layer.

Motivated by the above discussion, we have designed a rank regularizer and exam-

ined common wisdom that says ‘most of the data generation processes have a small

number of independent factors and therefore increasing sparsity of representation can

be helpful.’ For instance, see Bengio, Courville, and Vincent (2013). We first explain

the design of rank regularizer.

4.4.2. Rank Regularizer

In deep learning, a low-rank approximation of convolutional filters (Jaderberg, Vedaldi,

and Zisserman 2014; Lebedev et al. 2015; Tai et al. 2016) and weight matrices (Xue,

56

Li, and Gong 2013; Xue et al. 2014; Nakkiran et al. 2015; Masana et al. 2017; Alvarez

and Salzmann 2017) has been widely used for network compression and fast network

training. Some of the works applied a singular value decomposition to weight matrices

after network training ends but not to representations. In this work, as L1 representation

regularizer was designed to encourage a higher sparsity by adding a penalty loss term

ΩL1R =
∑
n

∑
i

|znl,i|, Rank Regularizer (RR) is designed to encourage a lower rank of

representations and used during network training. Because the usual definition of rank

can be very sensitive to the tiny singular values, we use stable rank of activation matrix

Z = [z1l , . . . , z
NMB
l]T as a surrogate. Note that NMB instead of N activation vectors

are used for each mini-batch. Stable rank of Z is defined as

ΩRR =
‖Z‖2F
‖Z‖22

=

∑
i s

2
i

maxi s2i
, (4.7)

where‖Z‖F is the Frobenius norm,‖Z‖2 is the spectral norm, and {si} are the singular

values of Z. From
∑

i s
2
i

maxi s2i
, it can be clearly seen that stable rank is upper bounded by

the usual rank that counts strictly positive singular values. Because the spectral norm is

based on a singular value decomposition, calculating stable rank’s derivative for every

mini-batch is a computationally heavy operation. To reduce the computational burden,

we introduce an approximation using a special case of Holder’s inequality.

ΩRR =
‖Z‖2F
‖Z‖22

=
trace(ZT Z)

‖Z‖22
(4.8)

≥ trace(ZT Z)

‖Z‖1‖Z‖∞
=

∑
i,n(zni)2

(maxi
∑NMB

n=1 |zni |)(maxn
∑M

i=1 |zni |)
(4.9)

The inequality‖Z‖2 ≤
√
‖Z‖1‖Z‖∞ was used where‖Z‖1 is the maximum absolute

column sum of the matrix Z (sum of all activation values of unit i) and‖Z‖∞ is the

maximum absolute row sum of the matrix Z (sum of all activation values of sample n).

Then the gradient of approximation ΩRR can be written as below.

57

∂ΩRR

∂zni
'

∂‖Z‖2F
∂zni

‖Z‖1‖Z‖∞
−
‖Z‖2F · (

∂‖Z‖1
∂zni

·‖Z‖∞ +‖Z‖1 ·
∂‖Z‖∞
∂zni

)

‖Z‖21‖Z‖
2
∞

, (4.10)

where
∂‖Z‖2F
∂zni

= 2zni ,

∂‖Z‖1
∂zni

= 1(i=i∗) · sign(zni), (4.11)

∂‖Z‖∞
∂zni

= 1(n=n∗) · sign(zni),

i∗ = arg max
1≤i≤M

NMB∑
n=1

|zni |, and (4.12)

n∗ = arg max
1≤n≤NMB

M∑
i=1

|zni |.

The extension of RR to its class-wise counterpart, cw-RR, is obvious. The activation

histograms and scatter plots of randomly chosen units are shown in Figure 4.3 and 4.4,

respectively. One can observe that two hidden units are highly correlated in both RR

and cw-RR, which is consistent with their CORRELATION in Table 4.3. Surprisingly,

the classification performance of cw-RR is comparable to that of CR having very

low CORRELATION and that of the baseline. The result is against the conventional

wisdom that correlated representations hurt the performance of deep networks. When

the performance of cw-RR leading to large correlation is compared with that of the

baseline in a range of condition tasks, no systematic patterns to confirm one is better

than the other can be found as shown in Table 5.2, 5.3, and 5.4 of Chapter 5.

4.4.3. A Controlled Experiment on Data Generation Process

We have designed two datasets where the number of independent factors is fully

controlled. The first dataset is a synthetic 10-class classification dataset that was created

using Python scikit-learn library (Pedregosa et al. 2011). The number of independent

Gaussian factors, d, was controlled to be 10, 50, 100, 250, and 500, and the independent

factors were mixed using a randomly generated 1000× d rotation matrix. The second

58

(a) RR (b) cw-RR

Figure 4.3. Activation histogram of a unit (RR and cw-RR) for MNIST. For a 6-layer

Multilayer Perceptron (MLP), the fifth layer’s representation vectors calculated using

10,000 test samples were used to generate the plots.

(a) RR (b) cw-RR

Figure 4.4. Scatter plot of two units (RR and cw-RR) for MNIST. For a 6-layer Multi-

layer Perceptron (MLP), the fifth layer’s representation vectors calculated using 10,000

test samples were used to generate the plots. Note that a large correlation between each

pair of classes can be observed in the scatter plot of both (a) and (b).

dataset is a PCA-controlled MNIST data that was created by including only the top 10,

50, 100, 250, and 500 dimensions of MNIST’s PCA dimensions.

59

(a) Synthetic data

(b) PCA-controlled MNIST data

Figure 4.5. Effect of L1R (L1 Representation Regularizer). Representation sparsity (Ps)

and accuracy are shown as a function of L1R’s loss weight. Each line corresponds to a

different number of independent factors. While sparsity is well controlled, test accuracy

does not show any meaningful dependency on the number of independent factors used

in the data generation process.

60

(a) Synthetic data

(b) PCA-controlled MNIST data

Figure 4.6. Effect of RR (Rank Regularizer). Representation rank (r) and accuracy are

shown as a function of RR’s loss weight. Each line corresponds to a different number

of independent factors. While rank is well controlled, test accuracy does not show

any meaningful dependency on the number of independent factors used in the data

generation process.

61

For the two datasets, we have chosen NA to be the same 6-layer MLP as before

and repeatedly performed training while applying either L1R or RR with different

loss weights. The results are shown in Figure 4.5 and Figure 4.6. The sparsity and

rank plots show that indeed sparsity is increased and rank is reduced by increasing

the loss weight. The accuracy performance, however, does not show any meaningful

dependency on d. For instance, even when d = 10, and there were only ten independent

factors in the data generation process, strongly applying L1R or RR did not result in

improved performance. On the contrary, the accuracy often suffered when loss weight

was increased.

According to the discussion in subsection 4.4.1, it is not surprising that the level of

learned representation’s sparsity does not affect the accuracy performance. Perhaps it is

more surprising that even the level of learned representation’s rank does not affect the

accuracy performance. We move on to the analysis of mutual information for a further

discussion on this issue.

4.5. Mutual Information

So far, we have investigated popular statistical characteristics of representation zl

where none of the statistical characteristics showed a strong and apparent relation-

ship to a deep network’s performance. In this section, we examine two information-

theoretic characteristics: I(zl;x) and I(zl;y). In the original and pioneering work

of Shwartz-Ziv and Tishby (2017), the two characteristics of zl were used to explain

the concept of information bottleneck on deep networks. Basically, the work shows

that the task-relevant information should be maximized via I(zl;y) while the task-

irrelevant information should be minimized via I(zl;x). A further development was

made in Achille and Soatto (2018a), where the Information Bottleneck Lagrangian

L(p(zl |x)) = H(y | zl) + βI(zl;x) was explained - the first term is the usual cross

entropy cost function, the second term is a penalty term on I(zl;x), and β is a parameter

for controlling a tradeoff between sufficiency (the first term) and minimality (the second

62

Figure 4.7. Mutual information and generalization error. The same MLP and MNIST

dataset were used to conduct this experiment. The regularizers were applied to the fifth

layer, and the upper and lower bounds of mutual information were calculated using the

layer’s activation vectors.

term). In Achille and Soatto (2018b), they develop ‘information dropout’ method that

implicitly minimizes I(zl;x). In their limited performance experiments, they showed

that information dropout could improve MNIST classification performance by about

0.25% for the best case. In another work by Kolchinsky, Tracey, and Wolpert (2017),

an upper bound derived using a non-parametric estimator of mutual information and

a variational approximation is used to develop a gradient-based optimization method.

They showed I(zl;x) and I(zl;y) are indeed reduced by the method, but did not report

anything on performance.

In this work, we neither tried the aforementioned techniques nor explicitly im-

plemented an I(zl;x) regularizer. Instead, we simply applied the twelve regularizers

(including baseline) and calculated the upper and lower bounds of I(zl;x) and I(zl;y).

The bounds can be calculated using the results of Kolchinsky, Tracey, and Wolpert

(2017) where a pairwise distance function between mixture components is used. They

prove that the Chernoff α-divergence and the Kullback-Leibler divergence provide

lower and upper bounds when they are chosen as the distance function, respectively.

63

Figure 4.7 shows the results for the last hidden layer together with the generalization

error where the same network and dataset as in Figure 4.1 were used. Regularizers were

also applied to the last hidden layer. One can observe that all the regularizers end up

with almost the same I(zl;y) value. However, the bounds of I(zl;x) can be seen to

be strongly dependent on which regularizer is used, and the upper and lower bounds

show a similar pattern as the generalization error’s pattern. In fact, the correlation

between the lower bound and generalization error can be calculated to be 0.84, and the

correlation between the upper bound and generalization error can be calculated to be

0.78. Therefore, it can be surmised that the regularizers might be indirectly affecting

the performance by influencing I(zl;x).

When a mutual information regularizer is excluded, the rest of the representation

regularizers fail to provide general reasoning on why any of the statistical characteristics

should be pursued. In fact, one can argue that even a single-neuron in layer l (activation

becomes a scalar) can be a sufficient condition for encoding to have a chance to achieve

the maximum possible I(zl;y), i.e., lossless in terms of relevant information. Such

an encoding on a scalar activation might be very inefficient, and a practical learning

method might never reach such an encoding. Nonetheless, there is no reason why

such encoding should be impossible. Obviously, many of the statistical characteristics

become meaningless for such a scalar representation, and it is high time to reconsider

the so-called conventional wisdom on representation characteristics.

64

Chapter 5. Practical Ways of Using Representation

Regularizers

In this chapter, with representation regularizers proposed in this work, we address how

to use representation regularizers in practice. Performance tuning and compression of

deep networks are considered as practical ways of using representation regularizers.

5.1. Tuning Deep Network Performance Using Representa-

tion Regularizers

In the previous chapter, we have investigated representation characteristics and their

relationship to performance. All the results, except for mutual information that is

shown in Figure 4.7, indicate that there might be no firm ground to believe that zl’s

representation characteristics are strongly related to performance. However, there have

been numerous reports that performance was improved by utilizing newly designed

regularizers. In this section, we investigate if (representation) regularizers can indeed

consistently improve the performance for a given task condition. Here, a task condition

means a learning task with small data size, a small layer width, a specific dataset, a large

number of classes, or a specific optimizer. We perform experiments on MNIST, CIFAR-

10, and CIFAR-100 datasets using twelve regularizers. The representation regularizers

are explained in Table 4.2 of Chapter 4. The details of experimental settings and

architecture parameters can be found in the next subsection. Based on the results of this

section, we further discuss how to use representation regularizers as a hyperparameter

in Chapter 6.

