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Abstract 

Block-based hierarchical motion estimations are widely used and are successful 

in generating high-quality interpolation. However, it still fails in the motion 

estimation of small objects when a background region moves in a different direction. 

This is because the motion of small objects is neglected by the down-sampling and 

over-smoothing operations at the top level of image pyramids in the maximum a 

posterior (MAP) method. Consequently, the motion vector of small objects cannot 

be detected at the bottom level, and therefore, the small objects often appear 

deformed in an interpolated frame. This thesis proposes a novel algorithm that 

preserves the motion vector of the small objects by adding a secondary motion vector 

candidate that represents the movement of the small objects. This additional 

candidate is always propagated from the top to the bottom layers of the image 

pyramid. Experimental results demonstrate that the intermediate frame interpolated 

by the proposed algorithm significantly improves the visual quality when compared 

with conventional MAP-based frame interpolation. 

In motion compensated frame interpolation, a repetition pattern in an image 

makes it difficult to derive an accurate motion vector because multiple similar local 

minima exist in the search space of the matching cost for motion estimation. In order 

to improve the accuracy of motion estimation in a repetition region, this thesis 

attempts a semi-global approach that exploits both local and global characteristics of 

a repetition region. A histogram of the motion vector candidates is built by using a 

voter based voting system that is more reliable than an elector based voting system. 
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Experimental results demonstrate that the proposed method significantly 

outperforms the previous local approach in term of both objective peak signal-to-

noise ratio (PSNR) and subjective visual quality.  

In video frame interpolation or motion-compensated frame rate up-conversion 

(MC-FRUC), motion compensation along unidirectional motion trajectories directly 

causes overlaps and holes issues. To solve these issues, this research presents a new 

algorithm for bidirectional motion compensated frame interpolation. Firstly, the 

proposed method generates bidirectional motion vectors from two unidirectional 

motion vector fields (forward and backward) obtained from the unidirectional 

motion estimations. It is done by projecting the forward and backward motion 

vectors into the interpolated frame. A comprehensive metric as an extension of the 

distance between a projected block and an interpolated block is proposed to compute 

weighted coefficients in the case when the interpolated block has multiple projected 

ones. Holes are filled based on vector median filter of non-hole available neighbor 

blocks. The proposed method outperforms existing MC-FRUC methods and 

removes block artifacts significantly. 

Video frame interpolation with a deep convolutional neural network (CNN) is 

also investigated in this thesis. Optical flow and video frame interpolation are 

considered as a chicken-egg problem such that one problem affects the other and 

vice versa. This thesis presents a stack of networks that are trained to estimate 

intermediate optical flows from the very first intermediate synthesized frame and 

later the very end interpolated frame is generated by the second synthesis network 

that is fed by stacking the very first one and two learned intermediate optical flows 

based warped frames. The primary benefit is that it glues two problems into one 
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comprehensive framework that learns altogether by using both an analysis-by-

synthesis technique for optical flow estimation and vice versa, CNN kernels based 

synthesis-by-analysis. The proposed network is the first attempt to bridge two 

branches of previous approaches, optical flow based synthesis and CNN kernels 

based synthesis into a comprehensive network. Experiments are carried out with 

various challenging datasets, all showing that the proposed network outperforms the 

state-of-the-art methods with significant margins for video frame interpolation and 

the estimated optical flows are accurate for challenging movements. The proposed 

deep video frame interpolation network to post-processing is applied to the 

improvement of the coding efficiency of the state-of-art video compress standard, 

HEVC/H.265 and experimental results prove the efficiency of the proposed network. 

 

 

Keyword: frame interpolation, MEMC, CNN, small objects, repetition 

regions, FRUC 
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Chapter 1. Introduction 

Video frame interpolation, also called frame-rate up-conversion (FRUC) is widely 

used in various applications from computer vision to visual display applications such 

as slow motion, animation, play back, and so on. In order to increase the video frame 

rate, intermediate frames are generated from two consecutive original frames. For 

Liquid Crystal Display (LCD) display applications, high frame rate video is desired 

in order to reduce blurring, particularly for fast motion videos. Visual quality is 

improved by up-converting the frame rate of standard video captured at 30 Hz or 60 

Hz by a factor of two or more. In order to increase the frame rate of the videos, video 

frame interpolation is performed to generate intermediate frames. In addition, for 

media broadcast of movies, frame-rate up-conversion is critical to accommodate the 

frame rate difference of the industry standards. The movie industry typically operates 

with a 24 frame/second capture rate, while media broadcasts employ a 30 Hz 

standard. Indeed, there are many applications in which frame-rate up-conversion is 

necessary and high quality is important. Slow-motion is another application of the 

video frame interpolation. Instead of using expensive high-speed camera to capture 

many frames in a second, users can increase number of frames by using video frame 

interpolation algorithms that generate new frames from existing captured frames. 

 Typically, a video frame interpolation algorithm is consisting of two steps such 

that the first step is a motion estimation (ME) or optical flow (OF) estimation that 

derives the motion trajectories between two consecutive frames.  The second step is 

motion compensated frame interpolation (MCFI) that synthesizes the intermediate 
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frames by using estimated motion trajectories. Consequently, the visual quality of 

the interpolated frames highly depends on the accuracy of the estimated motion 

trajectories and performance of frame interpolation algorithm also. Even extensive 

research efforts have been made to handle challenges in video frame interpolation 

problem, there are still existing very difficult cases for frame interpolation. These 

cases include the movement of small objects, the movement of a repetition pattern 

region, text objects, occlusion, reveal, and the complex movements of fast-moving 

objects and so on. 

1.1. Hierarchical Motion Estimation of Small Objects 

 Conventional block-based hierarchical motion estimation suffers from a 

fundamental limitation in handling motion details such as the diverse movements of 

a small object in the background. In general, it is not easy to define a general size to 

classify an object into small one or not. Because a part of a large object in a block 

can also be defined as a small object when the motion vector of the small part is 

different from the motion vector of the block that includes the small part. The two 

primary reasons for the fundamental limitation in handling motion of small objects 

are image down-sampling and motion over-smoothing. As down-sampling reduces 

the size of an object at the top pyramid level, it has little effect on the motion 

estimation for a block that includes the object. Therefore, the motion of a small object 

is often neglected in the motion estimation at the top level. The over-smoothing of a 

motion vector occurs in a conventional maximum a posterior (MAP) [9], [11] – [16], 

[22], including the operation to increase the smoothness of a motion vector field. 

Over-smoothing occurs when a motion vector of a block is different from the motion 
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vectors of neighboring blocks. MAP replaces the motion vector of a small object 

block with a background motion vector, which often results in the selection of a 

wrong motion vector of a block that includes a small object.  

    Fig. 1-1 shows an example that illustrates the limitation of the conventional block-

based hierarchical motion estimation. In this example, an area of 16 × 16 pixels in 

an input image is used, and the number of pyramid levels is three. The scaled image 

of each level is partitioned into 4 × 4 blocks, and each of these blocks is represented 

by a square. A small object is represented by a shaded area while the background is 

represented by a white one. For a simple illustration, the number in each block 

represents only the horizontal component of the estimated motion vector. In this 

example, a small object moves in a different direction from the direction of 

movement of the background. The ground truth of the motion vectors is shown in 

Fig. 1-1 (a), in which a shaded block corresponds to a small object. In block-based 

hierarchical motion estimation, an input image is down-sampled and motion vectors 

are estimated from the top level. Fig. 1-1 (b) shows a top level block obtained by 

down-sampling the image area in Fig. 1-1 (a). The portion of the small object in the 

block at the top level is small; therefore, the motion of the small object has little 

effect on the motion estimation of the block. Thus, the estimated motion vector only 

represents the motion of the background whereas the motion of the foreground is 

ignored. As shown in Fig. 1-1 (c) and (d), the motion vector of the small object is 

not propagated from the higher level. Consequently, the motion vector of a small 

object is inaccurately determined, as shown in Fig. 1-1 (d), which is different from 

the ground-truth motion vector shown in Fig. 1-1 (a). The wrong motion vector 

causes the small objects to appear distorted or to disappear in the interpolated frame. 
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Figure 1-1. Example of an inaccurate motion vector of a small object in a 

hierarchal motion estimation 

(a) the ground-truth motion vector at the bottom level. (b) a block with a motion 

vector at top level; (c) blocks with motion vectors at lower levels; (d) error of the 

estimated motion vector of a small object at the bottom level 

This thesis addresses the difficulty in the motion estimation of a small object 

described in Fig. 1-1 and proposes a new hierarchical motion estimation algorithm for 

MC-FRUC with two primary contributions.  

1.2. Motion Estimation of a Repetition Pattern Region 

 In many video sequences, the existence of repetition pattern objects is frequent 

such as in urban scenes with high building, the fence of gardens, decorative images, 

and so on.  For frame rate up conversion, the derivation of an accurate motion vector 

is important to ensure the high visual quality of the interpolated frame. However, a 

repetition pattern in an image makes it difficult to derive an accurate motion vector 

because multiple similar local minima exist in the search space of the matching cost 

for motion estimation. Fig. 1-2 shows an example of the repetition pattern region 

with multiple similar local minima in the SAD surface of a block in the region. From 

  (a)         (b)    (c)      (d) 
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this SAD surface, it is hard to decide which one becomes the smallest minimal 

among many ambiguous similar local minima. Consequently, the motion vector 

obtained by the smallest SAD value become unreliable in this case.  

 

Figure 1-2. An example of a repetition pattern region and its SAD surface. 

(a) Repetition pattern region, (b) SAD surface 

 The thesis tackles the multiple local minima problem by using a semi-global 

approach that obtains an accurate motion vector for a repetition pattern region. 

1.3. Motion-Compensated Frame Interpolation 

  Even though motion estimation is a primary component to contribute on the 

performance of video frame interpolation algorithms, as described on previous 

sections, there are still existing many challenging cases that the state-of-arts 

algorithms fail to estimate motion trajectories of pixels. Consequently, artifacts 

appear in interpolated frames are un-avoidable. In order to alleviate those of un-

avoidable artifacts, in the second stage of FRUC, motion compensated frame 

interpolation algorithm can generate a better visual quality given errors in the 

estimated motion vectors. Motion Compensation (MC) algorithm is the second stage 

(a)  (b)  
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among two main elements of an FRUC algorithm. The task of MC is to generate the 

intermediate frames, given the motion vectors fields obtained from the previous step, 

motion estimation.   

 This thesis proposes a new method that uses multiple motion vectors as a tool for 

alleviating the errors of motion trajectories obtained by motion estimation step. 

1.4. Video Frame Interpolation with Deep CNN  

 Typically, a video frame interpolation algorithm is composed of two decomposed 

steps such that the first step is a motion estimation (ME) or optical flow (OF) 

estimation that derives the motion trajectories between two consecutive frames.  The 

second step is motion compensated frame interpolation (MCFI) that synthesizes the 

intermediate frames by using estimated motion trajectories. These flow-based 

methods inevitably generate ghost or blurry artifacts, owing to the errors in estimated 

optical flows. In other words, this classic approach highly depends on the accuracy 

of the motion trajectories.  

 Recently, the break-through of Convolutional Neural Networks (CNN) in 

computer vision [49, 50, 51], [52, 54, 55] allows a formulation of video frame 

interpolation as an end-to-end learning process without optical flow estimation. In 

those methods, however, the objective function or loss function only focuses on pixel 

difference.  Consequently, it usually fails in the estimation of fast and/or complex 

movement which requires a critical role of motion estimation for high-quality frame 

interpolation. A phase-based frame interpolation, proposed in [60], [61] is another 

approach to generate the intermediate frames without estimating optical flow. 
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However, similar to the above CNN based methods, the phased based approaches 

also fail in the fast movement.   

 This thesis presents a comprehensive framework that glue two above previous 

approaches into a single stacked CNN network that is composed of a back-to-back 

stack of two CNN networks. In addition, with high performance of the deep video 

frame interpolation, this thesis extends the application of the network to two related 

problems, enhance quality of compressed videos, or also called post-processing for 

compressed videos. The second extension is to improve coding efficiency of the 

latest video compression standard, HEVC/H.265 by applying the proposed deep 

video frame interpolation algorithm into HEVC. 

1.5.  Outline of the Thesis 

 This section outlines the main contributions of this thesis. The first and second 

contributions of this thesis are accurate motion estimation algorithms that handle 

very challenging cases in FRUC, such as the movement of small objects, the 

movement of a repetition pattern region, respectively. Next, a new motion 

compensation with multiple motion vectors are proposed to enhance visual quality 

of the interpolated frames. Last but not least, an end-to-end learning deep 

convolutional neural network is proposed to generate intermediate frames with high 

accuracy and outperforms previous state-of-art algorithms. The extension of this 

deep video frame interpolation algorithm for other applications such as post-

processing for compressed videos and improving coding efficiency of the latest 

video compression standard HEVC/H.265 are also presented. 



8 

 

Previous works of the mentioned problems are introduced in chapter 2. 

Chapter 3 presents the proposed method for hierarchical motion estimation for small 

objects in FRUC. 

The proposed semi-global accurate motion estimation for a repetition pattern region 

in FRUC is shown in chapter 4. 

Chapter 5 presents the proposed multiple motion vectors based motion compensation 

in FRUC. 

In chapter 6, the proposed deep video frame interpolation with a CNN network and 

its extensions to related tasks are presented. 

Finally, chapter 7 concludes contributions of this thesis. 
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Chapter 2. Previous Works 

2.1. Previous Works on Hierarchical Block-Based Motion 

Estimation  

Extensive research efforts have been made to handle the motion estimation for 

challenging cases in frame-rate up-conversion, from repetition pattern objects [17], 

[18], [19] to small objects [3]. A previous study proposes a SIFT feature-based 

optical flow in order to explore the motion vector of a small object [59]. The method 

proposed in this study successfully improves accuracy but results in higher 

computational complexity. For example, the time required to estimate the flow of an 

urban test sequence in the Middlebury test bench is 342 s. Another method uses 

variable block sizes at motion boundary blocks to provide a dense motion vector 

field [4]. This method succeeds in deriving accurate motion vectors at boundary 

blocks but it requires extensive computations. In the method proposed by [5], a pixel-

based motion vector selection is derived from neighboring block-based motion 

vectors. The motion vectors of the pixels are generated from the estimated motion 

vectors of the blocks that include them. The pixel-based estimation further improves 

the accuracy of motion estimation, although small objects may remain undetected if 

the motion estimation for a block is inaccurate. Recently, Jeong, Lee and Kim 

propose the use of video segmentation for estimating motion vectors of pixels [6]. 

