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Abstract

Massive machine-type communication (mMTC) is a newly introduced service cat-
egory in 5G wireless communication systems to support a variety of Internet-of-Things
(IoT) applications. In the mMTC network, a large portion of devices is inactive and
hence does not transmit data. Thus, the transmit vector consisting of data symbols of
both active and inactive devices can be readily modeled as a sparse vector. In recov-
ering sparsely represented multi-user vectors, compressed sensing based multi-user
detection (CS-MUD) can be used. CS-MUD is a feasible solution to the grant-free up-
link non-orthogonal multiple access (NOMA) environments. In this dissertation, two
novel techniques regarding CS-MUD for mMTC networks are proposed.

In the first part of the dissertation, the sparsity-aware ordered successive interfer-
ence cancellation (SA-OSIC) technique is proposed. In CS-MUD, multi-user vectors
are detected based on a sparsity-aware maximum a posteriori probability (S-MAP) cri-
terion. To reduce the computational complexity of S-MAP detection, sparsity-aware
successive interference cancellation (SA-SIC) can be used. SA-SIC is a simple low-
complexity scheme that recovers transmit symbols in a sequential manner. However,
SA-SIC does not perform well without proper layer sorting due to error propagation.
When multi-user vectors are sparse and each device is active with a distinct probability,
the detection order determined solely by channel gains might not be optimal. In this
dissertation, to reduce the error propagation and enhance the performance of SA-SIC,
an activity-aware sorted QR decomposition (A-SQRD) algorithm that finds the opti-
mal detection order is proposed. The proposed technique finds the optimal detection
order based on the activity probabilities and channel gains of machine-type devices.
Numerical results verify that the proposed technique greatly improves the performance
of SA-SIC.

In the second part of the dissertation, the expectation propagation based joint AUD



and CE (EP-AUD/CE) technique is proposed. In several studies regarding CS-MUD,
the uplink channel state information (CSI) from the MTD to the BS is assumed to be
perfectly known to the BS. In practice, however, the uplink CSI from the devices to the
BS should be estimated before data detection. To address this issue, various joint ac-
tive user detection (AUD) and channel estimation (CE) schemes have been proposed.
Since only a few devices are active at one time, an element-wise (i.e., Hadamard)
product of the binary activity pattern and the channel vector is also a sparse vector and
thus compressed sensing (CS)-based technique is a good fit for the problem at hand.
One potential shortcoming in these studies is that a prior distribution of the sparse
vector is not exploited. In fact, these studies are based on the non-Bayesian greedy
algorithms such as the orthogonal matching pursuit (OMP) and approximate message
passing (AMP) algorithms, which do not require a prior distribution of the sparse vec-
tor. In essence, these algorithms find out non-zero values based on the instantaneous
correlation between the sensing matrix and the observation vector so that they might
not be effective in the situation where the prior distribution is available. In this case,
clearly, by exploiting the statistical distribution of the sparse vector, the performance
of AUD and CE can be improved substantially. The proposed technique finds the best
approximation of the posterior distribution of the sparse channel vector based on the
expectation propagation (EP) algorithm. Using the approximate distribution, AUD and
CE are jointly performed. Numerical simulations show that the proposed technique

substantially enhances AUD and CE performances over competing algorithms.

keywords: Massive machine-type communication, compressed sensing, non-
orthogonal multiple access, multi-user detection.
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Chapter 1

Introduction

Recently, massive machine-type communication (mMTC) has received much attention
due to its wide variety of Internet-of-Things (IoT) applications such as smart meter-
ing, factory automation, autonomous driving, surveillance, and health monitoring, to
name just a few [1]. In accordance with this trend, the International Telecommunica-
tion Union (ITU) defined mMTC as one of the key service categories for 5SG wireless
communications [2]. As illustrated in Fig. 1.1, mMTC concerns the massive connectiv-
ity of a large number of machine-type devices (MTDs) to the base station (BS). mMTC
is distinctive from human-centric communications in the sense that the data traffic is
uplink-dominated, and devices are sporadically active only for a short period of time
to transmit short packets with low data rates [3,4].

In the mMTC network, conventional scheduling-based multiple access schemes in
which the BS allocates orthogonal time/frequency resources to each device is not rele-
vant due to the significant signaling overhead and excessive latency caused by compli-
cated scheduling procedure. To overcome these drawbacks, grant-free non-orthogonal
multiple access (NOMA) schemes have been proposed in recent years [5-7]. In grant-
free NOMA schemes, devices transmit data symbols in a non-orthogonal manner with-

out relying on the granting procedures.



Figure 1.1: The sporadic uplink multiple access in a mMTC network.
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In the mMTC network, a large portion of devices is inactive and hence does not
transmit data. Thus, the transmit vector consisting of data symbols of both active and
inactive devices can be readily modeled as a sparse vector. By capitalizing on the spar-
sity of this multi-user vector, the multi-user detection (MUD) problem can be formu-
lated as a sparse signal recovery problem [8—11]. This type of detection scheme, called
compressed sensing based multi-user detection (CS-MUD), has been a key ingredient
in the grant-free uplink NOMA schemes. In this dissertation, two novel CS-MUD

techniques are proposed.

1.1 Sparsity-Aware Ordered Successive Interference Cancel-

lation

Recently, several approaches to cast the CS-MUD problem into a sparsity-aware max-
imum a posteriori probability (S-MAP) detection problem have been suggested. In a
nutshell, the main goal of S-MAP detection is to perform a MAP detection of sparse
multi-user symbol vectors from a zero-augmented finite alphabet. In [12], linear re-
laxed S-MAP detectors have been suggested. In [13, 14], sparsity-aware sphere decod-
ing (SA-SD) has been proposed. In [15], as a variant of SA-SD, K-Best detector has
been proposed.

With an aim to reduce the computational complexity, sparsity-aware successive
interference cancellation (SA-SIC) has been studied in [16]. SA-SIC is a simple low-
complexity scheme that recovers transmit symbols in a sequential manner. The differ-
ence between SA-SIC and the conventional successive interference cancellation (SIC)
is that SA-SIC incorporates a sparsity constraint into the detection process. Although
SA-SIC can find a sparse solution with very low computational effort, error propaga-
tion during the successive detection severely degrades the performance of SA-SIC. In
order to minimize such error propagation and thus enhance the performance, the detec-

tion order should be sorted properly prior to the SA-SIC operation. To this end, sorted



QR decomposition (SQRD) and its variants ensuring that devices with a high chan-
nel gain are detected in the early layers have been proposed. It has been shown that
SQRD determines the optimal detection order with high probability in the recovery of
non-sparse multi-user vectors [17].

