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Abstract

Block-based hierarchical motion estimations are widely used and are successful
in generating high-quality interpolation. However, it still fails in the motion
estimation of small objects when a background region moves in a different direction.
This is because the motion of small objects is neglected by the down-sampling and
over-smoothing operations at the top level of image pyramids in the maximum a
posterior (MAP) method. Consequently, the motion vector of small objects cannot
be detected at the bottom level, and therefore, the small objects often appear
deformed in an interpolated frame. This thesis proposes a novel algorithm that
preserves the motion vector of the small objects by adding a secondary motion vector
candidate that represents the movement of the small objects. This additional
candidate is always propagated from the top to the bottom layers of the image
pyramid. Experimental results demonstrate that the intermediate frame interpolated
by the proposed algorithm significantly improves the visual quality when compared
with conventional MAP-based frame interpolation.

In motion compensated frame interpolation, a repetition pattern in an image
makes it difficult to derive an accurate motion vector because multiple similar local
minima exist in the search space of the matching cost for motion estimation. In order
to improve the accuracy of motion estimation in a repetition region, this thesis
attempts a semi-global approach that exploits both local and global characteristics of
a repetition region. A histogram of the motion vector candidates is built by using a

voter based voting system that is more reliable than an elector based voting system.
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Experimental results demonstrate that the proposed method significantly
outperforms the previous local approach in term of both objective peak signal-to-
noise ratio (PSNR) and subjective visual quality.

In video frame interpolation or motion-compensated frame rate up-conversion
(MC-FRUC), motion compensation along unidirectional motion trajectories directly
causes overlaps and holes issues. To solve these issues, this research presents a new
algorithm for bidirectional motion compensated frame interpolation. Firstly, the
proposed method generates bidirectional motion vectors from two unidirectional
motion vector fields (forward and backward) obtained from the unidirectional
motion estimations. It is done by projecting the forward and backward motion
vectors into the interpolated frame. A comprehensive metric as an extension of the
distance between a projected block and an interpolated block is proposed to compute
weighted coefficients in the case when the interpolated block has multiple projected
ones. Holes are filled based on vector median filter of non-hole available neighbor
blocks. The proposed method outperforms existing MC-FRUC methods and
removes block artifacts significantly.

Video frame interpolation with a deep convolutional neural network (CNN) is
also investigated in this thesis. Optical flow and video frame interpolation are
considered as a chicken-egg problem such that one problem affects the other and
vice versa. This thesis presents a stack of networks that are trained to estimate
intermediate optical flows from the very first intermediate synthesized frame and
later the very end interpolated frame is generated by the second synthesis network
that is fed by stacking the very first one and two learned intermediate optical flows

based warped frames. The primary benefit is that it glues two problems into one
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comprehensive framework that learns altogether by using both an analysis-by-
synthesis technique for optical flow estimation and vice versa, CNN kernels based
synthesis-by-analysis. The proposed network is the first attempt to bridge two
branches of previous approaches, optical flow based synthesis and CNN kernels
based synthesis into a comprehensive network. Experiments are carried out with
various challenging datasets, all showing that the proposed network outperforms the
state-of-the-art methods with significant margins for video frame interpolation and
the estimated optical flows are accurate for challenging movements. The proposed
deep video frame interpolation network to post-processing is applied to the
improvement of the coding efficiency of the state-of-art video compress standard,

HEVC/H.265 and experimental results prove the efficiency of the proposed network.

Keyword: frame interpolation, MEMC, CNN, small objects, repetition
regions, FRUC

Student Number: 2012-31285
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Chapter 1. Introduction

Video frame interpolation, also called frame-rate up-conversion (FRUC) is widely
used in various applications from computer vision to visual display applications such
as slow motion, animation, play back, and so on. In order to increase the video frame
rate, intermediate frames are generated from two consecutive original frames. For
Liquid Crystal Display (LCD) display applications, high frame rate video is desired
in order to reduce blurring, particularly for fast motion videos. Visual quality is
improved by up-converting the frame rate of standard video captured at 30 Hz or 60
Hz by a factor of two or more. In order to increase the frame rate of the videos, video
frame interpolation is performed to generate intermediate frames. In addition, for
media broadcast of movies, frame-rate up-conversion is critical to accommodate the
frame rate difference of the industry standards. The movie industry typically operates
with a 24 frame/second capture rate, while media broadcasts employ a 30 Hz
standard. Indeed, there are many applications in which frame-rate up-conversion is
necessary and high quality is important. Slow-motion is another application of the
video frame interpolation. Instead of using expensive high-speed camera to capture
many frames in a second, users can increase number of frames by using video frame

interpolation algorithms that generate new frames from existing captured frames.

Typically, a video frame interpolation algorithm is consisting of two steps such
that the first step is a motion estimation (ME) or optical flow (OF) estimation that
derives the motion trajectories between two consecutive frames. The second step is

motion compensated frame interpolation (MCFI) that synthesizes the intermediate



frames by using estimated motion trajectories. Consequently, the visual gquality of
the interpolated frames highly depends on the accuracy of the estimated motion
trajectories and performance of frame interpolation algorithm also. Even extensive
research efforts have been made to handle challenges in video frame interpolation
problem, there are still existing very difficult cases for frame interpolation. These
cases include the movement of small objects, the movement of a repetition pattern
region, text objects, occlusion, reveal, and the complex movements of fast-moving

objects and so on.

1.1. Hierarchical Motion Estimation of Small Objects

Conventional block-based hierarchical motion estimation suffers from a
fundamental limitation in handling motion details such as the diverse movements of
a small object in the background. In general, it is not easy to define a general size to
classify an object into small one or not. Because a part of a large object in a block
can also be defined as a small object when the motion vector of the small part is
different from the motion vector of the block that includes the small part. The two
primary reasons for the fundamental limitation in handling motion of small objects
are image down-sampling and motion over-smoothing. As down-sampling reduces
the size of an object at the top pyramid level, it has little effect on the motion
estimation for a block that includes the object. Therefore, the motion of a small object
is often neglected in the motion estimation at the top level. The over-smoothing of a
motion vector occurs in a conventional maximum a posterior (MAP) [9], [11] — [16],
[22], including the operation to increase the smoothness of a motion vector field.

Over-smoothing occurs when a motion vector of a block is different from the motion

2 3
I

-
|



vectors of neighboring blocks. MAP replaces the motion vector of a small object
block with a background motion vector, which often results in the selection of a

wrong motion vector of a block that includes a small object.

Fig. 1-1 shows an example that illustrates the limitation of the conventional block-
based hierarchical motion estimation. In this example, an area of 16 x 16 pixels in
an input image is used, and the number of pyramid levels is three. The scaled image
of each level is partitioned into 4 x 4 blocks, and each of these blocks is represented
by a square. A small object is represented by a shaded area while the background is
represented by a white one. For a simple illustration, the number in each block
represents only the horizontal component of the estimated motion vector. In this
example, a small object moves in a different direction from the direction of
movement of the background. The ground truth of the motion vectors is shown in
Fig. 1-1 (a), in which a shaded block corresponds to a small object. In block-based
hierarchical motion estimation, an input image is down-sampled and motion vectors
are estimated from the top level. Fig. 1-1 (b) shows a top level block obtained by
down-sampling the image area in Fig. 1-1 (a). The portion of the small object in the
block at the top level is small; therefore, the motion of the small object has little
effect on the motion estimation of the block. Thus, the estimated motion vector only
represents the motion of the background whereas the motion of the foreground is
ignored. As shown in Fig. 1-1 (c) and (d), the motion vector of the small object is
not propagated from the higher level. Consequently, the motion vector of a small
object is inaccurately determined, as shown in Fig. 1-1 (d), which is different from
the ground-truth motion vector shown in Fig. 1-1 (a). The wrong motion vector

causes the small objects to appear distorted or to disappear in the interpolated frame.
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Figure 1-1. Example of an inaccurate motion vector of a small object in a

hierarchal motion estimation

(a) the ground-truth motion vector at the bottom level. (b) a block with a motion
vector at top level; (c) blocks with motion vectors at lower levels; (d) error of the

estimated motion vector of a small object at the bottom level

This thesis addresses the difficulty in the motion estimation of a small object
described in Fig. 1-1 and proposes a new hierarchical motion estimation algorithm for

MC-FRUC with two primary contributions.

1.2. Motion Estimation of a Repetition Pattern Region

In many video sequences, the existence of repetition pattern objects is frequent
such as in urban scenes with high building, the fence of gardens, decorative images,
and so on. For frame rate up conversion, the derivation of an accurate motion vector
is important to ensure the high visual quality of the interpolated frame. However, a
repetition pattern in an image makes it difficult to derive an accurate motion vector
because multiple similar local minima exist in the search space of the matching cost
for motion estimation. Fig. 1-2 shows an example of the repetition pattern region

with multiple similar local minima in the SAD surface of a block in the region. From



this SAD surface, it is hard to decide which one becomes the smallest minimal
among many ambiguous similar local minima. Consequently, the motion vector

obtained by the smallest SAD value become unreliable in this case.

(@) (b)

Figure 1-2. An example of a repetition pattern region and its SAD surface.
(a) Repetition pattern region, (b) SAD surface

The thesis tackles the multiple local minima problem by using a semi-global

approach that obtains an accurate motion vector for a repetition pattern region.
1.3. Motion-Compensated Frame Interpolation

Even though motion estimation is a primary component to contribute on the
performance of video frame interpolation algorithms, as described on previous
sections, there are still existing many challenging cases that the state-of-arts
algorithms fail to estimate motion trajectories of pixels. Consequently, artifacts
appear in interpolated frames are un-avoidable. In order to alleviate those of un-
avoidable artifacts, in the second stage of FRUC, motion compensated frame
interpolation algorithm can generate a better visual quality given errors in the

estimated motion vectors. Motion Compensation (MC) algorithm is the second stage
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among two main elements of an FRUC algorithm. The task of MC is to generate the
intermediate frames, given the motion vectors fields obtained from the previous step,

motion estimation.

This thesis proposes a new method that uses multiple motion vectors as a tool for

alleviating the errors of motion trajectories obtained by motion estimation step.

1.4. Video Frame Interpolation with Deep CNN

Typically, a video frame interpolation algorithm is composed of two decomposed
steps such that the first step is a motion estimation (ME) or optical flow (OF)
estimation that derives the motion trajectories between two consecutive frames. The
second step is motion compensated frame interpolation (MCFI) that synthesizes the
intermediate frames by using estimated motion trajectories. These flow-based
methods inevitably generate ghost or blurry artifacts, owing to the errors in estimated
optical flows. In other words, this classic approach highly depends on the accuracy

of the motion trajectories.

Recently, the break-through of Convolutional Neural Networks (CNN) in
computer vision [49, 50, 51], [52, 54, 55] allows a formulation of video frame
interpolation as an end-to-end learning process without optical flow estimation. In
those methods, however, the objective function or loss function only focuses on pixel
difference. Consequently, it usually fails in the estimation of fast and/or complex
movement which requires a critical role of motion estimation for high-quality frame
interpolation. A phase-based frame interpolation, proposed in [60], [61] is another

approach to generate the intermediate frames without estimating optical flow.
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However, similar to the above CNN based methods, the phased based approaches

also fail in the fast movement.

This thesis presents a comprehensive framework that glue two above previous
approaches into a single stacked CNN network that is composed of a back-to-back
stack of two CNN networks. In addition, with high performance of the deep video
frame interpolation, this thesis extends the application of the network to two related
problems, enhance quality of compressed videos, or also called post-processing for
compressed videos. The second extension is to improve coding efficiency of the
latest video compression standard, HEVC/H.265 by applying the proposed deep

video frame interpolation algorithm into HEVC.

1.5. Outline of the Thesis

This section outlines the main contributions of this thesis. The first and second
contributions of this thesis are accurate motion estimation algorithms that handle
very challenging cases in FRUC, such as the movement of small objects, the
movement of a repetition pattern region, respectively. Next, a new motion
compensation with multiple motion vectors are proposed to enhance visual quality
of the interpolated frames. Last but not least, an end-to-end learning deep
convolutional neural network is proposed to generate intermediate frames with high
accuracy and outperforms previous state-of-art algorithms. The extension of this
deep video frame interpolation algorithm for other applications such as post-
processing for compressed videos and improving coding efficiency of the latest

video compression standard HEVVC/H.265 are also presented.



Previous works of the mentioned problems are introduced in chapter 2.

Chapter 3 presents the proposed method for hierarchical motion estimation for small

objects in FRUC.

The proposed semi-global accurate motion estimation for a repetition pattern region

in FRUC is shown in chapter 4.

Chapter 5 presents the proposed multiple motion vectors based motion compensation

in FRUC.