The method can generate a dense motion vector field and successfully reduce block 

artifacts. However, the computational complexity is high owing to the derivation of 

video segmentation and graph cut algorithm. Variable block size approaches have 
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been also studied in previous works [4], [6], [7]. The method proposed in [9] 

increases the density of a motion vector field in a hierarchical manner. In other words, 

the motion vector of a sub-block is derived from the motion vector of a parent block 

and those of the neighboring blocks of the parent block. This method successfully 

reduces the computational complexity while offering a reasonable level of accuracy. 

However, it cannot reduce the motion vector errors owing to the disappearance of 

the motion vector of small objects from the motion estimation of the original blocks. 

2.1.1. Maximum a Posterior (MAP) Framework  

 Recently MAP-based motion estimation has achieved better performance than the 

conventional block matching algorithm (BMA) because it exploits smoothness 

constrains of motion fields [9], [12], [13]. The smoothness constraint on neighboring 

motion vectors can improve the estimation accuracy thanks to the property that 

motion vectors in an object do not change abruptly. The smoothness constraint is a 

key contribution of many optical flow methods [20], [21], and block based motion 

estimation methods [9], [13], [22]. In [20], Horn and Schunck propose an algorithm 

that uses a smoothness constraint as a penalty for pixel-matching scores in dense 

motion field estimation. Zach et al. compute the smoothness term with a norm L1 of 

motion vector difference between neighboring ones [21]. In recent block based 

motion estimation [9], [13], [22], smoothness constraint is used as a key approach to 

find true motion vectors.    The BMA is an unconstrained optimization; meanwhile, 

MAP applies prior probability to the optimization in order to make a smooth change 

in motion vector field. In MAP, the objective function is to minimize an energy 

function that is composed of two components. The first term is a data cost that 
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represents the block matching value or likelihood, and the second one is a 

smoothness cost that encodes a prior probability of the motion vector field. The 

combination of two components, which are likelihood and prior probability, is to 

estimate the posterior probability of the motion vector field as shown in the following 

equations: 

E (u) = SAD (u) + λ ∗ Σ𝑃(𝑢, 𝑣𝑐) with vc Є Nc               (2.1) 

𝑬(𝒖) = ∑ |𝑰𝒄(𝒙) −  𝑰𝒓(𝒙 + 𝒖)| +  𝝀 ∗ ∑ {‖𝒖 − 𝒗𝒄‖𝒗𝒄𝝐𝑵𝒄𝒙∈𝑩𝒍𝒐𝒄𝒌 ∗ 𝜽(𝒖, 𝒗𝒄)}   (2.2) 

where u = (ux, uy), is the motion vector variable, SAD(u) is the sum of absolute 

difference of the block that corresponds to u, Pc(u, vc) is the smoothness function that 

corresponds  to the motion vector difference between neighboring blocks,  Nc is a 

neighboring system of current motion vector u, and  λ is a weighting parameter.  Eq. 

(2.2) is a specific formulation of Eq. (2.1), where Ic(x) is the intensity of a pixel at 

position x in the current block. Ir(x+u) is the intensity of the corresponding pixel 

(x+u) in a reference block, θ(u,vc) is a threshold continuity function that is equal to 

zero when the difference between u and vc is larger than a predefined threshold value, 

otherwise, it is equal to one. During the optimization of the energy function E(u), u 

varies within the search range S that is a 2-D value table, i.e (±16, ±16). The final 

estimated motion vector u  ̂ that optimizes the energy function E(u) is defined as 

following: 

𝒖̂ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒖∈𝑺{𝑬(𝒖)}    (2.3) 

 In general, MAP-based methods outperform the conventional BMA method. 

However, in areas with small objects in which the motion vectors are different from 

the motion of the surrounding background, over-smoothing in motion vector 
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typically occurs. In these areas, BMA tends to yield more accurate motion vectors. 

Thus, this thesis proposes an algorithm for using motion vectors obtained by BMA 

for the motion estimation of small object areas. 

2.1.2. Hierarchical Motion Estimation  

 For real time operation of LCD TVs, an FRUC algorithm must be sufficiently fast 

to process 60 frames per second. In order to satisfy this strict requirement, a 

hierarchical motion estimation framework has been used for reducing the 

computational complexity [8], [9], [10]. To obtain precise motion vector field, the 

MAP method is used at the top level [9]. Subsequently, the top motion vectors are 

propagated to the bottom level to produce finer motion vector fields. In this manner, 

the images at all pyramid levels are partitioned into blocks of the same size. To 

estimate motion vector of a block at a level, three motion vectors from the upper 

level are used as its initial motion vectors. The first one is from its parent block, and 

the other two are from the blocks both horizontally and vertically adjacent to the 

parent block. Fig. 2-1 illustrates an example. The full search around the three initial 

motion vectors with a search distance of ±d pixels are performed to choose the best 

motion vector in three search windows. The motion estimation for each layer is 

recursively performed in this manner from the top to the bottom level in the image 

pyramid. If there are missing motion vectors at the top level, the propagation cannot 

discover the missing ones at the bottom level. This is the primary drawback of the 

conventional hierarchical motion estimation. Thus, this thesis proposes a new 

hierarchical motion estimation algorithm that discovers the missing motion vector of 

small objects at the top level and propagates it into the bottom level. With this 
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manner, the proposed algorithm successfully preservers the motion vector of small 

objects in hierarchical motion estimation framework. 

 

Figure 2-1 Hierarchical Motion Estimation [9]. 

2.2. Previous Works on Motion Estimation for a Repetition 

Pattern Region 

 For frame rate up conversion, the derivation of an accurate motion vector is 

important to ensure the high visual quality of the interpolated frame. However, a 

repetition pattern in an image makes it difficult to derive an accurate motion vector 

because multiple similar local minima exist in the search space of the matching cost 

for motion estimation. A number of previous algorithms have been proposed to 

reduce the matching errors in the estimation of motion vectors in repetition regions. 

In [24], an exhaustive full-search motion estimation is used to find solutions for 

repetition pattern regions. In [25], the motion vectors of repetition pattern blocks are 

corrected by recursive average operations. In [26], the spectral image is analyzed to 

Parent block 

Nearest vertical block 

Nearest horizontal block 

Level l 

Level l + 1 
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estimate the motion vectors for repetition regions. In [27], a new design methodology 

is explored by using suboptimal measures for two different motion estimation 

algorithms. In [28-31], a Maximize-A-Posterior (MAP) based method is proposed 

for motion estimation. The matching cost is regularized by a smoothness constraint 

in order to improve the accuracies of motion vectors. These previous methods use a 

local approach that estimates or corrects the motion vector of a repetition pattern 

block by using only the information from the block itself and its neighbors. These 

methods sometimes miss the corrected motion vector because multiple similar local 

minima exist in the search space of the matching cost for motion estimation. 

2.3. Previous Works on Motion Compensation 

 Conventional MC-FRUCs utilize two approaches for motion trajectory estimation: 

unidirectional motion estimation [9], [23], [34] and bi-directional motion estimation 

[35] – [37]. The former approach is based on a typical motion estimation algorithm 

that divides one frame into non-overlap blocks, estimates the motion vector of each 

block by searching the best matching block in the other frame, and finally generates 

the intermediate frame that composes of the blocks resulting from the motion 

compensated interpolation of the corresponding blocks along the estimated motion 

vector. The main problem of this approach is that the interpolated blocks may not be 

contiguous in the interpolated frame, that is, some blocks are overlapped while some 

areas are not filled with the interpolated blocks resulting in a hole in the interpolated 

frame. An overlap is generated by crossing of multiple motion vectors while a hole 

results from no motion vectors crossing at the blocks in the interpolated frame. In 

case multiple motion vectors point through the same an interpolated block, an 



15 

 

expanded-block weighted motion compensation is proposed in [23] in order to 

reduce block artifact and overlap issues. In the method, from each unidirectional 

motion vector field, three kinds of intermediate images are generated to accumulate 

weighted motion compensated pixels, weighted motion compensated difference and 

contributing weights. Each kind of the intermediate image is high bit depth one 

because it accumulates contribution of all passing candidates. Therefore, the buffer 

size for storing those intermediated images is very large. In addition, the weighting 

coefficients are predefined by using a fix window size, does not relate to the accuracy 

of passing motion vectors. As a side effect, the hole shape is produced by the method 

is arbitrary, it causes challenging for hole filling problem. 

 The Overlaps and holes can be avoided by the bidirectional approach that divides 

the frame to be interpolated into non-overlap blocks before it is generated, estimates 

the motion vector of each block by searching two symmetric matching blocks in the 

two original frames. Each block has symmetric two motion vectors, one points to the 

previous frame and the other points to the next frame. However, this approach offers 

less accurate motion vectors than the former one. In addition, bi-directional motion 

estimation methods usually go along with an overlapped block motion compensation 

(OBMC) frame interpolation algorithm [32] or its variant adaptive OBMC (AOBMC) 

[36] to alleviate the blocking artifacts. However, both OBMC and AOBMC use 

motion vector of neighbor blocks, therefore they can produce over-smoothing 

artifacts as adjacent blocks have substantially different motions. 

 Recently, a hybrid approach [38] – [40] has been proposed to combine 

unidirectional ME and bidirectional MC. This approach intends to avoid overlaps 
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and holes in the unidirectional approach and at the same time to reduce inaccuracy 

in bi-directional motion field. In [38], Yoo et al estimate unidirectional motion fields 

first, then it computes bidirectional one by using scaled motion vectors of the 

collocated blocks in original frames obtained by unidirectional ME as the search 

centers with a small search range for bi-directional ME. However, mapping motion 

vectors from collocated blocks cause errors when the motion vectors are large. In 

[39, 40] projection based motion vector mapping is used to generate bi-directional 

motion vectors from unidirectional ones. In case an interpolated block has multiple 

overlapped projected blocks, a Sum of Bilateral Absolute Difference (SBAD) is 

applied as the metric for selection, the motion vector with the minimum SBAD is 

selected as the final one of the interpolated block. A problem with this method is that 

it will select wrong motion vector even with the smallest value of SBAD because the 

minimum SBAD doesn’t guarantee that it represents the truth motion vector of the 

interpolated block. For example, at smoothness areas in images where there exist 

multiple local minima, it causes many ambiguous motion vectors.  

2.4. Previous Works on Video Frame Interpolation with Deep 

CNN  

Video frame interpolation: Extensive research efforts have been made to handle 

the challenges in video frame interpolation. A typical approach in video frame 

interpolation estimates dense motion vector fields, or optical flows, between two 

original input frames and then interpolates intermediate frames guided by the 

estimated motion [47, 48, 53, 59, 62]. To synthesize an output image from the input 

frames, the estimated flows based warping operations using bilinear interpolation are 
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done first, and later the warped frames are blended together. Consequently, the flow-

based methods generate ghost or blurry artifacts when the warped frames are not 

aligned well, owing to the errors of the estimated optical flows. In order to replace 

simple blending operations, Nikaus et al. [56] propose to use a context-based 

synthesis network to generate the intermediate frames from the pre-warped frames. 

It is shown that the frame synthesis network outperforms simple blending algorithms.  

Recently, inspired by the success of applying deep learning to optical flow estimation 

[46, 67, 69, 70, 62], CNNs are used for video frame interpolation with the loss 

function to calculate the pixel difference between the synthesized one and its 

corresponding ground-truth. CNN based methods remove optical flow step and 

handle video frame interpolation as a convolution process [52, 53, 54, 55, 57, 64]. In 

other words, the network can be trained to synthesize images without explicit motion 

estimation step. Consequently, it usually fails at regions with fast, complex moving 

objects where accurate motion information is crucial for synthesis task. 

 Starting from the work by Long et. al. in [52] which employs an auto-encoder 

network, several recently-proposed deep neural networks successfully improves the 

quality of video frame interpolation. The auto-encoder architecture or U-net 

architecture used in [55], [57] extract features that are given to the sub-nets for the 

synthesis of the intermediate frame. SepConv network in [55] successfully handles 

blurry artifacts by estimating independently four 1D kernels which are then 

convolved with the input frames to generate interpolated frames.  However, SepConv 

network does not take into consideration the motion constraints among neighboring 

kernels because the kernels for each pixel are trained independently from those of 

neighboring pixels. A deep neural network is also used to directly estimate the phase 
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decomposition of the intermediate frame in [51] based on the application of the phase 

based frame interpolation which is originally proposed by Meyer et al. in [60] to 

generate intermediate frames by modifying a per-pixel phase.  

 A stack of networks: A stack of component networks is proved to enhance the 

performance of the whole network in various tasks including pose estimation [45], 

object detection [41], document image unwarping [42], optical flow [69] and so on. 

In [45], stacked hourglass networks are proposed for human pose estimation and they 

outperform long single hourglass networks as claimed by authors. In [41], the stack 

of two hourglass networks is the backbone network of CornerNet to generate features 

for two prediction modules. In [42], a stacked U-Net with intermediate supervision 

is used to directly predict the forward mapping between the warped images and the 

refined version. For optical flow, Flownet 2.0 [69] also employs a stack of several 

sub-networks and achieves a significant improvement from the previous version. 

This thesis adopts the idea of a stack of sub-networks for video frame interpolation. 
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Chapter 3. Hierarchical Motion Estimation for 

Small Objects 

3.1. Problem Statement 

 In hierarchical motion estimation, an input image is down-sampled for generating 

the top pyramid layer in which the size of an object becomes smaller than that in the 

bottom layer. Consequently, a small object typically occupies only a small part of a 

block at the top level. Therefore, the small object may be ignored in motion 

estimation, and the remaining region of a block contributes more significantly to 

motion estimation than the small object does. If the motion information for a small 

object is ignored at the top level, it cannot be recovered at the bottom level. Thus, 

hierarchical motion estimation often fails in the generation of a correct motion vector 

for a small object. However, this small object may be sufficiently large to occupy an 

entire block at the bottom level, and the erroneous motion vector of a small object 

can deteriorate the image quality in MC-FRUC. Therefore, it is necessary to discover 

and store the motion information of a small object at the top level and to pass it to 

be used for motion estimation at the bottom level. 

 This study addresses the difficulty in the motion estimation of a small object 

described in Fig. 1-1 and proposes a new hierarchical motion estimation algorithm 

for MC-FRUC with two primary contributions.  