However, when multi-user vectors are sparse and each device is active with a dis-
tinct probability, the detection order determined solely by channel gains might not be
optimal. In practice, owing to their heterogeneous traffic demands, each MTC device
is active with a distinct probability [18]. In this situation, the detection ordering should
incorporate the (heterogeneous) activity probabilities of devices.

An aim of this dissertation is to propose a novel sparsity-aware ordered SIC scheme
for the recovery of sparse multi-user vectors in mMTC systems. Specifically, an activity-
aware sorted QR decomposition (A-SQRD) algorithm that finds the optimal detection
order to reduce the error propagation and enhance the performance of SA-SIC is pre-
sented. The proposed A-SQRD algorithm is distinct from existing methods in that
the detection order is determined not only by the channel gains but also by the activ-
ity probabilities of devices. Numerical simulations show that the proposed technique
achieves a significant enhancement in the detection performance over conventional

schemes without significantly increasing computational complexity.

1.2 Expectation Propagation-based Joint Active User Detec-

tion and Channel Estimation

In several studies regarding CS-MUD, the uplink channel state information (CSI) from
the MTD to the BS is assumed to be perfectly known to the BS. In practice, however,
the uplink CSI from the devices to the BS should be estimated before data detection.
To address this issue, various joint active user detection (AUD) and channel estimation
(CE) schemes have been proposed. Since only a few devices are active at one time, an

element-wise (i.e., Hadamard) product of the binary activity pattern and the channel



vector is also a sparse vector and thus compressed sensing (CS)-based technique is a
good fit for the problem at hand [20-24].

One potential shortcoming in these studies is that a prior distribution of the sparse
vector is not exploited. In fact, these studies are based on the non-Bayesian greedy
algorithms such as the orthogonal matching pursuit (OMP) and approximate message
passing (AMP) algorithms, which do not require a prior distribution of the sparse vec-
tor. In essence, these algorithms find out non-zero values based on the instantaneous
correlation between the sensing matrix and the observation vector so that they might
not be effective in the situation where the prior distribution is available. In this case,
clearly, by exploiting the statistical distribution of the sparse vector, the performance
of AUD and CE can be improved substantially.

An aim of this dissertation is to propose a novel Bayesian joint AUD and CE tech-
nique based on the expectation propagation (EP) algorithm [25-28]. The EP algorithm
is a Bayesian technique to approximate a computationally intractable target probabil-
ity distribution to the distribution from a tractable family. By iteratively minimizing
the Kullback-Leibler divergence between the target distribution and the approximate
distribution via moment matching, the EP algorithm can efficiently find a tractable
approximation of the target distribution. In describing the prior distribution of activ-
ity and channel of each device, we employ the Bernoulli-Gaussian probabilistic model.
The posterior distribution of user activities and channels is computationally intractable
due to the discrete nature of the binary activity variables. In this work, we iteratively
find the best approximation of the posterior distribution of the composite vector of user
activities and channels using the EP algorithm. Using the obtained approximation, ac-
tivity identification and CSI estimation of active devices are performed jointly. The
data detection of active devices is then performed based on the obtained knowledge of
user activities and channels. Numerical evaluations in realistic mMTC scenarios show
that the proposed technique outperforms conventional non-Bayesian greedy algorithms

and other Bayesian techniques. In particular, the proposed technique performs close to



the Oracle detector, an ideal detector having perfect knowledge on the user activities

in the high signal-to-noise-ratio (SNR) regime.



Chapter 2

Sparsity-Aware Ordered Successive Interference Can-

cellation

2.1 System model

We consider the uplink of mMTC systems where N MTC devices access a single base
station, as illustrated in Fig. 2.1. The symbol of each device is spread with a user-
specific sequence with a length of M. Here, we assume that devices are synchronized
in time, meaning that all devices switch activity and draw symbols in the same time

slot. In this setup, the received signal at the base station can be described as
y=Hx+w, 2.1)

where H is a M x N complex-valued matrix capturing the spreading sequences and
channel impulse responses between devices and the base station, x is the symbol vector
of all (active and inactive) devices, and w is the complex Gaussian noise vector with
the noise variance o2 The symbol z,, is drawn from an equi-probable finite modula-
tion alphabet .4 when the n-th device is active, and zero otherwise. When M < N, the
system is said to be under-determined. While it is in general not possible to recover
the symbol vector in this scenario, theory of compressed sensing (CS) guarantees that

x can be recovered accurately if x is a sparse vector.



MTC Devices

Device 1

Base Station

— Device 2

<

Device N

Time Slots

Figure 2.1: The mMTC uplink multiple access scenario with N devices sporadically

transmitting data symbols to a base station.
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2.2 Sparsity-Aware Successive Interference Cancellation (SA-

SIC)

2.2.1 Derivation of S-MAP Detection

The output of the S-MAP detector maximizing the a posteriori probability Pr(x|y) is
given by Bayes’ rule as
x = arg max Pr(x|y)
xe Al

= arg min — In Pr(y|x) — In Pr(x), (2.2)
xe Al

where Ay = A U {0} is the augmented modulation alphabet.

When the n-th device is active with the activity probability p,, and further p,, is
very small for all n, x can be modeled as a sparse vector containing many Zzeros.
Considering that the activity of each device is independent of each other, the prior

distribution of x can then be described as

N N
Pr(x) = [[ Pr(za) = [ (1 = pn)'~"rlo(pn /| A, (2.3)
n=1 n=1

where |:Un|0 is the element-wise [ -norm that is equal to 1 if x,, is a non-zero value,
otherwise it is zero.

From (2.2) and (2.3), we have

N
% = argmin |ly — Hx|3 + o, Z An |Znlg, (2.4)
x€AY n=1

where A\, = In[(1 — p,,)/(pn/|A|)] is an element-wise regularization parameter.

The goal of the S-MAP detection is to find a vector in A} that maximizes the cost
function in (2.4). The optimization problem in (2.4) is in essence a regularized least
squares minimization problem. The regularization term accounts for the heterogeneous
activity probabilities of N MTC devices. Since A, is inversely proportional to p,,, the

regularization term promotes the sparsity of x.