65

5.1.1. Experimental Settings and Conditions

By default, we chose ReLU, SGD with the Adam optimizer, and a learning rate of

0.0001 for networks. Mini-batch size is set to 100 by default but is set to 500 only for

CIFAR-100. We evaluated validation performance for {0.001, 0.01, 0.1, 1, 10, 100}

and chose the one with the best performance for each regularizer and condition. Then,

performance was evaluated through five trainings using the pre-fixed weight value. In

the case of CIFAR-10 and CIFAR-100, the last 10,000 instances of 50,000 training data

were used as the validation data, and after the weight values were fixed, the validation

data was merged back into the training data. All experiments in this work were carried

out using TensorFlow 1.5.

Architecture for MNIST

For classification tasks, a 6-layer MLP that has 100 hidden units per layer was used.

For image reconstruction task, a 6-layer autoencoder was used. The number of hidden

units in each layer is 400, 200, 100, 200, 400, and 784 in the order of hidden layers.

Architecture for CIFAR-10 and CIFAR-100

A CNN with four convolutional layers and one fully connected layer was used for both

of CIFAR-10 and CIFAR-100. Detailed architecture hyperparameters are shown in

Table 5.1.

Experimental Conditions

Default conditions are shown in bold, and the full experimental conditions are listed

below.

• Training data size: 1k, 5k, 50k

• Layer width: (MNIST) 2, 8, 100 / (CIFAR-10/100): 32, 128, 512

66

Table 5.1. Default architecture hyperparameters of CIFAR-10/100 CNN model.

Layer # of filters (or units) Filter size Conv. stride Pooling size Pooling stride

Convolutional layer-1 32 3 × 3 1 - -

Convolutional layer-2 64 3 × 3 1 - -

Max-pooling layer-1 - - - 2 × 2 2

Convolutional layer-3 128 3 × 3 1 - -

Max-pooling layer-2 - - - 2 × 2 2

Convolutional layer-4 128 3 × 3 1 - -

Max-pooling layer-3 - - - 2 × 2 2

Fully connected layer 128 - - - -

• Optimizer (CIFAR-10): Adam, Momentum (lr=0.01, momentum=0.9), RMSProp

(lr=0.0001)

• Number of classes (CIFAR-100): 16, 64, 100

5.1.2. Consistently Well-performing Regularizer

We analyze if there is a logical dependency between a regularizer and its effect on

the performance when a particular regularizer is applied to a particular task condition.

Our results, as shown in Table 5.2, 5.3, and 5.4, indicate that there is no consistently

well-performing regularizer for a specific task condition. As an example, consider

the entire CIFAR-10 dataset results in Table 5.2. While task conditions change over

different columns, the data remains common for all the tasks. If there is a representation

characteristic that fits the data-generation process well and one of the regularizers could

match the representation well, it might have outperformed across all the columns. In the

table, the best performing regularizer for each task (column) is marked in bold, and any

other regularizer whose performance overlaps with the best one is highlighted in gray.

Looking at the bold and gray-highlight patterns, one can easily conclude that no single

regularizer works well for all the tasks of CIFAR-10. A similar observation can be made

for other task conditions. For instance, one can examine the data size of 1k. For the 1k

67

columns of the three tables, no single regularizer always performs distinctively well.

In fact, we have experimented many more settings than what are shown in this

dissertation. We hoped to find a strong match between task conditions and representation

regularizers, but we have failed to find anything that looks consistent. Many previous

works on regularizers have compared their regularizers with only a small number of

other known regularizers. When many regularizers are compared over many different

tasks as in our work, one can easily conclude that there is no apparent relation to declare

where a specific representation characteristic is advantageous.

5.1.3. Performance Improvement Using Regularizers as a Set

Even though no single representation characteristic consistently outperforms, it can be

seen that one can improve performance by using the twelve regularizers as a set and by

choosing the best performing regularizer for the given task. This is in line with the usual

theme of tuning in many areas of deep learning. Looking more carefully into Table 5.2,

we can see that cw-VR and L1R often had the best performance for CIFAR-10 test

cases. In our experiments, we observed that one of the representation regularizers often

outperforms weight regularizers (L1W, L2W), dropout, and BN. Though representation

regularizers do not seem to have a direct impact on the performance, they might

have indirect effects on mutual information as we have seen in Chapter 4 or on the

optimization process. When many representation regularizers are tried as a set, perhaps

there is a more significant chance of one of such indirect effects that improves the

performance.

5.2. Enhancing Network Compression Using Representation

Regularizers

In this section, we propose network compression methods that utilize representation

regularizers. We begin this section by addressing why network compression is required

68

Ta
bl

e
5.

2.
T

he
be

st
pe

rf
or

m
in

g
re

gu
la

ri
ze

ri
n

ea
ch

co
nd

iti
on

(e
ac

h
co

lu
m

n)
is

sh
ow

n
in

bo
ld

,a
nd

ot
he

rr
eg

ul
ar

iz
er

s
w

ho
se

pe
rf

or
m

an
ce

ra
ng

e

ov
er

la
ps

w
ith

th
at

of
th

e
be

st
on

es
ar

e
hi

gh
lig

ht
ed

in
gr

ay
.F

or
th

e
de

fa
ul

tc
on

di
tio

n,
th

e
st

an
da

rd
va

lu
es

of
da

ta
si

ze
=5

0k
an

d
la

ye
rw

id
th

=1
28

w
er

e
us

ed
,a

nd
A

da
m

op
tim

iz
er

w
as

ap
pl

ie
d.

Fo
ro

th
er

co
lu

m
ns

,a
ll

th
e

co
nd

iti
on

s
w

er
e

th
e

sa
m

e
as

th
e

de
fa

ul
t,

ex
ce

pt
fo

rt
he

co
nd

iti
on

in
di

ca
te

d

on
th

e
to

p
pa

rt
of

th
e

co
lu

m
n.

R
eg

ul
ar

iz
er

s
w

er
e

ap
pl

ie
d

to
th

e
la

st
hi

dd
en

la
ye

r.

R
eg

ul
ar

iz
er

D
ef

au
lt

D
at

a
Si

ze
L

ay
er

W
id

th
O

pt
im

iz
er

1k
5k

32
51

2
M

om
en

tu
m

R
M

SP
ro

p

B
as

el
in

e
2
6.

6
4
±

0.
16

56
.0

7
±

0.
36

43
.9

5
±

0
.4

3
28
.5

4
±

0
.6

3
28
.5

2
±

1
.0

6
25
.7

8
±

0
.3

7
2
8.

52
±

1
.2

1

L
1W

2
6.

4
6
±

0.
39

56
.6

4
±

0.
91

44
.3

2
±

0
.6

6
28
.6

5
±

1
.1

4
27
.9

6
±

0
.7

2
25
.7

3
±

0
.4

0
2
8.

30
±

0
.9

9

L
2W

2
5.

7
1
±

0.
98

56
.5

7
±

0
.2

2
44
.8

7
±

0
.8

1
28
.5

4
±

0
.3

0
27
.7

9
±

0
.8

3
26
.3

5
±

0
.5

4
2
8.

0
2
±

0
.8

8

D
ro

po
ut

2
6.

3
8
±

0.
21

56
.1

1
±

0.
83

44
.7

8
±

0
.4

1
27
.6

6
±

0
.5

1
28
.4

3
±

0
.8

8
25
.9

5
±

0
.5

7
2
7.

69
±

0
.3

8

B
N

3
1.

9
7
±

3.
10

56
.4

9
±

0
.3

2
43
.7

5
±

0
.7

6
28
.8

3
±

0
.4

7
28
.2

0
±

0
.4

0
25
.5

0
±

0
.5

5
2
8.

3
8
±

0
.8

6

C
R

2
4.

9
6
±

0.
63

57
.4

0
±

2.
11

45
.1

6
±

0
.9

4
26
.4

5
±

0
.2

2
28
.6

5
±

1
.2

1
26
.7

2
±

0
.6

1
2
7.

94
±

0
.4

3

cw
-C

R
2
2.

9
9
±

0.
58

53
.5

0
±

1.
05

42
.1

5
±

0
.6

4
26
.4

0
±

0
.6

2
28
.5

4
±

1
.0

1
25
.9

3
±

0
.5

9
2
7.

77
±

0
.8

8

V
R

2
1.

4
4
±

0.
88

53
.9

0
±

0.
97

42
.3

3
±

0
.5

7
24
.9

6
±

0.
26

24
.9

6
±

0.
26

24
.9

6
±

0
.2

6
26
.6

1
±

0
.4

7
25
.0

1
±

0
.4

1
2
6.

06
±

0
.7

2

cw
-V

R
2
1.

5
8
±

0.
21

51
.9

3
±

1
.0

9
51
.9

3
±

1.
09

51
.9

3
±

1.
0
9

43
.0

0
±

0
.9

5
25
.8

1
±

0
.6

4
26
.4

6
±

0.
25

26
.4

6
±

0.
25

26
.4

6
±

0
.2

5
24
.4

2
±

0
.3

1
26
.1

9
±

1
.3

5

L
1R

20
.6

3
±

0
.5

0
2
0.

6
3
±

0.
5
0

2
0.

6
3
±

0.
5
0

52
.3

9
±

0.
99

40
.9

2
±

0.
3
3

4
0.

9
2
±

0.
33

40
.9

2
±

0
.3

3
25
.4

9
±

0
.6

1
27
.8

1
±

0
.4

3
25
.1

3
±

0
.5

2
26
.4

9
±

0
.9

6

R
R

2
6.

4
6
±

0.
25

57
.0

9
±

1.
0
8

44
.3

5
±

1
.0

9
26
.5

8
±

0
.6

6
26
.8

7
±

0
.5

8
23
.9

2
±

0.
3
7

23
.9

2
±

0
.3

7
23
.9

2
±

0
.3

7
25
.8

0
±

0.
85

2
5.

8
0
±

0
.8

5
25
.8

0
±

0
.8

5

cw
-R

R
2
6.

2
9
±

0.
41

57
.5

5
±

0.
4
6

44
.7

1
±

1
.5

9
26
.6

2
±

0
.7

7
27
.1

2
±

0
.4

6
24
.3

4
±

0
.2

7
26
.1

0
±

0
.5

9

B
es

ti
m

pr
ov

em
en

t
6.

01
4.

14
3.

03
3.

58
2.

06
1.

86
2.

72

69

Ta
bl

e
5.