• The hidden motion information of a small object at the top level is represented 

by an alternative motion vector candidate. The alternative candidate is 

propagated to the lower levels and used for the motion estimation of small 

objects at the bottom layer.  
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• A matching algorithm for determining the alternative motion vector is proposed. 

If pixels with high residual costs are detected in a block, the matching algorithm 

is performed for the high cost pixels, otherwise it maintains the motion vector 

estimated by a full search block matching algorithm as the alternative motion 

vector.  

 This thesis aims to propose a novel algorithm for hierarchical motion estimation that 

avoids the artifact in the region that includes a small object. Unlike the algorithm 

proposed in [9], each block at a lower level has three motion vector candidates: one 

from the motion vector of the parent block, and the other two from the motion vectors 

of the nearest neighboring blocks of the parent block in the horizontal and vertical 

directions. This thesis proposes the use of an additional motion vector candidate that 

represents the motion information of a small object at the top level. The additional 

candidate is propagated to the lower level and used for motion estimation of small 

objects. 

3.2. The Alternative Motion Vector of High Cost Pixels 

 The proposed algorithm attempts to detect a small object that has a motion vector 

different from that of the block that includes a small object. In this case, it is possible 

to have a case that the movement of a small object is different from that of the 

surrounding area in the block. The matching error of the block may be high because 

small object pixels may not have matching pixels in a reference block. In this case, 

the matching error of the pixels that belong to a small object is high. The pixel 

difference, ∆I, is defined by the following equation: 
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∆𝐼 =  |𝐼𝑐(𝑖, 𝑗) − 𝐼𝑟(𝑖 + 𝑢, 𝑗 + 𝑣)| (3.1) 

where Ic(i, j) is the intensity of the pixel at position (i, j) in the current frame. Ir(i+u, 

j+v) is the intensity of the corresponding pixel (i+u, j+v) in the reference frame. 

Vector (u, v) is the motion vector of the current block to be derived. 

 Herein, a pixel with a large pixel difference is referred to as a high-cost pixel that 

has a potential to be a pixel of a small object. If the pixel difference is larger than the 

predefined threshold, it is determined as a high-cost pixel. When a block contains 

high-cost pixels, the second full search motion estimation for the high-cost pixels is 

performed to estimate the motion vector of a small object that consists of these pixels. 

In the second motion estimation, only the matching cost of the high-cost pixels is 

considered, and thus, a motion vector of a small object can be found. A motion vector 

that represents the motion of a small object is referred to as an alternative motion 

vector.  

 Fig. 3-1 shows an example of motion estimation for a 4x4 block at the top level. 

In Fig. 4 (a), the current block includes a part of a small object that is represented in 

black, and it does a rest part of a background that is in white. In the first motion 

estimation, a motion vector of a block is estimated as +3. Fig. 3-1 (b) shows a 

matching block in the reference frame. When the current block is compared with the 

matching block, difference of the small object is high, and thus, these pixels are 

determined as high-cost pixels which are represented by shaded pixels in Fig. 3-1 

(c). In the second motion estimation, only high-cost pixels are used for computing 

SAD, and an alternative vector of -1 is derived in this example. In the proposed 
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algorithm, two motion vectors of +3 and -1 are to be propagated to the lower layers. 

If the number of layers is three as shown in Fig. 1-1, the motion vectors of +12 and 

-4 can be obtained at the bottom layer. For each block at the top level, two motion 

vectors are derived. The first one represents the motion of the block, and the second 

one represents a motion of a small object in the block. The propagation of both 

motion vectors to the finer levels allows the motion of the small objects to be 

preserved from the top layer to the bottom layer. 

 

 

 

Figure 3-1 Example of the alternative motion vector 

 (a) A current block with a small object in black pixels, (b) A matched block in a 

reference frame, (c) A determined high-cost pixels and the alternative vector 

obtained by the second motion estimation. 

 Each block has two motion vectors. One is the motion vector of the block from the 

first motion estimation, and the other is the motion vector of high-cost pixels from 

the second motion estimation. Even when no high-cost pixel exists in a block, the 

motion vector of a block can be wrong owing to over-smoothing of the MAP-based 

methods. This case may occur for a block in which all pixels belong to a small object 

with its size almost the same as the block size. In this case, the BMA can obtain a 

true motion vector of the block. However, the true motion vector can be replaced 

(a)         (b)         (c) 
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with a false one by MAP when the small object moves in a direction different from 

that of the background. In the proposed algorithm, the motion vector from the BMA 

is assigned to an alternative vector for the blocks that do not contain high-cost pixels. 

This ensures that all potential motion vectors for a small object are propagated to the 

lower layers.  

3.3. Modified Hierarchical Motion Estimation  

 In the proposed algorithm, four motion vectors from the upper level of an image 

pyramid are used as the initial motion vectors for motion estimation. The three 

motion vectors are the same as those of the conventional algorithm [9]. The 

additional candidate is the alternative motion vector discussed in the previous 

subsection. If a block at the top level includes high-cost pixels, the alternative motion 

vector is the motion vector of the high-cost pixels. Otherwise, a motion vector 

obtained by the BMA for a block at the top level is used for an alternative motion 

vector. Four motion vectors are propagated to the lower level, and then the full-

search BMA around the four motion vectors with a search distance of ±d pixels are 

performed to choose the best among the four search windows. Even when the 

alternative motion vector is not selected as the best one, it is still propagated to the 

next lower level to preserve the motion vector of the small object. Motion 

estimations for the lower layers are performed in this manner again in the image 

pyramid as shown in Fig. 3-2. At a finer layer or level l, in each current block (pattern 

fill block in Fig. 3-2), three dashed arrows represent the three conventional motion 

vectors, the other is the alternative motion vector. 
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 Figure 3-2 The Modified Hierarchical Motion Estimation   

3.4. Framework of the Proposed Algorithm  

 The proposed algorithm is shown in Fig. 3-3. First, from input frames, image 

pyramids are constructed for hierarchical motion estimation. Then, a conventional full 

search BMA is performed at the top pyramid level, and the high-cost pixels of each 

block are detected. In the next step, two operations are performed in parallel. One is a 

MAP-based motion estimation that is performed as a refinement of the BMA [9]. The 

other is a full-search motion estimation for high-cost pixels. When a block does not 

include high-cost pixels, the motion vector estimated by BMA is used for an alternative 

motion vector. Therefore, all blocks have two motion vectors. One is estimated by the 

MAP-based motion estimation, and the other is the alternative motion vector. These 

two motion vectors of the top level are propagated to the lower level in which these 

vectors are used for generating search windows. After the motion estimation of the 

level is completed, the motion vector from BMA and the scaled alternative motion 

vector for each block are propagated to the next level. The alternative motion vector is 

propagated to the next pyramid level irrespective of whether it is chosen as the motion 
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vector of the block or not, thereby guaranteeing that the motion vector of the small 

object is propagated to the bottom layer. 

 

Figure 3-3 Motion estimation of the proposed algorithm  

3.5. Experimental Results 

 For experiments, the proposed algorithm is evaluated with four full-HD video 

sequences that contain small objects: tennis ball, rim ball, basketball and soccer ball. 

For video frames in the dataset, odd frames are removed, and these frames are used 

for ground-truth frames. Motion compensated frame-rate up-conversion algorithms 

are applied to even frames to generate intermediate frames, which are compared to 

the corresponding ground-truth frames. The performance of the proposed motion 
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estimation is compared to that of the previous method that uses the MAP algorithm 

at top pyramid level and conventional hierarchical motion estimation [9]. For motion 

estimation, experiments are performed with the previous and proposed algorithms 

under identical conditions as follows: three temporally consecutive original frames 

are used for estimating both forward and backward motion vector fields as suggested 

by [9], the number of pyramid levels is four, and the block size is fixed to 8×8 for 

all pyramid levels. One block at level l is a parent of four blocks at level l + 1. At the 

top pyramid level, the search range is ±16 pixels in the horizontal direction and ±8 

pixels in the vertical direction in order to reduce search space in the vertical direction. 

At the other levels, the small search range d is ±1 for both horizontal and vertical 

directions. The image size at the top level is 240×135 pixels, at the bottom level is 

1920x1080 pixels. For frame interpolation, the algorithm in [23] is used for both 

previous and proposed motion estimations. The peak signal-to-noise ratio (PSNR) 

values of interpolated frames are used as an objective comparison metric. In addition, 

the subjective visual image quality is also compared. 

3.5.1. Performance Analysis 

 Fig.3-4 presents an example of over-smoothing of MAP approach. Figs. 3-4 (a) 

and (b) show two consecutive input frames. Fig. 3-4 (c) shows magnified input image 

that includes a small object. In this figure, white lines represent blocks corresponding 

to blocks at the top pyramid level. The blue arrows represent the motion vectors 

estimated by the BMA, the red arrows represent the motion vectors estimated by 

MAP. For the two center blocks that contain a part of the ball, the BMA estimates 

correctly the motion of the part of the ball while the MAP over-smooths it to make 
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the motion vector of the ball similar to those of neighboring blocks that belong to 

background with different movement. Fig. 3-4 (d) shows the interpolated frame 

when MAP is used, and broken artifact is generated owing to some parts of the object 

generated with the erroneous motion vectors. Fig. 3-4 (e) shows the interpolated one 

when the alternative motion vector with BMA is used. The interpolated frame with 

the alternative motion vector preserves well the shape of the ball. This proves that 

the efficiency of the preservation of the motion vector of small objects with the 

alternative motion vector obtained by the BMA. 

 

 

 

 

 

Figure 3-4 Effect of over-smoothing of MAP and the alternative motion vector 

with BMA.  

(a) The first frame, (b) The second frame, (c) The scaled motion fields with the 

alternative motion vectors obtained by BMA (the blue arrows are the alternative 

motion vectors; the red arrows are the motion vectors of blocks obtained by MAP), 

(d) The interpolated frame without the alternative motion vector, (e) The interpolated 

frame with the alternative motion vector 

(a)                (b)                              (c)           

(d)        (e)        
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Fig. 3-5 presents an example of the alternative motion vector for the detected high 

cost pixels. Figs. 3-5 (a) and (b) show two original frames. In Fig. 3-5 (c), each block 

represents a top level block at the top pyramid level, it is scaled to a corresponding 

64x64 block at the bottom pyramid level. The blue and red arrows represent the motion 

vectors obtained by the conventional BMA and MAP, respectively. The blue dots 

denote high-cost pixels. The yellow arrows show the alternative vectors represent the 

movement of the detected high cost pixels. The small tennis ball moves to the upper 

right corner. However, this movement is dismissed by the dominance of the 

background (grass) in the block. If only the motion vector obtained by the BMA or 

MAP is propagated, the true motion of the tennis ball cannot be found at the bottom 

layer. Then, the tennis ball can be missed or exist with the deformed shape in the 

interpolated frame as shown in Fig. 3-5 (d). With the proposed alternative vector, the 

true motion vector of the tennis ball is persevered and propagated to the bottom 

pyramid level. Therefore, it guarantees that the correct motion vector of the tennis ball 

can be used for frame interpolation that generates the intermediated frame as shown in 

Fig. 3-5 (e). 
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Figure 3-5 Effect of down-sampling and the alternative motion vector with the 

detected high cost pixels.  

(a) The first frame, (b) The second frame, (c) The scaled motion fields with the 

alternative motion vectors obtained by the second motion estimation for the high 

cost pixels (the yellow arrows are the alternative motion vectors, the blue arrows are 

the motion vectors of blocks obtained by BMA, the red arrows are the motion vectors 

of blocks obtained by MAP), (d) The interpolated frame without the alternative 

motion vector, (e) The interpolated frame with the alternative motion vector 

3.5.2. Performance Evaluation  

 The objective quality of the proposed algorithm is compared to that of the MAP 

algorithm in [9] in Table 3.1 which shows the comparison of the PSNR. The 

improvement achieved by the proposed algorithm is about 0.42 dB on an average. 

Fig. 3-6 presents the comparison of the subjective image qualities of the previous 

work in [9] and the proposed method. The first column represents the ground-truth 

 

         (a)           (b)                (c) 

         (d)                         (e) 
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frames, the second column shows the interpolated frames of the previous work in [9], 

and the third one shows the frames generated by using the proposed algorithm with 

the alternative vector. In the MAP algorithm, there are broken artifacts in the 

interpolated frames because the motion vectors of some parts of the small balls are 

lost. The proposed algorithm reduces the broken artifacts significantly in comparison 

with the MAP algorithm. The proposed algorithm preserves the shapes of the small 

object because the motion vectors of the whole parts of the small objects are 

estimated and preserved by the alternative vectors. 

Table 3.1 PSNR comparisons between the MAP algorithm [9] and the proposed 

method  

 

Test 

sequence 

PSNR (dB) 

The MAP 

algorithm   [9] 

Proposed 

method 

Improvement 

Rim ball 35.30 35.83 0.53 

Tennis ball 34.71 34.96 0.25 

Basketball 29.06 29.46 0.40 

Soccer ball 38.97 39.48 0.51 

Average                                                                    0.42 
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        (a)              (b)                (c) 

Figure 3-6. Visual comparison between the previous MAP algorithm [9] and the 

proposed method 

(a) Ground truth, (b) MAP [9], (c) The proposed 
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Chapter 4. Semi-Global Accurate Motion 

Estimation for a Repetition Pattern Region 

4.1. Problem Statement 

 The previous methods for motion estimation of a repetition pattern region, use a 

local approach that estimates or refines the motion vector of a repetition pattern block 

by using only the information from the block itself and its neighbors. These methods 

sometimes miss the corrected motion vector because multiple similar local minima 

exist in the search space of the matching cost for motion estimation.  This thesis 

tackles the multiple local minima problem by using a semi-global approach that 

obtains an accurate motion vector for a repetition pattern region. The idea of the 

proposed algorithm comes from the following observation. Repetition pattern blocks 

share the same motion vector that is the motion vector of the whole repetition pattern 

region. Therefore, the blocks in a repetition region can be merged to form a repetition 

pattern region and a single motion vector is derived for the merged region. The larger 

the repetition region is, the more accurate the estimated motion vector is.  This 

merging based method obtains a very accurate motion vector at the cost of the 

increased memory bandwidth and large memory buffers to store pixels of the region 

and save the pixel differences. Therefore, the proposed algorithm uses a semi-global 

approach in order to replace the global approach that estimates the motion vector of 

the whole region. As a result, the semi-global approach reduces the computational 

complexity while maintaining the accuracy of motion estimation. The proposed 

algorithm is the first attempt to adopt the semi-global approach to estimate the 
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motion vector of the repetition pattern blocks. It efficiently handles multiple local 

minima problem of repetition pattern blocks. 