2.2.2 Sparsity-Aware SIC (SA-SIC) Detection

In this section, we discuss the SA-SIC technique to solve the problem (2.4). SA-SIC
uses the QR decomposition of matrix H = QR, where Q is an M x N unitary matrix

and R isa V x N upper triangular matrix. Using QR decomposition, we have

N
% = argmin|ly — Hx)2 + 02 3" Au fonlg
XEA(I)V n=1

N
— argmin ||y — (QR)x]|3 + 02 Z An |Znlg
x€AY n=1

N
= arg min HQHy — QH(QR)XHZ + Ufu Z An |Znlg

xeAéV n=1

N
= argmin ||y — Rx||3 + 03, Y An |zl

x€AY n=1
N N 2
: . 2
= arg min Z Un — Z Ruzi| + o5, |20y s (2.5)
x€AY  p=1 I=n

where ¥ = Qy. Once the estimates of previous symbols {:i‘l}fi ny1 are available, the
optimal &,, can be obtained by minimizing the n-th per-symbol cost function d,, (z,,)

over one scalar variable x,, € A as

2

#, = arg min + 02N Ty | - (2.6)

N
Un — Z Rz — Rypxy,
Tn€Ao

l=n+1

Ldn(zn)

The detection process begins with the highest layer (n = N) and goes down to
the lowest layer sequentially, n = N — 1,--- 1. In doing so, SA-SIC achieves an
acceptable detection performance with much lower complexity compared to other op-
timal but complex S-MAP detectors. However, the main drawback of SA-SIC is that
it is sensitive to the error propagation from the early layers. Hence, the selection of an

appropriate detection order is crucial to mitigate the error propagation.
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2.3 Proposed Activity-Aware Sorted-QRD (A-SQRD) Algo-

rithm

In this section, we describe the proposed activity-aware sorted QR decomposition (A-
SQRD) algorithm to enhance the detection performance of SA-SIC. The conventional
SQRD algorithm sorts the columns of channel matrix H and find its sorted QR de-
composition based on channel gains. Since the cost function of the S-MAP detection
contains an additional sparsity-promoting regularization term, the regularization pa-
rameters ), as well as the noise variance o2, and channel matrix H needs to be con-
sidered in the detection ordering. To this end, we construct an augmented system and
then sort the columns of the augmented system matrix such that devices with high
post-detection signal-to-noise-ratio (SNR) are detected first.

In this work, we restrict ourselves to the constant modulus alphabet (i.e., ||x||, =
Ix]|5 = %[>, p > 1). Noting that the data rate of MTC devices is in general low
(typically in orders of tens of kilobits per seconds), it is reasonable to assume that
data symbols are modulated with constant modulus alphabets (e.g., phase shift keying
constellations). Replacing the [ -norm with the [,-norm in (2.4), we have

N
% = argmin ||y — Hx|3 + o7, Z A |2 |2

x€AY n=1

2
= argmin ||y — Hx|3 + Hawdiag(\a)xH
x€AY 2

2

Y H
= arg min - x
xc€AY (UN owdiag(v/A) )

= arg min Hyo — H’ng , 2.7)
xeAY

where yo € CM*N is the zero-augmented observations, H' € CM+N)xN jg ap
augmented system matrix and A is the regularization parameters of N devices.
The objective of the proposed A-SQRD algorithm is to find the optimal permu-

tation of columns of H' and the corresponding QR decomposition that maximizes

11



the detection SNRs in the early layers. Here, we find the QR decomposition of the
augmented channel matrix H as HP = QR, where P is the binary permutation
matrix. To find the optimal permutation, we employ the modified Gram-Schmidt algo-
rithm [19] and extend it to reorder the columns of H' before each orthogonalization
step.

Detailed steps of the proposed algorithm are as follows: First, we set Q = H' and
R = Oy, respectively. In the next step, for each n-th iteration, the column index
with the smallest /,-norm of q; (j = n + 1,---,N) is determined. Then the n-th
column of each of Q, R and P is exchanged with the one corresponding to the smallest
norm. After the columns are exchanged, R, is set to ||q,|| and q,, is normalized. In
this way, the diagonal elements of R are ordered such that R;; < R, for ¢ < n, and
thus the post-detection SNR is higher in the early layers.

After the columns are sorted, we perform the orthogonalization of the columns

such that q,, 41, -+ ,qn are orthogonalized with respect to q,, (i.e., q;Lqn, j = n +
1,---,N). R,; is computed as R,,; = qf q; and q; is calculated as
q; = q; — Rnjqn. (2.8)

Using the sorted QR decomposition H'P = QR found by the A-SQRD algorithm,

(2.7) can be rewritten as

X = arg min Hyo — QRPHtz
xeAY

2
5 (2.9)

= arg min Hi’o — RPHx’
xeAY

where yg = QH Yo- Similarly to (2.5), we can decompose (2.9) into the sum of N
per-symbol cost functions. Then, for n = N, --- | 1, the optimal solution of %,, can be

found in closed form as

B =Qu, (), (2.10)

where ¥ = (Jo,n — Zl]\in +1 Rui1)/ Ry is the least squares solution to the n-th per-

symbol cost, and ) 4, (+) is the quantization operator that maps the input to the closest

12



point in Ajg. Finally, by right-multiplying P by % (de-sorting), the final solution is

obtained. The proposed algorithm is summarized in Algorithm 2.1.

13



Table 2.1: SUMMARY OF THE PROPOSED SA-OSIC ALGORITHM
Input: y,H, Ay, 02, {p,})_,
Output: x
% Initialization
1: A(n) <= In[(1 = pn)/(pn/IAl)]
2 yo  [yszeros(N, 1)], Q  [E; o, diag(VA),
R+ Onxn, P+ Iy
3: forn=1,--- ,N do
% Column Sorting
4 Mpp < argming_, ..y a2
5:  exchange columns n and ny, in Q, R, and P
6 Run < ||dnll
7 dp ¢ Gn/Ran
% Column Orthogonalization

8: forj=n+1,--- ,Ndo

9: Rnj + qflq;

10: qj < q;j — Rnjdn
11:  end for

12: end for

% SIC Operation
13: yo < Qyo
14: forn=N,--- /1do
150 o < (Jo — Zl]\in—&-l Ryuty) /Ry,
16: @+ Qup ()
17: end for

18: x « xPH

14



2.4 Complexity Analysis

The computational complexity of the A-SQRD and SQRD algorithm is analyzed below
by counting each required numerical operation as one complex floating point opera-

tion.

