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Abstract

Person re-identification is a problem of identifying the same individuals among

the persons captured from different cameras. It is a challenging problem because the

same person captured from non-overlapping cameras usually shows dramatic appear-

ance change due to the viewpoint, pose, and illumination changes. Since it is an es-

sential tool for many surveillance applications, various research directions have been

explored; however, it is far from being solved.

The goal of this thesis is to solve person re-identification problem under the surveil-

lance system. In particular, we focus on two critical components: designing 1) a better

image representation model using human poses and 2) a better training method using

hard sample mining. First, we propose a part-aligned representation model which rep-

resents an image as the bilinear pooling between appearance and part maps. Since the

image similarity is independently calculated from the locations of body parts, it ad-

dresses the body part misalignment issue and effectively distinguishes different people

by discriminating fine-grained local differences. Second, we propose a stochastic hard

sample mining method that exploits class information to generate diverse and hard ex-

amples to use for training. It efficiently explores the training samples while avoiding

stuck in a small subset of hard samples, thereby effectively training the model. Finally,

we propose an integrated system that combines the two approaches, which is benefited

from both components. Experimental results show that the proposed method works

robustly on five datasets with diverse conditions and its potential extension to the more

general conditions.

keywords: Deep metric learning, Person re-identification, Image retrieval, Hard

sample mining

student number: 2014-30305
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Chapter 1

Introduction

Person re-identification is the problem to check and identify if a person seen from one

camera occurs in the videos taken from different cameras. Due to its broad usage, it

has been a very hot topic in computer vision for recent few years [75, 120, 114, 36,

115, 122, 21, 76, 77, 117]. It serves as a fundamental tool for various surveillance and

security applications such as person search, person count, and multi-target tracking.

However, distinguishing same person among a bunch of similar-looking candidates

based on the only subtle differences under a varying viewpoint/pose/illumination is

very challenging. Numerous approaches exist while focusing on different issues and

topics with various tools including metric learning techniques [110, 111, 59, 41, 33, 39,

30], probabilistic patch matching algorithms [7, 6, 69], and graph matching [79, 78, 1].

To solve the problem, we believe it is essential to design an effective strategy to learn

local matching and perform partwise appearance comparison. It motivates our study

on learning part-based image representation for person re-identification.

Our system for the person re-identification is illustrated in Figure 1.1. We follow

the two-step approach to first detect every person occurring in the videos and then

identify person by comparing the query image and the detected candidates. Here, the

key challenge is to learn a metric or an image embedding function that the similarity

between images reflects the semantic part-wise similarity between persons. Therefore,

1
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Figure 1.1: Person re-identification system. For a given query, images with the smallest

distances are retrieved.
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Constructor

Feature
Extractor LossTraining

Set

Chapter2Chapter3

Chapter4

Figure 1.2: Overview of the training procedure

we formulate the person re-identification as a deep metric learning problem, which is

to learn an embedding function that maps a detected bounding box to a metric space.

We want the distances between the representations of similar persons to be small while

distances between embeddings of dissimilar persons to be large. To this end, we ex-

plore two critical directions for better image representation learning; enhancing the

embedding network and the batch constructor used for training. The overall procedure

for training the image representation and the thesis organization is shown in Figure 1.2.

In the following subsections, we summarize our approach and contributions.

2
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Figure 1.3: Network architecture of the proposed part-aligned feature extractor

1.1 Part-Aligned Bilinear Representations

In Chapter 2, part-aligned bilinear representations is proposed [80]. Comparing the

appearance of corresponding body parts is essential for person re-identification. As

body parts are frequently misaligned between the detected human boxes, an image

representation that can handle this misalignment is required. In this paper, we propose

a network that learns a part-aligned representation for person re-identification. Our

model consists of a two-stream network, which generates appearance and body part

feature maps respectively, and a bilinear-pooling layer that fuses two feature maps

to an image descriptor. We show that it results in a compact descriptor, where the

image matching similarity is equivalent to an aggregation of the local appearance

similarities of the corresponding body parts. Since the image similarity does not de-

pend on the relative positions of parts, our approach significantly reduces the part

misalignment problem. Training the network does not require any part annotation on

the person re-identification dataset. Instead, we simply initialize the part sub-stream

using a pre-trained sub-network of an existing pose estimation network and train the

whole network to minimize the re-identification loss. We validate the effectiveness

3
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Figure 1.4: Overview of the training process with the proposed hard sample mining

of our approach by demonstrating its superiority over the state-of-the-art methods

on the standard benchmark datasets including Market-1501, CUHK03, CUHK01 and

DukeMTMC, and standard video dataset MARS.

1.2 Stochastic Class-Based Hard Sample Mining

In Chapter 3, stochastic class-based hard sample mining method is introduced. Per-

formance of deep metric learning depends heavily on the capability of mining hard

negative examples during training. However, many metric learning algorithms often

require intractable computational cost due to frequent feature computations and near-

est neighbor searches in a large-scale dataset. As a result, existing approaches often

suffer from trade-off between training speed and prediction accuracy. To alleviate this

limitation, we propose a two-step approach. For a given anchor instance, it first se-

lects a few candidate hard negative classes based on the class-to-sample distances and

then performs a refined search in an instance-level only from the selected classes. As

most of the classes are pruned at the first step, it is much more efficient than exhaus-

tive search while effectively mining a large number of hard examples. We handle the

4



imperfect class-level pruning due to the intra-class variation by stochastically mining

candidate classes and hard instances. Since the proposed method can be applied to

generic objects beyond the person, we perform experiments on both object retrieval

and person re-identification datasets. Our experiment shows that the proposed tech-

nique finds hard negative samples effectively and improves image retrieval accuracy

substantially in both image retrieval and person re-identification datasets; it achieves

the state-of-the-art performance on the standard benchmark including CUB-200-2011,

CARS-196, In-shop retrieval, and Stanford online products datasets.

1.3 Integrated System for Person Re-identification

In Chapter 4, we propose an integrated person re-identification system by combin-

ing the two approaches, part-aligned image representation (Chapter 2) and hard sam-

ple mining technique (Chapter 3). In addition, we propose a hard positive sample

mining technique to further enhance the performance in the person re-identification

datasets. In the experiments, we show that the proposed method consistently improves

the accuracy in two most popular person re-identification datasets: Market-1501 and

DukeMTMC.

The thesis is concluded in Chapter 5 with a summary of contributions of the thesis

and suggestion for the future research directions.

5



Chapter 2

Part-Aligned Bilinear Represenatations

2.1 Introduction

The goal of person re-identification is to identify the same person across videos cap-

tured from different cameras. It is a fundamental visual recognition problem in video

surveillance with various applications [84]. It is challenging because the camera views

are usually disjoint, the temporal transition time between cameras varies considerably,

and the lighting conditions/person poses differ across cameras in real-world scenarios.

Body part misalignment (i.e., the problem that body parts are spatially misaligned

across person images) is one of the key challenges in person re-identification. Fig-

ure 2.1 shows some examples. This problem causes conventional strip/grid-based rep-

resentations [38, 2, 112, 107, 13, 88] to be unreliable as they implicitly assume that

every person appears in a similar pose within a tightly surrounded bounding box. Thus,

a body part-aligned representation, which can ease the representation comparison and

avoid the need for complex comparison techniques, should be designed.

To resolve this problem, recent approaches have attempted to localize body parts

explicitly and combine the representations over them [75, 120, 114, 36, 115]. For

example, the body parts are represented by the pre-defined (or refined [75]) bound-

ing boxes estimated from the state-of-the-art pose estimators [120, 75, 5, 114]. This

6



(a) (b) (c)

Figure 2.1: (a, b) As a person appears in different poses/viewpoints in different cam-

eras, and (c) human detections are imperfect, the corresponding body parts are usually

not spatially aligned across the human detections, causing person re-identification to

be challenging.

scheme requires highly-accurate pose estimation. Unfortunately, state-of-the-art pose

estimation solutions are still not perfect. Also, these schemes are bounding box-based

and lack fine-grained part localization within the boxes. To mitigate the problems, we

propose to encode human poses by feature maps rather than by bounding boxes. Re-

cently, Zhao et al. [115] represented body parts through confidence maps, which are

estimated using attention techniques. The method has a lack of guidance on body part

locations during the training, thereby failing to attend to certain body regions consis-

tently.