3.
C

on
di

tio
n

ex
pe

ri
m

en
tr

es
ul

ts
fo

rM
N

IS
T

M
L

P
m

od
el

.T
he

be
st

pe
rf

or
m

in
g

re
gu

la
ri

ze
ri

n
ea

ch
co

nd
iti

on
(e

ac
h

co
lu

m
n)

is
sh

ow
n

in

bo
ld

,a
nd

ot
he

rr
eg

ul
ar

iz
er

s
w

ho
se

pe
rf

or
m

an
ce

ra
ng

e
ov

er
la

ps
w

ith
th

at
of

th
e

be
st

on
es

ar
e

hi
gh

lig
ht

ed
in

gr
ay

.F
or

th
e

de
fa

ul
tc

on
di

tio
n,

th
e

st
an

da
rd

va
lu

es
of

da
ta

si
ze

=5
0k

an
d

la
ye

rw
id

th
=1

00
w

er
e

us
ed

,a
nd

A
da

m
op

tim
iz

er
w

as
ap

pl
ie

d.
Fo

ro
th

er
co

lu
m

ns
,a

ll
th

e
co

nd
iti

on
s

w
er

e
th

e

sa
m

e
as

th
e

de
fa

ul
t,

ex
ce

pt
fo

rt
he

co
nd

iti
on

in
di

ca
te

d
on

th
e

to
p

pa
rt

of
th

e
co

lu
m

n.
R

eg
ul

ar
iz

er
s

w
er

e
ap

pl
ie

d
to

th
e

la
st

hi
dd

en
la

ye
r.

R
eg

ul
ar

iz
er

D
ef

au
lt

D
at

a
Si

ze
L

ay
er

W
id

th

1k
5k

2
8

B
as

el
in

e
2.

85
±

0.
11

11
.4

1
±

0.
19

6.
00
±

0
.0

7
31
.6

2
±

0
.0

7
10
.5

2
±

0
.5

7

L
1W

2.
85
±

0.
06

11
.6

4
±

0.
27

5.
96
±

0
.1

1
31
.6

7
±

0
.1

5
11
.0

2
±

0
.5

8

L
2W

3.
02
±

0.
40

11
.3

8
±

0.
18

5.
86
±

0
.1

0
31
.6

6
±

0
.1

3
1
0.

6
5
±

0
.2

3

D
ro

po
ut

2.
70
±

0.
08

10
.2

9
±

0
.2

3
10
.2

9
±

0.
23

10
.2

9
±

0.
23

5
.5

9
±

0.
11

5
.5

9
±

0
.1

1
5.

59
±

0
.1

1
62
.0

9
±

1
.3

2
13
.9

4
±

1.
0
5

B
N

2.
81
±

0.
12

10
.8

1
±

0.
04

5.
60
±

0
.1

0
42
.0

8
±

0
.9

3
7.

51
±

0
.5

8
7.

51
±

0.
5
8

7
.5

1
±

0.
5
8

C
R

2.
50
±

0.
05

11
.6

3
±

0.
24

6.
05
±

0
.0

6
34
.8

0
±

0
.2

5
10
.2

5
±

0
.7

4

cw
-C

R
2.

49
±

0.
10

10
.6

2
±

0.
05

5.
80
±

0
.1

5
31
.5

0
±

0
.1

1
10
.8

1
±

1.
1
1

V
R

2.
65
±

0.
11

14
.4

2
±

0.
14

6.
90
±

0
.2

2
32
.3

9
±

0
.1

3
9.

2
2
±

0.
28

cw
-V

R
2.

42
±

0.
06

10
.4

4
±

0.
18

5.
90
±

0
.1

2
30
.3

4
±

0
.0

6
30
.3

4
±

0
.0

6
30
.3

4
±

0
.0

6
1
0.

0
1
±

0.
63

L
1R

2
.3

5
±

0
.0

8
2.

35
±

0
.0

8
2.

35
±

0.
08

11
.6

0
±

0.
20

6.
20
±

0
.1

3
64
.3

9
±

0
.2

6
88
.6

5
±

0
.0

0

R
R

2.
81
±

0.
10

10
.9

2
±

0.
17

6.
61
±

0
.0

5
38
.3

5
±

0
.2

0
1
2.

3
1
±

0
.1

6

cw
-R

R
2.

57
±

0
.0

8
10
.8

9
±

0.
19

6.
60
±

0
.1

7
38
.5

7
±

0
.1

2
1
2.

6
3
±

0
.3

9

B
es

ti
m

pr
ov

em
en

t
0.

5
1.

12
0.

41
1.

28
3.

01

70

Ta
bl

e
5.

4.
C

on
di

tio
n

ex
pe

ri
m

en
tr

es
ul

ts
fo

rC
IF

A
R

-1
00

C
N

N
m

od
el

.T
he

be
st

pe
rf

or
m

in
g

re
gu

la
ri

ze
ri

n
ea

ch
co

nd
iti

on
(e

ac
h

co
lu

m
n)

is
sh

ow
n

in
bo

ld
,a

nd
ot

he
rr

eg
ul

ar
iz

er
s

w
ho

se
pe

rf
or

m
an

ce
ra

ng
e

ov
er

la
ps

w
ith

th
at

of
th

e
be

st
on

es
ar

e
hi

gh
lig

ht
ed

in
gr

ay
.F

or
th

e
de

fa
ul

tc
on

di
tio

n,
th

e

st
an

da
rd

va
lu

es
of

da
ta

si
ze

=5
0k

,l
ay

er
w

id
th

=1
28

,a
nd

th
e

nu
m

be
ro

fc
la

ss
es

=1
00

w
er

e
us

ed
.F

or
ot

he
rc

ol
um

ns
,a

ll
th

e
co

nd
iti

on
s

w
er

e
th

e
sa

m
e

as
th

e
de

fa
ul

t,
ex

ce
pt

fo
rt

he
co

nd
iti

on
in

di
ca

te
d

on
th

e
to

p
pa

rt
of

th
e

co
lu

m
n.

R
eg

ul
ar

iz
er

s
w

er
e

ap
pl

ie
d

to
th

e
la

st
hi

dd
en

la
ye

r.

R
eg

ul
ar

iz
er

D
ef

au
lt

D
at

a
Si

ze
L

ay
er

W
id

th
N

um
be

ro
fC

la
ss

es

1k
5k

32
51

2
16

64

B
as

el
in

e
6
1.

2
6
±

0.
52

90
.8

9
±

0.
30

82
.2

1
±

0
.7

2
62
.4

1
±

0
.3

4
61
.3

0
±

0
.6

4
45
.7

5
±

0
.7

3
5
8.

02
±

0
.4

0

L
1W

6
0.

9
7
±

0.
64

91
.3

3
±

0.
37

82
.3
±

0
.6

62
.2

3
±

0
.5

8
60
.9

2
±

0
.4

7
45
.0

8
±

1
.5

3
5
8.

08
±

1
.1

8

L
2W

6
0.

2
3
±

0.
31

90
.5

3
±

0.
39

82
.0

5
±

0
.7

0
62
.7

8
±

0
.3

6
61
.5

5
±

0
.9

9
45
.2

8
±

1
.5

9
5
7.

47
±

0
.6

6

D
ro

po
ut

6
3.

8
8
±

0.
72

90
.2

2
±

0
.4

8
90
.2

2
±

0.
48

90
.2

2
±

0.
4
8

81
.6

8
±

0
.8

1
64
.0

8
±

0
.9

9
64
.3

1
±

0
.3

7
45
.7

3
±

1
.5

7
5
9.

14
±

0
.4

6

B
N

6
0.

9
3
±

0.
39

91
.1

8
±

0
.3

6
82
.0

1
±

0
.5

8
62
.1

8
±

1
.4

9
62
.1

6
±

0
.5

7
44
.5

5
±

1
.4

3
5
7.

72
±

0
.6

6

C
R

5
9.

8
8
±

0.
50

91
.7

0
±

0.
14

82
.4

7
±

0
.4

1
60
.4

7
±

0.
63

60
.4

7
±

0.
63

60
.4

7
±

0
.6

3
60
.7

0
±

0
.9

4
44
.5

5
±

1
.1

0
5
6.

76
±

0
.8

6

cw
-C

R
5
7.

0
3
±

0.
73

90
.8

5
±

0.
29

81
.2

9
±

0
.6

2
61
.4

1
±

0
.6

7
58
.0

2
±

0
.2

5
43
.5

0
±

1
.2

1
54
.2

4
±

0
.6

4

V
R

5
7.

6
8
±

0.
94

91
.4

3
±

0.
32

81
.8

5
±

0
.3

8
61
.3

5
±

0
.4

5
56
.8

7
±

0
.7

4
42
.3

3
±

1
.0

3
54
.3

2
±

0
.4

0

cw
-V

R
5
6.

7
5
±

0.
64

90
.4

5
±

0.
22

81
.0

3
±

0.
5
7

8
1.

0
3
±

0.
57

81
.0

3
±

0
.5

7
60
.6

7
±

0
.5

9
56
.9

1
±

0
.7

3
41
.3

8
±

0.
5
3

41
.3

8
±

0
.5

3
41
.3

8
±

0
.5

3
54
.2

3
±

1
.0

6

L
1R

56
.0

3
±

0
.8

1
5
6.

0
3
±

0.
8
1

5
6.

0
3
±

0.
8
1

91
.1

5
±

0.
3
5

81
.9

8
±

0
.4

7
61
.1

1
±

0
.3

1
56
.4

6
±

0.
62

56
.4

6
±

0.
62

56
.4

6
±

0
.6

2
42
.5

1
±

1
.4

3
53
.6

5
±

1.
00

5
3.

6
5
±

1
.0

0
53
.6

5
±

1
.0

0

R
R

6
2.

6
8
±

0.
35

91
.2

0
±

0.
2
7

81
.3

2
±

0
.3

6
68
.5

4
±

0
.4

6
59
.2

9
±

0
.3

2
44
.1

6
±

0
.8

0
6
0.

25
±

0
.3

5

cw
-R

R
6
2.

6
2
±

0.
31

90
.6

2
±

0.
34

81
.5

7
±

0
.1

4
68
.1

1
±

0
.3

1
59
.1

5
±

0
.2

9
44
.1

0
±

0
.6

5
6
0.

03
±

0
.4

1

B
es

ti
m

pr
ov

em
en

t
5.

23
0.

67
1.

18
1.

94
4.

84
4.

37
4.

37

71

and elucidating common network compression methods.

5.2.1. The Need for Network Compression

Over the past decade, deep learning has been a success in several applications, including

computer vision and speech. A variety of advanced optimization methods and ReLU

activation function enabled the training of deep networks, and cross-entropy loss

function improved the performance of deep learning classification task. A few popular

techniques such as batch normalization and dropout further enhanced the performance

of deep learning. In recent years, deep learning has been widely used in practical

applications based on the success in research. Especially, with the proliferation of

mobile devices, many deep learning applications are deployed and operated on mobile

devices. Mobile devices, of course, are not limited to mobile phones. Smart glasses

and smartwatches have become popular as well. In addition to mobile devices, drones

and small robots have also been equipped with deep learning applications. Probably,

the field in which network compression is most useful is a military application. This is

because military devices usually have to be made very small or made into low power.

The interface of deep learning application is often installed on mobile devices due to

memory and computation power limitations, and the computing part of the application

runs in a cloud server. This architecture potentially can cause a few problems. First,

network delay between a mobile device and the cloud server could occur. In particular, if

real-time processing is considered important as in a self-driving car, this drawback must

be eliminated. Second, a privacy issue may befall. For example, an image, a popular

data format for deep learning, often contains much private or security information. To

mitigate the problems, installing a deep learning application on a mobile device can be

considered. However, the size or power consumption of the application may be too big

or high to be installed in a mobile device. The number of weight parameters in a deep

network often exceeds the memory capacity of a mobile device. Even if mobile storage

is enough to memorize all the parameters, the power consumption for accessing the

72

parameters can be very high, which should be prohibited. Therefore, it is necessary to

reduce the network size by decreasing the number of network parameters or restricting

parameter precision.