In chapter 6, the proposed deep video frame interpolation with a CNN network and

its extensions to related tasks are presented.

Finally, chapter 7 concludes contributions of this thesis.



Chapter 2. Previous Works

2.1. Previous Works on Hierarchical Block-Based Motion

Estimation

Extensive research efforts have been made to handle the motion estimation for
challenging cases in frame-rate up-conversion, from repetition pattern objects [17],
[18], [19] to small objects [3]. A previous study proposes a SIFT feature-based
optical flow in order to explore the motion vector of a small object [59]. The method
proposed in this study successfully improves accuracy but results in higher
computational complexity. For example, the time required to estimate the flow of an
urban test sequence in the Middlebury test bench is 342 s. Another method uses
variable block sizes at motion boundary blocks to provide a dense motion vector
field [4]. This method succeeds in deriving accurate motion vectors at boundary
blocks but it requires extensive computations. In the method proposed by [5], a pixel-
based motion vector selection is derived from neighboring block-based motion
vectors. The motion vectors of the pixels are generated from the estimated motion
vectors of the blocks that include them. The pixel-based estimation further improves
the accuracy of motion estimation, although small objects may remain undetected if
the motion estimation for a block is inaccurate. Recently, Jeong, Lee and Kim
propose the use of video segmentation for estimating motion vectors of pixels [6].
The method can generate a dense motion vector field and successfully reduce block
artifacts. However, the computational complexity is high owing to the derivation of

video segmentation and graph cut algorithm. Variable block size approaches have
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been also studied in previous works [4], [6], [7]. The method proposed in [9]
increases the density of a motion vector field in a hierarchical manner. In other words,
the motion vector of a sub-block is derived from the motion vector of a parent block
and those of the neighboring blocks of the parent block. This method successfully
reduces the computational complexity while offering a reasonable level of accuracy.
However, it cannot reduce the motion vector errors owing to the disappearance of

the motion vector of small objects from the motion estimation of the original blocks.

2.1.1. Maximum a Posterior (MAP) Framework

Recently MAP-based motion estimation has achieved better performance than the
conventional block matching algorithm (BMA) because it exploits smoothness
constrains of motion fields [9], [12], [13]. The smoothness constraint on neighboring
motion vectors can improve the estimation accuracy thanks to the property that
motion vectors in an object do not change abruptly. The smoothness constraint is a
key contribution of many optical flow methods [20], [21], and block based motion
estimation methods [9], [13], [22]. In [20], Horn and Schunck propose an algorithm
that uses a smoothness constraint as a penalty for pixel-matching scores in dense
motion field estimation. Zach et al. compute the smoothness term with a norm L1 of
motion vector difference between neighboring ones [21]. In recent block based
motion estimation [9], [13], [22], smoothness constraint is used as a key approach to
find true motion vectors. The BMA is an unconstrained optimization; meanwhile,
MAP applies prior probability to the optimization in order to make a smooth change
in motion vector field. In MAP, the objective function is to minimize an energy

function that is composed of two components. The first term is a data cost that
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represents the block matching value or likelihood, and the second one is a
smoothness cost that encodes a prior probability of the motion vector field. The
combination of two components, which are likelihood and prior probability, is to
estimate the posterior probability of the motion vector field as shown in the following

equations:

E(u) =SAD (u) + A * 2P(u, v.) with v.€ N; (2.1)

E(u) = Yxeptockllc(x) — Li(x +w)| + A2+ X, {llu—vcll *0(u,v)} (2.2)

where u = (ux, Uy), is the motion vector variable, SAD(u) is the sum of absolute
difference of the block that corresponds to u, Pc(u, vc) is the smoothness function that
corresponds to the motion vector difference between neighboring blocks, Ncis a
neighboring system of current motion vector u, and A is a weighting parameter. Eq.
(2.2) is a specific formulation of Eq. (2.1), where I¢(x) is the intensity of a pixel at
position x in the current block. I,(x+u) is the intensity of the corresponding pixel
(x+u) in a reference block, 8(u,vc) is a threshold continuity function that is equal to
zero when the difference between u and v. is larger than a predefined threshold value,
otherwise, it is equal to one. During the optimization of the energy function E(u), u
varies within the search range S that is a 2-D value table, i.e (£16, £16). The final
estimated motion vector u” that optimizes the energy function E(u) is defined as

following:
U = argmin,s{E(uw)} (2.3)

In general, MAP-based methods outperform the conventional BMA method.
However, in areas with small objects in which the motion vectors are different from

the motion of the surrounding background, over-smoothing in motion vector
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typically occurs. In these areas, BMA tends to yield more accurate motion vectors.
Thus, this thesis proposes an algorithm for using motion vectors obtained by BMA

for the motion estimation of small object areas.

2.1.2. Hierarchical Motion Estimation

For real time operation of LCD TVs, an FRUC algorithm must be sufficiently fast
to process 60 frames per second. In order to satisfy this strict requirement, a
hierarchical motion estimation framework has been used for reducing the
computational complexity [8], [9], [10]. To obtain precise motion vector field, the
MAP method is used at the top level [9]. Subsequently, the top motion vectors are
propagated to the bottom level to produce finer motion vector fields. In this manner,
the images at all pyramid levels are partitioned into blocks of the same size. To
estimate motion vector of a block at a level, three motion vectors from the upper
level are used as its initial motion vectors. The first one is from its parent block, and
the other two are from the blocks both horizontally and vertically adjacent to the
parent block. Fig. 2-1 illustrates an example. The full search around the three initial
motion vectors with a search distance of +d pixels are performed to choose the best
motion vector in three search windows. The motion estimation for each layer is
recursively performed in this manner from the top to the bottom level in the image
pyramid. If there are missing motion vectors at the top level, the propagation cannot
discover the missing ones at the bottom level. This is the primary drawback of the
conventional hierarchical motion estimation. Thus, this thesis proposes a new
hierarchical motion estimation algorithm that discovers the missing motion vector of

small objects at the top level and propagates it into the bottom level. With this
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manner, the proposed algorithm successfully preservers the motion vector of small

objects in hierarchical motion estimation framework.

Nearest vertical block

Level | +1

Parent bloc Nearest horizontal block

Level |

Figure 2-1 Hierarchical Motion Estimation [9].

2.2. Previous Works on Motion Estimation for a Repetition

Pattern Region

For frame rate up conversion, the derivation of an accurate motion vector is
important to ensure the high visual quality of the interpolated frame. However, a
repetition pattern in an image makes it difficult to derive an accurate motion vector
because multiple similar local minima exist in the search space of the matching cost
for motion estimation. A number of previous algorithms have been proposed to
reduce the matching errors in the estimation of motion vectors in repetition regions.
In [24], an exhaustive full-search motion estimation is used to find solutions for
repetition pattern regions. In [25], the motion vectors of repetition pattern blocks are

corrected by recursive average operations. In [26], the spectral image is analyzed to
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estimate the motion vectors for repetition regions. In [27], a new design methodology
is explored by using suboptimal measures for two different motion estimation
algorithms. In [28-31], a Maximize-A-Posterior (MAP) based method is proposed
for motion estimation. The matching cost is regularized by a smoothness constraint
in order to improve the accuracies of motion vectors. These previous methods use a
local approach that estimates or corrects the motion vector of a repetition pattern
block by using only the information from the block itself and its neighbors. These
methods sometimes miss the corrected motion vector because multiple similar local

minima exist in the search space of the matching cost for motion estimation.

2.3. Previous Works on Motion Compensation

Conventional MC-FRUC:s utilize two approaches for motion trajectory estimation:
unidirectional motion estimation [9], [23], [34] and bi-directional motion estimation
[35] - [37]. The former approach is based on a typical motion estimation algorithm
that divides one frame into non-overlap blocks, estimates the motion vector of each
block by searching the best matching block in the other frame, and finally generates
the intermediate frame that composes of the blocks resulting from the motion
compensated interpolation of the corresponding blocks along the estimated motion
vector. The main problem of this approach is that the interpolated blocks may not be
contiguous in the interpolated frame, that is, some blocks are overlapped while some
areas are not filled with the interpolated blocks resulting in a hole in the interpolated
frame. An overlap is generated by crossing of multiple motion vectors while a hole
results from no motion vectors crossing at the blocks in the interpolated frame. In

case multiple motion vectors point through the same an interpolated block, an
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expanded-block weighted motion compensation is proposed in [23] in order to
reduce block artifact and overlap issues. In the method, from each unidirectional
motion vector field, three kinds of intermediate images are generated to accumulate
weighted motion compensated pixels, weighted motion compensated difference and
contributing weights. Each kind of the intermediate image is high bit depth one
because it accumulates contribution of all passing candidates. Therefore, the buffer
size for storing those intermediated images is very large. In addition, the weighting
coefficients are predefined by using a fix window size, does not relate to the accuracy
of passing motion vectors. As a side effect, the hole shape is produced by the method

is arbitrary, it causes challenging for hole filling problem.

The Overlaps and holes can be avoided by the bidirectional approach that divides
the frame to be interpolated into non-overlap blocks before it is generated, estimates
the motion vector of each block by searching two symmetric matching blocks in the
two original frames. Each block has symmetric two motion vectors, one points to the
previous frame and the other points to the next frame. However, this approach offers
less accurate motion vectors than the former one. In addition, bi-directional motion
estimation methods usually go along with an overlapped block motion compensation
(OBMC) frame interpolation algorithm [32] or its variant adaptive OBMC (AOBMC)
[36] to alleviate the blocking artifacts. However, both OBMC and AOBMC use
motion vector of neighbor blocks, therefore they can produce over-smoothing

artifacts as adjacent blocks have substantially different motions.

Recently, a hybrid approach [38] — [40] has been proposed to combine

unidirectional ME and bidirectional MC. This approach intends to avoid overlaps
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and holes in the unidirectional approach and at the same time to reduce inaccuracy
in bi-directional motion field. In [38], Yoo et al estimate unidirectional motion fields
first, then it computes bidirectional one by using scaled motion vectors of the
collocated blocks in original frames obtained by unidirectional ME as the search
centers with a small search range for bi-directional ME. However, mapping motion
vectors from collocated blocks cause errors when the motion vectors are large. In
[39, 40] projection based motion vector mapping is used to generate bi-directional
motion vectors from unidirectional ones. In case an interpolated block has multiple
overlapped projected blocks, a Sum of Bilateral Absolute Difference (SBAD) is
applied as the metric for selection, the motion vector with the minimum SBAD is
selected as the final one of the interpolated block. A problem with this method is that
it will select wrong motion vector even with the smallest value of SBAD because the
minimum SBAD doesn’t guarantee that it represents the truth motion vector of the
interpolated block. For example, at smoothness areas in images where there exist

multiple local minima, it causes many ambiguous motion vectors.

2.4. Previous Works on Video Frame Interpolation with Deep

CNN

Video frame interpolation: Extensive research efforts have been made to handle
the challenges in video frame interpolation. A typical approach in video frame
interpolation estimates dense motion vector fields, or optical flows, between two
original input frames and then interpolates intermediate frames guided by the
estimated motion [47, 48, 53, 59, 62]. To synthesize an output image from the input

frames, the estimated flows based warping operations using bilinear interpolation are
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done first, and later the warped frames are blended together. Consequently, the flow-
based methods generate ghost or blurry artifacts when the warped frames are not
aligned well, owing to the errors of the estimated optical flows. In order to replace
simple blending operations, Nikaus et al. [56] propose to use a context-based
synthesis network to generate the intermediate frames from the pre-warped frames.
It is shown that the frame synthesis network outperforms simple blending algorithms.
Recently, inspired by the success of applying deep learning to optical flow estimation
[46, 67, 69, 70, 62], CNNs are used for video frame interpolation with the loss
function to calculate the pixel difference between the synthesized one and its
corresponding ground-truth. CNN based methods remove optical flow step and
handle video frame interpolation as a convolution process [52, 53, 54, 55, 57, 64]. In
other words, the network can be trained to synthesize images without explicit motion
estimation step. Consequently, it usually fails at regions with fast, complex moving

objects where accurate motion information is crucial for synthesis task.

Starting from the work by Long et. al. in [52] which employs an auto-encoder
network, several recently-proposed deep neural networks successfully improves the
quality of video frame interpolation. The auto-encoder architecture or U-net
architecture used in [55], [57] extract features that are given to the sub-nets for the
synthesis of the intermediate frame. SepConv network in [55] successfully handles
blurry artifacts by estimating independently four 1D kernels which are then
convolved with the input frames to generate interpolated frames. However, SepConv
network does not take into consideration the motion constraints among neighboring
kernels because the kernels for each pixel are trained independently from those of

neighboring pixels. A deep neural network is also used to directly estimate the phase
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decomposition of the intermediate frame in [51] based on the application of the phase
based frame interpolation which is originally proposed by Meyer et al. in [60] to

generate intermediate frames by modifying a per-pixel phase.