In this paper, we propose a part-aligned representation for person re-identification.

Our approach learns to represent the human poses as part maps and combine them

directly with the appearance maps to compute part-aligned representations. More pre-

cisely, our model consists of a two-stream network and an aggregation module. 1)

Each stream separately generates appearance and body part maps. 2) The aggrega-

tion module first generates the part-aligned feature maps by computing the bilinear

mapping of the appearance and part descriptors at each location, and then spatially

averages the local part-aligned descriptors. The resulting image matching similarity is

equivalent to an aggregation of the local appearance similarities of the corresponding

body parts. Since the similarity does not depend on the relative positions of parts, the

misalignment problem is reduced.
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Training the network does not require any body part annotations on the person re-

identification dataset. Instead, we simply initialize the part map generation stream us-

ing the pre-trained weights, which are trained from a standard pose estimation dataset.

Surprisingly, although our approach only optimizes the re-identification loss function,

the resulting two-stream network successfully separates appearance and part informa-

tion into each stream, thereby generating the appearance and part maps from each of

them, respectively. In particular, the part maps adapt from the original form to further

differentiate informative body parts for person re-identification. Through extensive

experiments, we verify that our approach consistently improves the accuracy of the

baseline and achieves competitive/superior performance over standard image datasets,

Market-1501, CUHK03, CUHK01 and DukeMTMC, and one standard video dataset,

MARS.

2.2 Related Work

The early solutions of person re-identification mainly relied on hand-crafted features [51,

40, 25, 54], metric learning techniques [110, 111, 59, 41, 33, 39, 30], and probabilis-

tic patch matching algorithms [7, 6, 69] to handle resolution/light/view/pose changes.

Recently, attributes [76, 77, 117], transfer learning [60, 70], re-ranking [122, 21],

partial person matching [124], and human-in-the-loop learning [53, 93], have also

been studied. More can be found in the survey [123]. In the following, we review

recent spatial-partition-based and part-aligned representations, matching techniques,

and some works using bilinear pooling.

Regular spatial-partition based representations. The approaches in this stream of

research represent an image as a combination of local descriptors, where each local

descriptor represents a spatial partition such as grid cell [38, 2, 112] and horizontal

stripe [107, 13, 88]. They work well under a strict assumption that the location of each

body part is consistent across images. This assumption is often violated under realistic
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conditions, thereby causing the methods to fail. An extreme case is that no spatial

partition is used and a global representation is computed over the whole image [59,

101, 119, 100, 9, 102].

Body part-aligned representations. Body part and pose detection results have been

exploited for person re-identification to handle the body part misalignment problem [15,

105, 4, 18, 97, 14]. Recently, these ideas have been re-studied using deep learning tech-

niques. Most approaches [120, 75, 114] represent an image as a combination of body

part descriptors, where a dozen of pre-defined body parts are detected using the off-the-

shelf pose estimator (possibly an additional RoI refinement step). They usually crop

bounding boxes around the detected body parts and compute the representations over

the cropped boxes. In contrast, we propose part-map-based representations, which is

different from the previously used box-based representations [120, 75, 114].

Tang et al [84] also introduced part maps for person re-identification to solve the

multi-people tracking problem. They used part maps to augment appearances as an-

other feature, rather than to generate part-aligned representations, which is different

from our method. Some works [49, 115] proposed the use of attention maps, which

are expected to attend to informative body parts. They often fail to produce reliable at-

tentions as the attention maps are estimated from the appearance maps; guidance from

body part locations is lacking, resulting in a limited performance.

Matching. The simple similarity functions [107, 88, 13], e.g., cosine similarity or

Euclidean distance, have been adapted, for part-aligned representations, such as our

approach, or under an assumption that the representations are body part/pose aligned.

Various schemes [92, 2, 38, 112] were designed to eliminate the influence from body

part misalignment for spatial partition-based representations. For instance, a matching

sub-network was proposed to conduct convolution and max-pooling operations, over

the differences [2] or the concatenation [38, 112] of grid-based representation of a

pair of person images. Varior et al. [87] proposed the use of matching maps in the

intermediate features to guide feature extraction in the later layers through a gated

9



CNN.

Bilinear pooling. Bilinear pooling is a scheme to aggregate two different types of

feature maps by using the outer product at each location and spatial pooling them to

obtain a global descriptor. This strategy has been widely adopted in fine-grained recog-

nition [43, 19, 31] and showed promising performance. For person re-identification,

Ustinova et al. [85] adopted a bilinear pooling to aggregate two different appearance

maps; this method does not generate part-aligned representations and leads to poor

performance. Our approach uses a bilinear pooling to aggregate appearance and part

maps to compute part-aligned representations.

2.3 Our Approach

The proposed model consists of a two-stream network and an aggregation module. It

receives an image I as an input and outputs a part-aligned feature representation f̃ as

illustrated in Figure 2.2. The two-stream network contains two separate sub-networks,

the appearance map extractor A and the part map extractor P , which extract the ap-

pearance map A and part map P, respectively. The two types of maps are aggregated

through bilinear pooling to generate the part-aligned feature f , which is subsequently

normalized to generate the final feature vector f̃ .

2.3.1 Two-Stream Network

Appearance map extractor. We feed an input image I into the appearance map ex-

tractor A, thereby outputting the appearance map A:

A = A(I). (2.1)

A ∈ Rh×w×cA is a feature map of size h×w, where each location is described by cA-

dimensional local appearance descriptor. We use the sub-network of GoogLeNet [83]

to form and initialize A.
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GoogleNet-V1
(~Inception4e)

Conv/BN

OpenPose
(~concat_stage3) Conv/BN(/ReLU)

𝒇𝑨

𝑷

෨𝒇
𝑙2-normalize

Part map extractor   

Appearance map
extractor

Bilinear pooling

Figure 2.2: Overview of the proposed model. The model consists of a two-stream

network and an aggregator (bilinear pooling). For a given image I, the appearance

and part map extractors, A and P , generate the appearance and part maps, A and P,

respectively. The aggregator performs bilinear pooling over A and P and generates a

feature vector f . Finally, the feature vector is l2-normalized, resulting in a final part-

aligned representation f̃ . Conv and BN denote the convolution and batch normalization

layers, respectively.
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Part map extractor. The part map extractor P receives an input image I and outputs

the part map P:

P = P(I). (2.2)

P ∈ Rh×w×cP is a feature map of size h×w, where each location is described by a cP -

dimensional local part descriptor. Considering the rapid progress in pose estimation,

we use the sub-network of the pose estimation network, OpenPose [5], to form and

initialize P . We denote the sub-network of the OpenPose as Ppose.

2.3.2 Bilinear Pooling

Let axy be the appearance descriptor at the position (x, y) from the appearance map A,

and pxy be the part descriptor at the position (x, y) from the part map P. We perform

bilinear pooling over A and P to compute the part-aligned representation f . There are

two steps, bilinear transformation and spatial global pooling, which are mathematically

given as follows:

f = poolingxy{fxy} =
1

S

∑
xy

fxy, fxy = vec(axy ⊗ pxy), (2.3)

where S is the spatial size. The pooling operation we use here is average-pooling.

vec(.) transforms a matrix to a vector, and ⊗ represents the outer product of two vec-

tors, with the output being a matrix. The part-aligned feature f is then normalized to

generate the final feature vector f̃ as follows:

f̃ =
f

‖f‖2
. (2.4)

Considering the normalization, we denote the normalized part-aligned representation

as f̃xy = vec(ãxy ⊗ p̃xy), where ãxy =
axy√
‖f‖2

and p̃xy =
pxy√
‖f‖2

. Therefore, f̃ =

1
S

∑
xy f̃xy.
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Part-aligned interpretation. We can decompose a⊗ p1 into cP components:

vec(a⊗ p) = [(p1a)
> (p2a)

> . . . (pcP a)
>]>, (2.5)

where each sub-vector pia corresponds to a i-th part channel. For example, if pknee =

1 on knee and 0 otherwise, then pkneea becomes a only on the knee and 0 otherwise.