5.2.2. Three Typical Approaches for Network Compression

Network compression methods are roughly categorized into three: parameter prun-

ing, low-rank matrix decomposition, and parameter quantization. We briefly describe

each and present related works. First, parameter pruning is to treat individual unit

or weight and simply prune unimportant units or weights that meet certain criteria

such as those with small second order derivative values (Hassibi and Stork 1993) and

weight parameters (Han et al. 2015). A method proposed by Denil et al. (2013) is

somewhat different. They use the structure of learned weight parameters. More specif-

ically, they randomly pick some of the weights and predict the other weights from

the chosen ones. Obviously, there are many more possible criteria that can be used to

cut out units or weights. Originally, this approach was proposed to prevent a neural

network from overfitting and reduce model complexity (LeCun, Denker, and Solla 1990;

Hassibi and Stork 1993). However, as explained in Chapter 2, overfitting rarely oc-

curs in deep networks, so recent related works mainly used this approach for network

compression. Second, the low-rank matrix decomposition method considers all the

weights in a layer together. A single weight matrix of a layer can be decomposed

into two matrices by applying Singular Value Decomposition (SVD) (Denton et al.

2014). This method reduces the number of weights by ignoring unimportant dimensions

with small singular values. Like the pruning method, this method might lead to better

generalization due to the reduced number of weight parameters. In this work, we focus

on this approach which we further detail in the next subsection. Finally, parameter

quantization is to make weights have low precision values by quantizing or binarizing

weight parameters (Han, Mao, and Dally 2016; Gupta et al. 2015; Gong et al. 2015;

Courbariaux et al. 2016). This approach is somewhat orthogonal to the other two ap-

73

proaches because quantization can be combined with the two approaches. In practice,

this approach is a bit trickier to implement than the other two approaches. It is necessary

to implement a logic for writing and reading indices to memorize weight clusters and

encode/decode weights.

5.2.3. Proposed Approaches and Experimental Results

Among the three approaches explained in the previous subsection, we focus on low-rank

matrix decomposition using SVD, which is one of the most popular strategies. Proposed

representation regularizer in this work can be used to enhance network compression in

two ways when an SVD approach is considered.

Network Compression Using cw-VR

Representation regularizers are used to make a compact representation, reducing the

rank of the corresponding weight matrix. This method can be used to extend Domain

Adaptive Low Rank (DALR) of Masana et al. (2017) that increases the compression rate

in consideration of the activation distribution. The compact representation introduced

by the representation regularizers may result in less performance degradation at a higher

compression ratio than that of a deep network without any regularization (baseline).

We performed network compression experiments with cw-VR and compared a few

compression methods with different conditions. We used Lenet-5 network (LeCun et al.

1998) using MNIST digit dataset and applied cw-VR to the two fully-connected layers

(named FC1 and FC2) only. Table 5.1 shows overall results. The first observation is

that DALR outperforms SVD, This is an expected outcome considering that DALR

considers the distribution of activations. Secondly, representation is better compressible

when cw-VR is applied than when no regularizers are used, which is in line with our

initial conjecture. Finally, loss weight of regularizers (numbers in the parentheses) does

not provide any consistency. We believe that further investigation is needed to uncover

the relationship between the compactness of representations and compressibility of the

74

corresponding weight matrix.

An approach using IONs can be used as well. By applying whitening Q matrix, we

can use only a small number of dimensions for compressing a network. This approach

may have an effect similar to that of the SVD approach. As future work, we intend to

compress deep networks using other regularizers and the approach using IONs. It would

be interesting to observe how different representation characteristics affect compression

ratio.

Network Compression Using RR

We can directly compress weight matrices without resorting to representations by

applying Rank Regularizer (RR) to weight matrices. It can be possible to compress a

network at a higher rate when a weight matrix has a lower rank. That is, it is beneficial

if a network is trained to have low-rank weight matrices without performance loss.

Recently, this idea has been implemented by Alvarez and Salzmann (2017). They

developed a regularizer having similar effects to RR, applied it to a deep network, and

showed promising results. However, their method has a drawback. Their method has

two stages meaning that they train a network using their regularizer in every training

step, but solve convex optimization and update weight matrices at every epoch. RR

has an advantage against the method of Alvarez and Salzmann (2017) in that RR

does not require two-stage optimization. RR is just added to and affects the original

objective function in every mini-batch. However, the comparison of RR’s performance

and training speed with those of the method of Alvarez and Salzmann (2017) is absent,

which we leave out for future work.

We conducted network compression experiments by applying RR with the same

setting as that of cw-VR experiments above. Table 5.2 shows similar results for perfor-

mance comparison between SVD and DALR. However, it seems that RR is less effective

than cw-VR. We guess that the two fully-connected layers are already compressed well

without RR because they are upper layers of a deep network. As future work, it would

75

(a) FC1

(b) FC2

Figure 5.1. The sensitivity of different compression methods on the number of remaining

singular values. Lenet-5 network and MNIST dataset were used. cw-VR were applied

to the first (a) and second (b) fully-connected layers’ activations, and corresponding two

weight matrices were compressed using DALR and SVD. The numbers in parentheses

are loss weights (λ) that balance between a cross-entropy loss and a penalty loss.

76

be interesting to apply RR to lower layers and compress the network to see whether

doing so is effective.

77

(a) FC1

(b) FC2

Figure 5.2. The sensitivity of different compression methods on the number of remaining

singular values. Lenet-5 network and MNIST dataset were used. RR were applied to

the first (a) and second (b) fully-connected layers’ weight matrices, and the matrices

were compressed using DALR and SVD. The numbers in parentheses are loss weights

(λ) that balance between a cross-entropy loss and a penalty loss.

78

Chapter 6. Discussion

In this chapter, we first discuss the theoretical and practical implications of this work

and then address a few limitations of this work. We conclude this chapter by discussing

future works.

6.1. Implication

Though a large part of this work is empirical, experimental results provide a few theo-

retical implications such as how and why utilizing class information for regularization

is useful for a classification task and how penalty representation regularizers work

differently from dropout and batch normalization. We discuss these implications and

also address the theoretical implications of ION. The latter part of this section considers

practical implications. In practice, regularization methods using representations are less

popular than those using weight parameters such as L1/L2 regularization and weight

sharing (LeCun 1989). We examine if representation regularizers can be efficient and

useful tools for performance tuning. Also, a few benefits and drawbacks of various

representation characteristics are discussed.

6.1.1. Usefulness of Class Information

In Chapter 3 and Chapter 5, it is shown that utilizing class information for classification

is beneficial for performance improvement. There are two possible explanations for

why the use of class label information is advantageous in terms of the principles of

representation learning: feature compactness, and independence.

First, reducing variances of hidden activations per class leads to intra-class com-

pactness of learned representations. Class-wise Variance Regularizer (cw-VR) enforces

deep representations to be similar to each other in the same class samples. Overfitting

79

can be avoided because non-class relevant information may be removed in order for

each sample to become close to its corresponding class center. By reducing intra-class

variance, inter-class distances can be implicitly maximized as well. As a result, classes

can become more separable, which is advantageous for a classification task. Feature

compactness is somewhat related to the invariance of learned representations to nuisance

factors (Achille and Soatto 2018a). When compact representations are formed, other

information other than shared information among same class samples can be ignored

so that the model can be robust to nuisance. However, forcing too small intra-class

variances by choosing large loss weight values may lead to a lower performance because

cross-entropy loss cannot be reduced. We observed that there is a tradeoff between

performance and feature compactness.

Second, decreasing cross-covariances of hidden activations per class leads to inde-

pendent representations. It is known that decorrelated models for ensemble (Hansen

and Salamon 1990; Perrone and Cooper 1992) or bagging (Breiman 1996) can help

improve performance. Likewise, decorrelating hidden representations are often con-

sidered in deep learning (Srivastava et al. 2014; Cogswell et al. 2016). Srivastava et al.

(2014) reduce co-adaptation by zeroing hidden unit activations to prevent a model from

overfitting. Cogswell et al. (2016) explicitly encourage decorrelated representations by

reducing cross-covariance of hidden activations. However, the two works do not con-

sider using class information. Different class samples probably have different features,

so, intuitively, class-wise independence of features can help enhance the classification

capability of a deep network. In Chapter 3, we have shown that class-wise Covariance

Regularizer (cw-CR) often outperforms Covariance Regularizer (CR). It turns out that

decorrelated representations have some relationship with disentangled representations,

which is one of the main principles of representation learning. However, note that

decorrelating here only considers ‘linear’ relationships, and ‘disengagement’ has not

been defined rigorously and mathematically in deep learning (Higgins et al. 2018).

80

6.1.2. Comparison with Non-penalty Regularizers: Dropout and Batch

Normalization

Dropout (Srivastava et al. 2014) and batch normalization (Ioffe and Szegedy 2015) are

very popular regularizers in practice (Batch normalization is more often considered

as an optimization technique). They are fundamentally different from representation

regularizers studied in this work because they are not ‘penalty cost function’ regularizers.

Instead, they are implemented by directly affecting the feedforward calculations.

Dropout has been shown to have effects similar to those of ensemble and data-

augmentation through its noisy training procedure with benefits unobtainable from a

penalty regularizer. On the other hand, there is a common belief that ‘dropout reduces

co-adaptation (or pair-wise correlation).’ Reducing correlation is something that can be

done by penalty regularizers as we have shown in this work. When we applied the same

quantitative analysis on the test scenarios while using dropout, however, we found that

dropout does not actually reduce the correlation. This indicates that the belief might be

an incorrect myth. Batch normalization has been known to have a stabilization effect

because it can adjust covariate shift even when the network is in the early stage of

training (Recently, Santurkar et al. (2018) argued that the performance improvement

by batch normalization does not stem from reducing internal covariate shift). Thus, a

higher learning rate can be used for faster training. Such an effect is not something that

can be achieved with a penalty regularizer.

When dropout and batch normalization were directly compared with the two repre-

sentation regularizers cw-VR and L1R in terms of performance, we have found that at

least one of cw-VR and L1R outperforms both dropout and batch normalization for 16

out of the 20 test cases (ResNet-32/110 and an autoencoder were not tested). Despite

the performance results for our benchmark scenarios, it is important to recognize that

dropout and batch normalization might be able to play completely different roles that

cannot be addressed by the penalty regularizers. When such additional roles are not

important for a task as in our test scenarios, there is a very high chance of penalty

81

regularizers outperforming dropout and batch normalization.

6.1.3. Identical Output Network

In Chapter 4, we prove that infinitely many IONs for linear networks exist. We also

provide the theorem of IONs for ReLU layers and a few possible extensions. The

existence of IONs implies that there may be no apparent reason why specific statistical

characteristics of representation should be desired. This implication is intensively

discussed in Chapter 4 with some examples of characteristics such as correlation and

sparsity.