A stack of networks: A stack of component networks is proved to enhance the
performance of the whole network in various tasks including pose estimation [45],
object detection [41], document image unwarping [42], optical flow [69] and so on.
In [45], stacked hourglass networks are proposed for human pose estimation and they
outperform long single hourglass networks as claimed by authors. In [41], the stack
of two hourglass networks is the backbone network of CornerNet to generate features
for two prediction modules. In [42], a stacked U-Net with intermediate supervision
is used to directly predict the forward mapping between the warped images and the
refined version. For optical flow, Flownet 2.0 [69] also employs a stack of several
sub-networks and achieves a significant improvement from the previous version.

This thesis adopts the idea of a stack of sub-networks for video frame interpolation.
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Chapter 3. Hierarchical Motion Estimation for

Small Objects

3.1. Problem Statement

In hierarchical motion estimation, an input image is down-sampled for generating
the top pyramid layer in which the size of an object becomes smaller than that in the
bottom layer. Consequently, a small object typically occupies only a small part of a
block at the top level. Therefore, the small object may be ignored in motion
estimation, and the remaining region of a block contributes more significantly to
motion estimation than the small object does. If the motion information for a small
object is ignored at the top level, it cannot be recovered at the bottom level. Thus,
hierarchical motion estimation often fails in the generation of a correct motion vector
for a small object. However, this small object may be sufficiently large to occupy an
entire block at the bottom level, and the erroneous motion vector of a small object
can deteriorate the image quality in MC-FRUC. Therefore, it is necessary to discover
and store the motion information of a small object at the top level and to pass it to
be used for motion estimation at the bottom level.

This study addresses the difficulty in the motion estimation of a small object
described in Fig. 1-1 and proposes a new hierarchical motion estimation algorithm
for MC-FRUC with two primary contributions.

» The hidden motion information of a small object at the top level is represented
by an alternative motion vector candidate. The alternative candidate is
propagated to the lower levels and used for the motion estimation of small

objects at the bottom layer.
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» A matching algorithm for determining the alternative motion vector is proposed.
If pixels with high residual costs are detected in a block, the matching algorithm
is performed for the high cost pixels, otherwise it maintains the motion vector
estimated by a full search block matching algorithm as the alternative motion
vector.

This thesis aims to propose a novel algorithm for hierarchical motion estimation that
avoids the artifact in the region that includes a small object. Unlike the algorithm
proposed in [9], each block at a lower level has three motion vector candidates: one
from the motion vector of the parent block, and the other two from the motion vectors
of the nearest neighboring blocks of the parent block in the horizontal and vertical
directions. This thesis proposes the use of an additional motion vector candidate that
represents the motion information of a small object at the top level. The additional
candidate is propagated to the lower level and used for motion estimation of small

objects.

3.2. The Alternative Motion Vector of High Cost Pixels

The proposed algorithm attempts to detect a small object that has a motion vector
different from that of the block that includes a small object. In this case, it is possible
to have a case that the movement of a small object is different from that of the
surrounding area in the block. The matching error of the block may be high because
small object pixels may not have matching pixels in a reference block. In this case,
the matching error of the pixels that belong to a small object is high. The pixel

difference, Al is defined by the following equation:
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Al = |I.(i,j) — L,(G+uj+v) (3.1)

where Ic(i, j) is the intensity of the pixel at position (i, j) in the current frame. I.(i+u,
j*V) is the intensity of the corresponding pixel (i+u, j+v) in the reference frame.

Vector (u, v) is the motion vector of the current block to be derived.

Herein, a pixel with a large pixel difference is referred to as a high-cost pixel that
has a potential to be a pixel of a small object. If the pixel difference is larger than the
predefined threshold, it is determined as a high-cost pixel. When a block contains
high-cost pixels, the second full search motion estimation for the high-cost pixels is
performed to estimate the motion vector of a small object that consists of these pixels.
In the second motion estimation, only the matching cost of the high-cost pixels is
considered, and thus, a motion vector of a small object can be found. A motion vector
that represents the motion of a small object is referred to as an alternative motion

vector.

Fig. 3-1 shows an example of motion estimation for a 4x4 block at the top level.
In Fig. 4 (a), the current block includes a part of a small object that is represented in
black, and it does a rest part of a background that is in white. In the first motion
estimation, a motion vector of a block is estimated as +3. Fig. 3-1 (b) shows a
matching block in the reference frame. When the current block is compared with the
matching block, difference of the small object is high, and thus, these pixels are
determined as high-cost pixels which are represented by shaded pixels in Fig. 3-1
(c). In the second motion estimation, only high-cost pixels are used for computing

SAD, and an alternative vector of -1 is derived in this example. In the proposed
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algorithm, two motion vectors of +3 and -1 are to be propagated to the lower layers.
If the number of layers is three as shown in Fig. 1-1, the motion vectors of +12 and
-4 can be obtained at the bottom layer. For each block at the top level, two motion
vectors are derived. The first one represents the motion of the block, and the second
one represents a motion of a small object in the block. The propagation of both
motion vectors to the finer levels allows the motion of the small objects to be

preserved from the top layer to the bottom layer.

3 | +3 |3 -1

+3 | 43 | +3 | 13

+3 <3 |43 |43

+3 +3 | +3 3

(a) (b) (c)

Figure 3-1 Example of the alternative motion vector

(a) A current block with a small object in black pixels, (b) A matched block in a
reference frame, (c) A determined high-cost pixels and the alternative vector

obtained by the second motion estimation.

Each block has two motion vectors. One is the motion vector of the block from the
first motion estimation, and the other is the motion vector of high-cost pixels from
the second motion estimation. Even when no high-cost pixel exists in a block, the
motion vector of a block can be wrong owing to over-smoothing of the MAP-based
methods. This case may occur for a block in which all pixels belong to a small object
with its size almost the same as the block size. In this case, the BMA can obtain a
true motion vector of the block. However, the true motion vector can be replaced
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with a false one by MAP when the small object moves in a direction different from
that of the background. In the proposed algorithm, the motion vector from the BMA
is assigned to an alternative vector for the blocks that do not contain high-cost pixels.
This ensures that all potential motion vectors for a small object are propagated to the

lower layers.

3.3. Modified Hierarchical Motion Estimation

In the proposed algorithm, four motion vectors from the upper level of an image
pyramid are used as the initial motion vectors for motion estimation. The three
motion vectors are the same as those of the conventional algorithm [9]. The
additional candidate is the alternative motion vector discussed in the previous
subsection. If a block at the top level includes high-cost pixels, the alternative motion
vector is the motion vector of the high-cost pixels. Otherwise, a motion vector
obtained by the BMA for a block at the top level is used for an alternative motion
vector. Four motion vectors are propagated to the lower level, and then the full-
search BMA around the four motion vectors with a search distance of +d pixels are
performed to choose the best among the four search windows. Even when the
alternative motion vector is not selected as the best one, it is still propagated to the
next lower level to preserve the motion vector of the small object. Motion
estimations for the lower layers are performed in this manner again in the image
pyramid as shown in Fig. 3-2. At a finer layer or level I, in each current block (pattern
fill block in Fig. 3-2), three dashed arrows represent the three conventional motion

vectors, the other is the alternative motion vector.
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Nearest vertical block

Level | +1

Parent bloc Nearest horizontal block

,,,,,,

Level |

— The alternative motion vector

Figure 3-2 The Modified Hierarchical Motion Estimation

3.4. Framework of the Proposed Algorithm

The proposed algorithm is shown in Fig. 3-3. First, from input frames, image
pyramids are constructed for hierarchical motion estimation. Then, a conventional full
search BMA is performed at the top pyramid level, and the high-cost pixels of each
block are detected. In the next step, two operations are performed in parallel. One is a
MAP-based motion estimation that is performed as a refinement of the BMA [9]. The
other is a full-search motion estimation for high-cost pixels. When a block does not
include high-cost pixels, the motion vector estimated by BMA is used for an alternative
motion vector. Therefore, all blocks have two motion vectors. One is estimated by the
MAP-based motion estimation, and the other is the alternative motion vector. These
two motion vectors of the top level are propagated to the lower level in which these
vectors are used for generating search windows. After the motion estimation of the
level is completed, the motion vector from BMA and the scaled alternative motion
vector for each block are propagated to the next level. The alternative motion vector is

propagated to the next pyramid level irrespective of whether it is chosen as the motion
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vector of the block or not, thereby guaranteeing that the motion vector of the small

object is propagated to the bottom layer.

Input Frames

Build Image Pyramids

At top level v
Full Search

Block Matching
\

Full Search for MAP based
Hiah Cost Pixels Motion Estimation

¢ \/ ‘
Each block has two MVs. One is from MAP,
the other is the alternative motion vector

Propagate MVs by the modified hierarchical ME

!

Final Motion Vector Fields at bottom layer

Figure 3-3 Motion estimation of the proposed algorithm

3.5. Experimental Results

For experiments, the proposed algorithm is evaluated with four full-HD video
sequences that contain small objects: tennis ball, rim ball, basketball and soccer ball.
For video frames in the dataset, odd frames are removed, and these frames are used
for ground-truth frames. Motion compensated frame-rate up-conversion algorithms
are applied to even frames to generate intermediate frames, which are compared to

the corresponding ground-truth frames. The performance of the proposed motion
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estimation is compared to that of the previous method that uses the MAP algorithm
at top pyramid level and conventional hierarchical motion estimation [9]. For motion
estimation, experiments are performed with the previous and proposed algorithms
under identical conditions as follows: three temporally consecutive original frames
are used for estimating both forward and backward motion vector fields as suggested
by [9], the number of pyramid levels is four, and the block size is fixed to 8x8 for
all pyramid levels. One block at level | is a parent of four blocks at level | + 1. At the
top pyramid level, the search range is £16 pixels in the horizontal direction and £8
pixels in the vertical direction in order to reduce search space in the vertical direction.
At the other levels, the small search range d is +1 for both horizontal and vertical
directions. The image size at the top level is 240x135 pixels, at the bottom level is
1920x1080 pixels. For frame interpolation, the algorithm in [23] is used for both
previous and proposed motion estimations. The peak signal-to-noise ratio (PSNR)
values of interpolated frames are used as an objective comparison metric. In addition,

the subjective visual image quality is also compared.

3.5.1. Performance Analysis

Fig.3-4 presents an example of over-smoothing of MAP approach. Figs. 3-4 (a)
and (b) show two consecutive input frames. Fig. 3-4 (c) shows magnified input image
that includes a small object. In this figure, white lines represent blocks corresponding
to blocks at the top pyramid level. The blue arrows represent the motion vectors
estimated by the BMA, the red arrows represent the motion vectors estimated by
MAP. For the two center blocks that contain a part of the ball, the BMA estimates
correctly the motion of the part of the ball while the MAP over-smooths it to make
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the motion vector of the ball similar to those of neighboring blocks that belong to
background with different movement. Fig. 3-4 (d) shows the interpolated frame
when MAP is used, and broken artifact is generated owing to some parts of the object
generated with the erroneous motion vectors. Fig. 3-4 (e) shows the interpolated one
when the alternative motion vector with BMA is used. The interpolated frame with
the alternative motion vector preserves well the shape of the ball. This proves that
the efficiency of the preservation of the motion vector of small objects with the

alternative motion vector obtained by the BMA.

(d) (€)

Figure 3-4 Effect of over-smoothing of MAP and the alternative motion vector

with BMA.

(a) The first frame, (b) The second frame, (c) The scaled motion fields with the
alternative motion vectors obtained by BMA (the blue arrows are the alternative
motion vectors; the red arrows are the motion vectors of blocks obtained by MAP),
(d) The interpolated frame without the alternative motion vector, (¢) The interpolated

frame with the alternative motion vector
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Fig. 3-5 presents an example of the alternative motion vector for the detected high
cost pixels. Figs. 3-5 (a) and (b) show two original frames. In Fig. 3-5 (c), each block
represents a top level block at the top pyramid level, it is scaled to a corresponding
64x64 block at the bottom pyramid level. The blue and red arrows represent the motion
vectors obtained by the conventional BMA and MAP, respectively. The blue dots
denote high-cost pixels. The yellow arrows show the alternative vectors represent the
movement of the detected high cost pixels. The small tennis ball moves to the upper
right corner. However, this movement is dismissed by the dominance of the
background (grass) in the block. If only the motion vector obtained by the BMA or
MAP is propagated, the true motion of the tennis ball cannot be found at the bottom
layer. Then, the tennis ball can be missed or exist with the deformed shape in the
interpolated frame as shown in Fig. 3-5 (d). With the proposed alternative vector, the
true motion vector of the tennis ball is persevered and propagated to the bottom
pyramid level. Therefore, it guarantees that the correct motion vector of the tennis ball
can be used for frame interpolation that generates the intermediated frame as shown in

Fig. 3-5 (e).
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Figure 3-5 Effect of down-sampling and the alternative motion vector with the

detected high cost pixels.