Thus, we call vec(a⊗p) as part-aligned representation. In general, each channel c does

not necessarily correspond to a certain body part. However, the part-aligned represen-

tation remains valid as p encodes the body part information. Section 2.4 describes this

interpretation in detail.

2.3.3 Loss

To train the network, we utilize the widely-used triplet loss function. Let Iq, Ip and In

denote the query, positive and negative images, respectively. Then, (Iq, Ip) is a pair of

images of the same person, and (Iq, In) is that of different persons. Let f̃q, f̃p, and f̃n

indicate their representations. The triplet loss function is formulated as

`triplet(f̃q, f̃p, f̃n) = max(m+ sim(f̃q, f̃n)− sim(f̃q, f̃p), 0), (2.6)

where m denotes a margin and sim(x,y) =< x,y >. The margin is empirically set

as m = 0.2. The overall loss function is written as follows.

L =
1

|T |
∑

(Iq ,Ip,In)∈T
`triplet(f̃q, f̃p, f̃n), (2.7)

where T is the set of all triplets, {(Iq, Ip, In)}.

2.4 Analysis

2.4.1 Part-Aware Image Similarity

We show that under the proposed part-aligned representation in Eqs.(2.3) and (2.4),

the similarity between two images is equivalent to the aggregation of local appearance
1We drop the subscript xy for presentation clarification
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similarities between the corresponding body parts. The similarity between two images

can be represented as the sum of local similarities between every pair of locations as

follows.

simI(I, I
′) =< f̃ , f̃ ′ >=

1

S2
<
∑
xy

f̃xy,
∑
x′y′

f̃ ′x′y′ >

=
1

S2

∑
xy

∑
x′y′

< f̃xy, f̃
′
x′y′ >

=
1

S2

∑
xy

∑
x′y′

sim(f̃xy, f̃
′
x′y′), (2.8)

where simI(, ) measures the similarity between images. Here, the local similarity is

computed by an inner product:

sim(f̃xy, f̃
′
x′y′) =< vec(ãxy ⊗ p̃xy), vec(ã

′
x′y′ ⊗ p̃′x′y′) >

=< ãxy, ã
′
x′y′ >< p̃xy, p̃

′
x′y′ >

= sim(ãxy, ã
′
x′y′) sim(p̃xy, p̃

′
x′y′). (2.9)

This local similarity can be interpreted as the appearance similarity weighted by the

body part similarity or vice versa. Thus, from Eqs(2.8) and (2.9), the similarity be-

tween two images is computed as the average of local appearance similarities weighted

by the body part similarities at the corresponding positions:

simI(I, I
′) =

1

S2

∑
xyx′y′

sim(ãxy, ã
′
x′y′) sim(p̃xy, p̃

′
x′y′).

As a result, the image similarity does not depend on the relative positions of parts in

images, and therefore the misalignment problem is reduced. To make the local part

similarity to be always non-negative and therefore the sign of the local similarity de-

pends only on the sign of the local appearance similarity, we can also restrict the part

descriptors pxy to be element-wise non-negative by adding a ReLU layer after the part

map extractor P as shown in Figure 2.2. As this variant results in similar accuracy to

the original one, we used the model without the ReLU layer for all the experiments.

See supplementary material for more details.
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2.4.2 Relationship to the Baseline Models

Consider a baseline approach that only uses the appearance maps and spatial global

pooling for image representation. Then, the image similarity is computed as simI(I, I
′) =

1
S2

∑
xyx′y′ sim(ãxy, ã

′
x′y′). Unlike our model, this approach cannot reflect part sim-

ilarity. Consider another model based on the box-based representation, which rep-

resents an image as a concatenation of K body part descriptors, where k-th body

part is represented as the average-pooled appearance feature within the correspond-

ing bounding box. This model is equivalent to our model when pxy is defined as

pxy = [δ[(x, y) ∈ R1], · · · , δ[(x, y) ∈ RK ]], where Rk is the region within the k-th

part bounding box and δ[·] is an indicator function, i.e., δ[x] = 1 if x is true other-

wise 0. Because our model contains these baselines as special cases and is trained to

optimize the re-identification loss, it is guaranteed to perform better than them.

2.4.3 Decomposition of Appearance and Part Maps

At the beginning of the training, the two streams of the network mainly represent the

appearance and part maps because the appearance map extractor A and the part map

extractor P are initialized using GoogleNet [82] pre-trained on ImageNet [66] and

OpenPose [5] model pre-trained on COCO [42], respectively. During training, we do

not set any constraints on the two streams, i.e., no annotations for the body parts, but

only optimize the re-identification loss. Surprisingly, the trained two-stream network

maintains to decompose the appearance and part information into two streams: one

stream corresponds to the appearance maps and the other corresponds to the body part

maps.

We visualize the distribution of the learned local appearance and part descriptors

using t-SNE [52] as shown in Figures 2.5 (a) and (b). Figure 2.5 (a) shows that the ap-

pearance descriptors are clustered depending on the appearance while being indepen-

dent on the parts that they come from. For example, the red/yellow box shows that the

red/black-colored patches are closely embedded, respectively. By contrast, Figure 2.5
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Figure 2.3: Visualization of the appearance maps A and part maps P obtained from the

proposed method. For a given input image (left), appearance (center) and part (right)

maps encode the appearance and body parts, respectively. For both appearance and part

maps, the same color implies that the descriptors are similar, whereas different colors

indicate that the descriptors are different. The appearance maps share similar color

patterns among the images from the same person, which means that the patterns of

appearance descriptors are similar as well. In the part maps, the color differs depending

on the location of the body parts where the descriptors came from. (Best viewed in

color)

Figure 2.4: Comparing the body part descriptors. For a given image (left), the conven-

tional joint-based (center) and the proposed (right) descriptors are visualized. (Best

viewed in color)
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(a) Appearance features (b) Part features

Figure 2.5: The t-SNE visualization of the normalized local appearance and part de-

scriptors on the Market-1501 dataset. It illustrates that our two-stream network decom-

poses the appearance and part information into two streams successfully. (a) Appear-

ance descriptors are clustered roughly by colors, independently from the body parts

where they came from. (b) Part descriptors are clustered by body parts where they

came from, regardless of the colors. (Best viewed on a monitor when zoomed in)
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(b) illustrates that the local part embedding maps the similar body parts into close

regions regardless of color. For example, the green/blue box shows that the features

from the head/lower leg are clustered, respectively. In addition, physically adjacent

body parts, such as head–shoulder and shoulder–torso, are also closely embedded.

To understand how the learned appearance/part descriptors are used in person re-

identification, we visualize the appearance maps A and the part maps P following the

visualization used in SIFTFlow [46], as shown in Figure 2.3. 2 For a given input image

(left), the appearance (center) and part (right) maps encode the appearance and body

parts, respectively. The figure shows how the appearance maps differentiate different

persons while being invariant for each person. By contrast, the part maps encode the

body parts independently from their appearance. In particular, a certain body part is

represented by a similar color across images, which confirms our observation in Fig-

ure 2.5 that the part features from physically adjacent regions are closely embedded.

Our approach learns the optimal part descriptor for person re-identification, rather

than relying on the pre-defined body parts. Figure 2.4 qualitatively compares the con-

ventional body part descriptor and the one learned by our approach. 3 In the previous

works on human pose estimation [96, 5, 57], human poses are represented as a collec-

tion of pre-defined key body joint locations. It corresponds to a part descriptor which

one-hot encodes the key body joints depending on the existence of a certain body joint

at the location, e.g, pknee = 1 on knee and 0 otherwise. Compared to the baseline,

ours smoothly maps the body parts. In other words, the colors are continuous over the

whole body in ours, which implies that the adjacent body parts are mapped closely. By

contrast, the baseline not always maps adjacent body parts maps closely. For example,

the upper leg between the hip and knee is more close to the background descriptors

than to ankle or knee descriptors. This smooth mapping makes our method to work ro-

bustly against the pose estimation error because the descriptors do not change rapidly
2we project the cA(or cP )-dimensional local descriptor vector onto the 3D RGB space, by mapping

the top three principal components of the descriptor to the principal components of RGB.
3We used the visualization method proposed in SIFTFlow [46]
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along the body parts and therefore are insensitive to the error in estimation. In ad-

dition, the part descriptors adopt to distinguish the informative parts more finely. For

example, the mapped color varies sharply from elbow to shoulder and differentiates the

detailed regions. Based on these properties, the learned part descriptors better support

the person re-identification task and improve the accuracy.