4.2. Objective Function and Constrains 

 Because a local approach cannot handle multiple local minima problem of 

repetition pattern blocks, the motion vector field obtained by previous correction 

methods still include many noisy and unreliable motion vectors as shown in Fig. 4-

1(b). Observation of the example image shows that the repetition pattern blocks share 

the same motion vector that is the motion vector of the whole repetition pattern 

region. Therefore, the repetition pattern blocks can be merged together and the 

motion vector is derived for the whole region. Motion estimation for the whole 

region can obtain an accurate motion vector because it exploits the global property 

of the movement of the repetition pattern region. However, the motion estimation 

for a large region consumes very large hardware resources, i.e. a repetition region 

size is 256x128, at each search position i, it has to fetch 32 768 reference pixels to 

compute a SAD(i) value. Consequently, it takes many cycles to load pixels from 

memory. Therefore, it is necessary to find another way to compute the motion vector 

for a repetition pattern region without additional search operation. In other words, 

the motion vector of the whole region is derived by exploiting the global property to 

achieve good accuracy but using local approach to reduce computational complexity. 

Objective function is to find a motion vector for the repetition region 

mvregion = argmin{SAD(u)} for pixels in the region, u ∈ 𝒔𝒆𝒂𝒄𝒉 𝒓𝒂𝒏𝒈𝒆 (4.1) 
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Constrains: Complexity is similar to Block Matching Algorithm (BMA) for a small 

8x8 block.  

4.3. Elector based Voting System 

 The most frequent motion vector among estimated motion vectors of repetition 

pattern blocks may be the representative motion vector for the whole region. 

However, the motion vectors of repetition pattern blocks are unreliable, and 

consequently, the derivation of the motion vectors from unreliable ones may also be 

unreliable. Fig. 4-1 shows an example of the estimated motion vector field obtained 

by full search block matching algorithm. Fig 4-1(b) shows that the motion vector 

field includes many wrong noisy motion vectors in the repetition pattern regions. 

The most frequent motion vector is (6, 15) but it is not the correct motion vector of 

the repetition pattern region. In fact, the ground-truth motion vector is equal to (6, 

0). The derivation of the motion vectors by observing their histogram among the 

blocks in the repetition region may generate an accurate motion vector without an 

addition search operation. The proposed algorithm that combines the multiple 

similar local minima characteristic of the repetition pattern blocks and global 

property of the movement of the repetition pattern regions together to make the 

reliable derivation of the correct motion vector. 
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                      (a)            (b) 

Figure 4-1 Example of motion vector field for repetition pattern estimated by a 

local approach.  

(a) Overlaid original frames, (b) Estimated motion vector field 

This conventional method to build a histogram of MVs is the same as an elector 

based voting system 

Given a repetition region, contain n blocks 

block 1: motion vector mv1 = argmin{SAD1(u)} for u ∈search range, becomes the 

elector of block 1 

block 2: motion vector mv2 = argmin{SAD2(u)} for u ∈search range, becomes the 

elector of block 2 

and so on, block n: motion vector mvn = argmin{SADn(u)} for u ∈search range, 

becomes the elector of block n 

 And then, mv1, mv2…, mvn are used to build a histogram of MVs. The drawback 

of this elector based voting system is the sub-optimization is decided for each block 

separately. Consequently, the global optimal cannot estimated accurately from the 

solutions obtained by the sub-problems for component blocks. In addition, these sub-

optimizations are sensitive because many ambiguous values, owing to block size is 
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small, number of pixels are not large enough in order to verify the estimated motion 

vector reliable or not. Consequently, the motion vector field are noisy, contains many 

inaccurate motion vectors as shown in Fig. 4-1b. 

4.4. Voter based Voting System 

 The proposed algorithm assumes that the global minimum of the matching cost of 

the entire repetition pattern region corresponds to one of the local minima of the 

blocks in the repetition region. Therefore, the motion vector of the repetition region 

can be obtained from the motion vector candidates of the blocks in the repetition 

region. Based on the above assumption, this thesis proposes a novel algorithm that 

builds a histogram of motion vectors from reliable ones obtained from a voter based 

voting system algorithm. The proposed algorithm consists of two steps. Step 1 makes 

a histogram of the motion vector candidates that are obtained during the motion 

estimation for individual blocks in the repetition region. Step 2 selects the most 

frequent motion vector candidate in the histogram to be the final motion vector of 

the entire repetition region. 

 In the proposed voter based voting system, the algorithm delays the sub-

optimization of each block to the second stage that preserves the optimal solution of 

the optimization for the whole repetition region. The below is a description about the 

proposed voter based voting system. 

Given a repetition region, contain n blocks 

block 1: list of motion vector candidates [mv1
1 , mv2

1 , mv3
1  , …, mv10

1] =  multiple 

argument local min{SAD1(u)} for u ∈search range, becomes the reliable voters of 
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block 1 

block 2: list of motion vector candidates [mv1
2 , mv2

2 , mv3
2  , …, mv10

2] =  multiple 

argument local min{SAD2(u)} for u ∈search range, becomes the reliable voters of 

block 2 

and so on, block n: list of motion vector candidates [mv1
n , mv2

n , mv3
n  , …, mv10

n] 

=  multiple argument local min{SADn(u)} for u ∈search range, becomes the reliable 

voters of block n 

 In this manner, all reliable local MV candidates are preserved and used to build a 

histogram of MVs. Consequently, it removes sensitive sub-optimizations of each 

repetition block.    

 The details of the proposed algorithm are presented in Fig. 4-2. At the beginning 

of Step 1, the proposed algorithm estimates multiple smallest local minima, or a 

Motion Vector (MV) candidate set for each block. In order to avoid a local minimum 

with a relatively large value, the algorithm limits the maximum number of local 

minima to 10. If the number of the MV candidates is smaller than 10, the algorithm 

continues searching a local minimum pushing it to the MV candidate set. If 10 MV 

candidates are in the set and a new local minimum is found, the proposed algorithm 

compares the local minimum value to the maximum value among the local minima 

in the MV candidate set, denoted by MAX_VALUE. If the local minimum value is 

smaller than MAX_VALUE, then the new local minimum is pushed to the MV 

candidate set. In this manner, all local minima inside the MV candidate set are 

guaranteed to be the smallest ones. The next step detects whether the block belongs 

to a repetition pattern region or not, by using the integral projection method  
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Step 1: Make MV Histogram of MV candidates  

1.1. Initialization: All bins in the MV histogram are empty 

1.2. Build an MV set (or Top 10 (if enough) smallest local minima) for each 

block  

Core Algorithm 

For (each block k) 

    Initialization: MV Setk = {Empty} 

    Loop over search range  

       1.2.1. Find a local minimum 

           1.2.2. Push the local minimum into the MV Setk or Not 

    if (size_of(MV Setk) < 10) 

    { 

            push the local minimum into the MV Setk 

         } 

         else  

    { 

     find MAX_VALUE = max(local minima in Mv Setk) 

          if (the local minimum < MAX_VALUE)  

             { 

               remove MAX_VALUE out of MV Setk 

               push the local minimum into the MV Setk   

        } 

   } 

   Check the block is in a repetition region or not 

   If (block k is a repetition block) 

    Push the motion vectors in the MV Setk into the corresponding bins 

Step 2: Choose the representative of the region 

- The most frequent MV candidate in the MV Histogram  

Figure 4-2 The proposed algorithm 
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presented in [24]. Finally, a motion vector histogram is generated and then the most 

frequent motion vector is selected as the representative motion vector for the whole 

repetition region. 

 Step 1 exploits the property of multiple local minima in a repetition pattern block 

while Step 2 represents the global property of a repetition region. In other words, 

Step 1 improves the reliability of the voting process in Step 2, and consequently, 

increases the accuracy of the most frequent MV candidate obtained by Step 2. For 

illustration of the proposed algorithm, an example with five blocks (N = 5) is 

presented next. Suppose that the MV candidate set for five blocks are obtained as 

follows: 

MV Set1 = {[-2,-4], [-2, 0]} 

MV Set2 = {[-6,-4], [-2, 0]} 

MV Set3 = {[-2,-4], [-2, 0], [2, 0], [8, 0]} 

MV Set4 = {[-6,-4], [-2, 0], [-2, 2], [4, 2]} 

MV Set5 = {[-2,-2], [-2, 0], [8, 0]} 

 

Then, the histogram of MV candidates are as follows: 

MV histogram = {[-6,-4], [-2,-4], [-2,-2], [-2, 0], [-2, 2], [2, 0], [4, 2], [8, 0]} 

Corresponding counts: {2, 2, 1,  5, 1, 1, 2} 

In this example, the most frequent motion vector is [-2, 0] derived five times in the 

motion estimations of all the blocks in the repetition region 

Additional memory buffers for the proposed algorithm 
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 In step 1.2.1, the proposed algorithm saves eight neighboring SAD values to find 

a local minimum. In addition, maximum ten motion vector candidates are stored for 

each block. For the motion vector histogram, the maximum of the number of the 

MVs in the MV histogram is equal to the size of the search range. In other words, 

the size of the MV histogram is 33x33 = 1089 MVs. Assuming the raster scan search, 

the proposed algorithm does not need to save MVs. Instead, it just saves the indices 

(or positions) of the MVs in the search range because the algorithm can derive the 

MVs from their indices. The only information that needs to be saved is the frequency 

count values for the MV candidates in the MV histogram. For a full HD frame with 

the block size of 8x8, the number of the blocks is 32,400. In the worst case when all 

blocks belong to a repetition region, the frequency count value can take the value of 

32,400, and therefore it requires 15 bits to save each frequency count value, or 2 

Bytes. Totally, for all MV candidates, the proposed algorithm requires 2 * 1089 ~ 2 

KB, which is relatively small when compared with the memory size to store the 

original image. Therefore, the proposed method obtains the objective function and 

satisfy the hardware resource constraints.  

4.5. Experimental Results 

 The performance of the proposed algorithm is shown in Fig. 4-3. From two 

original frames in Fig. 4-3(a), the algorithm estimates the initial motion vectors of 

the blocks by using exhaustive full search-based block matching, shown in Fig. 4-

3(c) and detects repetition pattern blocks presented in Fig. 4-3(b). The corrected 

motion vector field by the proposed algorithm is shown in Fig. 4-3(d) and the whole 

repetition region shares the same motion vector that is the representative motion 
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vector of the region. It is accurate and equal to the ground truth-value. Therefore, the 

interpolated frame generated by the corrected motion vector field (see Fig. 4-3 (f)) 

is clearer than the interpolated frame generated by the noisy motion vector field 

before correction (see Fig. 4-3(e)). 

 

 

           (a)               (b) 

 

           (c)               (d) 

 

           (e)               (f) 

Figure 4-3 An example result of the proposed method 

(a) Overlaid original frames, (b) Detected repetition pattern blocks, (c) Initial 

motion vector field by full search, (d) Corrected motion vector field by the proposed 

algorithm, (e) Interpolated frame by using (c), (f) Interpolated frame by using (d) 

 The proposed algorithm is compared with the previous local-based method in [25]. 

Simulation is conducted with three standard datasets, Bus, Mobile and Calendar 

sequences which include repetition regions. The PSNR is used as the measurement 

metric for objective comparison. The simulation result is shown in Table 4.1 which 

shows the proposed algorithm outperforms the previous method significantly by 
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around 2.59 dB. 

Table 4.1 PSNR comparison. 

 

Test 

sequence 

Local based 

algorithm [25] 

Proposed 

algorithm 

PSNR 

(dB) 

Δ 

(dB) 

PSNR 

(dB) 

Bus 24.72 2.23 26.95 

Mobile 26.16 0.67 26.83 

Calendar 28.80 4.86 33.66 

Average 26.56  2.59  29.15  

 Subjective comparisons are presented in Fig. 4-4 in which the left column presents 

the interpolated frames by the previous method in [25]. The interpolated frames 

generated by the proposed algorithm are shown in the middle column. The last 

column corresponds to the ground truth frame. In the previous method in [25], the 

interpolated frame is blurred and unclear. On the other hand, the proposed algorithm 

estimates the motion vector of repetition regions accurately, and consequently, 

generates the output clearer than the previous method does 
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(a) Ref [2] (b) Proposed                                      (c) Ground truth

(d) Ref [2] (e) Proposed                                      (f) Ground truth

(g) Ref [2] (h) Proposed                                      (i) Ground truth

      

      

   (a)           (b)                   (c) 

Figure 4-4 Subjective comparison between the previous and the proposed algorithms 

(a) The previous method [25], (b) The proposed algorithm, (c) Ground truth 

First row: Mobile sequence – frame 11, Second row: Bus sequence - frame 33,  

Last row: Calendar sequence – frame 301 
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Chapter 5. Multiple Motion Vectors based Motion 

Compensation 

5.1. Problem Statement 

 In previous motion compensated frame interpolation algorithms, a Sum of 

Bilateral Absolute Difference (SBAD) is usually applied as the metric for the 

selection of motion vector candidates that cross over the same block in the 

intermediate frame, the motion vector with the minimum SBAD is selected as the 

final one of the interpolated block. A problem with this method is that it will select 

wrong motion vector even with the smallest value of SBAD because the minimum 

SBAD doesn’t guarantee that it represents the truth motion vector of the interpolated 

block. For example, at smoothness areas in images where there exist multiple local 

minima, it causes many ambiguous motion vectors. In order to reduce the risk of the 

wrong selection from the SBAD metric, this thesis proposes a new bidirectional 

motion compensation frame interpolation (MCFI) algorithm that contains a new 

metric and a novel non-selective approach that preserves motion vector information 

from all overlapped projected blocks. Firstly, forward and backward motion vector 

fields are projected into the interpolated frame in order to generate bi-directional 

motion vectors of the interpolated blocks. The proposed method preserves all motion 

vectors of overlapped projected blocks for each interpolated block. And an adaptive 

weighted motion compensation is done for interpolated blocks correspond to their 

own preserved motion vectors. The weighted coefficients are computed by using a 

comprehensive metric that composes of distance or overlap area, matching cost and 
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smoothness cost correspond to the preserved motion vectors. Holes are filled by 

vector median filter of the motion vector of non-hole neighbor blocks. 