Ca-sqrp = 2N + (2M + 2)N? + (M — 1)N, (2.11)

Csqrp = (2M +1)N? + (M — 1)N. (2.12)

Since the A-SQRD algorithm performs the QR decomposition of the augmented chan-
nel matrix, it causes a slight computational order increase compared to the conven-
tional SQRD algorithm.

However, the computational burden of A-SQRD algorithm is less than that of K-
Best detector and SA-SD. The K-Best detector performs a breadth-first search to find
the best K paths minimizing the sum of per-symbol cost functions. The computational

complexity of K-Best detector is

N3 5
CK—Best = K!Ao\(? +2N2 ¢ gN + log?(K|Ao))), (2.13)

which scales with K. Increasing K will improve the performance of K-Best detector
so that it performs close to the SA-SD. However, it causes an infeasible complexity

compared to the A-SQRD algorithm.

2.5 Numerical Results

In this section, we describe the numerical experiment that demonstrates the effective-
ness of the proposed algorithm. We compare the proposed A-SQRD algorithm with
the linear minimum mean squared error (LMMSE) estimator', orthogonal matching
pursuit (OMP) algorithm, least absolute shrinkage and selection operator (LASSO)

detector, unsorted SA-SIC, conventional SQRD algorithm, data-dependent sorting and

"We use the quantized version of the output of the LMMSE estimator.

15



regularization (DDS) algorithm, and K-Best detector. DDS algorithm is a heuristic
approach that rescales \,, based on the correlation between y and H to enhance the
SQRD algorithm [16]. As a lower bound of the detection algorithms, we also test the
Oracle LMMSE detector. Note that the Oracle detector has the support? (index set of

nonzero entries) information of x and thus solves an over-determined system.

2.5.1 Simulation Setup

We simulate an under-determined mMTC system with N = 128 MTC devices and
unit-norm random sequences with a length of M = 64 for spreading. We consider non-
dispersive independent Rayleigh fading channels between devices and a base station
from a complex Gaussian distribution of CA/(0, 1). Thus, the average SNR is set to
1/02. We assume that the base station has perfect knowledge of the matrix H. Data
symbols of active devices are modulated with quadrature phase shift keying (QPSK).
We consider the net symbol error rate (NSER) as a detection performance measure.

NSER refers to the symbol error rate of active devices.

2For example, if x = [—1 0100 0]%, then the support Tis T' = {1, 3}.

16
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2.5.2 Simulation Results

Fig. 2.2 shows the AER, NSER, and GSER performance for each algorithm as a func-
tion of the average SNR. The activity probabilities {p, })_; are drawn uniformly at
random in [0.01, 0.3]. We observe that SA-SIC with the proposed A-SQRD algorithm
outperforms the conventional algorithms. LMMSE exhibits poor performance since
the system is under-determined. Due to error propagation, the unsorted SA-SIC does
not perform well. Since the SQRD and DDS algorithm do not consider the hetero-
geneous activity probabilities, the performance gains over the unsorted SA-SIC are
marginal. In contrast, the A-SQRD algorithm is effective since it considers both the
activity probabilities and channel gains to find the best detection order. The K-Best
detector performs worse than the proposed algorithm with K = 128 and 256. In Table
2.2, we provide the number of required numerical operations of detection algorithms.
When compared to the A-SQRD algorithm, the K-Best detector requires higher com-
putational complexity to achieve the performance comparable to the A-SQRD algo-

rithm.

Table 2.2: COMPUTATIONAL COMPLEXITY OF DETECTION ALGORITHMS
SQRD DDS A-SQRD K-Best (K = 128)

2.12x 105 2.14 x 105 6.33 x 106 4.68 x 108
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Chapter 3

Expectation Propagation-based Joint Active User De-

tection and Channel Estimation

3.1 System model

We consider the uplink of a mMTC network where N MTDs access a single BS, as
shown in Fig. 3.1. We assume that the BS and each device are equipped with one an-
tenna. Each active device transmits a pilot symbol followed by J data symbols (which
we call a frame in the sequel). In this work, we assume that devices are synchronized in
time, meaning that all devices switch their activity in the same time slot.! Each device
is either active or inactive in the whole interval of the frame. Also, we assume a flat fad-
ing channel model where channel remains unchanged in the entire frame. We denote
the complex uplink channel coefficient from the n-th device to the BS by h,,, where h,,
follows the zero-mean complex-Gaussian non-dispersive independent Rayleigh fading
with the variance «,, i.e., hy, ~ CN (hy|0, ay,). The variance v, captures the pathloss
component characterized by the each device’s location. We assume that o, is known
at the BS. In the scenarios where devices are stationary, the pathloss can be estimated

and stored at the BS as a prior information.

'Since the packet size of MTD is typically very small (10 ~ 100 bytes) in mMTC environment, the

impact of this assumption on the proposed scheme would be marginal.
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Figure 3.1: The mMTC uplink multiple access scenario with IV devices sporadically

becoming active.
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In order to model the sporadic traffic pattern of the mMTC network, we define the

binary user activity indicator a,, for the n-th device as

1, if the n-th device is active,
an = 3.1
0, otherwise.

The n-th device is active with the activity probability p,, and the activity of each device
is independent of each other.
In this setup, the input-output relationship can be described as

N
y = Z SnhnanTy, + W, (3.2)

n=1
where x,, is the transmit symbol of the n-th device, s,, € CM is the spreading se-
quence for the n-th device, y € CM is the measurement vector at the BS, and w is
the independent zero-mean complex-Gaussian noise vector with the variance o2, We
assume that the transmit powers of all devices are the same, i.e., E[|z,|?] = p.

In the general mMTC scenarios, the number of devices [V is larger than the number
of resources used for the transmission M (i.e, M < N). While it is in general not
possible to recover the target vector in this underdetermined scenario, the theory of
compressed sensing (CS) guarantees that the target vector can be recovered accurately
as long as the vector is sparse and the measurement process preserves the energy of an

input vector [9].