2.4.4 Part-Alignment Effects on Reducing Misalignment Issue

Consider a similarity matrix Sfeat(I, I′) ∈ Rhw×h′w′
, whose (x + wy, x′ + w′y′)-th

element is sim(f̃xy, f̃
′
x′y′). Spart(I, I

′) and Sapp(I, I′) are constructed similarly from

sim(p̃xy, p̃
′
x′y′) and sim(ãxy, ã

′
x′y′). From Eq.8 and 9, sim(I, I′) is the average of all

the elements of Sfeat(I, I′), and Sfeat(I, I′) = Sapp(I, I
′) � Spart(I, I

′), where �

denotes the element-wise product.

To demonstrate part-alignment effect, we visualize similarity matrices (Fig. 2.7

and 2.8) for two example image pairs, (Ia, Ip) and (Ia, In), shown in Fig. 2.6. In

Fig. 2.7 and 2.8, the order of rows/columns is re-arranged for better visualization

(color bars represent the corresponding parts shown in Fig. 2.6). Fig. 2.7 and 2.8 shows

that local part similarity sim(p̃xy, p̃
′
x′y′) is approximately 0 for almost every location

pair ((x, y), (x′, y′)) and activates positively/negatively (bright/dark) only when (x, y)

and (x′, y′) belong to the same/negatively-related body parts.

From Eq.9, sim(f̃xy, f̃
′
x′y′) activates only when both part and appearance similar-

ities, sim(p̃xy, p̃
′
x′y′) and sim(ãxy, ã

′
x′y′), activate. Thus, from Eq. 8, sim(I, I′) ≈∑

((x,y),(x′,y′))∈R sim(ãxy, ã
′
x′y′) sim(p̃xy, p̃

′
x′y′), where R is a set of every location

pair ((x, y), (x′, y′)) that has non-zero sim(p̃xy, p̃
′
x′y′), i.e. (x, y) and (x′, y′) belong

to same/negatively-related body parts. Since the image similarity is represented as the

sum of appearance similarities between corresponding parts minus the sum of appear-

ance similarities between negatively-related parts, regardless of their locations in im-

ages, the misalignment problem is reduced.
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(a) Ia (b) Ip (c) In

Figure 2.6: Image and its part color encoding for visualization in

Fig. 2.7 and 2.8

Spart(Ia, Ip) Sapp(Ia, Ip) Sfeat(Ia, Ip)

Figure 2.7: Visualization of the similarity matrices for pairs of images shown in Fig 2.6

Spart(Ia, In) Sapp(Ia, In) Sfeat(Ia, In)

Figure 2.8: Visualization of the similarity matrices for pairs of images shown in Fig 2.6
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2.5 Implementation Details

Network architecture. We use a sub-network of the first version of GoogLeNet [82]

as the appearance map extractorA, from the image input of size 160×80 to the output

of inception4e, which is followed by a 1× 1 convolution layer and a batch normaliza-

tion layer to reduce the dimension to 512 (Figure 2.2). Moreover, we optionally adopt

dilation filters in the layers from the inception4a to the final layer, resulting in 20× 10

response maps. Figure 2.2 illustrates the architecture of the part map extractor P . We

use a sub-network of the OpenPose network [5], from the image input to the output

of stage2 (i.e., concat stage3) to extract 185 pose heat maps, which is followed by a

3 × 3 convolution layer and a batch normalization layer, thereby outputting 128 part

maps. We adopt the compact bilinear pooling [19] to aggregate the two feature maps

into a 512-dimensional vector f .

Compact bilinear pooling. The bilinear transformation over the 512-dimensional ap-

pearance vector and the 128-dimensional part vector results in an extremely high di-

mensional vector, which consumes large computational cost and memory. To resolve

this issue, we use the tensor sketch approach [61] to compute a compact representation

as in [19]. The key idea of the tensor sketch approach is that the original inner prod-

uct, on which the Euclidean distance is based, between two high-dimensional vectors

can be approximated as an inner product of the dimension-reduced vectors, which are

random projections of the original vectors. Details can be found in [61].

Network training. The appearance map extractorA and part map extractorP are fine-

tuned from the network pre-trained on ImageNet [66] and COCO [42], respectively.

The added layers are initialized following [24]. We use the stochastic gradient descent

algorithm. The initial learning rate, weight decay, and the momentum are set to 0.01,

2 × 10−4, and 0.9, respectively. The learning rate is decreased by a factor of 5 after

every 20, 000 iterations. All the networks are trained for 75, 000 iterations.

We follow [115] to sample a mini-batch of samples at each iteration and use all
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the possible triplets within each mini-batch. The gradients are computed using the

acceleration trick presented in [115]. In each iteration, we sample a mini-batch of 180

images, e.g., there are on average 18 identities with each containing 10 images. In

total, there are approximately 102 · (180− 10) · 18 ≈ 3× 105 triplets in each iteration.

2.6 Experiments

2.6.1 Datasets

Market-1501 [121] This dataset is one of the largest benchmark datasets for per-

son re-identification. Six cameras are used: five high-resolution cameras and one low-

resolution camera. There are 32, 668 DPM-detected pedestrian image boxes of 1, 501

identities: 750 identities are utilized for training and the remaining 751 identities are

used for testing. There are 3, 368 query images and 19, 732 gallery images with 2, 793

distractors.

CUHK03 [38] This dataset consists of 13, 164 images of 1, 360 people captured by

six cameras. Each identity appears in two disjoint camera views (i.e., 4.8 images in

each view on average). We divided the train/test set following the previous work [38].

For each test identity, two images are randomly sampled as the probe and gallery

images and the average accuracy over 20 trials is reported as the final result.

CUHK01 [37] This dataset comprises 3884 images of 971 people captured in two

disjoint camera views. Two images are captured for each person from each of the two

cameras (i.e., a total of four images). Experiments are performed under two evaluation

settings [2], using 100 and 486 test IDs. Following the previous works [2, 9, 13, 115],

we fine-tuned the model from the one learned from the CUHK03 training set for the

experiments with 486 test IDs.
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Figure 2.9: (a) Comparison of different pooling methods on the appearance maps. (c)

Comparing models, with and without part maps, on different datasets. (d) Comparing

models, with and without part maps, on different architectures of the appearance map

extractor. If not specified, the results are reported on Market-1501. (b) Comparison of

different methods to aggregate the appearance and part maps.

DukeMTMC [64] This dataset is originally proposed for video-based person track-

ing and re-identification. We use the fixed train/test split and evaluation setting follow-

ing [45].It includes 16, 522 training images of 702 identities, 2, 228 query images of

702 identities and 17, 661 galley images.

MARS [119] This dataset is proposed for video-based person re-identification. It

consists of 1261 different pedestrians captured by at least two cameras. There are

509, 914 bounding boxes and 8, 298 tracklets from 625 identities for training and

681, 089 bounding boxes and 12, 180 tracklets from 636 identities for testing.

2.6.2 Evaluation Metrics

We use both the cumulative matching characteristics (CMC) and mean average preci-

sion (mAP) to evaluate the accuracy. The CMC score measures the quality of identi-

fying the correct match at each rank. For multiple ground truth matches, CMC cannot

measure how well all the images are ranked. Therefore, we report the mAP scores for

Market-1501, DukeMTMC, and MARS where more than one ground truth images are

in the gallery.
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2.6.3 Comparison with the Baselines

We compare the proposed method with the baselines in three aspects. In this section,

when not specified, all the experiments are performed on the Market-1501 dataset, all

the models do not use dilation, and Ppose is trained together with the other parameters.