(a) The first frame, (b) The second frame, (c) The scaled motion fields with the
alternative motion vectors obtained by the second motion estimation for the high
cost pixels (the yellow arrows are the alternative motion vectors, the blue arrows are
the motion vectors of blocks obtained by BMA, the red arrows are the motion vectors
of blocks obtained by MAP), (d) The interpolated frame without the alternative

motion vector, (¢) The interpolated frame with the alternative motion vector
3.5.2. Performance Evaluation

The objective quality of the proposed algorithm is compared to that of the MAP
algorithm in [9] in Table 3.1 which shows the comparison of the PSNR. The
improvement achieved by the proposed algorithm is about 0.42 dB on an average.
Fig. 3-6 presents the comparison of the subjective image qualities of the previous

work in [9] and the proposed method. The first column represents the ground-truth
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frames, the second column shows the interpolated frames of the previous work in [9],

and the third one shows the frames generated by using the proposed algorithm with

the alternative vector. In the MAP algorithm, there are broken artifacts in the

interpolated frames because the motion vectors of some parts of the small balls are

lost. The proposed algorithm reduces the broken artifacts significantly in comparison

with the MAP algorithm. The proposed algorithm preserves the shapes of the small

object because the motion vectors of the whole parts of the small objects are

estimated and preserved by the alternative vectors.

Table 3.1 PSNR comparisons between the MAP algorithm [9] and the proposed

method

Test
sequence
Rim ball
Tennis ball
Basketball
Soccer ball

Average

PSNR (dB)
The MAP Proposed Improvement
algorithm [9] method
35.30 35.83 0.53
34.71 34.96 0.25
29.06 29.46 0.40
38.97 39.48 0.51

0.42
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(a) (b) (c)

Figure 3-6. Visual comparison between the previous MAP algorithm [9] and the

proposed method

(a) Ground truth, (b) MAP [9], (¢) The proposed
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Chapter 4. Semi-Global Accurate Motion

Estimation for a Repetition Pattern Region

4.1. Problem Statement

The previous methods for motion estimation of a repetition pattern region, use a
local approach that estimates or refines the motion vector of a repetition pattern block
by using only the information from the block itself and its neighbors. These methods
sometimes miss the corrected motion vector because multiple similar local minima
exist in the search space of the matching cost for motion estimation. This thesis
tackles the multiple local minima problem by using a semi-global approach that
obtains an accurate motion vector for a repetition pattern region. The idea of the
proposed algorithm comes from the following observation. Repetition pattern blocks
share the same motion vector that is the motion vector of the whole repetition pattern
region. Therefore, the blocks in a repetition region can be merged to form a repetition
pattern region and a single motion vector is derived for the merged region. The larger
the repetition region is, the more accurate the estimated motion vector is. This
merging based method obtains a very accurate motion vector at the cost of the
increased memory bandwidth and large memory buffers to store pixels of the region
and save the pixel differences. Therefore, the proposed algorithm uses a semi-global
approach in order to replace the global approach that estimates the motion vector of
the whole region. As a result, the semi-global approach reduces the computational
complexity while maintaining the accuracy of motion estimation. The proposed

algorithm is the first attempt to adopt the semi-global approach to estimate the
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motion vector of the repetition pattern blocks. It efficiently handles multiple local

minima problem of repetition pattern blocks.

4.2. Objective Function and Constrains

Because a local approach cannot handle multiple local minima problem of
repetition pattern blocks, the motion vector field obtained by previous correction
methods still include many noisy and unreliable motion vectors as shown in Fig. 4-
1(b). Observation of the example image shows that the repetition pattern blocks share
the same motion vector that is the motion vector of the whole repetition pattern
region. Therefore, the repetition pattern blocks can be merged together and the
motion vector is derived for the whole region. Motion estimation for the whole
region can obtain an accurate motion vector because it exploits the global property
of the movement of the repetition pattern region. However, the motion estimation
for a large region consumes very large hardware resources, i.e. a repetition region
size is 256x128, at each search position i, it has to fetch 32 768 reference pixels to
compute a SAD(i) value. Consequently, it takes many cycles to load pixels from
memory. Therefore, it is necessary to find another way to compute the motion vector
for a repetition pattern region without additional search operation. In other words,
the motion vector of the whole region is derived by exploiting the global property to

achieve good accuracy but using local approach to reduce computational complexity.

Objective function is to find a motion vector for the repetition region

MV'region = argmin{SAD(u)} for pixels in the region, u € seach range (4.1)
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Constrains: Complexity is similar to Block Matching Algorithm (BMA) for a small

8x8 block.

4.3. Elector based Voting System

The most frequent motion vector among estimated motion vectors of repetition
pattern blocks may be the representative motion vector for the whole region.
However, the motion vectors of repetition pattern blocks are unreliable, and
consequently, the derivation of the motion vectors from unreliable ones may also be
unreliable. Fig. 4-1 shows an example of the estimated motion vector field obtained
by full search block matching algorithm. Fig 4-1(b) shows that the motion vector
field includes many wrong noisy motion vectors in the repetition pattern regions.
The most frequent motion vector is (6, 15) but it is not the correct motion vector of
the repetition pattern region. In fact, the ground-truth motion vector is equal to (6,
0). The derivation of the motion vectors by observing their histogram among the
blocks in the repetition region may generate an accurate motion vector without an
addition search operation. The proposed algorithm that combines the multiple
similar local minima characteristic of the repetition pattern blocks and global
property of the movement of the repetition pattern regions together to make the

reliable derivation of the correct motion vector.
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(a) (b)

Figure 4-1 Example of motion vector field for repetition pattern estimated by a

local approach.
(a) Overlaid original frames, (b) Estimated motion vector field

This conventional method to build a histogram of MVs is the same as an elector

based voting system

Given a repetition region, contain n blocks

block 1: motion vector mv; = argmin{SAD:(u)} for u &search range, becomes the

elector of block 1

block 2: motion vector mv, = argmin{SAD(u)} for u &search range, becomes the

elector of block 2

and so on, block n: motion vector mv, = argmin{SAD(u)} for u &search range,

becomes the elector of block n

And then, mvy, mvz..., mv, are used to build a histogram of MVs. The drawback
of this elector based voting system is the sub-optimization is decided for each block
separately. Consequently, the global optimal cannot estimated accurately from the
solutions obtained by the sub-problems for component blocks. In addition, these sub-

optimizations are sensitive because many ambiguous values, owing to block size is
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small, number of pixels are not large enough in order to verify the estimated motion
vector reliable or not. Consequently, the motion vector field are noisy, contains many

inaccurate motion vectors as shown in Fig. 4-1b.

4.4. Voter based Voting System

The proposed algorithm assumes that the global minimum of the matching cost of
the entire repetition pattern region corresponds to one of the local minima of the
blocks in the repetition region. Therefore, the motion vector of the repetition region
can be obtained from the motion vector candidates of the blocks in the repetition
region. Based on the above assumption, this thesis proposes a novel algorithm that
builds a histogram of motion vectors from reliable ones obtained from a voter based
voting system algorithm. The proposed algorithm consists of two steps. Step 1 makes
a histogram of the motion vector candidates that are obtained during the motion
estimation for individual blocks in the repetition region. Step 2 selects the most
frequent motion vector candidate in the histogram to be the final motion vector of
the entire repetition region.

In the proposed voter based voting system, the algorithm delays the sub-
optimization of each block to the second stage that preserves the optimal solution of
the optimization for the whole repetition region. The below is a description about the
proposed voter based voting system.

Given a repetition region, contain n blocks

block 1: list of motion vector candidates [mv?; , mvZ, mv3; , ..., mv!%] = multiple

argument local min{SAD:(u)} for u &search range, becomes the reliable voters of

36 1



block 1

block 2: list of motion vector candidates [mv’; , mv%, mv®; , ..., mvi%] = multiple

argument local min{SAD,(u)} for u &search range, becomes the reliable voters of

block 2

and so on, block n: list of motion vector candidates [mvi, , mvZ,, mv3, | ..., mvi%]

= multiple argument local min{SADx(u)} for u &search range, becomes the reliable

voters of block n

In this manner, all reliable local MV candidates are preserved and used to build a
histogram of MVs. Consequently, it removes sensitive sub-optimizations of each
repetition block.

The details of the proposed algorithm are presented in Fig. 4-2. At the beginning
of Step 1, the proposed algorithm estimates multiple smallest local minima, or a
Motion Vector (MV) candidate set for each block. In order to avoid a local minimum
with a relatively large value, the algorithm limits the maximum number of local
minima to 10. If the number of the MV candidates is smaller than 10, the algorithm
continues searching a local minimum pushing it to the MV candidate set. If 10 MV
candidates are in the set and a new local minimum is found, the proposed algorithm
compares the local minimum value to the maximum value among the local minima
in the MV candidate set, denoted by MAX_VALUE. If the local minimum value is
smaller than MAX_VALUE, then the new local minimum is pushed to the MV
candidate set. In this manner, all local minima inside the MV candidate set are
guaranteed to be the smallest ones. The next step detects whether the block belongs

to a repetition pattern region or not, by using the integral projection method
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Step 1: Make MV Histogram of MV candidates
1.1. Initialization: All bins in the MV histogram are empty

1.2.Build an MV set (or Top 10 (if enough) smallest local minima) for each
block

Core Algorithm
For (each block k)
Initialization: MV Set, = {Empty}
Loop over search range

1.2.1. Find a local minimum

1.2.2. Push the local minimum into the MV Sety or Not
if (size_of(MV Sety) < 10)
{

push the local minimum into the MV Seti

else

find MAX VALUE = max(local minima in Mv Sety)
if (the local minimum < MAX VALUE)
{

remove MAX VALUE out of MV Sety

push the local minimum into the MV Setx

}

Check the block is in a repetition region or not

If (block Kk is a repetition block)

Push the motion vectors in the MV Set into the corresponding bins
Step 2: Choose the representative of the region
- The most frequent MV candidate in the MV Histogram

Figure 4-2 The proposed algorithm
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presented in [24]. Finally, a motion vector histogram is generated and then the most
frequent motion vector is selected as the representative motion vector for the whole

repetition region.

Step 1 exploits the property of multiple local minima in a repetition pattern block
while Step 2 represents the global property of a repetition region. In other words,
Step 1 improves the reliability of the voting process in Step 2, and consequently,
increases the accuracy of the most frequent MV candidate obtained by Step 2. For
illustration of the proposed algorithm, an example with five blocks (N = 5) is
presented next. Suppose that the MV candidate set for five blocks are obtained as

follows:

MV Sety = {[-2,-4], [-2, 0]}
MV Set, = {[-6,-4], [-2, 0]}
MV Sets = {[-2,-4], [-2, 0], [2, 0], [8, O]}
MV Sets = {[-6,-4], [-2, 0], [-2, 2], [4, 2]}

MV Sets = {[-2,-2], [-2, 0], [8, O]}

Then, the histogram of MV candidates are as follows:

MV histogram = {[-6,-4], [-2,-4], [-2,-2], [-2, 0], [-2, 2], [2, O], [4, 2], [8, O]}
Corresponding counts: {2,2,1, 5,1,1, 2}

In this example, the most frequent motion vector is [-2, 0] derived five times in the

motion estimations of all the blocks in the repetition region

Additional memory buffers for the proposed algorithm
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In step 1.2.1, the proposed algorithm saves eight neighboring SAD values to find
a local minimum. In addition, maximum ten motion vector candidates are stored for
each block. For the motion vector histogram, the maximum of the number of the
MVs in the MV histogram is equal to the size of the search range. In other words,
the size of the MV histogram is 33x33 = 1089 MVs. Assuming the raster scan search,
the proposed algorithm does not need to save MVs. Instead, it just saves the indices
(or positions) of the MVs in the search range because the algorithm can derive the
MVs from their indices. The only information that needs to be saved is the frequency
count values for the MV candidates in the MV histogram. For a full HD frame with
the block size of 8x8, the number of the blocks is 32,400. In the worst case when all
blocks belong to a repetition region, the frequency count value can take the value of
32,400, and therefore it requires 15 bits to save each frequency count value, or 2
Bytes. Totally, for all MV candidates, the proposed algorithm requires 2 * 1089 ~ 2
KB, which is relatively small when compared with the memory size to store the
original image. Therefore, the proposed method obtains the objective function and

satisfy the hardware resource constraints.