We can consider the implication of IONs from the viewpoint of weight parameter

space as well. Different characteristics of representations mean that corresponding

weight parameters to the characteristics are different from each other as well. Assume

that we train a deep network by applying Variational Network Quantization (VNQ),

a Bayesian compression method using a multi-modal quantizing prior of weights

(Achterhold et al. 2018). The resulting weights can be well clustered around target

clustering values. Obviously, IONs can be considered for this network if the layer is

linear, and we can easily obtain a network whose weights are not well grouped but

whose output is identical to that of the original network. We guess that it might be

possible to obtain better compressible weights just by applying proper Q matrices for

linear layers.

6.1.4. Using Representation Regularizers for Performance Tuning

Deep learning practitioners and researchers usually consider L2 weight decay as the first

option for tuning the performance of a deep network. This is because L2 weight decay

is easy to use and often provides a considerable amount of performance improvement.

On the contrary, as presented in Chapter 3, representation regularizers are less popular.

There are three possible reasons why L2 weight decay is popular, but representation

regularizers are not. One apparent reason is that most software packages provide L2

82

weight decay as a built-in function, so it is super easy to apply. Another possible

reason is that practitioners and researchers may believe that L2 weight decay controls

the effective capacity of a deep network; thus performance is improved. However,

Zhang et al. (2016) showed that a typical deep network has a large enough capacity

to memorize the entire training samples and that the L2 weight regularization method

does not sufficiently reduce the network capacity. Finally, the effect of representation

regularization on performance improvement has not been thoroughly investigated yet.

Only limited test cases have been provided in previous works, so for deep learning

practitioners and researchers, it might be too expensive to apply new regularizers to

their problems.

In Chapter 3, we showed that like L2 weight decay, cw-VR is conceptually simple,

computationally light, and easy to use. Besides, it is useful to improve classification

performance. For these reasons, we believe that cw-VR is a compatible option of

L2 weight decay. Also, we show that representation regularizers are very useful for

performance tuning when they are used as a set. Therefore, if the regularizers are

implemented together in a single software library, they can be considered as a powerful

tuning tool. Code of representation regularizers used in this work is made available

online, so we hope that many practitioners and researchers benefit from it.

6.1.5. Benefits and Drawbacks of Different Statistical Characteristics of

Representations

In Chapter 4, the theorem of ION indicates that different statistical characteristics of

deep representations lead to the same output. Although the outputs are identical, there

can exist other benefits and drawbacks of different characteristics. In this subsection, we

explore a few benefits and drawbacks of the characteristics concerning training speed,

interpretation of features, and network compression.

First, all the IONs of an original network have the same training speed, which is

because IONs are not formed by actual training of deep networks. Instead, they are made

83

by simple matrix calculations after the training of the original network ends. However,

forming specific representation characteristics by using representation regularizers, not

by IONs usually requires more calculation than training without regularizers (baseline),

so training deep networks using regularizers is usually slower than that with the baseline.

In our experience, the training speed of all the regularizers we developed is comparable

to the baseline because the regularizers are computationally light. In the case of class-

wise regularizers, when the number of classes is too large, training speed tends to

become significantly slower. However, we think that this can be optimized if we choose

the same number of samples per class and sort them in the order of class in each

mini-batch such that deep learning software can benefit from the structure of mini-batch

samples.

Second, a particular representation characteristic might give better feature interpre-

tation than the others. For example, decorrelated features by using whitening Q matrix

might be more explainable than the others. Visualization of features captured by hidden

units may confirm this guess. We discuss this more in Section 6.3.

Finally, a deep network with a particular representation characteristic can be better

compressed than networks with other characteristics. By using RR (Rank Regularizer)

and cw-RR (class-wise Rank Regularizer), one can pursue correlated representations

that have a potential of high compression rate. If a network with highly correlated

representations has a comparable performance to those other networks with less cor-

related representations, then the network can be better compressed by applying the

whitening Q matrix and removing unimportant hidden units. By the theorem of ION,

one can find a proper Q matrix to align the null spaces of Cl to some of the hidden

units. This means that the hidden units might be removed with minimal performance

degradation. However, like the training time mentioned above, all the IONs can be

compressed with the same compression rate because they have the same rank. Note

that different representation characteristics lead to different compression rates only

when representation regularizers are applied during network training not when affine

84

transformations are applied after the training phase.

6.2. Limitation

Even though our experimental results confirm that representation regularization is

useful for performance improvement, and theoretical explanation on statistical char-

acteristics of deep network representations is provided in the previous chapters, it is

still unclear how representation regularizers work. Also, most of the experimentations

are classification tasks that are relatively easier than other tasks such as regression and

reconstruction. Datasets are restricted to images as well. In this subsection, we discuss

the main limitations of this work that lies in lack of theoretical proofs and limited

experimentation.

6.2.1. Understanding the Underlying Mechanism of Representation Reg-

ularization

Our main concern about the design of representation regularizers is that the behavior and

underlying principle of representation regularizers are not fully understood at this point.

Such a regularization essentially enforces a loss on hidden unit activations so links to a

supervised metric learning scheme. However, Variance Regularizer (VR) often achieves

better performance than the baseline, which is counter-intuitive for classification tasks

because VR encourages to have similar representations for different class samples. Two

possible explanations are presented in Chapter 3, and the usefulness of class information

was discussed in the previous section. In this subsection, we consider the viewpoint of

deep network optimization that is non-convex.

In practice, deep learning practitioners and researchers may pursue specific sta-

tistical characteristics of deep network representation not only for performance im-

provement itself based on priors but also optimization and conditioning of z. Also,

representation regularization can add stability to the numerics. As summarized in

85

Chapter 5, the conditioning affects the optimization process and leads to different

local minima thereby achieving high or low performances. To sum up, the effect of

regularizers on optimization would affect performance. When multiple regularizers

are considered, the effect can be addressed as ‘tuning effect’ because there were no

systematic patterns found.

6.2.2. Manipulating Representation Characteristics other than Covari-

ance and Variance for ReLU Networks

As shown in Theorem 2, Q matrices for ReLU’s IONs are limited to (permutated)

positive diagonal matrices. Even though we provide possible extensions for ReLU’s

IONs, this limitation is quite problematic due to the following reason. By applying

the matrices of ReLU IONs, only covariance and variance of representations can be

manipulated. Since these characteristics can be affected by the scale of activations,

it is less meaningful to explain the relationship between two hidden units and the

distribution of activations in a single unit. On the contrary, correlation and sparsity

cannot be altered by applying ReLU’s IONs. These two characteristics have been

considered to be important for explaining feature independence and compactness.

Comparable Performance Networks (CPNs) can be considered to overcome this

problem. Correlation and sparsity can be altered by ReLU’s CPNs with a small per-

formance loss. We guess that CPNs might be only applicable to relatively simple

classification tasks like MNIST digit classification. When more complicated tasks are

considered, CPNs may not exist or are difficult to be found with a simple brute-force

search.

6.2.3. Investigating Representation Characteristics of Complicated Tasks

A sufficient amount of experimental and qualitative analysis was provided to verify

the effectiveness of our new regularizers and the relationship between representation

characteristics and performance. However, in this work, we apply representation regular-

86

izers mainly to deep networks for image classification tasks. Obviously, representation

regularizers can be applied to deep networks for other types of datasets and tasks as

well.

First, regularizers can be applied to image reconstruction tasks. It is known that

image reconstruction tasks may have entirely different representation characteristics

from those of image classification tasks. Their objective function is different, so repre-

sentation preserves or removes different information from the input. For example, an

image classification network removes information not related to the label, so their repre-

sentations may be more compact than those of deep networks for image reconstruction.

Second, we can apply representation regularizers to generative models. Precisely,

a discriminator of Generative Adversarial Network (GAN) (Goodfellow et al. 2014)

can be regularized with representation regularizers. The way we apply representation

regularizers to GANs is the same as what we do for classification networks, but we use

different label information that is ‘real ’ or ‘fake ’ rather than class information given by

datasets. Since the discriminator should be trained to classify real and fake samples well,

it is beneficial for the discriminator to have distinct learned representations per label
¯

that

is real or fake. We can use cw-VR to reduce the variance of the hidden unit activations

within the same label samples. As a result of applying this regularizer, a generator

of GAN may contribute to producing trickier samples to deceive the discriminator.

Intuitively, applying class-wise regularizers to the discriminator is not expected to be a

great help because class information is not used for discriminator’s loss. Nonetheless,

applying class-wise regularizers is possible, and it would be interesting to look at

experimental results. Utilizing class information in a latent variable may have a positive

effect. Other all-class representation regularizers can be applied to the discriminator as

well.

Finally, representation regularizers can also be applied to meta-learning. For ex-

ample, Gidaris and Komodakis (2018) developed a ‘few-shot classification weight

generator’ as a meta-learner component. The weight generator produces a weight

87

vector for a new class by combining weight vectors of the classes used in training.

Therefore, if we have a distinct weight vector per class by applying class-wise regu-

larizers, we may not only improve performance but also be able to generate distinct

weights for the few shot classes that are very different from other classes. Class-wise

regularizers, of course, can be applied to recent promising meta-learning algorithms

(Finn, Abbeel, and Levine 2017; Mishra et al. 2018).

Besides the types of machine learning tasks, different input data types such as struc-

tured images, text, and audio also can be considered for representation regularization.

6.3. Possible Future Work

In this section, we present three possible future works to extend this work. Interpreting

learned representations via visualization to understand the effects of representation

regularization is explained. Use of mutual information for regularization is discussed as

well. We finally address how to enhance network compression by manipulating deep

representations.

6.3.1. Interpreting Learned Representations via Visualization

Deep networks are known to capture task-relevant information from data automatically.

In the case of image data, what information is extracted is often verified through learned

feature visualization. In some previous studies (Cogswell et al. 2016; Srivastava et al.

2014), learned features were visualized, and the visualization confirmed that features

learned by applying their regularizers are different from those of networks without any

regularizers (baseline). Srivastava et al. (2014) visualized features learned by hidden

units of the first layer of 2-layer autoencoder. Their results show that each hidden unit

detects distinct parts of the MNIST image, so they argue that the visualization of the

learned features is evidence that co-adaptations are broken up by applying dropout.

Cogswell et al. (2016) conducted the same experiment and showed that DeCov learns

88

different features from dropout and the baseline. However, both studies confirmed

only the features of shallow networks, and there was no verification of the upper layer

features of deep networks. In Chapter 3, we show that regularizers are more effective

when applied to the upper layers. Therefore, we need to visualize the features captured

by hidden units in the upper layer of deep networks.

It is shown that representation regularizers proposed in this work manipulate repre-

sentation characteristics distinctly. Therefore, the features learned by each regularizer

can be expected to be different from each other. In particular, the features learned by

class-wise regularizers may be significantly different from those learned by all-class

regularizers. RR and cw-RR make representations compact and independent, so it would

be interesting to visualize the features they learn. Also, it might be a surprising result

if deep networks with similar performance detect distinct features or deep networks

having an entirely different performance detect very similar features to each other. This

is because it is beyond the common belief that the task performance of deep networks

can be dependent on learned features.