Effect of part maps We compare our method with a baseline that does not explic-

itly use body parts. As a baseline network, we use the appearance map extractor of

Eq.(2.1), which is followed by a global spatial average pooling and a fully connected

layer, thereby outputting the 512-dimensional image descriptor. Figures 2.9 (a) and

(b) compare the proposed method with the baseline, while varying the training strat-

egy: fixing and training Ppose. Fixing Ppose initializes Ppose using the pre-trained

weights [5, 42] and fixes the weight through the training. Training Ppose also ini-

tializes Ppose in the same way, but fine-tunes the network using the loss of Eq.(2.7)

during training. Figure 2.9 (a) illustrates the accuracy comparison on three datasets,

Market-1501, MARS, and Duke. It shows that using part maps consistently improves

the accuracy on all the three datasets from the baseline. In addition, training Ppose

largely improves the accuracy than fixing Ppose. It implies that the part descriptors are

adopted to better serve the person re-identification task. Figure 2.9 (b) shows the ac-

curacy comparison while varying the appearance sub-network architecture. Similarly,

the baseline accuracy is improved when part maps are introduced and further improved

when Ppose is fine-tuned during training.

Effect of bilinear pooling Figure 2.9 (c) compares the proposed method (bilinear)

to the baseline with a different aggregator. For the given appearance and part maps,

concat+averagepool+linear generates a feature vector by concatenating two feature

maps, spatially average pooling, and feeding through a fully connected layer, result-

ing in a 512-dimensional vector. The result shows that bilinear pooling consistently

achieves higher accuracy than the baseline, for both cases when Ppose is fixed/trained.
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Comparison with previous pose-based methods Finally, we compare our method

with three previous works [120, 114, 75], which use human pose estimation, on Market-

1501. For a fair comparison, we use the reduced CPM(R-CPM [∼3M param]) uti-

lized in [75]as Ppose. The complexity of the R-CPM is lower than the standard FCN

(∼6M param) used in [114] and CPM (∼30M param) used in [120]. As the appear-

ance network, [114] used GoogLeNet and [120] used ResNet50. [75] used 13 incep-

tion modules, whereas we use 7. Table 2.2 shows the comparison. In comparison with

the method adopted by [120, 114, 75], the proposed method (Inception V1, R-CPM)

achieves an increase of 4% and 9% for rank@1 accuracy and mAP, respectively. It

shows that our method effectively uses the part information compared with the previ-

ous approaches.

2.6.4 Comparison with State-of-the-Art Methods

Market-1501 Table 2.2 and 2.3 show the comparison over two query schemes, sin-

gle query and multi-query. Single query takes one image from each person whereas

multi-query takes multiple images. For the multi-query setting, one descriptor is ob-

tained from multiple images by averaging the feature from each image. Our approach

achieves the best accuracy in terms of both mAP and rank@K for both single and

multi-query. We also provide the result after re-ranking [128], which further boosts

accuracy. In addition, we conduct the experiment over an expanded dataset with addi-

tional 500K images [121]. Following the standard evaluation protocol [27], we report

the results over four different gallery sets, 19, 732, 119, 732, 219, 732, and 519, 732,

using two evaluation metrics (i.e., rank-1 accuracy and mAP). Table 2.4 reports the

results. The proposed method outperforms all the other methods.

CUHK03 We report the results with two person boxes: manually labeled and de-

tected. Table 2.5 presents the comparison with existing solutions. In the case of de-

tected boxes, the state-of-the-art accuracy is achieved. With manual bounding boxes,
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Table 2.1: Accuracy comparison on CUHK01

100 test IDs 486 test IDs

Rank 1 5 10 20 1 5 10 20

Shi et al. [107] 69.4 90.8 96.0 - - - - -

SIR-CIR [92] 71.8 91.6 96.0 98.0 - - - -

Zhang et al. [112] 89.6 97.8 98.9 99.7 76.5 94.2 97.5 -

Zhao et al. [115] 88.5 98.4 99.6 99.9 74.7 92.6 96.2 98.4

Geng et al. [23] 93.2 - - - 77.0 - - -

Chen et al. [12] - - - - 74.5 91.2 94.8 97.1

Ustinova et al. [85] (Bilinear) - - - - 52.9 78.1 86.3 92.6

Zhao et al. [114] (Pose) - - - - 79.9 94.4 97.1 98.6

Part-aligned 90.4 97.1 98.1 98.9 80.7 94.4 97.3 98.6
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Table 2.2: Accuracy comparison on Market-1501 with single query

Sinlge Query

Rank 1 5 10 20 mAP

Varior et al. 2016 [87] 61.6 - - - 35.3

Zhong et al. 2017 [128] 77.1 - - - 63.6

Zhao et al. 2017 [115] 80.9 91.7 94.7 96.6 63.4

Sun et al. 2017 [81] 82.3 92.3 95.2 - 62.1

Geng et al. 2016 [23] 83.7 - - - 65.5

Lin et al. 2017 [45] 84.3 93.2 95.2 97.0 64.7

Bai et al. 2017 [3] 82.2 - - - 68.8

Chen et al. 2017 [12] 72.3 88.2 91.9 95.0 -

Hermans et al. 2017 [27] 84.9 94.2 - - 69.1

+ re-ranking 86.7 93.4 - - 81.1

Zhang et al. 2017 [113] 87.7 - - - 68.8

Zhong et al. 2017 [129] 87.1 - - - 71.3

+ re-ranking 89.1 - - - 83.9

Chen et al. 2017 [11] (MobileNet) 90.0 - - - 70.6

Chen et al. 2017 [11] (Inception-V3) 88.6 - - - 72.6

Ustinova et al. 2017 [85] (Bilinear) 66.4 85.0 90.2 - 41.2

Zheng et al. 2017 [120] (Pose) 79.3 90.8 94.4 96.5 56.0

Zhao et al. 2017 [114] (Pose) 76.9 91.5 94.6 96.7 -

Su et al. 2017 [75] (Pose) 84.1 92.7 94.9 96.8 65.4

Part-aligned (Inception-V1, R-CPM) 88.8 95.6 97.3 98.6 74.5

Part-aligned (Inception-V1, OpenPose) 90.2 96.1 97.4 98.4 76.0

+ dilation 91.7 96.9 98.1 98.9 79.6

+ re-ranking 93.4 96.4 97.4 98.2 89.9
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Table 2.3: Accuracy comparison on Market-1501

Multi Query

Rank 1 5 10 20 mAP

Geng et al. 2016 [23] 89.6 - - - 73.8

Bai et al. 2017 [3] 88.2 - - - 76.2

Hermans et al. 2017 [27] 90.5 96.3 - - 76.4

+ re-ranking 91.8 95.8 - - 87.2

Zhang et al. 2017 [113] 91.7 - - - 77.1

Part-aligned (Inception-V1, R-CPM) 92.9 97.3 98.4 99.1 81.7

Part-aligned (Inception-V1, OpenPose) 93.2 97.5 98.4 99.1 82.7

+ dilation 94.0 98.0 98.8 99.3 85.2

+ re-ranking 95.4 97.5 98.2 98.9 93.1
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Table 2.4: Accuracy comparison on Market-1501+500k

Gallery size

metric 19732 119732 219732 519732

Zheng et al. 2017 [125]
rank-1 79.5 73.8 71.5 68.3

mAP 59.9 52.3 49.1 45.2

Linet al. 2017 [45]
rank-1 84.0 79.9 78.2 75.4

mAP 62.8 56.5 53.6 49.8

Hermans et al. 2017 [27]
rank-1 84.9 79.7 77.9 74.7

mAP 69.1 61.9 58.7 53.6

Part-aligned (Inception V1, OpenPose)
rank-1 91.7 88.3 86.6 84.1

mAP 79.6 74.2 71.5 67.2

29



Table 2.5: Accuracy comparison on CUHK03

Detected Manual

Rank 1 5 10 20 1 5 10 20

Shi et al. [107] 52.1 84.0 92.0 96.8 61.3 88.5 96.0 99.0

SIR-CIR [92] 52.2 - - - - - - -

Varior et al. [87] 68.1 88.1 94.6 98.8 - - - -

Bai et al. [3] 72.7 92.4 96.1 - 76.6 94.6 98.0 -

Zhang et al. [112] - - - - 80.2 97.7 99.2 99.8

Sun et al. [81] 81.8 95.2 97.2 - - - - -

Zhao et al. [115] 81.6 97.3 98.4 99.5 85.4 97.6 99.4 99.9

Geng et al. [23] 84.1 - - - 85.4 - - -

Chen et al. [12] 87.5 97.4 98.7 99.5 - - - -

Ustinova et al. [85] (Bilinear) 63.7 89.2 94.7 97.5 69.7 93.4 98.9 99.4

Zheng et al. [120] (Pose) 67.1 92.2 96.6 98.1 - - - -

Zhao et al. [114] (Pose) - - - - 88.5 97.8 98.6 99.2

Su et al. [75] (Pose) 78.3 94.8 97.2 98.4 88.7 98.6 99.2 99.7

Part-aligned 88.0 97.6 98.6 99.0 91.5 99.0 99.5 99.9
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Table 2.6: Accuracy comparison on DukeMTMC