3.2 Joint Active User Detection and Channel Estimation

In this work, we adopt a grant-free multiple access protocol consisting of two oper-
ational phases in each time slot (see Fig. 3.2). In the first phase, each active device
transmits the pilot symbol to the BS and the BS jointly detects the user activities and
then estimate the channels of active devices. In the second phase, the active devices
transmit J data symbols to the BS and the BS decodes the data symbols using the

obtained user activities and channels.
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Figure 3.2: Two-phase grant-free multiple access protocol.
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In this section, we describe the joint active user detection (AUD) and channel es-
timation (CE). Each active device transmits the pilot symbol ), ,, to the BS before the

data transmission. The pilot measurement vector y,, is given by

N
Yp = Z SnlnGnTppn + Wp. (3.3)
n=1
Let ¢, = spxpn and @ = [@1,. .., Pn], then we have

N
Yp = Z ¢nanhn + Wy,

n=1
=®(aoh)+ wy, (3.4)
where a = [ay,...,ay]|T is the activity vector, h = [hy,...,hy]” is the channel

vector, and o is the Hadamard (element-wise) product operator.
Further by denoting the composite of activity vector a and channel vector h as
]T

g=aoh=/lahy, - ,anyhy] , we have

Vp = B+ W) (3.5)

The output of the MAP estimator maximizing the a posteriori probability p(g|y,)
is given by
g = argmax p(glyp)
gcCN

= argmax p(y,|g)p(g), (3.6)
geCN

where p(y,|g) = CN (y,|®g, o2 1) is the likelihood function of y,, given g.

When the n-th device is active (a,, = 1) with an activity probability p,, and further
Py, has a very small value for all n, g can be readily modeled as a sparse vector. Consid-
ering that the activities of devices are independent of each other, the prior distribution

of g can be expressed as

N
p<g) = H [(1 _pn)é(gn) +pnCN(gn|07 an)] s 3.7

n=1
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where 0(+) is the Dirac delta function.

From (3.6) and (3.7), we have

g = argmax p(y,|g)p(g)
geCN

N
= argmax CN(y,|®g, o, H (1= pn)d(gn) + PnCN (gnl0,0n)] . (3.8)
geC n=1

The goal of the MAP estimator is to find out a vector maximizing the cost func-
tion in (3.8). Unfortunately, when the number of devices IV is very large, the opti-
mization problem in (3.8) is computationally intractable due to the discrete nature of
the binary activity vector a. In this situation, it is desirable to construct a tractable
approximation of the target posterior distribution to solve the MAP problem, i.e.,
q(g) =~ p(yplg)p(g). In fact, the main idea of the proposed technique is to con-
struct a multivariate Gaussian approximation of f(g) = p(yp|g)p(g) and then find
out the mean and variance matching to f(g) using the expectation propagation (EP)
algorithm [25-28]. It has been shown that with only a few numbers of iterations, the
EP algorithm can achieve an accurate approximate distribution with high probabil-

ity [25,26].

3.3 EP-Based Active User Detection and Channel Estima-
tion

In this section, we describe the proposed EP-based joint AUD and CE method. First,
we approximate the target distribution f(g) = p(y,|g)p(g) in (3.8) to the Gaussian
distribution ¢(g) = CA/(g|th, V). Then, we match the mean vector m and covari-
ance matrix V to those of the true target distribution f (g) based on the iterative EP
algorithm.

After the convergence, the approximate mean vector m becomes a reliable solution
g to the MAP estimation problem in (3.8) and its covariance matrix is V. Then, by

performing the log-likelihood test on g, we detect the active devices and then estimate
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the CSI of the active devices. Finally, using the obtained knowledge of user activities
and channels, data symbols of active devices are detected. Fig. 3.3 depicts the block

diagram of the proposed technique.
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Figure 3.3: Block diagram of the proposed EP-based joint AUD and CE algorithm.
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3.3.1 A Brief Review of Expectation Propagation

In this subsection, we briefly review the EP algorithm. The EP algorithm is an itera-
tive algorithm that approximates the target probability distribution with a distribution
from the exponential family . Suppose we have a target distribution f(x) that can be

factorized as

I
fx) =[] ). (3.9)
=1

Using the EP algorithm, we can construct a tractable approximation of f(x) with
a distribution ¢(x) = Hile qi(x), where ¢;(x) € F.
To find the distribution ¢(x) close to f(x) from the exponential family F, we use
the Kullback-Leibler (KL) divergence criterion given by [29]
q(x) = arg min Dk, [f(x)Hq/(x)] . (3.10)
¢ (x)eF
Because ¢(x) belongs to the exponential family, the unique solution of the problem
(3.10) is obtained by matching the expected sufficient statistics (moments) of f(x) and

q(x) [30]. That is, parameters of ¢(x) are chosen such that

Epx[x] = Eqx[x]; (3.11)

Var () [x] = Vargx [x]. (3.12)

In the EP algorithm, the parameters of ¢(x) satisfying (3.11) and (3.12) are ob-
tained iteratively. In each iteration of the EP algorithm, ¢;(x) in ¢(x) is replaced by

fi(x). In other words, we first remove the contribution of ¢;(x) from ¢(x):

q\i(x) = qqi((i)), (3.13)
Then, we multiply ¢\;(x) and f;(x) as
i) = 160, = £ix) 20 a1
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for all 7. Finally, we update the parameters of the approximation factor ¢;(x) such that
the moments of ¢(x) and §;(x) are matched as
Eq(x) [X] = E(jz(x) [X]a (3.15)

Varg ) [x] = Varg, ) [x], (3.16)

i

for all 7. The sequential EP algorithm is performed until a convergence criterion is
satisfied or the maximum number of iterations is reached.

In this paper, we approximate the target posterior distribution f(g) = p(y,|g)p(g)
by a Gaussian distribution ¢(g) = CN(g|m, V) optimized by the EP algorithm. Then,
based on the approximate distribution, AUD and CE are jointly performed and then the

data is detected.

3.3.2 Form of the Approximation

In this subsection, we describe an approximate form of the target posterior distribution

f(g) = fi(g)fa(g) = p(yplg)p(g). First, we approximate each term in f(g) by a

simple complex-Gaussian as

f1(g) = p(yplg) = a1(g) = CN(g|my, V), (3.17)

f2(g) = p(g) ~ q2(g) = CN (g[thg, Va). (3.18)

Then, we construct an unnormalized global Gaussian approximation as
f(g) ~ q(g) = 01(8)q2(8) = CN(g|m, V), (3.19)

where the mean vector m and the covariance matrix V are given by
- - oo\t

V= (V; +Vy ) : (3.20)
=V (V;lﬁll + V;lﬁu) . (3.21)
The first approximation term ¢ (g) corresponds to the Gaussian noise likelihood

p(yplg) = CN(y,|®g, o2 1). In this case, th; and V; can be simply characterized by
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the following relations

= (®7®) '@y, (3.22)

Vi =o2(®7®)7 L (3.23)

Using (3.22) and (3.23), the global approximation in (3.19) is rewritten as

4(g) = q1(g)a2(g) = CN (ghi, V). (3.24)

where
V= (o320 ® + \7;1)71 , (3.25)
i =V (0,2®"y, + V') . (3.26)

3.3.3 Iterative EP Update Rules

In this subsection, we explain the iterative EP update rules for the parameter estima-

tions my = [mg,. .. ,mQ,N]T and Vy = diag(d2 1, ..., 02 n). In the first iteration,
we initialize s = 0 and Vo = diag(p1ai,...,pnan). In the general, say [-th, it-
eration, the pairs (m SH),@g:D) for all n = 1,..., N are updated as follows (see
Fig. 3.4).