6.3.2. Designing a Regularizer Utilizing Mutual Information

As described in Chapter 4, the Information Bottleneck Lagrangian L(p(zl |x)) =

H(y | zl)+βI(zl;x) can be considered as the combination of cross-entropy and mutual

information between the input and zl. Our experimental results show that I(zl;x) can be

indirectly controlled by representation regularizers, and each regularizer has a different

degree of controlling I(zl;x). Also, it is observed that I(zl;x) and generalization

performance have a strong correlation. Based on the result, we can design a regularizer

that explicitly reduces I(zl;x) using the methods explained in Chapter 4. A mutual

information regularizer may perform better than other regularizers and can be a useful

tool to study the effects of regularizers from an information-theoretic viewpoint.

89

6.3.3. Applying Multiple Representation Regularizers to a Network

In Chapter 3 and Chapter 4, it confirms that each representation regularizer distinctly

shapes deep network representations and that no statistical characteristics consistently

outperform than those of the others. Therefore, we can guess that the combination of

multiple representation regularizers may give a promising performance depending on

the task. For example, using cw-VR and L1R together could possibly maximize the

benefits of each by simultaneously making representation more compact and sparser.

However, as observed in Chapter 5, in many cases we do not know which representation

characteristics are suitable for a given task. In other words, since there is no systematic

pattern for improving performance using the regularizers, it might be better to apply

multiple regularizers together to a network for determining their proportions. It is also

possible to learn such proportions for the regularizers in some combination they form.

In order to find high performing regularizer combinations and their loss weights, one

possible sophisticated way is to use a hyperparameter optimization framework like

Bayesian optimization. First, we briefly explain what Hyperparameter Optimization

(HPO) is and why it is needed for deep networks. Then, we discuss how to apply HPO

for regularizer combinations.

For traditional machine learning, feature engineering is usually necessary for achiev-

ing high performance. However, feature engineering is typically labor-intensive and

can be performed well only by experts. In contrast, deep networks can automatically

capture task-relevant information in the data and significantly reduce the effort needed

for feature engineering. As a result, deep learning has achieved promising results for

many applications in recent years. Deep learning makes less use of feature engineering

for improving task performance but requires careful HPO instead. This is because

deep networks usually have many more hyperparameters than traditional machine

learning algorithms, making the task more sophisticated to approach with feature engi-

neering alone and because its performance can be highly dependent on the choice of

hyperparameters.

90

HPO of deep networks can be considered as a problem of finding an optimal

hyperparameter configuration of DNN performance which can be regarded as a black-

box function. In the real world, what practitioners typically do is to repeat the steps

of choosing a hyperparameter configuration, training the network, and evaluating

the configuration. That is, based on the result of the previous evaluation, selection

and evaluation process are repeated within a given amount of time budget or until a

predetermined objective value is obtained. However, manually carrying out this process

is time- and effort-consuming, and doing it well requires in-depth comprehension of

deep learning which may be more difficult than learning feature engineering techniques.

To overcome such difficulty, practitioners often use simple grid or random search

as the default automated HPO method (Bergstra and Bengio 2012). As a more sophis-

ticated solution, one can use Bayesian Optimization (BO), a sequential model-based

optimization method. BO has been successfully applied to many traditional machine

learning and deep learning tasks. Spearmint (Snoek, Larochelle, and Adams 2012) using

Gaussian Process (GP), Sequential Model-Based Algorithm Configuration (SMAC)

(Hutter, Hoos, and Leyton-Brown 2011) using random forests (RF), and Tree-structured

Parzen Estimator (TPE) (Bergstra, Yamins, and Cox 2013) using non-parametric density

estimation are widely used in practice.

Obviously, regularizers can be one of the hyperparameters for improving deep

network performance in a BO framework. We can define a set of regularizers and

the range of loss weights such that a BO algorithm sequentially searches the best

combination of regularizers with proper loss weights. We believe that this approach

can be quite useful for improving performance even though the interpretability of

regularization mechanism would become difficult.

91

6.3.4. Enhancing Deep Network Compression via Representation Manip-

ulation

In Chapter 5, we show that compressing network using cw-VR and RR is useful.

However, the experiments are limited to a relatively small network and simple dataset.

Also, further investigation into compressing convolutional layers is necessary. Another

direction is to investigate other representation characteristics. As observed in Chapter 3

and Chapter 4, each representation regularizer does encourage distinct representation

characteristic, so it would be interesting to compare compression performances of

different representation characteristics. Finally, a theoretical analysis of the relationship

between representation compactness (or other properties) and the rank of a weight

matrix is required to design better compression methods.

92

Chapter 7. Conclusion

This dissertation aimed to find the statistical characteristics of deep representations

that high-performing networks commonly have and to better understand the relation-

ship between the characteristics and the performance of deep networks. To this end,

we introduced a few regularizers that manipulate statistical characteristics of deep

representations and showed the impact of applying the regularizers on performance

and representation. In doing so, we broadened the understanding of deep network

regularization using representation shaping.

In Chapter 3, we have addressed the fundamentals of using class information for

penalty representation regularization. The results indicate that class-wise representa-

tion regularizers are very efficient and quite useful, and they should be considered as

essential and high-potential configurations for learning of deep networks. In Chapter 4,

we have studied the most popular statistical characteristics and information-theoretic

characteristics of deep representations. All the statistical characteristics that were stud-

ied failed to show any general or causal pattern for improving performance. Empirical

results consistently showed that none of the studied statistical characteristics is a re-

quirement for achieving good performance. In contrast to the statistical characteristics,

information-theoretic characteristic I(z;x) showed a strong correlation with the perfor-

mance of a classification task. In Chapter 5, as practical ways of using representation

regularizers, we have tried applying twelve different regularizers over many classifica-

tion tasks with different task conditions. The results show that still no systematic pattern

can be found, but the set of regularizers can be used as a very compelling tool for tuning

performance. Also, we have investigated the usefulness of representation regularizers

for network compression. Our results indicate that manipulating representations with

representation regularizers is quite useful to enhance compression ratio with a smaller

trade-off with performance.

93

In conclusion, the most important contribution of this work is probably to provide

early work on developing rigorous and general theories and methodologies that can be

used to understand the learned representations better.

94

Bibliography

Achille, A., and Soatto, S. 2018a. Emergence of invariance and disentangling in deep

representations. Journal of Machine Learning Research 19(50):1–34.

Achille, A., and Soatto, S. 2018b. Information dropout: Learning optimal representa-

tions through noisy computation. IEEE Transactions on Pattern Analysis and Machine

Intelligence.

Achterhold, J.; Koehler, J. M.; Schmeink, A.; and Genewein, T. 2018. Variational

network quantization. International Conference on Learning Representations.

Alvarez, J. M., and Salzmann, M. 2017. Compression-aware training of deep networks.

In Advances in Neural Information Processing Systems, 856–867.

Arpit, D.; Jastrzębski, S.; Ballas, N.; Krueger, D.; Bengio, E.; Kanwal, M. S.; Maharaj,

T.; Fischer, A.; Courville, A.; Bengio, Y.; et al. 2017. A closer look at memorization in

deep networks. International Conference on Machine Learning.

Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer normalization. arXiv preprint

arXiv:1607.06450.

Belghazi, I.; Rajeswar, S.; Baratin, A.; Hjelm, R. D.; and Courville, A. 2018. Mine:

mutual information neural estimation. International Conference on Machine Learning.

Belharbi, S.; Chatelain, C.; Herault, R.; and Adam, S. 2017. Neural networks regular-

ization through invariant features learning. arXiv preprint arXiv:1709.01867.

Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine intelligence

35(8):1798–1828.

Bergstra, J., and Bengio, Y. 2012. Random search for hyper-parameter optimization.

Journal of Machine Learning Research 13(Feb):281–305.

Bergstra, J.; Yamins, D.; and Cox, D. D. 2013. Making a science of model search:

95

Hyperparameter optimization in hundreds of dimensions for vision architectures. ICML

(1) 28:115–123.

Breiman, L. 1996. Bagging predictors. Machine learning 24(2):123–140.

Cheung, B.; Livezey, J. A.; Bansal, A. K.; and Olshausen, B. A. 2015. Discovering hid-

den factors of variation in deep networks. Workshop Track of International Conference

on Learning Representations.

Choi, D., and Rhee, W. 2019. Utilizing class information for deep network representa-

tion shaping. AAAI.

Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; and Batra, D. 2016. Reducing

overfitting in deep networks by decorrelating representations. International Conference

on Learning Representations.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and Bengio, Y. 2016. Bina-

rized neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830.

Denil, M.; Shakibi, B.; Dinh, L.; De Freitas, N.; et al. 2013. Predicting parameters in

deep learning. In Advances in neural information processing systems, 2148–2156.

Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fergus, R. 2014. Exploiting

linear structure within convolutional networks for efficient evaluation. In Advances in

neural information processing systems, 1269–1277.

Dinh, L.; Pascanu, R.; Bengio, S.; and Bengio, Y. 2017. Sharp minima can generalize

for deep nets. International Conference on Machine Learning.

Dziugaite, G. K., and Roy, D. M. 2017. Computing nonvacuous generalization bounds

for deep (stochastic) neural networks with many more parameters than training data.

Conference on Uncertainty in Artificial Intelligence.

Eldan, R., and Shamir, O. 2016. The power of depth for feedforward neural networks.

In Conference on Learning Theory, 907–940.

96

Farabet, C.; Couprie, C.; Najman, L.; and LeCun, Y. 2013. Learning hierarchical fea-

tures for scene labeling. IEEE transactions on pattern analysis and machine intelligence

35(8):1915–1929.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic meta-learning for fast

adaptation of deep networks. Proceedings of the 30th international conference on

machine learning (ICML-17).

Gidaris, S., and Komodakis, N. 2018. Dynamic few-shot visual learning without

forgetting. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 4367–4375.

Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse rectifier neural networks. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and

Statistics, 315–323.

Gong, Y.; Liu, L.; Yang, M.; and Bourdev, L. 2015. Compressing deep convolutional

networks using vector quantization. International Conference on Learning Representa-

tions.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep learning. MIT press.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;

Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. In Advances in Neural

Information Processing Systems. 2672–2680.

Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; and Narayanan, P. 2015. Deep learning

with limited numerical precision. In International Conference on Machine Learning,

1737–1746.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both weights and connections

for efficient neural network. In Advances in neural information processing systems,

1135–1143.

Han, S.; Mao, H.; and Dally, W. J. 2016. Deep compression: Compressing deep

97

neural networks with pruning, trained quantization and huffman coding. International

Conference on Learning Representations.

Hansen, L. K., and Salamon, P. 1990. Neural network ensembles. IEEE transactions

on pattern analysis and machine intelligence 12(10):993–1001.

Hassibi, B., and Stork, D. G. 1993. Second order derivatives for network pruning:

Optimal brain surgeon. In Advances in neural information processing systems, 164–171.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, 770–778.

Higgins, I.; Amos, D.; Pfau, D.; Racaniere, S.; Matthey, L.; Rezende, D.; and Lerch-

ner, A. 2018. Towards a definition of disentangled representations. arXiv preprint

arXiv:1812.02230.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.; Jaitly, N.; Senior, A.;

Vanhoucke, V.; Nguyen, P.; Sainath, T. N.; et al. 2012. Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research groups.

IEEE Signal processing magazine 29(6):82–97.

Hinton, G. E. 1986. Learning distributed representations of concepts. In Proceedings of

the eighth annual conference of the cognitive science society, volume 1, 12. Amherst,

MA.