4.5. Experimental Results

The performance of the proposed algorithm is shown in Fig. 4-3. From two
original frames in Fig. 4-3(a), the algorithm estimates the initial motion vectors of
the blocks by using exhaustive full search-based block matching, shown in Fig. 4-
3(c) and detects repetition pattern blocks presented in Fig. 4-3(b). The corrected
motion vector field by the proposed algorithm is shown in Fig. 4-3(d) and the whole

repetition region shares the same motion vector that is the representative motion
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vector of the region. It is accurate and equal to the ground truth-value. Therefore, the
interpolated frame generated by the corrected motion vector field (see Fig. 4-3 (f))
is clearer than the interpolated frame generated by the noisy motion vector field

before correction (see Fig. 4-3(e)).

()

Figure 4-3 An example result of the proposed method

(a) Overlaid original frames, (b) Detected repetition pattern blocks, (c) Initial
motion vector field by full search, (d) Corrected motion vector field by the proposed

algorithm, (e) Interpolated frame by using (c), (f) Interpolated frame by using (d)

The proposed algorithm is compared with the previous local-based method in [25].
Simulation is conducted with three standard datasets, Bus, Mobile and Calendar
sequences which include repetition regions. The PSNR is used as the measurement
metric for objective comparison. The simulation result is shown in Table 4.1 which

shows the proposed algorithm outperforms the previous method significantly by
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around 2.59 dB.

Test

sequence

Bus
Mobile
Calendar

Average

Subjective comparisons are presented in Fig. 4-4 in which the left column presents
the interpolated frames by the previous method in [25]. The interpolated frames
generated by the proposed algorithm are shown in the middle column. The last
column corresponds to the ground truth frame. In the previous method in [25], the
interpolated frame is blurred and unclear. On the other hand, the proposed algorithm

estimates the motion vector of repetition regions accurately, and consequently,

Table 4.1 PSNR comparison.

Local based

algorithm [25]
PSNR A

(dB) (dB)
24.72 2.23
26.16 0.67
28.80 4.86
26.56 2.59

Proposed
algorithm
PSNR
(dB)
26.95
26.83
33.66

29.15

generates the output clearer than the previous method does
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Figure 4-4 Subjective comparison between the previous and the proposed algorithms

(a) The previous method [25], (b) The proposed algorithm, (c) Ground truth
First row: Mobile sequence — frame 11, Second row: Bus sequence - frame 33,

Last row: Calendar sequence — frame 301
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Chapter 5. Multiple Motion Vectors based Motion

Compensation

5.1. Problem Statement

In previous motion compensated frame interpolation algorithms, a Sum of
Bilateral Absolute Difference (SBAD) is usually applied as the metric for the
selection of motion vector candidates that cross over the same block in the
intermediate frame, the motion vector with the minimum SBAD is selected as the
final one of the interpolated block. A problem with this method is that it will select
wrong motion vector even with the smallest value of SBAD because the minimum
SBAD doesn’t guarantee that it represents the truth motion vector of the interpolated
block. For example, at smoothness areas in images where there exist multiple local
minima, it causes many ambiguous motion vectors. In order to reduce the risk of the
wrong selection from the SBAD metric, this thesis proposes a new bidirectional
motion compensation frame interpolation (MCFI) algorithm that contains a new
metric and a novel non-selective approach that preserves motion vector information
from all overlapped projected blocks. Firstly, forward and backward motion vector
fields are projected into the interpolated frame in order to generate bi-directional
motion vectors of the interpolated blocks. The proposed method preserves all motion
vectors of overlapped projected blocks for each interpolated block. And an adaptive
weighted motion compensation is done for interpolated blocks correspond to their
own preserved motion vectors. The weighted coefficients are computed by using a
comprehensive metric that composes of distance or overlap area, matching cost and

44



smoothness cost correspond to the preserved motion vectors. Holes are filled by

vector median filter of the motion vector of non-hole neighbor blocks.

5.2. Adaptive Weighted Multiple Motion Vectors based

Motion Compensation

5.2.1. One-to-Multiple Motion Vector Projection

.. v
s project
Existing frame Interpolated frame
(frame t-1) (frame t)

Figure 5-1 Motion Vector Projection

Fig. 5-1 shows an example of the forward motion vector projection. The projected
block is, in general, not aligned with the interpolated block as shown in the figure.
The shaded block in the center of the frame t — 1 represents the original block to be
projected whereas the shaded block at frame t represents the projected block. Note
that this projected block is overlapped with up to four blocks in the interpolated
frame. In conventional methods, only the interpolated block that is nearest to (or
most overlapped with) the projected block will takes the motion vector of the
projected block, there is no motion vectors for the other overlapped interpolated

blocks. In other words, the conventional methods do winner take it all. In this context,
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that is called as a one-to-one projection. The proposed method in this thesis will do
one-to-multiple projection. In other words, all overlapped interpolated blocks will
share the same motion vector of the projected block. Consequently, it alleviates
blocking artifact between the interpolated blocks. In addition, it also reduces the
possibility of hole blocks that are blocks without motion vector in the interpolated

frame.

After accumulating all projected blocks, in the case when an interpolated block
(block in interpolated frame) has multiple projected blocks, conventional methods
usually select one block (the best according to a selection metric) among multiple
candidates. This selection loses motion vector information of un-selected ones that
may have a chance to make a better motion compensation in their overlap areas. In
addition, the selected projected block just covers its overlap area within the
interpolated block, and consequently, the non-overlapped area that belongs to other
projected blocks may be interpolated with wrong interpolated pixels, as shown in

Fig. 5-2 (a).

(@) (b)
Figure 5-2 Projected blocks of a interpolated block.

(@) An example of multiple-projected blocks of the interpolated block, O
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(Overllaped block)
(b) An example of non-projected block of the interpolated block, H (Hole block)
In Fig. 5-2(a), the red center block is the interpolated block with multiple-projected
blocks (other color blocks). In Fig. 5-2(b), the red center block (or Hole block) is the

interpolated block without any projected blocks (surrounding black blocks).

Figure 5-3 An example of the adaptive weighted mutiple motion vector based MC.

This thesis proposes a new motion compensation that uses all the motion vectors
of the projected blocks that are overlapped with the target interpolated block. The
contribution of each motion vector depends on the relevance to the interpolated block;
that is evaluated by the measure metric to be discussed in the next subsection. As a
result, a weighted sum of the interpolated pixels is the final interpolated pixel as
follows:
fi(x) = 3 ¥, Normalized weight(#;) * {f—1(x — %) + frra(x + )} (5.1)

where v; is the bi-directional motion vector of the interpolated block, N is number
of bi-directional motion vectors of the interpolated block. Normalized weight(%;) is
computed as Eq. 5.6 explained in the next subsection. Fig. 5-3 shows an example of
the proposed MC. In this example, the interpolated block has three projected blocks,
corresponding to three motion vector candidates vi, vz and vs. With each candidate,

the motion compensation step generates individual interpolated pixels. The final
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interpolated pixels are a weighted sum of three above interpolated pixels.

5.2.2. A Comprehensive Metric as the Extension of Distance

For each overlapped projected block, its distance to the interpolated block is

defined as the displacement between their center points:

distance(l_i) = ”posprojected—block - posinterpolated—block” (52)

where POSprojected-block, aNd POSinterpolated-block are the center positions of the projected
block, and the interpolated block, respectively. This distance decreases as the size of
the overlapped area increases. The motion vector ¥ is not always correct, it depends
on the accuracy of motion estimation algorithm, in case of a wrong motion vector v,
it can cause the wrong projected block even if the distance value is small. Therefore,
only the distance information is not enough to find the best-projected block for the
corresponding interpolated block. We need a more comprehensive metric that
contains distance as the key component as well as other terms to cover reliability,
smoothness of the motion vector fields.

A comprehensive metric consists of distance, matching cost and smoothness cost

as follows:

METRIC(¥ )= distance(v )+ki * cost(v) (5.3)

where cost(v) = SAD(¥) + k, * smoothness(v)

— 1 — —
= SAD(W) + kp * X4 IIV — Vil (5.4)

cost(?) is the total cost that presents the reliability and smoothness of the estimated
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motion vector. SAD(v) is Sum of Absolute Difference between each pixel in the
original block and the corresponding pixel in the matching block that corresponds to
the motion vector ¥, v; is neighbor motion vectors of ¥, v is the estimated motion
vector of original block, ki: and ko are normalization parameters. The proposed
metric is a comprehensive one that contains distance that presents accuracy of block
tracking, matching cost (SAD) shows the reliability of the block tracking and
smoothness cost preserves smoothness constraint for true motion vector field. The
smaller the metric is the better estimated motion vector is. In other words, the motion
vector candidate with a small value of the metric will take more contribution than
the one with a large value of the metric. The contribution of each candidate is
represented by a weighted coefficient that is an inversion of the metric as shown in
Eqg. 5.5. Due to the coefficients computed by Eq. 5.5 can get the value outside the
interval of [0, 1] therefore they should be normalized to take a value inside the range

between 0 and 1 as shown in Eq. 5.6.

weight(#;) = 1/ METRIC(%)) (5.5)
. . 5\ _  weight(¥;)
Normalized weight(v;) = W(SG)

5.3. Handling Hole Blocks

The hole block, the interpolated block has no projected block as shown in Fig. 5-
2(b), will be filled by a vector median filter of non-hole neighboring blocks as shown
in Fig. 5-4, where v, V2, v3 and v, are available up, left, right and down neighbor
non-hole blocks of the current hole block. The number of the available neighbor non-

hole blocks is up to four because, in large hole areas, some of them are not always
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available.

e = argminZiy = vi || (67

where N is number of available non-hole blocks.

Hole block

S Non-hole

...... neighbor blocks

Figure 5-4 Hole blocks handling.

5.4. Framework of the Proposed Motion Compensated Frame

Interpolation

The proposed motion compensation method shown in Fig. 5-5 consists of
following steps. In the first step, the proposed method projects forward and backward
motion vector fields obtained from unidirectional motion estimations into the
interpolated frame. Next, for each projected block, compute a distance between it
and its overlapped interpolated blocks, and then a comprehensive metric as the
extension of the distance shown in section B is computed by the combination of
distance, matching cost and smoothness cost. If an interpolated block has multiple
overlapped projected blocks, a non-selection adaptive-weighted multiple motion
vector - motion compensation is implemented with the weighted coefficients are
computed as the inversion of the comprehensive metric obtained in the previous step.

In case an interpolated block has no overlapped projected block, a vector median
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filter is applied to its available non-hole neighbor blocks to generate the motion

vector of the hole block and do conventional bi-directional motion compensation.

Forward MVF Backward MVF

l |

Forward MVF Backward MVF
projection projection

v v

Compute distance and comprehensive
metric for projected blocks

l

Accumulate projected MVs for
interpolated blocks

A 4

An interpolated block has

many MVs one MV no MV

Hole
handling

Adaptive weighted
multiple MV - MC

l

Interpolated Frame

Single MV
-MC

Figure 5-5 The proposed motion compensation method diagram

5.5. Experimental Results

To demonstrate the performance of the proposed method, we use nine test
sequences, which are in the standard CIF (325x288) format and 30 frame/s. They are
Bus, City, Flower, Football, Foreman, Mobile, Mother & daughter, Soccer and

Stefan. The odd frames are removed and the new odd frames are generated from the
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even frames using MC-FRUC algorithms. We compare our method with two
conventional MC-FRUC methods, they are Dual ME [35] and Yoo [38]. Dual ME is
representative for bi-directional ME approach, meanwhile Yoo method is
representative of hybrid ME approach. In all experiments, the block size is set to 8x8,
the search range is +16 for both horizontal and vertical directions.