5.2. Adaptive Weighted Multiple Motion Vectors based 

Motion Compensation 

5.2.1. One-to-Multiple Motion Vector Projection  

 

 

   

Figure 5-1 Motion Vector Projection 

Fig. 5-1 shows an example of the forward motion vector projection. The projected 

block is, in general, not aligned with the interpolated block as shown in the figure. 

The shaded block in the center of the frame t – 1 represents the original block to be 

projected whereas the shaded block at frame t represents the projected block. Note 

that this projected block is overlapped with up to four blocks in the interpolated 

frame. In conventional methods, only the interpolated block that is nearest to (or 

most overlapped with) the projected block will takes the motion vector of the 

projected block, there is no motion vectors for the other overlapped interpolated 

blocks. In other words, the conventional methods do winner take it all. In this context, 

project 

𝑣Ԧ 

Existing frame 

(frame t-1) 
Interpolated frame 

(frame t) 
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that is called as a one-to-one projection. The proposed method in this thesis will do 

one-to-multiple projection. In other words, all overlapped interpolated blocks will 

share the same motion vector of the projected block. Consequently, it alleviates 

blocking artifact between the interpolated blocks. In addition, it also reduces the 

possibility of hole blocks that are blocks without motion vector in the interpolated 

frame. 

 After accumulating all projected blocks, in the case when an interpolated block 

(block in interpolated frame) has multiple projected blocks, conventional methods 

usually select one block (the best according to a selection metric) among multiple 

candidates. This selection loses motion vector information of un-selected ones that 

may have a chance to make a better motion compensation in their overlap areas. In 

addition, the selected projected block just covers its overlap area within the 

interpolated block, and consequently, the non-overlapped area that belongs to other 

projected blocks may be interpolated with wrong interpolated pixels, as shown in 

Fig. 5-2 (a).  

 

       (a)             (b) 

Figure 5-2 Projected blocks of a interpolated block. 

(a) An example of multiple-projected blocks of the interpolated block, O 

O 
 

  
  

H 
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(Overllaped block) 

(b) An example of non-projected block of the interpolated block, H (Hole block) 

 In Fig. 5-2(a), the red center block is the interpolated block with multiple-projected 

blocks (other color blocks). In Fig. 5-2(b), the red center block (or Hole block) is the 

interpolated block without any projected blocks (surrounding black blocks).  

 

 

 

 

 

Figure 5-3 An example of the adaptive weighted mutiple motion vector based MC.  

 This thesis proposes a new motion compensation that uses all the motion vectors 

of the projected blocks that are overlapped with the target interpolated block. The 

contribution of each motion vector depends on the relevance to the interpolated block; 

that is evaluated by the measure metric to be discussed in the next subsection. As a 

result, a weighted sum of the interpolated pixels is the final interpolated pixel as 

follows: 

𝑓𝑡(𝑥) =  
1

2
 ∑ Normalized  weight(𝑣Ԧ𝑖) ∗ {𝑓𝑡−1(𝑥 −  𝑣Ԧ𝑖)  +  𝑓𝑡+1(𝑥 + 𝑣Ԧ𝑖)}𝑁

𝑖=1  (5.1) 

 where 𝑣Ԧ𝑖 is the bi-directional motion vector of the interpolated block, N is number 

of bi-directional motion vectors of the interpolated block. Normalized weight(𝑣Ԧ𝑖) is 

computed as Eq. 5.6 explained in the next subsection. Fig. 5-3 shows an example of 

the proposed MC. In this example, the interpolated block has three projected blocks, 

corresponding to three motion vector candidates v1, v2 and v3. With each candidate, 

the motion compensation step generates individual interpolated pixels. The final 
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interpolated pixels are a weighted sum of three above interpolated pixels. 

5.2.2. A Comprehensive Metric as the Extension of Distance 

For each overlapped projected block, its distance to the interpolated block is 

defined as the displacement between their center points: 

𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞(𝒗⃗⃗Ԧ) =  ‖𝒑𝒐𝒔𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒆𝒅−𝒃𝒍𝒐𝒄𝒌 −  𝒑𝒐𝒔𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒆𝒅−𝒃𝒍𝒐𝒄𝒌‖ (5.2) 

where posprojected-block, and posinterpolated-block are the center positions of the projected 

block, and the interpolated block, respectively. This distance decreases as the size of 

the overlapped area increases. The motion vector 𝑣Ԧ is not always correct, it depends 

on the accuracy of motion estimation algorithm, in case of a wrong motion vector 𝑣Ԧ, 

it can cause the wrong projected block even if the distance value is small. Therefore, 

only the distance information is not enough to find the best-projected block for the 

corresponding interpolated block. We need a more comprehensive metric that 

contains distance as the key component as well as other terms to cover reliability, 

smoothness of the motion vector fields. 

A comprehensive metric consists of distance, matching cost and smoothness cost 

as follows: 

METRIC(𝒗⃗⃗Ԧ )= distance(𝒗⃗⃗Ԧ )+k1  * cost(𝒗⃗⃗Ԧ)          (5.3) 

where cost(𝑣Ԧ)    = SAD(𝑣Ԧ) +  𝑘2 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(𝑣Ԧ) 

=  𝐒𝐀𝐃(𝒗⃗⃗Ԧ) +  𝒌𝟐 ∗
𝟏

𝟒
∑ ‖𝒗⃗⃗Ԧ −  𝒗⃗⃗Ԧ𝒊‖𝟒

𝒊=𝟏       (5.4) 

cost(𝑣Ԧ) is the total cost that presents the reliability and smoothness of the estimated 
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motion vector. SAD(𝑣Ԧ) is Sum of Absolute Difference between each pixel in the 

original block and the corresponding pixel in the matching block that corresponds to 

the motion vector 𝑣Ԧ, 𝑣Ԧ𝑖 is neighbor motion vectors of 𝑣Ԧ, 𝑣Ԧ is the estimated motion 

vector of original block, k1 and k2  are  normalization parameters. The proposed 

metric is a comprehensive one that contains distance that presents accuracy of block 

tracking, matching cost (SAD) shows the reliability of the block tracking and 

smoothness cost preserves smoothness constraint for true motion vector field. The 

smaller the metric is the better estimated motion vector is. In other words, the motion 

vector candidate with a small value of the metric will take more contribution than 

the one with a large value of the metric. The contribution of each candidate is 

represented by a weighted coefficient that is an inversion of the metric as shown in 

Eq. 5.5. Due to the coefficients computed by Eq. 5.5 can get the value outside the 

interval of [0, 1] therefore they should be normalized to take a value inside the range 

between 0 and 1 as shown in Eq. 5.6. 

weight(𝑣Ԧ𝑖) = 1 / METRIC(𝑣Ԧ𝑖)     (5.5) 

Normalized weight(𝑣Ԧ𝑖) = 
weight(𝑣⃗Ԧ𝑖)

∑ weight(𝑣⃗Ԧ𝑖)𝑖
 (5.6) 

5.3. Handling Hole Blocks  

 The hole block, the interpolated block has no projected block as shown in Fig. 5-

2(b), will be filled by a vector median filter of non-hole neighboring blocks as shown 

in Fig. 5-4, where v1, v2, v3 and v4 are available up, left, right and down neighbor 

non-hole blocks of the current hole block. The number of the available neighbor non-

hole blocks is up to four because, in large hole areas, some of them are not always 
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available. 

𝑣ℎ𝑜𝑙𝑒 = 𝑎𝑟𝑔 min
𝑣𝑗

∑ ‖𝑣𝑗 −  𝑣𝑖  ‖𝑁
𝑖=1    (5.7) 

where N is number of available non-hole blocks. 

 v1  

v2 vhole v3 

 v4  

 

Figure 5-4 Hole blocks handling. 

5.4. Framework of the Proposed Motion Compensated Frame 

Interpolation 

The proposed motion compensation method shown in Fig. 5-5 consists of 

following steps. In the first step, the proposed method projects forward and backward 

motion vector fields obtained from unidirectional motion estimations into the 

interpolated frame. Next, for each projected block, compute a distance between it 

and its overlapped interpolated blocks, and then a comprehensive metric as the 

extension of the distance shown in section B is computed by the combination of 

distance, matching cost and smoothness cost. If an interpolated block has multiple 

overlapped projected blocks, a non-selection adaptive-weighted multiple motion 

vector - motion compensation is implemented with the weighted coefficients are 

computed as the inversion of the comprehensive metric obtained in the previous step. 

In case an interpolated block has no overlapped projected block, a vector median 

Hole block 

Non-hole 

neighbor blocks 

vhole 

v1 

v4 

v3 
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filter is applied to its available non-hole neighbor blocks to generate the motion 

vector of the hole block and do conventional bi-directional motion compensation. 

 

Figure 5-5 The proposed motion compensation method diagram 

5.5. Experimental Results 

 To demonstrate the performance of the proposed method, we use nine test 

sequences, which are in the standard CIF (325x288) format and 30 frame/s. They are 

Bus, City, Flower, Football, Foreman, Mobile, Mother & daughter, Soccer and 

Stefan. The odd frames are removed and the new odd frames are generated from the 
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even frames using MC-FRUC algorithms. We compare our method with two 

conventional MC-FRUC methods, they are Dual ME [35] and Yoo [38]. Dual ME is 

representative for bi-directional ME approach, meanwhile Yoo method is 

representative of hybrid ME approach. In all experiments, the block size is set to 8x8, 

the search range is ±16 for both horizontal and vertical directions.  

From table 5.1, the proposed method provides about 0.60 - 1.03 dB higher average 

PSNR performance than the conventional algorithms. Specially. The performance 

gaps between the proposed algorithm and the conventional algorithms are high 

especially on the Bus, City, and Mobile sequences, which have smoothness areas 

that motion vectors obtained ME step exist some ambiguous ones, therefore when 

those wrong motion vectors are chosen, visual artifacts are produced. Meanwhile, 

the proposed method uses multiple motion vectors for non-selective adaptive 

weighted motion compensation with the weighted coefficients are computed by the 

comprehensive metric, therefore it mitigates the effect of the wrong motion vectors.  
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Table 5.1 PSNR comparisons between the proposed method and conventional 

algorithms  

 

Sequence 

Dual ME Yoo method Proposed 

PSNR 

(dB) 

△

(dB) 

PSNR 

(dB) 

△ 

(dB) 

PSNR 

(dB) 

Bus 25.02 2.19 25.71 1.5 27.21 

City 31.94 1.71 32.64 1.01 33.65 

Football 22.78 0.23 22.79 0.22 23.01 

Foreman 32.37 0.16 32.29 0.24 32.53 

Garden 28.75 1.23 29.58 0.4 29.98 

Mobile 25.33 1.62 25.68 1.27 26.95 

Mother 40.81 0.06 40.92 -0.05 40.87 

Soccer 25.96 0.56 26.26 0.26 26.52 

Stefan 27.03 1.5 27.99 0.54 28.53 

Average 28.89 1.03 29.32 0.60 29.92 

 

 Fig. 5-6 and Fig. 5-7 show subjective visual comparisons between the proposed 

method with previous ones. In the first row, the first column presents the interpolated 

frames by Dual ME [35] method, the second column shows the interpolated frames 

by Yoo [38] method and in the second row, the first column shows the ones generated 

by proposed method, the second column presents the ground truth frames. Previous 

methods fail at smoothness regions such as texts and numbers in the advertisement 

board in Fig. 5-6 and in calendar area in Fig. 5-7, meanwhile, the proposed method 

gives clean interpolated frames, owing to its adaptive weighted multiple motion 

vectors based MC. 
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         (a)                  (b) 

  

         (c)                      (d) 

Figure 5-6 Interpolated frames by previous methods and the proposed method on 

Stefan dataset 

(a) Dual ME [35], (b) Yoo [38], (c) The proposed, (d) Ground truth 
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                (a)              (b) 

 

                 (c)              (d) 

Figure 5-7 Interpolated frames by previous methods and the proposed method on 

Mobile dataset 

(a) Dual ME [35], (b) Yoo [38], (c) The proposed, (d) Ground truth 
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Chapter 6. Video Frame Interpolation with a 

Stack of Deep CNN 

6.1. Problem Statement 

 In previous CNN based methods, the objective function or loss function only 

focuses on pixel difference.  Consequently, it usually fails in the estimation of fast 

and/or complex movement which requires a critical role of motion estimation for 

high-quality frame interpolation. This thesis presents a comprehensive framework 

that glue two above previous approaches into a single stacked network such that an 

analysis-by-synthesis technique is used to estimate bidirectional intermediate optical 

flows and later a synthesis network glues intermediate results generated by 

component branches (an optical flow based branch and a CNN kernel based 

synthesis branch) to synthesize the very end intermediate frame.  The primary 

contributions of the proposed method are summarized as follows. Firstly, the 

proposed network is a bridge between two branches of approaches: optical flow 

based frame interpolation and CNN kernels based frame synthesis. Secondly, the 

thesis introduces a method to derive directly Intermediate optical flows that are the 

flows from the intermediate frame to two original frames. This module contributes 

to learning processes for both frame synthesis networks. It glues a motion-ness into 

the pixel matching loss for the first CNN kernels based synthesis network and it 

drives the second synthesis network with estimated optical flows. Thirdly, the 

proposed network is a back-to-back stack of two network layers such that the first 

network layer generates three input components for the second network layer that is 
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an extended version of SepConv network [65]. Lastly, the proposed method 

outperforms the previous algorithms for various datasets.  

6.2. The Proposed Network for Video Frame Interpolation 

6.2.1. A Stack of Synthesis Networks 

 Analysis by a synthesis technique is the key component of the proposed network 

that stacks two synthesis networks together, a back-to-back stack to help each other 

in learning operation. Consequently, it covers both the spatial property of CNN 

kernels based synthesis and the temporal property of optical flow based synthesis. In 

addition, it also narrows down the displacement between input frames and the final 

intermediate frame for more condense synthesis.  