(0

First, we compute the ratio distribution N2

qul(gn) from g, )(gn) CN (gn |mn , nn)) which corresponds to the n-th marginal

of ¢)(g). That is,

(gn) by removing the contribution of

(@) =) (1)
Y (90) = q(r;) (9n) _ CN(%I?TLZ : a(@lr)b) — NGl 50, G2
q2,n(gn) (gn|m2n7 2n)

Ui

where the mean and variance of Ao ,,(gn) are given by

~ 1
By, = [(Vn(ff)‘l — @, (3.28)
nly, = o, [ - @) ) (3.29)
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Second, we update (fng:l) ﬁélzl)) to match the mean and variance of qu +1) (9n)

to those of the following distribution

00 (gn) = Fan(gn)as, (o). (3.:30)

(l)[ (@)

To compute the mean Ej gn] of the distribution ¢’ (gy), we

firstly compute G,(qlz),n, the m-th (m = 0, 1, 2) moments of (jr(ll ) (gn) with respect to gy,.

@

First, the zeroth moment Gy, is computed as

O [

gn| and variance V

— [ fanloal), (90)0,

= / (1~ pa)8(gn) + PaCN (gal0, )] - CN (gl .55 )dgs

—00

= 0)
= (1 - pn)/ (gn)c-/\/—(gn‘m\g n’ U\Qm)dgn

o [ Nl l0.0CN gl .7, ),
~(1
= (1 — pp)CN(0|m \2 . viQ),n)dgn

+pn/ CN (gm0, 0m)CN (a3 . 75, g, 3.31)

The product of two complex Gaussian PDFs, p1(g,) = CN(gn|p1,07) and pa(g,) =
CN (gn|p2,03), is given by [31]

2 2 2 2
Hn105 + poo oio
P1(gn)p2(gn) = CN(p2|p1, 07 + 03) - CN (gn|—%—=5—+, 5—5).  (3.32)
o] + 05 o] + 05

Using the above formula, (3.31) is rewritten as

G, = (1= pa)CN (O .58 )

l ~(l
52) n%n a””{Q)n
=) 7 ~(0)
o + U\2 n On tv \2 n

(3.33)

/ CN( O\m\2 ,an+v{l2) ) - CN (g Ydgn,
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We next compute the first mome

nt G ﬂ as

= [ a1~ p3(an) + puCN(gnl0. )] - CN ), 85, )

—0o0

— =) [ 9ublo)CN a5, )

—0o0

+pn/ 9nCN (gn0, O‘n)CN(gn‘m\g n Uilz),n)dgn

=i [ 8.CN(@ul0.an)CN gl 5, ),

= pnC./\/'(0|m\2 , Oy + ’U{Q)

~(0)

= pnC./\/'(O|m\2 y QO + 0y,

Similarly, the second moment GG

a0

~(0)

e e
—o0 an—i—v\Q Oy + U \2,n
ml

)M (3.34)

=)
n + 0 \2n

(@)

9.n 18 computed as

o _ [T e )
G2,n_ ‘gn| f2,n(gn)Q\27n(9n)dgn

= [ 10010 = 5)8g0) + paCAga0.000] - CN 3,8, g,

=) [ ol N aull), 50, o,

+pn/ |gn’26N(gn|0’an)CN(gn|m§12),n’f}{l2),n

= Dn /—oo |g"| CN(gnm a”)CN(gn|m\2 n’ ﬁig,n)d

= pnCJ\/'(O|m\2 , Qi+ v{?n)

= pnC/\/(O\m\2 , oy + vilz)n) :

)dgn

In
~ (1) ~(1)
00 My . Qpv
) 2 \2,n 1 nE\2n
|l enrianl -
0o Oy, U\Q,n (7% —i—v\zn
0 2 ~(0)
\2 n%n anv\ln (3.35)
ay, + 1){2)” ay, + 17{12)n
-":rxﬁ-! l‘T’I | ]l ‘.'
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Then, Eél) [gn] and Vlz(l) [gn] are calculated as

aW
(l) o 1n
Eq [gn] - (l) ’ (336)
0,n
el 2
VD gn) = = - ‘E“)[gn] : (3.37)
q G(()lz1 q
Finally, we update the parameter pair (mé{:”, él;l)) such that the unnormal-

ized distribution qg ) (gn) = qél;” (gn)qg ,,(gn) has the mean E(gl) [gr] and variance
Vq(l) [gn] obtained from (3.36) and (3.37), respectively. The corresponding solution is

-1

it = VOl ™ = @) (3.38)
~ (I+1 ~(l — ~(1 -1~
i = ol VOl ED g - @), (339)

We stop the algorithm when the variation of the mean vector m is smaller than
the given threshold € (e.g., ¢ = 10™%) or the maximum number of iterations has been
reached. For the robust convergence of the proposed algorithm, we can smooth the

parameter update by taking a combination of the previous and new parameter values

as
my ) = gmgsy + (1 - B)ymd),, (3.40)
oy = BEey + (1 - B)TY), (3.41)

where 3 € [0, 1] is the smoothing parameter and (55, U55,) is the new parameter

pair computed in (3.38) and (3.39).

After the convergence of the EP algorithm, an approximate distribution of f(g) =

p(yp|g)p(g) is obtained as
q(g) = CN(g|m, V), (3.42)

where m and V are obtained from (3.25) and (3.26). The final solution of the iterative

EP estimator g is the mean vector of ¢(g) given by

g = Eyg)lgl =m. (3.43)
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and the covariance matrix of g is V. Once g is obtained, by performing the log-
likelihood test on g, we detect the active devices. Then, we find the corresponding

channel of each active device.