From table 5.1, the proposed method provides about 0.60 - 1.03 dB higher average
PSNR performance than the conventional algorithms. Specially. The performance
gaps between the proposed algorithm and the conventional algorithms are high
especially on the Bus, City, and Mobile sequences, which have smoothness areas
that motion vectors obtained ME step exist some ambiguous ones, therefore when
those wrong motion vectors are chosen, visual artifacts are produced. Meanwhile,
the proposed method uses multiple motion vectors for non-selective adaptive
weighted motion compensation with the weighted coefficients are computed by the

comprehensive metric, therefore it mitigates the effect of the wrong motion vectors.
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Table 5.1 PSNR comparisons between the proposed method and conventional
algorithms

Dual ME Yoo method | Proposed

Sequence PSNR A PSNR A PSNR

(dB) | (dB) | (dB) | (dB) (dB)

Bus 25.02 | 219 | 2571 | 15 27.21
City 31.94 | 1.71 | 32.64 | 1.01 33.65
Football 22,78 | 0.23 | 22.79 | 0.22 23.01

Foreman 32.37 | 0.16 | 32.29 | 0.24 32.53

Garden 28.75 | 1.23 | 2958 | 04 29.98
Mobile 2533 | 1.62 | 25.68 | 1.27 26.95
Mother 40.81 | 0.06 | 40.92 | -0.05 40.87
Soccer 25.96 | 0.56 | 26.26 | 0.26 26.52
Stefan 2703 | 15 | 2799 | 054 28.53

Average 28.89 | 1.03 | 29.32 | 0.60 29.92

Fig. 5-6 and Fig. 5-7 show subjective visual comparisons between the proposed
method with previous ones. In the first row, the first column presents the interpolated
frames by Dual ME [35] method, the second column shows the interpolated frames
by Yoo [38] method and in the second row, the first column shows the ones generated
by proposed method, the second column presents the ground truth frames. Previous
methods fail at smoothness regions such as texts and numbers in the advertisement
board in Fig. 5-6 and in calendar area in Fig. 5-7, meanwhile, the proposed method
gives clean interpolated frames, owing to its adaptive weighted multiple motion

vectors based MC.
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Figure 5-6 Interpolated frames by previous methods and the proposed method on

Stefan dataset

(a) Dual ME [35], (b) Yoo [38], (c) The proposed, (d) Ground truth
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Figure 5-7 Interpolated frames by previous methods and the proposed method on

Mobile dataset

(a) Dual ME [35], (b) Yoo [38], (c) The proposed, (d) Ground truth
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Chapter 6. Video Frame Interpolation with a

Stack of Deep CNN

6.1. Problem Statement

In previous CNN based methods, the objective function or loss function only
focuses on pixel difference. Consequently, it usually fails in the estimation of fast
and/or complex movement which requires a critical role of motion estimation for
high-quality frame interpolation. This thesis presents a comprehensive framework
that glue two above previous approaches into a single stacked network such that an
analysis-by-synthesis technique is used to estimate bidirectional intermediate optical
flows and later a synthesis network glues intermediate results generated by
component branches (an optical flow based branch and a CNN kernel based
synthesis branch) to synthesize the very end intermediate frame. The primary
contributions of the proposed method are summarized as follows. Firstly, the
proposed network is a bridge between two branches of approaches: optical flow
based frame interpolation and CNN kernels based frame synthesis. Secondly, the
thesis introduces a method to derive directly Intermediate optical flows that are the
flows from the intermediate frame to two original frames. This module contributes
to learning processes for both frame synthesis networks. It glues a motion-ness into
the pixel matching loss for the first CNN kernels based synthesis network and it
drives the second synthesis network with estimated optical flows. Thirdly, the
proposed network is a back-to-back stack of two network layers such that the first

network layer generates three input components for the second network layer that is
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an extended version of SepConv network [65]. Lastly, the proposed method

outperforms the previous algorithms for various datasets.

6.2. The Proposed Network for Video Frame Interpolation

6.2.1. A Stack of Synthesis Networks

Analysis by a synthesis technique is the key component of the proposed network
that stacks two synthesis networks together, a back-to-back stack to help each other
in learning operation. Consequently, it covers both the spatial property of CNN
kernels based synthesis and the temporal property of optical flow based synthesis. In
addition, it also narrows down the displacement between input frames and the final

intermediate frame for more condense synthesis.

synthesis network 1

I, .
Iy | 3 synthesis network 2
2 (15
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Four 1D kernels (Ker:". Ker". Ker>". Ker,")

Six 1D kernels (K., K,", K,", K," K,', K;")

Figure 6-1 Architecture of the proposed network
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The proposed network shown in Figure 6-1, is a back-to-back stack of two network
layers. In the first layer, a frame synthesis network generates the very first
intermediate frame. In addition, as a byproduct of the first synthesis network, four
1D kernels that encode implicitly the motion information are used to derive
intermediate optical flows by Motion Derivation module. Then, two original input
frames are warped to the intermediate time scale using the estimated intermediate
optical flows. Finally, three intermediate interpolated frames are stacked together to
feed into the second synthesis network that is a variant of the first one. The stack of
networks is used to narrow down the distance between input frames to estimate
condensed interpolation kernels. As shown in Figure 6-2, among three intermediate
interpolated frames, in term of time scale, the output of the first synthesis network,
denoted as I35 is the nearest to the real output target frame, denoted as l15. On the
other hand, the frame, denoted as I'1 s that is the warped frame from the first original
frame (l1), is slightly offset to the left side of the real output target frame, and the
frame, denoted as 1%, s that is the warped frame from the second original frame, (1.),
is slightly offset to the right side of the real output target frame. For illustration of
the timescale of intermediate frames, Figure 6-3 shows an example of a time scale
of frames, at the top row, from left to right respectively are the first original frame,

the ground truth intermediate frame, and the second original frame.
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Figure 6-2 The structure of the second synthesis network

In the second row, from left to right respectively are the corresponding
intermediate interpolated frames, 115 the warped frame from frame 1, 135 the very
first intermediate frame generated by the first synthesis network, and 12, s the warped
frame from frame 2. The last rows show the corresponding displacements between
three above intermediate results and the very end interpolated frame. From images,
we can see that among three intermediate interpolated frames, frame I35 is the
closest to the target ground-truth frame meanwhile I';5 and 12,5 frames still exist

short displacements to the target ground-truth frame. This re-assures our observation.
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Figure 6-3 An example for the time scales of intermediate interpolated frames

As shown in Figure 6-2, the second layer of the stack is the extended version of
the first synthesis network. Originally, the first synthesis network has two input
frames and four 1D kernels to convolve with the two original frames. The extended
network has three input intermediate frames, and therefore, it has six corresponding
1D kernels. The second synthesis network learns from the closest frames to
synthesize the final intermediate frame, and it also embraces both optical flow based
results and a CNN based synthesized frame. Consequently, it can cover challenging

motion scenarios, such as fast and complex movements.
6.2.2. Intermediate Optical Flow Derivation Module

In the first layer of the stack, the motion derivation module is the glue between
two branches of approaches, the optical flow based frame interpolation and the CNN
kernels based frame synthesis. This makes a chicken-egg problem solved by training
both blended tasks such that the intermediate optical flows, as denoted in Figure 6-
4, are estimated by the analysis-by-synthesis technique through convolution kernels

3 A=t ot w

- e
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of the first synthesis network. Meanwhile the estimated optical flows role as motion-
ness in the loss function of the first synthesis network makes the network learn only
pixel matching also motion constraints and scenarios. In addition, estimating the
optical flows from the synthesized intermediate frame is a target-based estimation
that can fix estimation errors from the previous methods when the intermediate frame
is unavailable to verify the accuracy of analysis. In other direction, the estimated
intermediate flows are derived from 1D kernels of the synthesis network 1.
Consequently, it glues the motion constrains into network 1. Therefore, network 1

learns not only pixel matching but also motion information.

Figure 6-4 Bi-directional intermediate flows

The coefficients of 1D kernels implicate motion information and they are
exploited to derive the flow information. The motions are encoded as the offsets of
the non-zero kernel values to the kernel center. The motion vector is the weighted
sum of the offsets. Therefore, the values of the coefficients and the offsets are used
in order to compute the motions. There are four 1D kernels, two corresponding to
the displacement of frame 1 to the interpolated frame, and the others corresponding
to the displacement of frame 2 to the interpolated frame. The optical flows for both

the forward and backward directions with a point of view from the intermediate
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frame are computed directly. The formulations of the motion derivation module are

represented by the set of equations (6.1), (6.2), (6.3) and (6.4).
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where U1 551 and viss1 are the horizontal and vertical components of the flow from
the intermediate frame to frame 1, uis>2and viss. are the horizontal and vertical
components of the flow from the intermediate frame to frame 2. offset"™, offset;"?,
offseti"?, offseti'? are the displacements of the coefficients to the center position in

the corresponding 1D kernels.

6.2.3. Warping Operations

Guided by the estimated optical flow, the proposed method warps the input frames
into the intermediate timescale. Both forward and backward warping functions,
which can be implemented using bilinear interpolation are differentiable.
Specifically, the proposed method employs forward warping that uses the estimated
optical flow to warp the input frame I, to the target locations in the intermediate
frame and obtains a warped frame 1*5. The proposed method warps the input frame
I, and generates a warped frame 125 in the same way by using backward warping.
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Two warped frames are very close to the true interpolated frame. Therefore, they are
very suitable for the inputs of the synthesis network 2 that works as a frame
refinement to generate the final intermediate frame. This step narrows down the
distances between two consecutive input frames and the intermediate one. In

addition, it is easier for the network to learn kernels when two inputs are closer.

6.2.4. Training and Loss Function

The proposed network is a stack of component subnets, as suggested by [45], [69],
in order to avoid over-fitting, the proposed network is trained end-to-end with a loss
function that contain the final loss and two intermediate losses, respectively, as the

order given in equation (6.5).

Loss function = || lus— gt [|lo + || Brs— lgt [|o + || W15— lgt |2 (6.5)

where lg is the ground truth frame, 115 = (I'15 + 1%5) / 2.0 represents for the
warped intermediate frames, 1115 and 1?5 obtained by both forward and backward
warping operations. Following [55], [65] the proposed neural network parameters
are initialized by a convolution aware initialization [61] and trained by using
AdaMax [56] with 1 = 0.9, B2 = 0.999, a learning rate of 0.001 and a mini-batch
size of 12 samples.

The training dataset provided by [53] is used to train the proposed network because
this dataset contains high-quality frames extracted from high-resolution videos
downloaded from vimeo.com. The resolution of training videos is 448x256. For data
augmentation during the training process, the trainer randomly swaps the temporal

order between input frames, framel becomes frame2 and vice versa. This makes
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dataset larger and eliminates potential priors. Pytorch library is used to train the

proposed network with two NVIDIA GTX 1080 GPUs.

6.2.5. Network Architecture

The first synthesis network is the same as Sepconv network in [55] in which two
inputs are the original frames and outputs are four 1D kernels convoluted with the
original frames to generate the very first intermediate frame. The second synthesis
network is an extended version of the first synthesis network with the inputs are three
intermediate interpolated frames therefore, six 1D kernels are trained to generate the

output pixel of the final intermediate frame as the following equation.
Ls(x,y) = KY (x,y) * K{'(x,y) * PLs(x,y) +
K3 (x,y) * K3 (x,y) * PEs(x,y) +

K3 (x,y) = K§(x,9) * Pis(x,y)  (6.6)

where PY1s(x, y), P?15(x, y), and P315(x, y) respectively are the patches centered at (x,
y) position in intermediate interpolated frames 1115, 1205 and 5. K'4, K"y, KY2, K",
K's, and K"3 are the learned pixel-dependent 1D kernels of the second synthesis

network.

6.2.6. Experimental Results

6.2.6.1. Frame Interpolation Evaluation

To evaluate the proposed network, quantitative and qualitative comparisons with
several representative state-of-the-art video frame interpolation and optical flow
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methods are made. Firstly, methods are evaluated with the interpolation category of
Middlebury optical flow benchmark that is typically used for assessing frame
interpolation methods [53]. The proposed approach is compared with the methods
that rank high with this interpolation benchmark. The first one is MDP-Flow2 [59],
an accurate optical flow method, as it still remains the highest rank among all classic
optical flow methods with the Middlebury benchmark. In addition, PWC method [67]
that is a state-of-the-art CNN based optical flow algorithm that performs top among
CNN based methods ranked with well-known Sintel optical flow benchmark [43].
To synthesize interpolated frames from the computed optical flows, the same
algorithm in [53] is used. For a CNN based frame synthesis algorithm without optical
flow estimation, recent SepConv [55] method is chosen owing to its high
performance among CNN based algorithms. The optical flow that is the byproduct

of the proposed network is also compared to state-of-the-art methods.

Table 6.1 shows the average interpolation error (AIE) used in [53] where the
interpolation error is the root-mean-square (RMS) difference between the ground-
truth image and the estimated interpolated image. The proposed network
outperforms state-of-art methods and improves the best previous method by a
significant margin (9.5%). Especially with Backyard, Basketball, Dumptruck and
Evergreen datasets which show real-world scenes, captured with a real camera and
containing real sources of noise, the proposed network is consistently the best by
notable margins. The proposed interpolation method, denoted as InterpCNN, is
ranked 3nd in Interpolation Error (with Average statistic) and ranked 1st in
Interpolation Error (with Standard Derivation (SD) statistic) among over 150

algorithms listed in the benchmark website at the submission time. For visual
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evaluation, Figure 6-5 shows the proposed interpolated frame that is a clear result
and alleviates ghost and distorted artifacts whereas they still appear in the

interpolated frames generated by the previous algorithms

Table 6.1 Objective comparisons on Middlebury benchmark
Ave. Meqg. Sch. Urb. Ted. Bac. Bas. Du. | Eve.