 

Figure 6-1 Architecture of the proposed network 
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 The proposed network shown in Figure 6-1, is a back-to-back stack of two network 

layers. In the first layer, a frame synthesis network generates the very first 

intermediate frame. In addition, as a byproduct of the first synthesis network, four 

1D kernels that encode implicitly the motion information are used to derive 

intermediate optical flows by Motion Derivation module. Then, two original input 

frames are warped to the intermediate time scale using the estimated intermediate 

optical flows. Finally, three intermediate interpolated frames are stacked together to 

feed into the second synthesis network that is a variant of the first one. The stack of 

networks is used to narrow down the distance between input frames to estimate 

condensed interpolation kernels. As shown in Figure 6-2, among three intermediate 

interpolated frames, in term of time scale, the output of the first synthesis network, 

denoted as I3
1.5 is the nearest to the real output target frame, denoted as I1.5. On the 

other hand, the frame, denoted as I1
1.5 that is the warped frame from the first original 

frame (I1), is slightly offset to the left side of the real output target frame, and the 

frame, denoted as I2
1.5 that is the warped frame from the second original frame, (I2), 

is slightly offset to the right side of the real output target frame. For illustration of 

the timescale of intermediate frames, Figure 6-3 shows an example of a time scale 

of frames, at the top row, from left to right respectively are the first original frame, 

the ground truth intermediate frame, and the second original frame. 
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Figure 6-2 The structure of the second synthesis network 

 In the second row, from left to right respectively are the corresponding 

intermediate interpolated frames, I1
1.5 the warped frame from frame 1, I3

1.5 the very 

first intermediate frame generated by the first synthesis network, and I2
1.5 the warped 

frame from frame 2. The last rows show the corresponding displacements between 

three above intermediate results and the very end interpolated frame. From images, 

we can see that among three intermediate interpolated frames, frame I3
1.5 is the 

closest to the target ground-truth frame meanwhile I1
1.5 and I2

1.5 frames still exist 

short displacements to the target ground-truth frame. This re-assures our observation. 
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Figure 6-3 An example for the time scales of intermediate interpolated frames 

 As shown in Figure 6-2, the second layer of the stack is the extended version of 

the first synthesis network. Originally, the first synthesis network has two input 

frames and four 1D kernels to convolve with the two original frames. The extended 

network has three input intermediate frames, and therefore, it has six corresponding 

1D kernels. The second synthesis network learns from the closest frames to 

synthesize the final intermediate frame, and it also embraces both optical flow based 

results and a CNN based synthesized frame. Consequently, it can cover challenging 

motion scenarios, such as fast and complex movements. 

6.2.2. Intermediate Optical Flow Derivation Module 

 In the first layer of the stack, the motion derivation module is the glue between 

two branches of approaches, the optical flow based frame interpolation and the CNN 

kernels based frame synthesis. This makes a chicken-egg problem solved by training 

both blended tasks such that the intermediate optical flows, as denoted in Figure 6-

4, are estimated by the analysis-by-synthesis technique through convolution kernels 
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of the first synthesis network. Meanwhile the estimated optical flows role as motion-

ness in the loss function of the first synthesis network makes the network learn only 

pixel matching also motion constraints and scenarios. In addition, estimating the 

optical flows from the synthesized intermediate frame is a target-based estimation 

that can fix estimation errors from the previous methods when the intermediate frame 

is unavailable to verify the accuracy of analysis. In other direction, the estimated 

intermediate flows are derived from 1D kernels of the synthesis network 1. 

Consequently, it glues the motion constrains into network 1. Therefore, network 1 

learns not only pixel matching but also motion information. 

 

  Figure 6-4 Bi-directional intermediate flows 

 The coefficients of 1D kernels implicate motion information and they are 

exploited to derive the flow information. The motions are encoded as the offsets of 

the non-zero kernel values to the kernel center. The motion vector is the weighted 

sum of the offsets. Therefore, the values of the coefficients and the offsets are used 

in order to compute the motions. There are four 1D kernels, two corresponding to 

the displacement of frame 1 to the interpolated frame, and the others corresponding 

to the displacement of frame 2 to the interpolated frame. The optical flows for both 

the forward and backward directions with a point of view from the intermediate 

flow1.52 
flow

1.51
 

interpolated frame      frame 2 frame 1 
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frame are computed directly. The formulations of the motion derivation module are 

represented by the set of equations (6.1), (6.2), (6.3) and (6.4). 

  𝑢1.5→1 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

ℎ1∗𝑜𝑓𝑓𝑠𝑒𝑡𝑖
ℎ151

𝑖=1

∑ 𝑤𝑒𝑖𝑔ℎ𝑡
𝑖
ℎ151

𝑖=1

  (6.1) 

           𝑣1.5→1 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑣1∗𝑜𝑓𝑓𝑠𝑒𝑡𝑖
𝑣151

𝑖=1

∑ 𝑤𝑒𝑖𝑔ℎ𝑡
𝑖
𝑣151

𝑖=1

    (6.2) 

  𝑢1.5→2 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

ℎ2∗𝑜𝑓𝑓𝑠𝑒𝑡𝑖
ℎ251

𝑖=1

∑ 𝑤𝑒𝑖𝑔ℎ𝑡
𝑖
ℎ251

𝑖=1

   (6.3) 

           𝑣1.5→2 =
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑣∗𝑜𝑓𝑓𝑠𝑒𝑡𝑖
𝑣251

𝑖=1

∑ 𝑤𝑒𝑖𝑔ℎ𝑡
𝑖
𝑣251

𝑖=1

     (6.4) 

 

where u1.51 and v1.51 are the horizontal and vertical components of the flow from 

the intermediate frame to frame 1, u1.52 and v1.52 are the horizontal and vertical 

components of the flow from the intermediate frame to frame 2. offseti
h1, offseti

v1, 

offseti
h2, offseti

v2 are the displacements of the coefficients to the center position in 

the corresponding 1D kernels. 

6.2.3. Warping Operations 

 Guided by the estimated optical flow, the proposed method warps the input frames 

into the intermediate timescale. Both forward and backward warping functions, 

which can be implemented using bilinear interpolation are differentiable. 

Specifically, the proposed method employs forward warping that uses the estimated 

optical flow to warp the input frame I1 to the target locations in the intermediate 

frame and obtains a warped frame I1
1.5. The proposed method warps the input frame 

I2 and generates a warped frame I2
1.5 in the same way by using backward warping. 
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Two warped frames are very close to the true interpolated frame. Therefore, they are 

very suitable for the inputs of the synthesis network 2 that works as a frame 

refinement to generate the final intermediate frame. This step narrows down the 

distances between two consecutive input frames and the intermediate one. In 

addition, it is easier for the network to learn kernels when two inputs are closer. 

6.2.4. Training and Loss Function 

 The proposed network is a stack of component subnets, as suggested by [45], [69], 

in order to avoid over-fitting, the proposed network is trained end-to-end with a loss 

function that contain the final loss and two intermediate losses, respectively, as the 

order given in equation (6.5). 

Loss function = || I1.5 – Igt ||1 + || I3
1.5 – Igt ||1  + || Iw

1.5 – Igt ||1   (6.5) 

where Igt is the ground truth frame, Iw
1.5 = (I1

1.5 + I2
1.5) / 2.0 represents for the 

warped intermediate frames, I1
1.5 and I2

1.5 obtained by both forward and backward 

warping operations. Following [55], [65] the proposed neural network parameters 

are initialized by a convolution aware initialization [61] and trained by using 

AdaMax [56] with β1 = 0.9, β2 = 0.999, a learning rate of 0.001 and a mini-batch 

size of 12 samples.  

The training dataset provided by [53] is used to train the proposed network because 

this dataset contains high-quality frames extracted from high-resolution videos 

downloaded from vimeo.com. The resolution of training videos is 448x256. For data 

augmentation during the training process, the trainer randomly swaps the temporal 

order between input frames, frame1 becomes frame2 and vice versa. This makes 
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dataset larger and eliminates potential priors. Pytorch library is used to train the 

proposed network with two NVIDIA GTX 1080 GPUs. 

6.2.5. Network Architecture 

 The first synthesis network is the same as Sepconv network in [55] in which two 

inputs are the original frames and outputs are four 1D kernels convoluted with the 

original frames to generate the very first intermediate frame. The second synthesis 

network is an extended version of the first synthesis network with the inputs are three 

intermediate interpolated frames therefore, six 1D kernels are trained to generate the 

output pixel of the final intermediate frame as the following equation. 

𝐼1.5(𝑥, 𝑦) =  𝐾1
𝑣(𝑥, 𝑦) ∗ 𝐾1

ℎ(𝑥, 𝑦) ∗ 𝑃1.5
1 (𝑥, 𝑦) + 

                    𝐾2
𝑣(𝑥, 𝑦) ∗ 𝐾2

ℎ(𝑥, 𝑦) ∗ 𝑃1.5
2 (𝑥, 𝑦) + 

                    𝐾3
𝑣(𝑥, 𝑦) ∗ 𝐾3

ℎ(𝑥, 𝑦) ∗ 𝑃1.5
3 (𝑥, 𝑦)  (6.6) 

where P1
1.5(x, y), P2

1.5(x, y), and P3
1.5(x, y) respectively are the patches centered at (x, 

y) position in intermediate interpolated frames I1
1.5, I

2
1.5 and I3

1.5.  K
v
1, K

h
1, K

v
2, K

h
2, 

Kv
3, and Kh

3 are the learned pixel-dependent 1D kernels of the second synthesis 

network. 

6.2.6. Experimental Results 

6.2.6.1. Frame Interpolation Evaluation  

 To evaluate the proposed network, quantitative and qualitative comparisons with 

several representative state-of-the-art video frame interpolation and optical flow 
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methods are made. Firstly, methods are evaluated with the interpolation category of 

Middlebury optical flow benchmark that is typically used for assessing frame 

interpolation methods [53]. The proposed approach is compared with the methods 

that rank high with this interpolation benchmark. The first one is MDP-Flow2 [59], 

an accurate optical flow method, as it still remains the highest rank among all classic 

optical flow methods with the Middlebury benchmark. In addition, PWC method [67] 

that is a state-of-the-art CNN based optical flow algorithm that performs top among 

CNN based methods ranked with well-known Sintel optical flow benchmark [43]. 

To synthesize interpolated frames from the computed optical flows, the same 

algorithm in [53] is used. For a CNN based frame synthesis algorithm without optical 

flow estimation, recent SepConv [55] method is chosen owing to its high 

performance among CNN based algorithms. The optical flow that is the byproduct 

of the proposed network is also compared to state-of-the-art methods. 

 Table 6.1 shows the average interpolation error (AIE) used in [53] where the 

interpolation error is the root-mean-square (RMS) difference between the ground-

truth image and the estimated interpolated image. The proposed network 

outperforms state-of-art methods and improves the best previous method by a 

significant margin (9.5%). Especially with Backyard, Basketball, Dumptruck and 

Evergreen datasets which show real-world scenes, captured with a real camera and 

containing real sources of noise, the proposed network is consistently the best by 

notable margins. The proposed interpolation method, denoted as InterpCNN, is 

ranked 3nd in Interpolation Error (with Average statistic) and ranked 1st in 

Interpolation Error (with Standard Derivation (SD) statistic) among over 150 

algorithms listed in the benchmark website at the submission time. For visual 
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evaluation, Figure 6-5 shows the proposed interpolated frame that is a clear result 

and alleviates ghost and distorted artifacts whereas they still appear in the 

interpolated frames generated by the previous algorithms 

Table 6.1 Objective comparisons on Middlebury benchmark 

 Ave. Meq. Sch. Urb. Ted. Bac. Bas. Du. Eve. 

Propos

ed 

4.78 2.61 3.30 3.14 4.74 8.11 4.48 5.78 6.06 

CtxSyn 5.28 2.24 2.96 4.32 4.21 9.59 5.22 7.02 6.66 

MDP-

Flow2  

5.83 2.89 3.47 3.66 5.20 10.2 6.13 7.36 7.75 

SuperS

lomo  

5.31 2.51 3.66 2.91 5.05 9.56 5.37 6.69 6.73 

SepCo

nv 

5.61 2.52 3.56 4.17 5.41 10.2 5.47 6.88 6.63 

DeepFl

ow 

5.97 2.98 3.88 3.62 5.39 11.0 5.91 7.14 7.80 

Note: Ave. = Average; Meq. = Mequon; Sch. = Schefflera; Urb. = Urban; Ted. =  

Teddy; Bac. = Backyard; Bas. = Basketball; Du. = Dumptruck; Eve. = Evergreen 
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  (a)     (b)      (c)      (d)     (e)     (f) 

Figure 6-5 Visual comparisons on Backyard sequence on Middlebury benchmark. 

(a) Overlaid, (b) SpyNet, (c) PWC-Net, (d) MDP-Flow2, (e) SepConv, (f) The 

proposed 

Table 6.2 Objective comparisons on Vimeo90K dataset among CNN based 

methods 

 PSNR SSIM 

ToFlow 33.53 0.9668 

ToFlow+mask 33.73 0.9682 

SepConv 33.85 0.9697 

Proposed 34.65 0.9737 

 

The next well-known dataset for evaluating video frame interpolation algorithms is 

Vimeo90K dataset provided by [63]. It contains 3,782 triplets of frames with the image 

resolution of 448×256 pixels.  As shown in Table 6.2, the proposed method 

outperforms previous CNN based networks, SepConv [55], ToFlow [62] and its 
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variant, ToFlow with a mask [62] by significant margins in term of both peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) [44]. 

Table 6.3 Objective comparisons on UCF101 dataset  

 PSNR SSIM 

Sluper-Slomo [58] 33.14  0.9519 

PWC-Net [67] 33.76  0.9618 

MDP-Flow2 [59]  34.52  0.9660 

DVF [57] 34.12  0.9631 

SepConv [55] 34.78  0.9669 

Proposed 34.96  0.9683 

 

UCF101 dataset [68] consists of videos with the size of 256x256. This dataset is 

initially used to evaluate activity recognition and later it is used to evaluate the frame 

interpolation originated from [57]. UCF101 dataset includes videos with small motion. 

Therefore, even with a simple interpolation algorithm such as frame average, the video 

quality of an interpolated frame is sufficiently high as shown in Table 6.3. In this 

dataset, the proposed network also outperforms other previous methods. 
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(g) 

Figure 6-6 Subjective visual quality comparison on UCF101 dataset (1) 

(a) PWC-Net, (b) DVF, (c) MDP-Flow2 , (d) SepConv, (e) Super-Slomo, (f) The 

proposed, (g) Ground truth 
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Figure 6-7 Subjective visual quality comparison on UCF101 dataset (2) 

(a) PWC-Net, (b) DVF, (c) MDP-Flow2, (d) SepConv, (e) Super-Slomo, (f) The 

proposed, (g) Ground-truth 

 The last one is a new dataset proposed in this thesis to cover the difficult cases for 

frame interpolation. These cases include the movement of text objects, occlusion, 

reveal, and complex movements of small and fast-moving objects. Movement of text 

objects as a subtitle and logos is difficult for interpolation because the movement 

often takes place in a background while its motion is in a different direction from the 

background. Object occlusion and reveal are difficult in a classical computer vision 

 

  
       (e)                     (f) 

 
(g) 
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problem such as optical flow and they are also difficult in frame interpolation. A 

small object is difficult to estimate its motion and so is fast and complex movement. 