Rank 1 5 10 20 mAP

Zheng et al. [127] 67.7 - - - 47.1

Tong et al. [103] 68.1 - - - -

Lin et al. [45] 70.7 - - - 51.9

Schumann et al. [68] 72.6 - - - 52.0

Sun et al. [81] 76.7 86.4 89.9 - 56.8

Chen et al. [11] (MobileNet) 77.6 - - - 58.6

Chen et al. [11] (Inception-V3) 79.2 - - - 60.6

Zhun et al. [129] 79.3 - - - 62.4

+ re-ranking 84.0 - - - 78.3

Part-aligned (Inception V1, OpenPose) 82.1 90.2 92.7 95.0 64.2

+ dilation 84.4 92.2 93.8 95.7 69.3

+ re-ranking 88.3 93.1 95.0 96.1 83.9

31



Table 2.7: Accuracy comparison on MARS

Rank 1 5 10 20 mAP

Xu et al. [104] (Video) 44 70 74 81 -

McLaughlin et al. [55] (Video) 45 65 71 78 27.9

Zheng et al. [119] (Video) 68.3 82.6 - 89.4 49.3

Liu et al. [47] (Video) 68.3 81.4 - 90.6 52.9

Zhou et al. [130] 70.6 90.0 - 97.6 50.7

Li et al. [36] 71.8 86.6 - 93.1 56.1

+ re-ranking 83.0 93.7 - 97.6 66.4

Liu et al. [50] 73.7 84.9 - 91.6 51.7

Hermans et al. [27] 79.8 91.4 - - 67.7

+ re-ranking 81.2 90.8 - - 77.4

Part-aligned (Inception V1, OpenPose) 83.0 92.8 95 96.8 72.2

+ dilation 83.1 94.2 95.8 − 74.8
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our method also achieves the best accuracy.

CUHK01 We compare the results with two evaluation settings (i.e., 100 and 486

test IDs) in Table 2.1. For 486 test IDs, the proposed method shows the best result.

For 100 test IDs, our method achieves the second best result, following [23]. Note that

[23] fine-tuned the model which is learned from the CUHK03+Market1501, whereas

we trained the model using 871 training IDs of the CUHK01 dataset, following the

settings in previous works [2, 9, 13, 115].

DukeMTMC We follow the setting in [45] to conduct the experiments. Table 2.6

reports the results. The proposed method achieves the best result for both with and

without re-ranking.

MARS We also evaluate our method on one video-based person re-identification

dataset [119]. We use our approach to extract the representation for each frame and

aggregate the representations of all the frames using temporal average pooling, which

shows similar accuracy to other aggregation schemes (RNN and LSTM). Table 4.3

presents the comparison with the competing methods. Our method shows the highest

accuracy over both image-based and video-based approaches.

2.7 Summary

We propose a new method for person re-identification. The key factors that contribute

to the superior performance of our approach are as follows. (1) We adopt part maps

where parts are not pre-defined but learned specially for person re-identification. They

are learned to minimize the re-identification loss with the guidance of the pre-trained

pose estimation model. (2) The part map representation provides a fine-grained/robust

differentiation of the body part depending on their usefulness for re-identification. (3)

We use part-aligned representations to handle the body part misalignment problem.
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The resulting approach achieves superior/competitive person re-identification perfor-

mances on the standard image and video benchmark datasets.
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Chapter 3

Stochastic Class-Based Hard Sample Mining

3.1 Introduction

Deep metric learning is a fundamental problem applicable to various tasks in computer

vision including image retrieval [56, 72, 73, 26, 99], person re-identification [116, 28],

face recognition [67, 90], and many others. The goal of deep metric learning is to

approximate a feature embedding function that maps data—images in our domain—

onto a common feature space. After learning, visually similar images are supposed to

be clustered while the ones with heterogeneous contents are expected to be located far

from each other. To meet this requirement, one can consider a triplet loss [67], which

is defined on all the triplets of images in the training set. The triplet loss penalizes the

cases that the distances between the images in the same classes are larger than the ones

between images with different labels.

One key challenge of using the triplet loss is lack of efficient methods to identify

hard negative examples for training, which is partly because embedding functions are

changing continuously during training and most of the triplets easily satisfy the de-

sired constraints [72, 26, 90, 71, 17, 118]. A naı̈ve implementation of a metric learning

algorithm based on triplet loss requires a forward propagation of the whole training

dataset through feature extractor and distance computation between every pair of ex-
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Figure 3.1: Overview of the proposed training process

amples in each iteration, which is computationally infeasible in a large-scale datasets.

Therefore, most of the existing works focused on the efficient mining of the hard ex-

amples [26, 71, 90, 118].

In this paper, we argue that diversifying the training examples is also critical for

high performance because it increases the number of training samples seen during the

training. Existing works focused on efficient mining of hard triplets but from only a

certain difficulty level (hard or semi-hard) measured with a heuristic criterion [67, 28,

26]. To balance between the diversity and hardness, our strategy is to construct a set

of candidate triplet pools in different difficulty levels and compose each minibatch by

sampling from one of them. Stochastically iterate between the multiple difficulty levels

during training explicitly enlarges the range of difficulty and diversify examples, while

keeping them hard enough for efficient training.

To this end, we propose a stochastic hard example mining technique, which models

the relations across training images using surrogate relations in a coarse level. Specif-

ically, we identify nearest neighbor classes from a set of stochastically sampled in-
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stances in an anchor class, and draw hard examples from the classes only. Since it is

much more efficient than exhaustive search, it allows us to change embedding func-

tions adaptively and update image representations in every iteration. To this end, we

learn class signatures, which track the change of the embedding function, and find the

hard negative classes based on them in an online manner during training with minor

additional computational cost.

In sum, our contributions are as follows. First, we provide an observation that di-

versifying the hard triplets during training increases the accuracy. Second, we propose

an efficient and effective batch construction algorithm using the class-level pruning

and instance-level refined search for hard examples.

Our experiment shows that the proposed hard class mining technique improves

accuracy in image retrieval tasks compared to several baseline methods on the standard

datasets including CARS-196 [34], CUB-200-2011 [89], in-shop retrieval [35] and

Stanford online products [74]. In addition, we adopt a compact bilinear pooling [20]

to exploit the local features, which further enhances the representation power. When

combined with the local-aware model, our method outperforms the state-of-the-art

methods in the standard datasets.

3.2 Related Works

Hard negative mining is widely adopted to speed up convergence and enhance the

discriminative power of the learned embeddings in deep metric learning [67, 28, 16,

72], especially for the triplet loss. Among them, our approach is mostly related to the

ones which exploit the class label information for the mining.

There are works using precomputed relationships of neighboring classes [65, 90,

94] under the assumption that neighbor classes for a given class do not change during

the training despite of the changes of the embedding function. However, that assump-

tion does not hold in general since the goal of metric learning is to change the distance
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between samples and those change naturally results in different neighborhood rela-

tionship.

To resolve this problem, online update of neighboring classes have been explored [72,

71, 63, 22]. Sohn et.al. [72] first represents each class by its random sample and greed-

ily find the hard classes which violate triplet conditions. Smirnov et.al. [71] finds the

hardest negative class of another given class, by finding highest false prediction proba-

bility. Although they consider the change of embeddings, their sampling rely on greedy

local search, which may limit diversity in minibatch construction especially when the

number of class increases. Rippel et.al. [63] estimates sub-clusters within each class

by performing k-means clustering over the embeddings. They exploit the cluster cen-

ters for hard negative mining, by using the cluster-to-cluster distances. However, since

they use k-means clustering, they need iterative forward propagation of the entire data,

and therefore, the computational issue remains. Ge et.al. [22] periodically calculated

the center of each class by averaging the member features.