Propos @ 4.78 2.61 3.30 3.14 4,74 8.11 4.48 5.78 6.06
ed

CtxSyn 528 224 296 432 421 959 522 7.02 6.66

MDP- 583 289 347 366 520 102 6.13 736 7.75
Flow2

SuperS 531 251 366 291 505 956 537 669 6.73
lomo

SepCo 561 252 356 417 541 102 547 6.88 6.63
nv

DeepFl 597 298 383 362 539 110 591 714 780

ow

Note: Ave. = Average; Meq. = Mequon; Sch. = Schefflera; Urb. = Urban; Ted. =

Teddy; Bac. = Backyard; Bas. = Basketball; Du. = Dumptruck; Eve. = Evergreen
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(2) (b) (©) (d) (©) ®

Figure 6-5 Visual comparisons on Backyard sequence on Middlebury benchmark.
(a) Overlaid, (b) SpyNet, (c) PWC-Net, (d) MDP-Flow2, (e) SepConv, (f) The
proposed

Table 6.2 Objective comparisons on Vimeo90K dataset among CNN based
methods

PSNR SSIM

ToFlow 33.53 0.9668
ToFlow+mask 33.73 0.9682
SepConv 33.85 0.9697
Proposed 34.65 0.9737

The next well-known dataset for evaluating video frame interpolation algorithms is
Vimeo90K dataset provided by [63]. It contains 3,782 triplets of frames with the image
resolution of 448x256 pixels. As shown in Table 6.2, the proposed method
outperforms previous CNN based networks, SepConv [55], ToFlow [62] and its
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variant, ToFlow with a mask [62] by significant margins in term of both peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) [44].

Table 6.3 Objective comparisons on UCF101 dataset
PSNR SSIM

Sluper-Slomo [58] | 33.14 | 0.9519

PWC-Net [67] 33.76 | 0.9618

MDP-Flow2 [59] | 34.52 | 0.9660

DVF [57] 34.12 | 0.9631
SepConv [55] 34.78 | 0.9669
Proposed 34.96 | 0.9683

UCF101 dataset [68] consists of videos with the size of 256x256. This dataset is
initially used to evaluate activity recognition and later it is used to evaluate the frame
interpolation originated from [57]. UCF101 dataset includes videos with small motion.
Therefore, even with a simple interpolation algorithm such as frame average, the video
quality of an interpolated frame is sufficiently high as shown in Table 6.3. In this

dataset, the proposed network also outperforms other previous methods.
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(9)

Figure 6-6 Subjective visual quality comparison on UCF101 dataset (1)

(a) PWC-Net, (b) DVF, (c) MDP-Flow?2 , (d) SepConv, (e) Super-Slomo, (f) The

proposed, (g) Ground truth




(@

Figure 6-7 Subjective visual quality comparison on UCF101 dataset (2)

(a) PWC-Net, (b) DVF, (c) MDP-Flow2, (d) SepConv, (e) Super-Slomo, (f) The

proposed, (g) Ground-truth

The last one is a new dataset proposed in this thesis to cover the difficult cases for
frame interpolation. These cases include the movement of text objects, occlusion,
reveal, and complex movements of small and fast-moving objects. Movement of text
objects as a subtitle and logos is difficult for interpolation because the movement
often takes place in a background while its motion is in a different direction from the
background. Object occlusion and reveal are difficult in a classical computer vision
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problem such as optical flow and they are also difficult in frame interpolation. A
small object is difficult to estimate its motion and so is fast and complex movement.
This new dataset is used to measure the performance of frame interpolation
algorithms that focus on enhancement of visual quality. For explanation, this new
data set is called Hard Cases for Display (HCD) which consists of four video
sequences, each contains 60 frames with the resolution of 864x480, except the
Basketball sequence that contains 90 frames with the resolution of 416x240. The
dataset covers hard and challenging cases for frame interpolations such as scenes
with sub-title, occlusion and reveals, fast complex motions, and the movement of
small objects. Table 6.4 shows quantitative comparisons between the proposed
methods with representative state-of-the-art methods on HCD dataset. In both PSNR
and SSIM, the proposed method outperforms state-of-art methods with notable
margins. Figure 6-8, 6-9 and 6-10 show the interpolated frames for visual quality
comparisons on HCD dataset. In a fast and complex motion sequence, as shown in
the Figure 6-8, the movement of the leg of the soccer player and that of the hand of
the goalkeeper is fast and complex. The proposed method improves significantly
visual quality in comparison with the previous methods. The Figure 6-9 shows the
interpolated frames for the subtitle sequence where the text objects in the subtitle
region include artifacts. The previous methods based on optical flow estimations,
and CNN kernel based SepConv, suffer from these artifacts whereas the proposed
method successfully removes them. For small objects such as balls in the basketball
sequence shown in the Figure 6-10, the proposed network alleviates ghost artifacts

significantly when compared with the previous methods.
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Table 6.4 Objective comparison on HCD dataset

PSNR (dB)

Test MDP-Flow2 PWC-Net SepConv Proposed
sequence

Subtitle 31.83 24.82 33.83 34.73
Occlusion 29.81 28.35 30.92 32.29
Soccer 29.38 28.01 29.79 31.04
Basketball 34.36 31.11 34.84 36.14
Average 31.35 28.07 32.35 33.55

SSIM

Test MDP-Flow2 PWC-Net SepConv Proposed
sequence

Subtitle 0.9913 0.9661 0.9924 0.9929
Occlusion 0.9555 0.9476 0.9622 0.9706
Soccer 0.9599 0.9479 0.9636 0.9702
Basketball 0.9867 0.9720 0.9876 0.9902
Average 0.9734 0.9584 0.9765 0.9810
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Figure 6-8 Visual comparison of interpolated frames on soccer sequence of HCD

dataset

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (e) The proposed
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(d) (e)

Figure 6-9 Visual comparison of interpolated frames on subtitle sequence of HCD

dataset

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (¢) The proposed
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(b) (©)

(d) (e)

Figure 6-10 Visual comparison of interpolated frames on basketball sequence of

HCD dataset

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (e) The proposed
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6.2.6.2. Ablation Experiments

Optical flow evaluation. Figure 6-11 shows comparisons between the estimated
optical flow by the proposed method and the results obtained by state-of-the-art
optical flow methods including MDP-Flow?2 [59] (the top-ranked in the Middlebury
benchmark) and recent CNN based flow networks, SPyNet [70] and PWC-Net [67].
The top row shows the estimated optical flow results, and the bottom row is the
corresponding interpolated frame generated by the above flows by using the same
frame interpolation algorithm [53]. The proposed analysis-by-synthesis based
motion derivation module estimates the movement of the rotating and moving balls
accurately. The results prove that the proposed method preserves the motion of small
objects such as balls meanwhile others fail to estimate the movement of the ball.
Consequently, either two balls or a distorted ball artifact appears in the interpolated

frames generated by the previous methods.

(©) (d)
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Figure 6-11 Visual optical flow results on basketball sequence.

(a) frame 1, (b) frame 2, (c) color encoded optical flow by SpyNet, (d) color encoded

optical flow by PWC-Net, (e) color encoded optical flow by MDP-Flow2, (f) color
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encoded intermediate optical flow by the proposed network, in order from (g) = (h)
- (i)~ (k) are the interpolated frames generated by respectively above optical flows
(¢) 2 (d) =2 (e) = (f) with the same frame interpolation algorithm in [53], (1) the

ground truth intermediate frame, (m) optical flow-color mapping

Comparison between the first synthesis network and Sepconv.

The effect of the motion-ness on the performance of the first synthesis network is
also evaluated. The motion guided warping operations and the first synthesis
network are glued together by motion derivation module that adds a motion-ness into
the pixel matching loss, this makes the first synthesis network learn not only pixel
matching but also motion constrains and scenarios, meanwhile the Sepconv network
[55] is similar to a pixel or patch matching that only learns for a pixel loss. Table
6.5 and Figure 6-12 show that the first synthesis network outperforms SepConv in

both objective comparisons and subjective visual evaluations.

Table 6.5 Comparison between SepConv and the synthesis network 1

SepConv the network 1
Metric PSNR SSIM PSNR SSIM
Subtitle 33.83 0.9924  33.93 0.9925

Occlusion 30.92 0.9622 31.53 0.9666

Soccer 29.79 0.9636 30.06 0.9686
Basketball 34.84 0.9876 35.32 0.9895
Average 32.35 0.9765 32.71 0.9793

79



4 y o
e = zmw,ﬁr.—..,-’r‘}z:

(@) (b) (c)
Figure 6-12 Visual comparison between SepConv and the synthesis network 1

(a) Ground truth, (b) SepConv, (c) The network 1

Intermediate results with intermediate optical flows. Finally, a simulation result is
investigated to show how the second synthesis learns from intermediate interpolated
frames. Figure 6-13 shows the input images, intermediate results and the final output
image. Figures 6-13 (k), (1) and (m) show that the second synthesis network encodes
short displacements between intermediate networks by bridging the gap between two
branches, optical flow based synthesis and learned CNN kernels based interpolated
frames and the final one. Therefore, it detects and alleviates the errors from

intermediate results in order to generate a better final interpolated frame.
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(k) M (m)

Figure 6-13 Step-by-step analysis of layers

(a) Original frame 1, (b) Ground truth target frame to be interpolated or the
original frame 1.5, (c¢) Original frame 2, (d) The backward intermediate optical flow
from frame 1.5 to frame 1, (¢) The very first intermediate frame generated by the
first synthesis network, (f) The forward intermediate optical flow from frame 1.5 to
frame 2, (g) The warped frame from (a) by using (d), (i) The warped frame from (c)
by using (f), (h) The final interpolated frame or the output of the second synthesis
network, (k) The flow between (g) and (h), (1) The flow between (e) and (h), and (m)

The flow between (i) and (h).

Effect of Loss functions: In order to verify the effective of the total loss function
as described in section 6.2.4, we dive into the analysis of the effect of intermediate

loss components on the total loss function. As described in section 6.2.4, the total
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loss function that contains the final loss and two intermediate losses, respectively, as

the order given in below equation (6.5).

Loss function = || lus— gt ||t + || Prs— lgt [|o + || W15— lgt |2 (6.7)

where Iq is the ground truth frame, the first term is the final loss, the second term is
the intermediate loss, corresponds to the first synthesis network, and the third term
is the intermediate loss, corresponds to the motion branch, with 115 = (I*15+ 1%15) /
2.0 represents for the warped intermediate frames, 1*15 and 1215 obtained by both
forward and backward warping operations.
Now, we dive into three following cases.
Case 1: Total loss function is the same as the equation (6.7).
Case 2: Remove the third term out of the total loss

Loss function = || lus— gt [ls + | Prs—lge[ln  (6.8)
Case 3: Remove both the second term and the third term out of the total loss, the
total loss contains only the final loss.

Loss function = || l1s— Iyt ||x (6.9)
Table 6.6 compares results obtained by three above cases. From the results shown in
Table 6.6, we conclude that training the network with only a single loss at the end of
the network is not effective. In addition, intermediate losses can help to avoid over-

fitting.
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Table 6.6 The effect of loss components

PSNR (dB)
Dataset Case 3 Case 2 Case 1
UCF101 33.03 34.76 34.96
Vimeo90K 33.21 34.55 34.65
HCD 31.68 33.49 33.55

Computational Complexity.

The proposed network is a back-to-back stack of two synthesis networks with total
number of parameters are around 43.6 million. On a single Titan X (Pascal) graphics
card, it takes 0.86 seconds to generate an interpolated frame with the resolution of
1920 x 1080 and 0.55 seconds to interpolate an intermediate frame with the

resolution of 640x480.

6.3. Extension for Quality Enhancement for Compressed

Videos Task

Interestingly, the proposed video frame interpolation network is designed for
video frame interpolation or frame rate up conversion problem, but it can apply for
post-processing task of compressed videos in order to improve quality of the
compressed videos. One more time, it again shows the generalization of the proposed
network.

In this section, | call the proposed video frame interpolation network described in

section 6.1 as a MEMC network that composes of two synthesis networks, synthesis
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network 1, synthesis network 2, motion derivation and warp operations modules.
The input of the proposed MEMC network are three reconstructed frames, the
current reconstructed frame that to be enhanced and two nearest neighbor
reconstructed frames, one is the previous frame, the other is the next frame. The first
synthesis network and motion derivation module role as a motion estimation network
that will derive motion vectors between the current frame and two nearest neighbor
frames. In other hand, the warp operations and the second synthesis network role as
a motion compensation network that generates the enhanced current frame from
three inputs, the current frame, motion compensated previous frame and motion
compensated next frame. As described in section 6.1, the proposed motion
estimation network is an analysis-by-synthesis technique that estimates motion more
accurate than conventional analysis based approaches. In addition, unlike MF-Net
[73] for this task, that only work well for low delay configuration, the proposed
MEMC network can be applied for any kind of coding configuration, both low delay

configuration and random access configuration.