This new dataset is used to measure the performance of frame interpolation 

algorithms that focus on enhancement of visual quality. For explanation, this new 

data set is called Hard Cases for Display (HCD) which consists of four video 

sequences, each contains 60 frames with the resolution of 864x480, except the 

Basketball sequence that contains 90 frames with the resolution of 416x240. The 

dataset covers hard and challenging cases for frame interpolations such as scenes 

with sub-title, occlusion and reveals, fast complex motions, and the movement of 

small objects. Table 6.4 shows quantitative comparisons between the proposed 

methods with representative state-of-the-art methods on HCD dataset. In both PSNR 

and SSIM, the proposed method outperforms state-of-art methods with notable 

margins. Figure 6-8, 6-9 and 6-10 show the interpolated frames for visual quality 

comparisons on HCD dataset. In a fast and complex motion sequence, as shown in 

the Figure 6-8, the movement of the leg of the soccer player and that of the hand of 

the goalkeeper is fast and complex. The proposed method improves significantly 

visual quality in comparison with the previous methods. The Figure 6-9 shows the 

interpolated frames for the subtitle sequence where the text objects in the subtitle 

region include artifacts. The previous methods based on optical flow estimations, 

and CNN kernel based SepConv, suffer from these artifacts whereas the proposed 

method successfully removes them. For small objects such as balls in the basketball 

sequence shown in the Figure 6-10, the proposed network alleviates ghost artifacts 

significantly when compared with the previous methods. 
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Table 6.4 Objective comparison on HCD dataset 

 

Test 

sequence 

PSNR (dB) 

MDP-Flow2 

 

PWC-Net SepConv  Proposed 

Subtitle  31.83 24.82 33.83 34.73 

Occlusion 29.81 28.35 30.92 32.29 

Soccer 29.38 28.01 29.79 31.04 

Basketball 34.36 31.11 34.84 36.14 

Average 31.35 28.07 32.35 33.55 

 

Test 

sequence 

SSIM 

MDP-Flow2 

 

PWC-Net SepConv  Proposed 

Subtitle  0.9913 0.9661 0.9924 0.9929 

Occlusion 0.9555 0.9476 0.9622 0.9706 

Soccer 0.9599 0.9479 0.9636 0.9702 

Basketball 0.9867 0.9720 0.9876 0.9902 

Average 0.9734 0.9584 0.9765 0.9810 
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(a) 

    

              (b)                          (c) 

    

                 (d)                       (e) 

Figure 6-8 Visual comparison of interpolated frames on soccer sequence of HCD 

dataset 

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (e) The proposed 
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(a) 

  

           (b)                    (c) 

  

            (d)                 (e) 

Figure 6-9 Visual comparison of interpolated frames on subtitle sequence of HCD 

dataset 

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (e) The proposed 
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                      (a) 

  

             (b)                  (c) 

  

             (d)                (e) 

Figure 6-10 Visual comparison of interpolated frames on basketball sequence of 

HCD dataset 

(a) Ground truth, (b) MDP-Flow2, (c) PWC-Net, (d) SepConv, (e) The proposed 
 

 

 



77 

 

6.2.6.2. Ablation Experiments 

 Optical flow evaluation. Figure 6-11 shows comparisons between the estimated 

optical flow by the proposed method and the results obtained by state-of-the-art 

optical flow methods including MDP-Flow2 [59] (the top-ranked in the Middlebury 

benchmark) and recent CNN based flow networks, SPyNet [70] and PWC-Net [67]. 

The top row shows the estimated optical flow results, and the bottom row is the 

corresponding interpolated frame generated by the above flows by using the same 

frame interpolation algorithm [53]. The proposed analysis-by-synthesis based 

motion derivation module estimates the movement of the rotating and moving balls 

accurately. The results prove that the proposed method preserves the motion of small 

objects such as balls meanwhile others fail to estimate the movement of the ball. 

Consequently, either two balls or a distorted ball artifact appears in the interpolated 

frames generated by the previous methods.   

  

       (a)                     (b) 

  

       (c)                     (d) 
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       (e)                      (f)  

  

       (g)                     (h) 

  

       (i)                      (k) 

  

(l)                       (m) 

Figure 6-11 Visual optical flow results on basketball sequence.  

(a) frame 1, (b) frame 2, (c) color encoded optical flow by SpyNet, (d) color encoded 

optical flow by PWC-Net, (e) color encoded optical flow by MDP-Flow2, (f) color 
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encoded intermediate optical flow by the proposed network, in order from (g)  (h) 

 (i ) (k) are the interpolated frames generated by respectively above optical flows 

(c)  (d)  (e)  (f) with the same frame interpolation algorithm in [53], (l) the 

ground truth intermediate frame, (m) optical flow-color mapping 

Comparison between the first synthesis network and Sepconv.  

The effect of the motion-ness on the performance of the first synthesis network is 

also evaluated. The motion guided warping operations and the first synthesis 

network are glued together by motion derivation module that adds a motion-ness into 

the pixel matching loss, this makes the first synthesis network learn not only pixel 

matching but also motion constrains and scenarios, meanwhile the Sepconv network 

[55] is similar to a pixel or patch matching that only learns for a pixel loss.  Table 

6.5 and Figure 6-12 show that the first synthesis network outperforms SepConv in 

both objective comparisons and subjective visual evaluations. 

Table 6.5 Comparison between SepConv and the synthesis network 1  

 SepConv the network 1 

Metric PSNR SSIM PSNR SSIM 

Subtitle 33.83 0.9924 33.93 0.9925 

Occlusion 30.92 0.9622 31.53 0.9666 

Soccer 29.79 0.9636 30.06 0.9686 

Basketball 34.84 0.9876 35.32 0.9895 

Average 32.35 0.9765 32.71 0.9793 
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            (a)        (b)      (c)  

Figure 6-12 Visual comparison between SepConv and the synthesis network 1 

(a) Ground truth, (b) SepConv, (c) The network 1 

 Intermediate results with intermediate optical flows. Finally, a simulation result is 

investigated to show how the second synthesis learns from intermediate interpolated 

frames. Figure 6-13 shows the input images, intermediate results and the final output 

image.  Figures 6-13 (k), (l) and (m) show that the second synthesis network encodes 

short displacements between intermediate networks by bridging the gap between two 

branches, optical flow based synthesis and learned CNN kernels based interpolated 

frames and the final one. Therefore, it detects and alleviates the errors from 

intermediate results in order to generate a better final interpolated frame. 
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Figure 6-13 Step-by-step analysis of layers 

(a) Original frame 1, (b) Ground truth target frame to be interpolated or the 

original frame 1.5, (c) Original frame 2, (d) The backward intermediate optical flow 

from frame 1.5 to frame 1, (e) The very first intermediate frame generated by the 

first synthesis network, (f) The forward intermediate optical flow from frame 1.5 to 

frame 2, (g) The warped frame from (a) by using (d), (i) The warped frame from (c) 

by using (f), (h) The final interpolated frame or the output of the second synthesis 

network, (k) The flow between (g) and (h), (l) The flow between (e) and (h), and (m) 

The flow between (i) and (h). 

 Effect of Loss functions: In order to verify the effective of the total loss function 

as described in section 6.2.4, we dive into the analysis of the effect of intermediate 

loss components on the total loss function. As described in section 6.2.4, the total 

(a)              (b)           (c) 

(d)        (e)         (f) 

(g)                (h)       (i) 

  (k)           (l)          (m) 
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loss function that contains the final loss and two intermediate losses, respectively, as 

the order given in below equation (6.5). 

Loss function = || I1.5 – Igt ||1 + || I3
1.5 – Igt ||1  + || Iw

1.5 – Igt ||1   (6.7) 

where Igt is the ground truth frame, the first term is the final loss, the second term is 

the intermediate loss, corresponds to the first synthesis network, and the third term 

is the intermediate loss, corresponds to the motion branch, with Iw
1.5 = (I1

1.5 + I2
1.5) / 

2.0 represents for the warped intermediate frames, I1
1.5 and I2

1.5 obtained by both 

forward and backward warping operations. 

Now, we dive into three following cases.  

Case 1: Total loss function is the same as the equation (6.7). 

Case 2: Remove the third term out of the total loss  

Loss function = || I1.5 – Igt ||1 + || I3
1.5 – Igt ||1      (6.8) 

Case 3: Remove both the second term and the third term out of the total loss, the 

total loss contains only the final loss. 

Loss function = || I1.5 – Igt ||1                (6.9) 

Table 6.6 compares results obtained by three above cases. From the results shown in 

Table 6.6, we conclude that training the network with only a single loss at the end of 

the network is not effective. In addition, intermediate losses can help to avoid over-

fitting.  
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Table 6.6 The effect of loss components 

  

Dataset 

PSNR (dB) 

Case 3 Case 2 Case 1 

UCF101 33.03 34.76 34.96 

Vimeo90K 33.21 34.55 34.65 

HCD 31.68 33.49 33.55 

Computational Complexity. 

 The proposed network is a back-to-back stack of two synthesis networks with total 

number of parameters are around 43.6 million. On a single Titan X (Pascal) graphics 

card, it takes 0.86 seconds to generate an interpolated frame with the resolution of 

1920 × 1080 and 0.55 seconds to interpolate an intermediate frame with the 

resolution of 640×480. 

6.3. Extension for Quality Enhancement for Compressed 

Videos Task 

Interestingly, the proposed video frame interpolation network is designed for 

video frame interpolation or frame rate up conversion problem, but it can apply for 

post-processing task of compressed videos in order to improve quality of the 

compressed videos. One more time, it again shows the generalization of the proposed 

network. 

In this section, I call the proposed video frame interpolation network described in 

section 6.1 as a MEMC network that composes of two synthesis networks, synthesis 
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network 1, synthesis network 2, motion derivation and warp operations modules. 

The input of the proposed MEMC network are three reconstructed frames, the 

current reconstructed frame that to be enhanced and two nearest neighbor 

reconstructed frames, one is the previous frame, the other is the next frame. The first 

synthesis network and motion derivation module role as a motion estimation network 

that will derive motion vectors between the current frame and two nearest neighbor 

frames. In other hand, the warp operations and the second synthesis network role as 

a motion compensation network that generates the enhanced current frame from 

three inputs, the current frame, motion compensated previous frame and motion 

compensated next frame.  As described in section 6.1, the proposed motion 

estimation network is an analysis-by-synthesis technique that estimates motion more 

accurate than conventional analysis based approaches.  In addition, unlike MF-Net 

[73] for this task, that only work well for low delay configuration, the proposed 

MEMC network can be applied for any kind of coding configuration, both low delay 

configuration and random access configuration.  

 

  Figure 6-14 Architecture of the MEMC network 

Experimental Results. 

 The proposed MEMC network is compared to the previous state-of-art MF-Net 

[73] that is designed specifically for this task. With both low delay and random 

Enhanced 

Current 

frame 
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access configurations, video sequences are compressed by the same HEVC reference 

software (HM 16.0) with Quantization Parameter (QP) = 37.  Table 6.7 shows 

comparison on the quality of reconstructed sequence, among the baseline HEVC, the 

enhanced sequence by the previous MF-Net and the enhanced sequence obtained by 

the proposed MEMC network. In low delay configuration, both MF-Net and the 

proposed network improve quality of reconstructed frames significantly, 0.41 dB and 

0.35 dB respectively meanwhile in random access configuration, only the proposed 

method enhances the quality of reconstructed frames, even MF-Net degrades the 

quality of reconstructed frames compare to the baseline HEVC, owing to large 

displacement between the target frame and its nearest anchor-frames. 

Table 6.7 Comparison on the quality of reconstructed frames 

PSNR (dB) 

Low delay Random Access 

HEVC MF-Net Ours HEVC MF-Net Ours 

31.09 31.50 31.44 31.79 31.72 31.91 

 

 In order to have an insight analysis on how each frame is improved by each method, 

Figure 6-15 and 6-16 show the examples of frame by frame comparison between 

methods. The blue line denotes the PSNR of reconstructed frames obtained by base 

line HEVC (or decoded by HEVC), the orange line denotes the PSNR of enhanced 

frames by applying MF-Net, and the grey line denotes the PSNR of enhanced frames 

obtained by the proposed MEMC network. The period of each anchor frame is four, 

that means frames 0, 4, 8, 12, 16 and so on are anchor frames. Lowest quality 

reconstructed frames are frames just before the corresponding anchor frames, such 
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as frame 3, 7, 11, 15 and so on enhanced significantly by both post-processing 

network, MF-Net and the proposed MEMC network, 0.68 and 0.57 dB increase from 

baseline HEVC, respectively as shown in Table 6.10.  As shown in table 6.8, the 

proposed method outperforms the MF-Net at frames next right after anchor frames 

such as frame 1, 5, 9, 13, 17 and so on. Because in MF-Net approach, distance from 

those frames to corresponding anchor frames are asymmetric. For middle frames 

between anchor frames, such as frame 2, 6, 10, 14, and so on, the MF-Net improves 

better than the proposed MEMC network, 0.36 dB improvement, compare to 0.22 

dB improvement obtained by the proposed MEMC network as shown in Table 6.9. 

Table 6.8 Comparison at frames right after anchor frames.  

Frame 1 5 9 13 17 21 25 29 33 37 41 45 49 53 Ave

r. 

MF-

Net 

0 0.1

4 

0.2 0.1

2 

0.1

6 

0.2

2 

0.1

7 

0.2

4 

0.2

1 

0.1

3 

0.2

2 

0.2

2 

0.2

3 

0 0.16 

Propos

ed 

0.2

3 

0.2

5 

0.1

8 

0.1

4 

0.3 0.1

7 

0.1

5 

0.1

4 

0.2

3 

0.1

9 

0.2

6 

0.2

9 

0.2

9 

0.3

1 

0.22 

 

Table 6.9 Comparison at middle frames between anchor frames 

Frame 2 6 10 14 18 22 26 30 34 38 42 46 50 54 Ave

r. 