Movshovitz-Attias et.al. [56] and Wen et.al. [98] are related to ours in a sense

that class representatives are jointly trained with the feature extractor. However, their

purpose is different from ours that they do not use class proxies for the hard negative

mining. Recently, Harwood et.al. [26] proposed to efficiently approximate the neigh-

borhood relationship in the entire training set, however, they still have O(N2) com-

plexity with the dataset of size N , to periodically scan the entire dataset and search

nearest neighbors, which is not scalable to the dataset size.

Online semi-hard negative mining assigns more weights on the hard negatives

within each minibatch. It has proved to improve the discriminative power of the learned

embeddings [67, 28, 65]. Hermans et.al. [28] reported that using a hard negative subset

to calculate the loss resulted in higher accuracy than using the whole samples within

the minibatch, in person re-identification problem. Yu et.al. [108] proposes a point-

to-set triplet loss which is based on the point-to-set distance which weighs hard sam-

ples more. Wu et.al. [99] resampled training examples within each minibatch during
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training with contrastive loss, in a way that resulting pairwise distances are uniformly

distributed. Yuan et.al. [109] proposed a hard-aware deeply cascaded (HDC) network

to exploit hard negatives depending on their difficulty level. Since all of them focuses

on local search within a given minibatch, they can be complemented by global hard

sample mining which focuses on the construction of minibatch itself. In this paper, we

also use the semi-hard negative mining within each minibatch as a baseline.

Generation-based approach avoids costly mining process by learning to generate

hard examples [8]. It aims at making diverse hard examples, while ensuring them to

not contradict the real relationships. For example, a fake negative example closer to

an anchor more effectively improves training, however, if it becomes closer than a real

positive example then it may rather harm the accuracy. Therefore, generation needs

careful balancing between hardness and correctness. To this end, existing works gen-

erate fake samples that preserve the original labels by reducing the l2-distance with

the random sample from that class [17] or by training to be well classified [118]. Since

most of the class pairs are easily distinguishable, they need to combine hard class

mining process to train more powerful generator. It means the problem of mining still

remains: the lack of diversity and heavy computational cost. In other words, they are

not contradictory to the proposed hard class mining. Rather, they can be used together

to complement each other.

In recent few years, a variety of metric learning losses have been designed to im-

prove the most basic and popular contrastive loss and triplet loss by considering re-

lationship between more than three examples or using different distances other than

Euclidean [74, 86, 10, 72, 73, 95, 56, 63, 48, 91, 22, 44]. [74] proposed lifted struc-

tured loss. The loss takes into account a positive pair and all the associated negative

pair together. Ustinova et.al. [86] proposed histogram loss. Their loss computes the

histogram of positive and negative distances, and then penalizes the probability of

pairs to be in a wrong order. Chen et.al. [10] showed quadruplets can improve the

performance further than triplets. Sohn et.al. [72] proposed N-pair loss which also
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generalized triplet loss by allowing to consider all negative example within a batch.

Song et.al. [73] proposed the clustering loss which also consider all the examples in

a minibatch to optimize clustering score. Wang et.al. [95] exploited angular relation-

ships to achieve scale invariance and use higher-order information. Since every metric

loss is defined based on the relative distances between images, the loss is largely af-

fected by the samples which the local loss is calculated from. In other words, not only

contrastive/triplet loss but also structured losses have potential benefit from proper

minibatch construction methods.

3.3 Deep Metric Learning with Triplet Loss

3.3.1 Triplet Loss

Our goal is to learn a function f that embeds an image I to a feature vector x in

a space with a known metric, e.g. , Euclidean space with Euclidean distance. The

function f is often called a feature extractor. The desired condition of the learned

function f is that distances between the representations of similar images are small

while distances between embeddings of dissimilar images are large. The notion of

similarity is typically defined by semantic relations, which is often derived from the

class labels. A pair of images with same label are considered to be similar and a pair

of images with different labels are dissimilar. We call them as positive and negative

pairs, respectively.

LetX be a training dataset. For a given triplet of samples, (xa, ya), (xp, ya), (xn, yn) ∈

X , which consists of an anchor xa and a positive sample xp with label ya, and a nega-

tive sample xn with label yn, the triplet loss penalizes the case that the distance from

an anchor to a positive sample is not sufficiently smaller than the distance to a negative

one, which is formally given by

l(t) = max(0, d(xa,xp)− d(xa,xn) +m), (3.1)

40



lT (X ) =
1∑

t∈T w(t)

∑
t∈T

w(t)l(t), (3.2)

where d(xi,xj) = ‖xi − xj‖2, T denotes a set of all possible triplets constructed

with elements in X , w(t) denotes an importance of the triplet t, and m denotes a

margin for the difference between distances to positive and negative pairs. When every

triplet has a same weight, i.e. w(t) = 1, Eq.(3.2) becomes a conventional triplet loss

lT (X ) = 1
|T |
∑

t∈T l(t). Based on the observation that weighing more on the semi-

hard triplets enhances the performance [28], we use following binary weight in all the

experiments:

w(t) =


1, if l(t) > 0.

0, otherwise.
(3.3)

In our experiments, Eq.(3.3) consistently improved the accruacy from the baseline

which used the uniform weights.

3.3.2 Efficient Learning with Triplet Loss

To facilitate deep metric learning based on triplet loss, it is critical to construct mini-

batches containing many hard triplet examples while diversifying examples over iter-

ations. Our main idea is to learn a signature vector for each class to reduce the compu-

tational overhead for hard triplet search. Intuitively, if two classes are located closely

in an embedding space, the instances in a class are likely to be hard negatives with

respect to the other. We first search for nearest neighbor classes from an anchor class

based on distances from samples in the anchor class to the rest of classes, where class

signature is employed to represent the classes. After reducing the number of candidate

instances, we seek for nearest neighbors in an instance-level, only among the examples

in the identified classes. We perform both class- and instance-level search in a stochas-

tic manner to increase diversity of samples that belong to a minibatch. The next section

describes the details of our minibatch construction algorithm.
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Figure 3.2: An example of class signitures and embedded instances in the MNIST

dataset. Each circle and arrow denotes an instance and a class signiture trained by the

proposed method. Classes are color-coded. (best viewed in color)

3.4 Batch Construction for Metric Learning

3.4.1 Neighbor Class Mining by Class Signatures

Given an anchor class, we first aim to find nearest neighbor classes based on their

signatures, denoted by W = {w1,w2, · · ·wC}, which are optimized by minimizing

dissimilarity to instances within the corresponding classes.

Let us denote a training example as (x, yx) ∈ X with `2 normalized feature vector

x and its label yx. Since instance features lie on a unit hypersphere, we can use the

cosine similarity measure to compare the representations of instances and class signa-

tures by constraining the class signatures to have a unit norm, i.e. , ‖wc‖2 = 1 for all

c.

For a given instance (x, yx), a sample-to-class similarity function S(wc,x) should

have a large value if yx = c and a small one otherwise. Hence, to find nearest neigh-

bor classes based on sample-to-class similarity, we define the following loss function:
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random variable x

lC(W,X ) = − 1

N

∑
(x,yx)∈X

log (P[x;W]) (3.4)

= − 1

N

∑
(x,yx)∈X

log

(
exp(S(wyx ,x))∑
c exp(S(wc,x))

)

= − 1

N

∑
(x,yx)∈X

log

(
exp(cos θyx)∑
c exp(cos θc))

)
, (3.5)

where θc = ∠(wc,x). It can be also interpreted as the log likelihood of x to be the

class yx. Ideally, θyx = 0 and θc = π/2 for c 6= yx. Figure 3.2 shows an example dis-

tribution of the instances and the corresponding class signatures trained in the MNIST

dataset.

For a givenW , we can approximate the similarity between two samples, (x, y) and

(x′, y′), by the corresponding class-to-class similarity or class-to-sample similarity .