Current frame

| [

Previous 2 L | Enhanced
frame S = |Compensated [

2 *g Previous framg I urrent

]

g E Compensated : frame
Next 5 £ [Next frame ]
frame  Synthesis network 1 g = Synthesis network 2

t

Analysis-by-synthesis ME network synthesis based MC network

Figure 6-14 Architecture of the MEMC network

Experimental Results.
The proposed MEMC network is compared to the previous state-of-art MF-Net

[73] that is designed specifically for this task. With both low delay and random
84 .



access configurations, video sequences are compressed by the same HEVC reference
software (HM 16.0) with Quantization Parameter (QP) = 37. Table 6.7 shows
comparison on the quality of reconstructed sequence, among the baseline HEVC, the
enhanced sequence by the previous MF-Net and the enhanced sequence obtained by
the proposed MEMC network. In low delay configuration, both MF-Net and the
proposed network improve quality of reconstructed frames significantly, 0.41 dB and
0.35 dB respectively meanwhile in random access configuration, only the proposed
method enhances the quality of reconstructed frames, even MF-Net degrades the
quality of reconstructed frames compare to the baseline HEVC, owing to large

displacement between the target frame and its nearest anchor-frames.

Table 6.7 Comparison on the quality of reconstructed frames

PSNR (dB)
Low delay Random Access
HEVC MF-Net Ours HEVC MF-Net Ours
31.09 31.50 31.44 31.79 31.72 31.91

In order to have an insight analysis on how each frame is improved by each method,
Figure 6-15 and 6-16 show the examples of frame by frame comparison between
methods. The blue line denotes the PSNR of reconstructed frames obtained by base
line HEVC (or decoded by HEVC), the orange line denotes the PSNR of enhanced
frames by applying MF-Net, and the grey line denotes the PSNR of enhanced frames
obtained by the proposed MEMC network. The period of each anchor frame is four,
that means frames 0, 4, 8, 12, 16 and so on are anchor frames. Lowest quality

reconstructed frames are frames just before the corresponding anchor frames, such
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as frame 3, 7, 11, 15 and so on enhanced significantly by both post-processing
network, MF-Net and the proposed MEMC network, 0.68 and 0.57 dB increase from
baseline HEVC, respectively as shown in Table 6.10. As shown in table 6.8, the
proposed method outperforms the MF-Net at frames next right after anchor frames
such as frame 1, 5, 9, 13, 17 and so on. Because in MF-Net approach, distance from
those frames to corresponding anchor frames are asymmetric. For middle frames
between anchor frames, such as frame 2, 6, 10, 14, and so on, the MF-Net improves
better than the proposed MEMC network, 0.36 dB improvement, compare to 0.22
dB improvement obtained by the proposed MEMC network as shown in Table 6.9.

Table 6.8 Comparison at frames right after anchor frames.

Frame |1 |5 |9 |13 |17 (21 |25 (29 |33 (37 |41 |45 |49 |53 | Ave

MF- |0 |0.1]0.2|0.1(0.1/0.2]0.1/0.2]0.2|0.1]0.2|0.2(0.2|0 |O0.16

Net 4 2 |6 |2 |7 |4 (1 (3 |2 |2 |3

Propos |0.2 0.2 0.1 0.1|0.30.1|0.1{0.1|0.2{0.1|0.2(0.2|0.2 (0.3 0.22

ed 3 |5 |8 |4 7 15 14 (3 (9 |6 |9 |9 |1

Table 6.9 Comparison at middle frames between anchor frames

Frame |2 |6 |10 (14 |18 (22 |26 (30 |34 (38 |42 |46 |50 (54 | Ave

MF- 0.2 0.3 ]0.3|0.3]0.4/0.4/0.1/0.4]0.2|0.5]0.3|0.4/0.5|0.1|0.36

Net |6 |6 (7 (4 (2 |7 |7 |1 |1 |0 |6 (9 |2 |9

Propos |0.1 /0.2 0.0 {0.0 0.3 0.3|0.1{0.4|0.2 {0.4|0.2(0.1|0.0(0.1]|0.22

ed 1 |5 19 |8 |5 |3 (4 |1 (3 |1 (8 |7 (9 |3
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Table 6.10 Comparison at lowest quality reconstructed frames (frame just before
anchor frames)

Frame |3 |7 |11 |15 |19 (23 |27 (31 |35 (39 |43 |47 |51 |55 | Ave

r.

MF- 10.5/0.5|0.6 |0.6 |0.7 |0.6 |0.6 0.6 |0.6 |0.6 |0.6 0.8 |0.8 0.6 | 0.68

Net |8 (7 |5 |4 |6 (5 |6 [6 |7 (8 |9 (4 |3 |3

Propos |0.4 |0.6 |0.4 |0.5]0.5(0.5|0.5(0.6 |0.5 (0.6 |0.5 (0.6 |0.7 [0.6 | 0.57

ed |8 3 |5 |2 |4 7 12 |5 |7 |6
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Figure 6-15 An example of frame by frame comparison in low delay configuration

PSNR comparison frame by frame
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Figure 6-16 An example of frame by frame comparison in random access

configuration

Figure 6-17 shows a visual comparison between enhanced reconstructed frame
obtained by MF-Net and that obtained the proposed MEMC network. Both enhanced

frames alleviate blocking artifacts significantly in comparison to the raw
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reconstructed frame decoded by HEVC baseline, especially at regions around the

ball.

(a) (b)

(© (d)

Figure 6-17 Visual comparison between enhanced reconstructed frame obtained

by MF-Net and that obtained the proposed MEMC network

(a) Reconstructed frame by HEVC, (b) Enhanced frame by MF-Net, (c) Ground

truth, (d) Enhanced frame by Ours

6.4. Extension for Improving the Coding Efficiency of HEVC

based Low Bitrate Encoder

As the previous video coding standards, High Efficiency Video Coding (HEVC)
or H.265 [3] adopts block based hybrid video coding framework where inter
prediction, which aims to remove the temporal redundancy, serves as a critical part

of the coding framework. In particular, in B frame with random access configuration,
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inter prediction makes use of the temporal correlation between the current to-be-
coded picture and neighbor pictures in both directions, previous and future in order
to obtain a predicted version of the current picture, and then encode the residual
between the predicted values and the original values.

The Hierarchical B Coding Structure is adopted in HEVC, thanks to its coding
efficiency. A typical hierarchical B structure with 4 temporal levels in Random
Access (RA) configuration is depicted in Figure.l, where frame 0 and frame 1
(denoted as the coding order) belong to temporal level 0, which provide high quality
reference for subsequent frames. Once frames in level O are reconstructed, level 1
frame 2 can be bi-predicted by frame 0 and frame 8. Regarding level 2 frames 3 and
frame 6, both reconstructed frames of level 0 and level 1 can be used as references.
Lastly, level 3 contains frame 4, 5, 7 and 8 which reference nearest lower level
frames in both forward and backward directions, previous and future. Generally
speaking, each B picture can be predicted using the nearest pictures of the lower
temporal levels in forward and backward directions. Furthermore, as the temporal
distance between two reference frames is getting closer for higher level frames, the
prediction of the intermediate frame becomes more reliable.

In random access configuration, a temporal level is assigned to frames in order to
apply differently quantization parameters (QP) in order to satisfy the trade-off

between bitrate and the quality of the reconstructed frames.
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Figure 6-18 Graphical representation of random access configuration [33]

Figure 6-18 shows a graphical representation of random access configuration,
where highest temporal levels frames, denoted as blued frames (or non-referenced B
picture) in figure 1, they are encoded based on the prediction from reference frames
with the highest QP offset (QPofrset = 4). Consequently, it takes less bits to encode
those non-referenced B pictures. Even those frames are non-referenced frames, they
are still stored in reference buffers. Consequently, it consumes memory footprint.

Recently, with the break-through of Convolutional Neural Networks (CNN) in
video super resolution, video frame interpolation (or deep frame rate up conversion),
the quality of the interpolated frames generated by deep FRUC methods are close to
the real original frames. It suggests a combination between deep FRUC and HEVC
in order to improve coding efficiency without scarifying the quality of reconstructed
frame. In addition, in random access configuration, skip encoding highest temporal
level frames have several following benefits.

1. Approximately, reduce encoding time twice
2. Reduce memory buffer for saving non-referenced reconstructed pictures.
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3. Improve coding efficiency

4. Do not change the structures of both encoder and decoder

5. Reconstructed frames are enhanced (i.e. without blocking artifacts) with higher
visual quality

In this section, a combination between the proposed FRUC network in section 6.1.

and HEVC is described as below figure.

Frame to be
encoded . temporal_id = 1 Yes . Skip
frame
No Normal encode
At encoder side
Frame to be No
decoded . temporal_id =1 . Normal
decode
Yes Reconstructed
FRUC network praMe

At decoder side

Figure 6-19 Diagram of the integration of FRUC net into encoder/decoder sides

of HEVC
Experimental Results.

As shown in Figure 6-20 and figure 6-21, RD curve comparison between HEVC

baseline and the proposed method, in low bit rate regions, the proposed method,
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denoted as B curve, that integrates FRUC into HEVVC improves the coding efficiency

of the standard HEVC baseline (HM 16.0), denoted as A curve.
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Figure 6-20 RD curve comparison between HEVC baseline and the proposed

method (FRUC + HEVC) for vidyol sequence
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Chapter 7. Conclusion

This thesis tackles on various challenging cases for motion estimation of small
objects, motion estimation of a repetition pattern region, motion compensated frame
interpolation and video frame interpolation with a deep CNN network.

In conventional block-based hierarchical motion estimation, a motion vector of a
small object is not detected at the top level, and thereby resulting in object
deformation in interpolated frames in MC-FRUC. This thesis proposes a new
algorithm for estimating the motion of a small object in a hierarchical motion
estimation framework, which improves the image quality of an interpolated frame.
The proposed algorithm detects high-cost pixels for each block, and estimates the
motion vector of high-cost pixels. This motion vector is used as an additional motion
vector candidate in hierarchical motion estimation. The additional motion vector is
propagated to the bottom level, and thus enabling a motion vector of a small object
to be discovered at the bottom level. Experimental results for MC-FRUC show that
the proposed algorithm achieves a better performance than the MAP algorithm in
terms of both subjective image quality and objective measurements. The PSNR is
improved by 0.42 dB on average by using the proposed algorithm.

This thesis presents a novel algorithm to estimate the motion information in
repetition pattern regions. The algorithm is the first to adopt a semi-global approach
that exploits both local and global properties of repetition pattern regions. It merges
the repetition pattern blocks into a large region and makes the histogram of the
smallest local minima of all blocks in the region. The merging represents a large

region and makes the histogram of motion vector candidates that correspond to the
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smallest local minima of a SAD surface. The histogram of the motion vector
candidates is built by using a voter based voting system that more reliable than an
elector based voting system. It improves the accuracy of the motion vectors in the
repetition pattern region. The proposed algorithm is simple but effective in the
estimation of the motion vectors for repetition pattern blocks. In other word, it
obtains the objective function that is to estimate correctly the motion vector of a large
repetition pattern region with low complexity

This thesis proposes a non-selective adaptive weighted motion compensation for
frame rate up conversion algorithm. It projects both forward and backward motion
vectors into interpolated frame in order to generate bi-directional motion vectors.
The algorithm preserves completely all motion vectors of overlapped projected
blocks. And an adaptive weighted motion compensation is done for interpolated
blocks correspond to their own preserved motion vectors. The weighted coefficients
are computed by using a comprehensive metric that composes of distance or overlap
area, matching cost and smoothness cost correspond to the preserved motion vectors.
Holes are filled by vector median filter of the motion vector of non-hole neighbor
blocks. The proposed algorithm outperforms previous methods and reduce block
artifact significantly.

This thesis proposes a back-to-back stack of synthesis networks by bridging the
gap between two branches, optical flow based synthesis and learned CNN kernels
based interpolation together into a comprehensive joint framework. Intermediate
optical flows are introduced and estimated directly from learned CNN kernels by
using analysis-by-synthesis technique and vice versa the synthesis network learns

not only a pixel matching loss but also motion-ness criterion. Consequently, the

% ] O



proposed method handles fast, complex motions of small objects effectively. The
proposed network is also the first attempt to bridge two branches of previous
approaches, optical flow based synthesis and CNN kernels based synthesis into a
comprehensive network. The proposed method is evaluated with various datasets
and outperforms previous methods in both objective metrics and subjective visual

evaluations.
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