MF-

Net 

0.2

6 

0.3

6 

0.3

7 

0.3

4 

0.4

2 

0.4

7 

0.1

7 

0.4

1 

0.2

1 

0.5

0 

0.3

6 

0.4

9 

0.5

2 

0.1

9 

0.36 

Propos

ed 

0.1

1 

0.2

5 

0.0

9 

0.0

8 

0.3

5 

0.3

3 

0.1

4 

0.4

1 

0.2

3 

0.4

1 

0.2

8 

0.1

7 

0.0

9 

0.1

3 

0.22 
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Table 6.10 Comparison at lowest quality reconstructed frames (frame just before 

anchor frames) 

Frame 3 7 11 15 19 23 27 31 35 39 43 47 51 55 Ave

r. 

MF-

Net 

0.5

8 

0.5

7 

0.6

5 

0.6

4 

0.7

6 

0.6

5 

0.6

6 

0.6

6 

0.6

7 

0.6

8 

0.6

9 

0.8

4 

0.8

3 

0.6

3 

0.68 

Propos

ed 

0.4

8 

0.6 0.4 0.5

3 

0.5

5 

0.5

2 

0.5

4 

0.6 0.5

7 

0.6

2 

0.5

5 

0.6

7 

0.7

6 

0.6 0.57 

 

 

Figure 6-15 An example of frame by frame comparison in low delay configuration  

 

Figure 6-16 An example of frame by frame comparison in random access 

configuration 

 Figure 6-17 shows a visual comparison between enhanced reconstructed frame 

obtained by MF-Net and that obtained the proposed MEMC network. Both enhanced 

frames alleviate blocking artifacts significantly in comparison to the raw 
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reconstructed frame decoded by HEVC baseline, especially at regions around the 

ball. 

 

         (c)                  (d) 

Figure 6-17 Visual comparison between enhanced reconstructed frame obtained 

by MF-Net and that obtained the proposed MEMC network 

(a) Reconstructed frame by HEVC, (b) Enhanced frame by MF-Net, (c) Ground 

truth, (d) Enhanced frame by Ours 

 

6.4. Extension for Improving the Coding Efficiency of HEVC 

based Low Bitrate Encoder 

 As the previous video coding standards, High Efficiency Video Coding (HEVC) 

or H.265 [3] adopts block based hybrid video coding framework where inter 

prediction, which aims to remove the temporal redundancy, serves as a critical part 

of the coding framework. In particular, in B frame with random access configuration, 

      (a)                   (b) 
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inter prediction makes use of the temporal correlation between the current to-be-

coded picture and neighbor pictures in both directions, previous and future in order 

to obtain a predicted version of the current picture, and then encode the residual 

between the predicted values and the original values.  

 The Hierarchical B Coding Structure is adopted in HEVC, thanks to its coding 

efficiency. A typical hierarchical B structure with 4 temporal levels in Random 

Access (RA) configuration is depicted in Figure.1, where frame 0 and frame 1 

(denoted as the coding order) belong to temporal level 0, which provide high quality 

reference for subsequent frames. Once frames in level 0 are reconstructed, level 1 

frame 2 can be bi-predicted by frame 0 and frame 8. Regarding level 2 frames 3 and 

frame 6, both reconstructed frames of level 0 and level 1 can be used as references. 

Lastly, level 3 contains frame 4, 5, 7 and 8 which reference nearest lower level 

frames in both forward and backward directions, previous and future. Generally 

speaking, each B picture can be predicted using the nearest pictures of the lower 

temporal levels in forward and backward directions. Furthermore, as the temporal 

distance between two reference frames is getting closer for higher level frames, the 

prediction of the intermediate frame becomes more reliable. 

 In random access configuration, a temporal level is assigned to frames in order to 

apply differently quantization parameters (QP) in order to satisfy the trade-off 

between bitrate and the quality of the reconstructed frames.  
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Figure 6-18 Graphical representation of random access configuration [33] 

 Figure 6-18 shows a graphical representation of random access configuration, 

where highest temporal levels frames, denoted as blued frames (or non-referenced B 

picture) in figure 1, they are encoded based on the prediction from reference frames 

with the highest QP offset (QPoffset = 4). Consequently, it takes less bits to encode 

those non-referenced B pictures. Even those frames are non-referenced frames, they 

are still stored in reference buffers. Consequently, it consumes memory footprint.  

Recently, with the break-through of Convolutional Neural Networks (CNN) in 

video super resolution, video frame interpolation (or deep frame rate up conversion), 

the quality of the interpolated frames generated by deep FRUC methods are close to 

the real original frames. It suggests a combination between deep FRUC and HEVC 

in order to improve coding efficiency without scarifying the quality of reconstructed 

frame. In addition, in random access configuration, skip encoding highest temporal 

level frames have several following benefits. 

1. Approximately, reduce encoding time twice 

2. Reduce memory buffer for saving non-referenced reconstructed pictures. 
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3. Improve coding efficiency 

4. Do not change the structures of both encoder and decoder 

5. Reconstructed frames are enhanced (i.e. without blocking artifacts) with higher 

visual quality 

In this section, a combination between the proposed FRUC network in section 6.1. 

and HEVC is described as below figure.  

 

 

 

 

At encoder side 

 

 

 

 

At decoder side 

Figure 6-19 Diagram of the integration of FRUC net into encoder/decoder sides 

of HEVC 

Experimental Results.  

As shown in Figure 6-20 and figure 6-21, RD curve comparison between HEVC 

baseline and the proposed method, in low bit rate regions, the proposed method, 

temporal_id = 1 Yes Skip 

frame 

No Normal encode 

Frame to be 

encoded 

temporal_id = 1 

No 
Normal 

decode  

Yes Reconstructed 

frame 

Frame to be 

decoded 

FRUC network 
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denoted as B curve, that integrates FRUC into HEVC improves the coding efficiency 

of the standard HEVC baseline (HM 16.0), denoted as A curve. 

 

 

Figure 6-20 RD curve comparison between HEVC baseline and the proposed 

method (FRUC + HEVC) for vidyo1 sequence 
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Figure 6-21 RD curve comparison between HEVC baseline and the proposed 

method (FRUC + HEVC) for basketball pass sequence 
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Chapter 7. Conclusion 

 This thesis tackles on various challenging cases for motion estimation of small 

objects, motion estimation of a repetition pattern region, motion compensated frame 

interpolation and video frame interpolation with a deep CNN network.  

In conventional block-based hierarchical motion estimation, a motion vector of a 

small object is not detected at the top level, and thereby resulting in object 

deformation in interpolated frames in MC-FRUC. This thesis proposes a new 

algorithm for estimating the motion of a small object in a hierarchical motion 

estimation framework, which improves the image quality of an interpolated frame. 

The proposed algorithm detects high-cost pixels for each block, and estimates the 

motion vector of high-cost pixels. This motion vector is used as an additional motion 

vector candidate in hierarchical motion estimation. The additional motion vector is 

propagated to the bottom level, and thus enabling a motion vector of a small object 

to be discovered at the bottom level. Experimental results for MC-FRUC show that 

the proposed algorithm achieves a better performance than the MAP algorithm in 

terms of both subjective image quality and objective measurements. The PSNR is 

improved by 0.42 dB on average by using the proposed algorithm. 

 This thesis presents a novel algorithm to estimate the motion information in 

repetition pattern regions. The algorithm is the first to adopt a semi-global approach 

that exploits both local and global properties of repetition pattern regions. It merges 

the repetition pattern blocks into a large region and makes the histogram of the 

smallest local minima of all blocks in the region. The merging represents a large 

region and makes the histogram of motion vector candidates that correspond to the 
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smallest local minima of a SAD surface. The histogram of the motion vector 

candidates is built by using a voter based voting system that more reliable than an 

elector based voting system. It improves the accuracy of the motion vectors in the 

repetition pattern region. The proposed algorithm is simple but effective in the 

estimation of the motion vectors for repetition pattern blocks. In other word, it 

obtains the objective function that is to estimate correctly the motion vector of a large 

repetition pattern region with low complexity 

 This thesis proposes a non-selective adaptive weighted motion compensation for 

frame rate up conversion algorithm. It projects both forward and backward motion 

vectors into interpolated frame in order to generate bi-directional motion vectors. 

The algorithm preserves completely all motion vectors of overlapped projected 

blocks. And an adaptive weighted motion compensation is done for interpolated 

blocks correspond to their own preserved motion vectors. The weighted coefficients 

are computed by using a comprehensive metric that composes of distance or overlap 

area, matching cost and smoothness cost correspond to the preserved motion vectors. 

Holes are filled by vector median filter of the motion vector of non-hole neighbor 

blocks. The proposed algorithm outperforms previous methods and reduce block 

artifact significantly. 

 This thesis proposes a back-to-back stack of synthesis networks by bridging the 

gap between two branches, optical flow based synthesis and learned CNN kernels 

based interpolation together into a comprehensive joint framework. Intermediate 

optical flows are introduced and estimated directly from learned CNN kernels by 

using analysis-by-synthesis technique and vice versa the synthesis network learns 

not only a pixel matching loss but also motion-ness criterion. Consequently, the 
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proposed method handles fast, complex motions of small objects effectively. The 

proposed network is also the first attempt to bridge two branches of previous 

approaches, optical flow based synthesis and CNN kernels based synthesis into a 

comprehensive network. The proposed method is evaluated with various datasets 

and outperforms previous methods in both objective metrics and subjective visual 

evaluations.  
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초록 

블록 기반 계층적 움직임 추정은 고화질의 보간 이미지를 생성할 수 있어 

폭넓게 사용되고 있다. 하지만, 배경 영역이 움직일 때, 작은 물체에 대한 

움직임 추정 성능은 여전히 좋지 않다. 이는 maximum a posterior (MAP) 

방식으로 이미지 피라미드의 최상위 레벨에서 down-sampling 과 over-

smoothing 으로 인해 작은 물체의 움직임이 무시되기 때문이다. 결과적으로 

이미지 피라미드의 최하위 레벨에서 작은 물체의 움직임 벡터는 검출될 수 

없어 보간 이미지에서 작은 물체는 종종 변형된 것처럼 보인다. 본 논문에서는 

작은 물체의 움직임을 나타내는 2차 움직임 벡터 후보를 추가하여 작은 물체의 

움직임 벡터를 보존하는 새로운 알고리즘을 제안한다. 추가된 움직임 벡터 

후보는 항상 이미지 피라미드의 최상위에서 최하위 레벨로 전파된다. 실험 

결과는 제안된 알고리즘의 보간 생성 프레임이 기존 MAP 기반 보간 방식으로 

생성된 프레임보다 이미지 화질이 상당히 향상됨을 보여준다. 

움직임 보상 프레임 보간에서, 이미지 내의 반복 패턴은 움직임 추정을 위한 

정합 오차 탐색 시 다수의 유사 local minima가 존재하기 때문에 정확한 움직임 

벡터 유도를 어렵게 한다. 본 논문은 반복 패턴에서의 움직임 추정의 정확도를 

향상시키기 위해 반복 영역의 local한 특성과 global한 특성을 동시에 활용하는 

semi-global한 접근을 시도한다. 움직임 벡터 후보의 히스토그램은 선거 기반 

투표 시스템보다 신뢰할 수 있는 유권자 기반 투표 시스템 기반으로 형성된다. 
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실험 결과는 제안된 방법이 이전의 local한 접근법보다 peak signal-to-noise ratio 

(PSNR)와 주관적 화질 판단 관점에서 상당히 우수함을 보여준다. 

비디오 프레임 보간 또는 움직임 보상 프레임율 상향 변환 (MC-FRUC)에서, 

단방향 움직임 궤적에 따른 움직임 보상은 overlap과 hole 문제를 일으킨다. 본 

연구에서 이러한 문제를 해결하기 위해 양방향 움직임 보상 프레임 보간을 

위한 새로운 알고리즘을 제시한다. 먼저, 제안된 방법은 단방향 움직임 

추정으로부터 얻어진 두 개의 단방향 움직임 영역(전방 및 후방)으로부터 

양방향 움직임 벡터를 생성한다. 이는 전방 및 후방 움직임 벡터를 보간 

프레임에 투영함으로써 수행된다. 보간된 블록에 여러 개의 투영된 블록이 

있는 경우, 투영된 블록과 보간된 블록 사이의 거리를 확장하는 기준이 가중 

계수를 계산하기 위해 제안된다. Hole은 hole이 아닌 이웃 블록의 vector median 

filter 를 기반으로 처리된다. 제안 방법은 기존의 MC-FRUC 보다 성능이 

우수하며, 블록 열화를 상당히 제거한다. 

본 논문에서는 CNN 을 이용한 비디오 프레임 보간에 대해서도 다룬다. 

Optical flow 및 비디오 프레임 보간은 한 가지 문제가 다른 문제에 영향을 

미치는 chicken-egg 문제로 간주된다. 본 논문에서는 중간 optical flow 를 

계산하는 네트워크와 보간 프레임을 합성 하는 두 가지 네트워크로 이루어진 

하나의 네트워크 스택을 구조를 제안한다.  The final 보간 프레임을 생성하는 

네트워크의 경우 첫 번째 네트워크의 출력인 보간 프레임 와 중간 optical flow 

based warped frames 을 입력으로 받아서 프레임을 생성한다. 제안된 구조의 

가장 큰 특징은 optical flow 계산을 위한 합성에 의한 분석법과 CNN 기반의 
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분석에 의한 합성법을 모두 이용하여 하나의 종합적인 framework 로 

결합하였다는 것이다. 제안된 네트워크는 기존의 두 가지 연구인 optical flow 

기반 프레임 합성과 CNN 기반 합성 프레임 합성법을 처음 결합시킨 방식이다. 

실험은 다양하고 복잡한 데이터 셋으로 이루어졌으며, 보간 프레임 quality 와 

optical flow 계산 정확도 측면에서 기존의 state-of-art 방식에 비해 월등히 높은 

성능을 보였다. 본 논문의 후 처리를 위한 심층 비디오 프레임 보간 네트워크는 

코딩 효율 향상을 위해 최신 비디오 압축 표준인 HEVC/H.265 에 적용할 수 

있으며, 실험 결과는 제안 네트워크의 효율성을 입증한다. 

 

주요어: frame interpolation, MEMC, CNN, small objects, repetition regions, 

FRUC 
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