3.3.4 Active User Detection and Channel Estimation

To perform AUD, we employ the likelihood ratio test on the vector g. The hypothesis

testing to find out the active device is given by

H, :a, =1, activedevice,

(3.44)
Hy :a, =0, inactive device,
and the corresponding log-likelihood ratio test is
A pgn\an(gn’an #0)\ H
LLR(gy) = log < - z 0. (3.45)
) =108 o Glan =0)) 7,

Since the n-th component §,, of g has the variance f/,m (the n-th diagonal of \7),

the likelihood probabilities of g, given a,, # 0 or a,, = 0 are given, respectively, by

P 1 B ’gn‘Q
gn|a n |n )= —ex _— ], 346
Dgnlan (nlan # 0) o V) p <an i (3.46)
~ 1 B |gn’2
DPinlan (Gnlan =0) = —=—exp | —= : (3.47)
TVon o

and the corresponding log-likelihood ratio is

Pglan (gn‘an 7& 0))
Pgnlan (nlan =0) )’

Vi o < 1 1 >) Hy
=log | ————ex n — = 0. 3.48
& (an + Von P <|g | Van o + Vi I§O ( )

The log-likelihood ratio test in (3.48) can be simplified to

LLR(§,) = log (

N 2H1
|Gn|” 2 On, (3.49)
0
where

16 1 1
0, =log(1+ =>)/(=— — —). (3.50)
" nn nn an+vnn

:I-! LI ]
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The estimate of activity vector a is obtained after the thresholding of each element

of g as

1 if |§a|2 > 6,
ap = 9] 2 O (3.51)
0 if |§n|? < On.

If the n-th device is detected to be active, we use g, as the CSI estimate of the device.

3.3.5 Data Detection

Based on the knowledge of user activities and channels obtained in the AUD/CE phase,
data symbols of active devices are detected. The measurement signal yg] of the ¢-th

data symbol vector is given by

vy =3 sahpal) 4wl i=1,.0, (3.52)
neN
where N = {nq,... ;MyAr} is the true support? (index set of active devices) of ac-

tive devices and xg]n is the i-th data symbol of the n-th device drawn from the finite
alphabet A, respectively.

Let Syy = [snys--- :Sn, Nl] be the matrix containing the spreading sequences of
active devices and hy = [hy,, ... s o, M]T be the vector containing the channels of

active devices. Then (3.52) can be rewritten as
vl = Sydiag(hw)xh + wl (3.53)

where xg] W E AWl s the i-th data symbols of all active devices.
Let N = {fq,..., ﬁ‘ /\7I} be the estimated support. Then let S - be the spreading
sequences of devices in N and h - be the estimated channels of devices in N'. Further,

let I~JA7 be

]Z.AA/ = SNdlag(le—) = (Sﬁlhﬁl, ce ’Sﬁ\N\iLﬁ\Nl)’ (354)

?For example, if a = [1 010 0 0]7, then the support T is T' = {1, 3}.
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then the BS employs the linear MMSE detector followed by the quantization to detect

the data symbols as
. O -1 . ,
XL}N — Q4 ((LJHVLN 1 aiIM) L;gygl) L oi=1,...,J, (3.55)

where () 4(+) is the quantization operator on the finite alphabet .A. In Table 3.1, we

summarize the proposed algorithm.

3.3.6 Comments on Complexity

In this subsection, we briefly discuss the computational complexity of the proposed al-
gorithm. In each EP iteration, computations of marginals and moments, and updating
the parameter pairs (Thg{)n, @élil) for all n = 1,..., N has a small linear complexity
of O(N) because they are composed only of arithmetic operations such as addition,
subtraction, multiplication, and division. The complexity of the EP algorithm is dom-
inated by the computation of the covariance matrix V in (3.25) and the mean vector
m in (3.26). When N is large, direct computation of V and m is computationally bur-
densome due to the computationally expensive matrix inversion. When M < N and

V, is diagonal, the Woodbury matrix identity [32] offers an efficient way to compute

V. To be specific,

V = (a;2<I>H<I> + \72—1>_1
A

~ ~ —1 ~
) — V@ (gilM + <1>V2<I>H) BV, (3.56)

N -1 .
Note that (ail v+ Vel ) can be computed in the order of O(M?) by a Cholesky
decomposition. Thus, the computational complexity order to compute (3.56) is reduced

from O(N?) to O(MN?).
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Similarly, the posterior mean m can be computed in the order of O(M N?) as
m=V (U;2<I>Hy + Vg_lﬁl2>
- - - -1 . -
— [V, - V8! (aiIM + <I>V2<I>H> @VQ} (U;Qq)Hy + V;lr’m)
v 7. eH (2 S &) H<
— Von — V@ (awIM L BV,® ) Vo, (3.57)

where n = 0;2<I>H y + \N/'; 'yn,. When the EP algorithm runs L iterations (L =
2 ~ 3), the total computational complexity order of the EP approximation would be

O(LMN?).

3.4 Simulation Results and Discussions

3.4.1 Simulation Setup

In our simulations, we simulate underdetermined mMTC systems with N = 128
MTDs and M -dimensional unit-norm random spreading sequences (M < N). De-
vices are randomly located in a cell with a radius 200m. The pathloss component
of the wireless channel between the n-th device and the BS is modeled as «,, =
—128.1 — 36.71og;(d,,) in dB scale where d,, is the distance (in km) between the
n-th device and the BS. The noise spectral density and transmission bandwidth are set
to —170 dBm/Hz and 1 MHz, respectively. The activity probabilities of all devices are
set to p, (i.e., p, = p, for all n). Note that the proposed technique can also be applied
to scenarios with heterogeneous activity probabilities. The number of data symbols in
a frame is set to J = 9. Data symbols of active devices are modulated with quadrature
phase shift keying (QPSK) and the pilot symbol x,, ,, is set to 1 for simplicity.