Hoerl, A. E., and Kennard, R. W. 1970. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics 12(1):55–67.

Hoffer, E.; Hubara, I.; and Soudry, D. 2017. Train longer, generalize better: closing the

generalization gap in large batch training of neural networks. In Advances in Neural

Information Processing Systems, 1731–1741.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequential model-based optimiza-

98

tion for general algorithm configuration. In International Conference on Learning and

Intelligent Optimization, 507–523. Springer.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning, 448–456.

Jaderberg, M.; Vedaldi, A.; and Zisserman, A. 2014. Speeding up convolutional neural

networks with low rank expansions. arXiv preprint arXiv:1405.3866.

Kolchinsky, A., and Tracey, B. D. 2017. Estimating mixture entropy with pairwise

distances. Entropy 19(7):361.

Kolchinsky, A.; Tracey, B. D.; and Wolpert, D. H. 2017. Nonlinear information

bottleneck. arXiv preprint arXiv:1705.02436.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, 1097–1105.

Krueger, D.; Ballas, N.; Jastrzebski, S.; Arpit, D.; Kanwal, M. S.; Maharaj, T.; Bengio,

E.; Fischer, A.; and Courville, A. 2017. Deep nets don’t learn via memorization.

Workshop Track of International Conference on Learning Representations.

Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.; and Lempitsky, V. 2015. Speeding-

up convolutional neural networks using fine-tuned cp-decomposition. International

Conference on Learning Representations.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86(11):2278–2324.

LeCun, Y.; Denker, J. S.; and Solla, S. A. 1990. Optimal brain damage. In Advances in

neural information processing systems, 598–605.

LeCun, Y. 1989. Generalization and network design strategies. Connectionism in

perspective 143–155.

99

Liao, R.; Schwing, A.; Zemel, R.; and Urtasun, R. 2016. Learning deep parsimonious

representations. In Advances in Neural Information Processing Systems, 5076–5084.

Littwin, E., and Wolf, L. 2018. Regularizing by the variance of the activations’

sample-variances. In Advances in neural information processing systems, 2119–2129.

Masana, M.; van de Weijer, J.; Herranz, L.; Bagdanov, A. D.; and MAlvarez, J. 2017.

Domain-adaptive deep network compression. network 16:30.

Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M. 2013. Machine learning: An

artificial intelligence approach. Springer Science & Business Media.

Mikolov, T.; Deoras, A.; Povey, D.; Burget, L.; and Černockỳ, J. 2011. Strategies for

training large scale neural network language models. In Automatic Speech Recognition

and Understanding (ASRU), 2011 IEEE Workshop on, 196–201. IEEE.

Mishra, N.; Rohaninejad, M.; Chen, X.; and Abbeel, P. 2018. A simple neural attentive

meta-learner. International Conference on Learning Representations.

Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014. On the number of linear

regions of deep neural networks. In Advances in neural information processing systems,

2924–2932.

Mood, A. M. 1950. Introduction to the theory of statistics.

Nakkiran, P.; Alvarez, R.; Prabhavalkar, R.; and Parada, C. 2015. Compressing deep

neural networks using a rank-constrained topology. In Sixteenth Annual Conference of

the International Speech Communication Association.

Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; and Srebro, N. 2017. Exploring

generalization in deep learning. In Advances in Neural Information Processing Systems,

5947–5956.

Pascanu, R.; Montufar, G.; and Bengio, Y. 2014. On the number of response regions of

deep feed forward networks with piece-wise linear activations. International Conference

on Learning Representations.

100

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,

M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau,

D.; Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research 12:2825–2830.

Perrone, M. P., and Cooper, L. N. 1992. When networks disagree: Ensemble methods

for hybrid neural networks. Technical report, BROWN UNIV PROVIDENCE RI INST

FOR BRAIN AND NEURAL SYSTEMS.

Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Sohl-Dickstein, J. 2017. On

the expressive power of deep neural networks. International Conference on Machine

Learning.

Sainath, T. N.; Mohamed, A.-r.; Kingsbury, B.; and Ramabhadran, B. 2013. Deep

convolutional neural networks for lvcsr. In Acoustics, speech and signal processing

(ICASSP), 2013 IEEE international conference on, 8614–8618. IEEE.

Salimans, T., and Kingma, D. P. 2016. Weight normalization: A simple reparameteriza-

tion to accelerate training of deep neural networks. In Advances in Neural Information

Processing Systems, 901–909.

Santurkar, S.; Tsipras, D.; Ilyas, A.; and Madry, A. 2018. How does batch normalization

help optimization? In Advances in Neural Information Processing Systems, 2488–2498.

Saxe, A. M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B. D.; and

Cox, D. D. 2018. On the information bottleneck theory of deep learning.

Shi, H.; Zhu, X.; Lei, Z.; Liao, S.; and Li, S. Z. 2016. Learning discriminative features

with class encoder. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, 46–52.

Shwartz-Ziv, R., and Tishby, N. 2017. Opening the black box of deep neural networks

via information. arXiv preprint arXiv:1703.00810.

Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical bayesian optimization of

101

machine learning algorithms. In Advances in neural information processing systems,

2951–2959.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. 2014.

Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research 15(1):1929–1958.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Van-

houcke, V.; and Rabinovich, A. 2015. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, 1–9.

Tai, C.; Xiao, T.; Zhang, Y.; Wang, X.; et al. 2016. Convolutional neural networks with

low-rank regularization. International Conference on Learning Representations.

Telgarsky, M. 2015. Representation benefits of deep feedforward networks. arXiv

preprint arXiv:1509.08101.

Telgarsky, M. 2016. Benefits of depth in neural networks. Conference on Learning

Theory.

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 267–288.

Tishby, N., and Zaslavsky, N. 2015. Deep learning and the information bottleneck

principle. In Information Theory Workshop (ITW), 2015 IEEE, 1–5. IEEE.

Tishby, N.; Pereira, F. C.; and Bialek, W. 1999. The information bottleneck method.

The 37th annual Allerton Conference on Communication, Control, and Computing.

Tompson, J. J.; Jain, A.; LeCun, Y.; and Bregler, C. 2014. Joint training of a convo-

lutional network and a graphical model for human pose estimation. In Advances in

neural information processing systems, 1799–1807.

Vapnik, V. N. 1999. An overview of statistical learning theory. IEEE transactions on

neural networks 10(5):988–999.

102

Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016a. Learning structured sparsity

in deep neural networks. In Advances in Neural Information Processing Systems,

2074–2082.

Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016b. A discriminative feature learning

approach for deep face recognition. In European Conference on Computer Vision,

499–515. Springer.

Wolpert, D. H., and Macready, W. G. 1997. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation 1(1):67–82.

Wu, L.; Zhu, Z.; and E, W. 2017. Towards understanding generalization of deep

learning: Perspective of loss landscapes. Workshop Track of International Conference

on Machine Learning.

Xiong, W.; Du, B.; Zhang, L.; Hu, R.; and Tao, D. 2016. Regularizing deep convo-

lutional neural networks with a structured decorrelation constraint. In Data Mining

(ICDM), 2016 IEEE 16th International Conference on, 519–528. IEEE.

Xue, J.; Li, J.; Yu, D.; Seltzer, M.; and Gong, Y. 2014. Singular value decomposition

based low-footprint speaker adaptation and personalization for deep neural network. In

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Confer-

ence on, 6359–6363. IEEE.

Xue, J.; Li, J.; and Gong, Y. 2013. Restructuring of deep neural network acoustic

models with singular value decomposition. In Interspeech, 2365–2369.

Yang, H.-M.; Zhang, X.-Y.; Yin, F.; and Liu, C.-L. 2018. Robust classification with

convolutional prototype learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 3474–3482.

Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals, O. 2017. Understanding

deep learning requires rethinking generalization. International Conference on Learning

Representations.

103

Appendix

A. Principal Component Analysis of Learned Representa-

tions

(a) Baseline (Before ReLU) (b) Baseline (After ReLU)

(c) L1R (Before ReLU) (d) L1R (After ReLU)

Figure A.1. The top three principal components of learned representations (Baseline,

L1R).

104

(a) L1W (Before ReLU) (b) L1W (After ReLU)

(c) L2W (Before ReLU) (d) L2W (After ReLU)

Figure A.2. The top three principal components of learned representations (L1W, and

L2W). Note that representation characteristics of L1W and L2W are very similar to

those of the baseline because weight decay methods do not directly shape representa-

tions.

105

(a) Dropout (Before ReLU) (b) Dropout (After ReLU)

(c) BN (Before ReLU) (d) BN (After ReLU)

Figure A.3. The top three principal components of learned representations (Dropout,

Batch normalization).

106

(a) CR (Before ReLU) (b) CR (After ReLU)

(c) cw-CR (Before ReLU) (d) cw-CR (After ReLU)

Figure A.4. The top three principal components of learned representations (CR, cw-CR).

107

(a) VR (Before ReLU) (b) VR (After ReLU)

(c) cw-VR (Before ReLU) (d) cw-VR (After ReLU)

Figure A.5. The top three principal components of learned representations (VR, cw-

VR).

108

(a) RR (Before ReLU) (b) RR (After ReLU)

(c) cw-RR (Before ReLU) (d) cw-RR (After ReLU)

Figure A.6. The top three principal components of learned representations (RR, cw-RR).

109

B. Proofs

Theorem 1 For a deep network NA = (W, b) whose layer l is linear, there exists

ÑA = (W̃, b̃) that satisfy the following conditions:

∀x, NA(x) = ÑA(x);

∀x, z̃l = Q(zl−m),

where Q is any nonsingular square matrix of a proper size and m is any vector of a

proper size.

Proof. Proof is based on a simple construction. Choose the weights of ÑA as below.

W̃
T

l = QWT
l

b̃l = Q(bl−m)

W̃
T

l+1 = WT
l+1Q

−1

b̃l+1 = bl+1 +WT
l+1m

For all the other layers, choose the same as NA’s weights. Then, clearly z̃l−1 = zl−1

and therefore z̃l = W̃
T

l zl−1 +b̃l = Q(WT
l zl−1 +bl−m) = Q(zl−m). Also,

z̃l+1 = W̃
T

l+1z̃l+b̃l+1 = WT
l+1Q

−1Q(zl−m)+bl+1 +WT
l+1m = zl+1. Because

the activation vector of layer l + 1 is the same for NA and ÑA, the resulting outputs

NA(x) and ÑA(x) are exactly the same as well.

Theorem 2 For a deep networkNA = (W, b) whose activation function of layer l

is ReLU, there exists ÑA = (W̃, b̃) that satisfy the following conditions:

∀x, NA(x) = ÑA(x);

∀x, z̃l = Qzl,

where Q is any permuted positive diagonal matrix of a proper size. Furthermore, it can

be shown that any Q that satisfy the above two conditions must be a permuted positive

diagonal matrix.