As performance measures, we consider the activity error rate (AER), the net nor-
malized mean squared error (NNMSE), and the net symbol error rate (NSER). The
AER refers to the percentage of errors (both missed detections and false alarms) in

AUD. The NNMSE, defined as the NMSE of the estimated channels of active devices,
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[y b3
a3

to the data symbol error rate of active devices.

is computed as where N is the support of active devices. The NSER refers

As a reference, we compare the proposed EP estimator with the orthogonal match-
ing pursuit (OMP), and approximate message passing (AMP). As Bayesian sparse re-
covery algorithms exploiting the prior distribution of user activities and channels, we
also test the sparse Bayesian learning (SBL) [33,34] and Bayesian compressive sensing
(BCS) [35,36]. SBL implicitly estimates the prior distribution from the received signal
and computes a MAP estimate of the target signal by expectation maximization (EM)
iterations. BCS is an extension of SBL accounting for the contribution of the noise
variance. Lastly, as the best achievable bound of the estimation techniques, we use the
Oracle minimum mean squared error (MMSE) detector. Since support information is
given in the Oracle MMSE detector, it can solve the problem in the overdetermined
setup. Each point of the performance figure represents an average of at least 100,000

realizations of the activities and channels.
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Table 3.1: SUMMARY OF THE PROPOSED EP-AUD/CE ALGORITHM

Input: The pilot measurements y,, the data measurements y,[;], the spreading sequence {s,, },
the pilot symbol {zp.» }, the activity probability {py }, the channel variances {a, },

the noise variance o2, the finite alphabet .4

Output: The estimated support of active devices N, the estimated channel vector h e

the detected data symbol vectors x[d]

2

Subscript and superscript: The device index n, the iteration index [, the data symbol index 7

Step 1: (Initialization)
® = [s17p,1,...,SNTp,N]
X (1) =0py Vg ) = = diag(pia1,...,pPNON)

1 ~
VO = (028 e+ (V,)) m® =V (028l + (V)

)~ m2)

Step 2: (Compute ratio distribution) Compute the parameters of qilz)n
i, = [ - @]
i, = 05, () il — @) ]

Step 3: (Moment computation) Compute the mean E“) [g] and variance un) [gn] of fz,nq{l;m.
G = (1= pu)CN (O3, 85,) + paCN (Ol am + 35 ,)

\2 n
)
l 1 1 nn
Gﬁ’) pnCN(O\m( >n7 o + U&;n) \jﬁg)
an P

n

O] 2 50
o _ ~ (1) ~(1) N, M2 n® anb\g .,
GZ, pnCN(O‘ \2 n? an +v \2 n) ( O‘n‘H’SQ),n + an+vil2)ﬂ >
O]
(1) Gin
Eq’[gn] = G((lf)n
0 Gy, 0}
ViOlonl = St — B 1gn|
0,n
Step 4: (Moment matching) Update the parameters o ~(H'1) and m. (H'l)
~1-5-1 l - l —1|
it = [Viloal ™ - 63,07
(141 (141 —1 0 ~(1) \—1~(
D = o [V g BV fga] - 00,) 0,

Step 5: (Iteration) Repeat Step 2 - 4 until stopping criteria, Vn. After the convergence of V5 and g,
V= (0200
g=m=V (a;2<I>Hyp + v2_11’~n2)
Step 6: (Active user detection channel estimation) Threshold g using the threshold 6,, in (3.50).
N = {nl|gn]® = 0.}
i = Gn, Yn € N
Step 7: (Data detection) Use the linear MMSE detector to detect the data symbols.

LN: [Slill,...7SniLn,.,,,S‘N|fL‘N|:| fOI"I’LGN

. - - -1 - .
xg]N —Qu ((LJI{/LN + a?UIW,) Lf/y([i]) fori e [1:J)
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Figure 3.5: (a) AER as a function of the transmit power p.
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Figure 3.5: (b) NNMSE as a function of the transmit power p.
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3.4.2 Simulation Results

Fig. 3.5 shows the AER, NNMSE, and NSER performance when p, = 0.1 and
M = 64. The non-Bayesian greedy algorithms such as OMP and AMP perform worse
than the Bayesian algorithms because they do not rely on the statistical distributions
of user activities and channels. SBL and BCS outperform the non-Bayesian greedy
algorithms. However, since SBL and BCS exploit the distribution derived from the re-
ceived signal (which is not necessarily correct), there is a substantial performance gap
from the proposed technique. We observe that the proposed EP estimator outperforms
the conventional algorithms. In particular, the proposed technique performs close to
the Oracle MMSE estimator when the transmit power is larger than 12 dBm.

Fig. 3.6 shows the performance when the length of spreading sequences M varies
from 32 to 96. In this simulation, we set the transmit power to p = 20 dBm. We can
clearly observe that the performance degrades as M decreases because the ratio M /N
of the system decreases (i.e., the system becomes more underdetermined). Note that
the performance in the small M /N regime is important for the massive connectiv-
ity scenario. Even when M /N = (.25, the proposed technique achieves acceptable
performance with the NSER of about 1071,

Fig. 3.7 shows the performance when the activity probability p, varies from 0.05 to
0.3. The transmit power and the length of spreading sequences are set to p = 20 dBm
and M = 64, respectively. We observe that all algorithms under test including the
proposed algorithm are degraded when p,, increases. This is because the interference
among devices increases as more devices are active. The proposed algorithm outper-
forms OMP, AMP, SBL, and BCS by a large margin even if p, is higher than 0.2.

In Fig. 3.8, we investigate the convergence behavior of the proposed EP estimator.

We plot the normalized mean squared error (NMSE) of the estimate of the target vector

l&—gll3
lellz

set to 0.9. As shown in Fig. 3.8, we observe that the proposed EP estimator converges

g, i.e., as a function of the EP iteration index /. The smoothing parameter [ is

to the true solution within 4 to 6 iterations for all transmission power regimes. The
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iterative EP algorithm provides a reliable approximate distribution ¢(g) whose mean

is close to the mean of the target distribution p(g) only with a few iterations.
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Chapter 4

Conclusion

In this dissertation, two novel sparsity-aware multi-user detection techniques are pro-
posed. First proposed is a novel sparsity-aware ordered SIC scheme for mMTC sys-
tems. Based on activity probabilities and channel gains of devices, the proposed scheme
constructs an augmented system and finds the optimal detection order. Numerical sim-
ulations have demonstrated that the proposed algorithm greatly improves the perfor-
mance of SA-SIC. Next, an EP-based Bayesian joint active user detection (AUD) and
channel estimation (CE) technique for mMTC systems is proposed. The work is mo-
tivated by the observation that most of conventional CS-MUD schemes are based on
non-Bayesian approaches, and they cannot make the most of the statistical prior dis-
tribution of the user activities and channels. By exploiting the prior distribution, the
proposed technique iteratively finds the best approximate Gaussian distribution that is
close to the posterior distribution of the target composite vector of the user activities
and channels. Then, by solving the MAP estimation problem with the approximate
distribution, AUD and CE are performed jointly. The data detection (DD) of active de-
vices are then performed based on the obtained knowledge of user activities and chan-
nels. From numerical simulations, the proposed technique has been shown to achieve
significant performance gains in terms of AUD, CE, and DD over the conventional

sparse recovery algorithms.
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