110

Proof. For simplicity, we denote a+ = ReLU(a) and a− = ReLU(−a). Then a =

a+ + a−. We denote hl = WT
l zl +bl, which is the representation before applying

the activation function, such that zl = h+
l . If we choose W̃

T

l = QWT
l and W̃

T

l+1 =

WT
l+1Q

−1, our focus is to find an invertible matrix Q that satisfy WT
l+1Q

−1(Qhl)
++

bl+1 = WT
l+1 h

+
l +bl+1 for all x. This reduces down to finding Q that satisfies

(Qhl)
+ = Qh+

l . We denote i’th row of Q as qT
i , and the statement mentioned above

can be written as: (qT
i hl)

+ = qT
i hl. For qT

i that satisfy (qT
i hl) ≥ 0, obviously

(qT
i hl)

+ = qT
i hi

l . If we substitute hl with h+
l −h−l , then qT

i h−l = 0. For qT
i that

satisfy qT
i hl < 0, we can derive the condition qT

i h+
l = 0.

Now, we will show that Q should be a permuted positive diagonal matrix using the

statements proved above. For a permuted positive diagonal matrix, {qT
i } are linearly

independent and each qT
i has only one positive element. Because Q needs to be

invertible (otherwise information loss occurs andNA(x) = ÑA(x) cannot be achieved),

it is trivial that each qT
i is linearly independent. To show each qT

i has only one positive

element, let’s assume qT
i has more than one non-zero elements. If we denote qT

ik as the

qT
i ’s k-th element, and hlk as the hl’s k-th element, we can divide the element indexes

as follow.

A = {k|qT
ik 6= 0 and hlk > 0}

B = {k|qT
ik 6= 0 and hlk < 0}

Then, we can consider hl such that A 6= ∅ and B 6= ∅. If qT
i hl >= 0, then∑

j∈A
qT
ij hlj >

∑
j∈B

qT
ij hlj .

In this case, the right side should be zero because qT
i h−l = 0. However, qT

ij should

be zero to satisfy qT
i h−l = 0 because hl can be chosen arbitrary in the range that

A 6= ∅ and B 6= ∅ and qT
i hl >= 0. This is a contradiction due to the definition of B.

We can prove the case of qT
i hl < 0 similarly, which shows that each qT

i has only one

non-zero element. To show the qT
i ’s one element is positive, we denotes the qT

i ’s only

111

one element as qT
ij , in which j is the index of the non-zero element. When qT

ij < 0,

we can consider hl such that hlj < 0. In this case, (qT
i hl) > 0, but qT

i h−l > 0,

which contradicts the condition qT
i h−l = 0. If we consider hl such that hlj > 0,

(qT
i hl) < 0, but qT

i h+
l > 0, which contradicts the condition qT

i h+
l > 0. Therefore,

qT
ij is positive.

112

Acknowlegement

Firstly, I have to thank my advisor Professor Wonjong Rhee for his endless support,

guidance, and advice during my Ph.D. time. I am very grateful to Professor Rhee for

all I learned from him regarding research style. He taught me how to learn and study

things in-depth by myself and had a significant influence on not only my Ph.D. study

but also my thinking and attitude toward life. This work would have been impossible

without his support and encouragement.

Besides my advisor, I would also like to thank my committee members: Professor

Kyogu Lee, Professor Nojun Kwak, Professor Bongwon Suh, and Professor Yongjae

Lee for their insightful comments and valuable suggestions that broadened this work

from diverse perspectives.

Most of the experimental works in Chapter 3 and 5 was done in collaboration with

Kyungeun Lee. I am grateful to her for the significant amount of help and words of en-

couragement. I would like to express my sincere gratitude to Hyunghun Cho for advice

on software implementations and for helpful discussions concerning hyperparameter

optimization of deep networks. I also thank Changho Shin for an extensive literature

review related to Chapter 3 and for his contribution to the work presented in Chapter 5.

I thank my friends in Applied Data Science Lab. for their valuable comments and

conversations to improve this work. I was lucky enough to have such great colleagues:

Jeongyun Han, Eunjung Lee, Won Shin, Seungwook Kim, Euna Jung, Moonjung Eo,

Sedong Kim, Jungwook Shin, Duhun Hwang, and Yongjin Kim. All the fun we have

had in the last four years will be best remembered for me.

Last but not least, I really appreciate my family: my mother, wife, daughter, and

son for providing me with unfailing support throughout my years of study and my life

in general.

113

The author was supported by the Ministry of National Defense and Republic

of Korea Air Force. This work was supported by the National Research Founda-

tion of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-

2017R1E1A1A03070560) and by SK Telecom Co., Ltd.

114

	Chapter 1. Introduction
	1.1 Background and Motivation .
	1.2 Contributions .

	Chapter 2. Generalization, Regularization, and Representation in Deep Learning
	2.1 Deep Networks .
	2.2 Generalization .
	2.2.1 Capacity, Overfitting, and Generalization
	2.2.2 Generalization in Deep Learning

	2.3 Regularization .
	2.3.1 Capacity Control and Regularization
	2.3.2 Regularization for Deep Learning

	2.4 Representation .
	2.4.1 Representation Learning .
	2.4.2 Representation Shaping .

	Chapter 3. Representation Regularizer Design with Class Information
	3.1 Class-wise Representation Regularizers: cw-CR and cw-VR
	3.1.1 Basic Statistics of Representations
	3.1.2 cw-CR .
	3.1.3 cw-VR .
	3.1.4 Penalty Loss Functions and Gradients

	3.2 Experiments .
	3.2.1 Image Classification Task
	3.2.2 Image Reconstruction Task

	3.3 Analysis of Representation Characteristics
	3.3.1 Visualization .
	3.3.2 Quantitative Analysis .

	3.4 Layer Dependency .

	Chapter 4. Representation Characteristics and Their Relationship with Performance
	4.1 Representation Characteristics .
	4.2 Experimental Results of Representation Regularization
	4.3 Scaling, Permutation, Covariance, and Correlation
	4.3.1 Identical Output Network (ION)
	4.3.2 Possible Extensions for ION

	4.4 Sparsity, Dead Unit, and Rank .
	4.4.1 Analytical Relationship .
	4.4.2 Rank Regularizer .
	4.4.3 A Controlled Experiment on Data Generation Process

	4.5 Mutual Information .

	Chapter 5. Practical Ways of Using Representation Regularizers
	5.1 Tuning Deep Network Performance Using Representation Regularizers
	5.1.1 Experimental Settings and Conditions
	5.1.2 Consistently Well-performing Regularizer
	5.1.3 Performance Improvement Using Regularizers as a Set

	5.2 Enhancing Network Compression Using Representation Regularizers
	5.2.1 The Need for Network Compression
	5.2.2 Three Typical Approaches for Network Compression
	5.2.3 Proposed Approaches and Experimental Results

	Chapter 6. Discussion
	6.1 Implication .
	6.1.1 Usefulness of Class Information
	6.1.2 Comparison with Non-penalty Regularizers: Dropout and Batch Normalization .
	6.1.3 Identical Output Network
	6.1.4 Using Representation Regularizers for Performance Tuning .
	6.1.5 Benefits and Drawbacks of Different Statistical Characteristics of Representations .

	6.2 Limitation .
	6.2.1 Understanding the Underlying Mechanism of Representation Regularization .
	6.2.2 Manipulating Representation Characteristics other than Covariance and Variance for ReLU Networks
	6.2.3 Investigating Representation Characteristics of Complicated Tasks .

	6.3 Possible Future Work .
	6.3.1 Interpreting Learned Representations via Visualization
	6.3.2 Designing a Regularizer Utilizing Mutual Information
	6.3.3 Applying Multiple Representation Regularizers to a Network .
	6.3.4 Enhancing Deep Network Compression via Representation Manipulation .

	Chapter 7. Conclusion
	Bibliography
	Appendix
	A Principal Component Analysis of Learned Representations
	B Proofs .

	Acknowlegement

<startpage>12
Chapter 1. Introduction 1
 1.1 Background and Motivation . 1
 1.2 Contributions . 4
Chapter 2. Generalization, Regularization, and Representation in Deep Learning 8
 2.1 Deep Networks . 8
 2.2 Generalization . 9
 2.2.1 Capacity, Overfitting, and Generalization 11
 2.2.2 Generalization in Deep Learning 12
 2.3 Regularization . 14
 2.3.1 Capacity Control and Regularization 14
 2.3.2 Regularization for Deep Learning 16
 2.4 Representation . 18
 2.4.1 Representation Learning . 18
 2.4.2 Representation Shaping . 20
Chapter 3. Representation Regularizer Design with Class Information 26
 3.1 Class-wise Representation Regularizers: cw-CR and cw-VR 27
 3.1.1 Basic Statistics of Representations 27
 3.1.2 cw-CR . 29
 3.1.3 cw-VR . 30
 3.1.4 Penalty Loss Functions and Gradients 30
 3.2 Experiments . 32
 3.2.1 Image Classification Task 33
 3.2.2 Image Reconstruction Task 36
 3.3 Analysis of Representation Characteristics 36
 3.3.1 Visualization . 36
 3.3.2 Quantitative Analysis . 37
 3.4 Layer Dependency . 39
Chapter 4. Representation Characteristics and Their Relationship with Performance 42
 4.1 Representation Characteristics . 43
 4.2 Experimental Results of Representation Regularization 46
 4.3 Scaling, Permutation, Covariance, and Correlation 48
 4.3.1 Identical Output Network (ION) 48
 4.3.2 Possible Extensions for ION 51
 4.4 Sparsity, Dead Unit, and Rank . 55
 4.4.1 Analytical Relationship . 55
 4.4.2 Rank Regularizer . 56
 4.4.3 A Controlled Experiment on Data Generation Process 58
 4.5 Mutual Information . 62
Chapter 5. Practical Ways of Using Representation Regularizers 65
 5.1 Tuning Deep Network Performance Using Representation Regularizers 65
 5.1.1 Experimental Settings and Conditions 66
 5.1.2 Consistently Well-performing Regularizer 67
 5.1.3 Performance Improvement Using Regularizers as a Set 68
 5.2 Enhancing Network Compression Using Representation Regularizers 68
 5.2.1 The Need for Network Compression 72
 5.2.2 Three Typical Approaches for Network Compression 73
 5.2.3 Proposed Approaches and Experimental Results 74
Chapter 6. Discussion 79
 6.1 Implication . 79
 6.1.1 Usefulness of Class Information 79
 6.1.2 Comparison with Non-penalty Regularizers: Dropout and Batch Normalization . 81
 6.1.3 Identical Output Network 82
 6.1.4 Using Representation Regularizers for Performance Tuning . 82
 6.1.5 Benefits and Drawbacks of Different Statistical Characteristics of Representations . 83
 6.2 Limitation . 85
 6.2.1 Understanding the Underlying Mechanism of Representation Regularization . 85
 6.2.2 Manipulating Representation Characteristics other than Covariance and Variance for ReLU Networks 86
 6.2.3 Investigating Representation Characteristics of Complicated Tasks . 86
 6.3 Possible Future Work . 88
 6.3.1 Interpreting Learned Representations via Visualization 88
 6.3.2 Designing a Regularizer Utilizing Mutual Information 89
 6.3.3 Applying Multiple Representation Regularizers to a Network . 90
 6.3.4 Enhancing Deep Network Compression via Representation Manipulation . 92
Chapter 7. Conclusion 93
Bibliography 94
Appendix 103
 A Principal Component Analysis of Learned Representations 104
 B Proofs . 110
Acknowlegement 113
</body>