E[S(x,x′)] ≈ E[S(x,wy′)] ≈ S(wy,wy′). (3.6)

Assuming that the angle between a class signature wc and the expectation of member

intances is bounded by εc, following inequalities holds from the triangular inequallity:

∠(wy,wy′)− 2ε ≤ E[∠(x,x′)] ≤ ∠(wy,wy′) + 2ε (3.7)

E[∠(x,wy′)]− ε ≤ E[∠(x,x′)] ≤ E[∠(x,wy′)] + ε, (3.8)

where ε = maxi εi. Finally, from Eq.(3.6), (3.7) and (3.8), we get the following

relationship between sample-to-sample distance and the corresponding class-to-class /

class-to-sample distance when ε� 1 (Proof in supplementary material):

S(wy,wy′)− 2ε ≤ E[S(x,x′)] ≤ S(wy,wy′) + 2ε, (3.9)

E[S(x,wy′)]− ε ≤ E[S(x,x′)] ≤ E[S(x,wy′)] + ε. (3.10)

Though we cannot guarantee that ε is small enough in practice, we empirically

confirmed that the class-to-class similarity and the sample-to-sample similarity are

highly correlated as shown in Figure 3.3 Since most of the class pairs have small

similarities, it is useful for pruning the classes with small similarity values by the rank.
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Figure 3.3: The average sample-to-sample distance between classes ranked by the

class-to-class distances in In-shop retrieval dataset.

3.4.2 Batch Construction

In this section, we first review a baseline framework [116] for batch construction and

loss calculation. Then, we improve the baseline by introducing a class-level hard sam-

ple mining (Alg. 1). Since a class-level neighbor search becomes relatively ineffec-

tive when intra-class variation is large, we propose a stochastic hard sample mining

method, which performs a refined search in an instance-level while reducing the com-

putational cost using class-level pruning (Alg. 3).

Baseline protocol [116] We adopt the approach in Zhao et.al. [116] as the baseline

batch construction protocol. At each iteration, it constructs a minibatch by first ran-

domly samplingK classes and then randomly sampling η images per each class, result-

ing in a minibatch of size M = Kη. When calculating the loss, every possible triplet

composable from the minibatch is used. This approach is popularly used [116, 72, 28]
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(a) (b)

Figure 3.4: For a given anchor class ca, the change of chosen negative classes in each

minibatch is illustrated in the In-shop retrieval dataset. The x-axis and y-axis corre-

spond to the training iteration and class index, respectively. At iteration t, the corre-

sponding column illustrates all the negative classes used to construct a minibatch, i.e.

1 if it is chosen and 0 otherwise. It shows that the combination of classes of seen triplet

varies over the iteration in Alg. 3 (b), while they are mostly fixed in Alg. 1 (a).

for its simplicity and high performance, where [72] is a special case when K = M/2

and η = 2.

Improved baseline by class-level hard sample mining We improve the baseline

protocol by composing each minibatch with the instances randomly sampled from an

anchor class and its (K − 1)-nearest classes. It increases the expected number of hard

triplets composable from each minibatch. The overall training process is summarized

in Alg. 1. At each iteration, an anchor class ca is randomly sampled. Then, its (K−1)-

45



Algorithm 1 Improved baseline with class-level mining
Parameters K, η

1: for t = 1 : T do

2: Random sample anchor class ca

3: B ← Sample η instances from {x|yx = ca}

4: Get N by Eq.(3.11)

5: for c ∈ N do

6: Bc ← Sample η instances from {x|yx = c}

7: B ← B ∪ Bc

8: end for

9: Perform one iteration of training to minimize the loss Eq.(3.20) using mini-

batch B

10: end for
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nearest classes N are chosen as follows

maximize
N⊂C

∑
c∈N

S(wc,wca)

s.t. ca /∈ N , |N | = K − 1,

(3.11)

where C is a set of class labels. Finally, η instances are randomly sampled from each

of the selected classes and combined to construct a minibatch B.

Though the class-level hard sample mining is efficient in terms of time, it has

two limitations. First, due to the intra-class variation, approximating the sample-to-

sample distance by class-to-class distance is not always accurate. Figure 3.3 shows the

average sample-to-sample distance between classes, which it is ranked by the class-

to-class distance calculated based on the class signatures. It implies that considering

only few nearest neighbors is not enough to mine all the hard triplets. Also, an instance

pair from the nearest classes may not form a hard negative as they may lie far enough.

This motivates an instance-level refined search, which can be done more efficiently

after a rough class-level pruning. Second, for a given anchor class, its neighbor classes

converge to a certain subset of the classes as the training proceeds. Figure 3.4 (a)

shows the change of chosen negative classes in each minibatch, when class ca is used

as the anchor class. It shows that the combinations of the classes in each triplet is

fixed to a small subset of all the possible ones. It implies that the feature extractor sees

non-diverse examples during the training. To resolve these problems, we propose a

stochastic batch construction method.

Stochastic hard sample mining We first define a similarity between A and b ∈ B

as follows:

Sg(A,b) = max
a∈A

S(a,b), (3.12)

where A and B are sets of vectors and S(a,b) denotes a similarity between two vec-

tors, a and b. Given a vector b ∈ B, Sg(·, ·) is the maximum of the similarities to

the elements in A. Based on this notation, Alg. 4 solves the following optimization
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Algorithm 2 Select k elements from B with the largest similarity to an element in A
Input A,B, k

Output N

1: Sort S = {S(a,b)}a∈A,b∈B in the ascending order

2: N ← Unique top-k elements of B in S

problem:

N = g(A,B, k) = argmax
B′⊂B
|B′|=k

∑
b∈B′

Sg(A,b), (3.13)

In a nutshell, it selects a subset of B with size k that maximizes the sum of similarity

between A and its elements.

Now, we propose a method that uses both class- and instance-level stochastic hard

sample mining to facilitate visiting diverse examples during the training, while main-

taining the hardness for efficiency. At every iteration, we first sample a random anchor

class ca and its corresponding η instances to formBca . Different from Alg. 1, we search

for a pool of classes, which is α-times larger than the original (K−1) nearest neighbor

classes, where α is randomly chosen from {3, 4, 5}. In particular, we first search for

nearest neighbor classes from an anchor class based on distances from samples in the

anchor class to the rest of classes, where class signature is employed to represent the

classes. It can be formulated as following:

Pc = g(Bca ,W\{wca}, α(K − 1)), (3.14)

whereBca denotes the set of instances sampled from the anchor class ca. Here, g(A,B, k)

is a function that takes sets of vectorsA and B, and k as inputs and outputs k elements

from B with the largest similarity to an element in A (Alg. 4). We use Pc as class can-

didates for the refined search, thereby reducing the number of candidate instances. For

a given Pc, to further diversify the training examples, we randomly sample instances

among the instance pool, Ps, which is β-times larger than the number of samples
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Algorithm 3 Stochastic hard sample mining
Parameters K, η,A, β

1: for t = 1 : T do

2: α← Random sample from A

3: Random sample an anchor class ca

4: Bca ← Sample η instances from {x|yx = ca}

5: B ← Bca
6: Pc ← g(Bca ,W\{wca}, α(K − 1))

7: Ps ← g(Bca , {x|yx = c, c ∈ Pc}, β(K − 1)η)

8: Ba ← Random sample (K − 1)η elements from Ps

9: B ← B ∪ Ba

10: Perform one iteration of training to minimize the loss Eq.(3.20) using mini-

batch B

11: end for
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(K − 1)η:

Ps = g(Bca , {x|yx = c, c ∈ Pc}, β(K − 1)η). (3.15)

In our framework, restricting the search space to the examples in the classes in Pc sig-

nificantly reduces the computational cost of hard sample mining. The overall training

process is summarized in Alg. 3. stochastic

3.4.3 Scalable Extension to the Number of Classes

Training the class signatures of |C|d parameters is problematic when there are an ex-

tremely large number of classes. To address this problem, we propose a scalable ex-

tension of the proposed method by modifying the followings: 1) Class signatures 2)

Signature loss 3) Nearest class search for each anchor instance.

Class signatures To make the number of trainable parameters from the class sig-

natures not proportional to the number of classes |C|, our idea is to define a small

dictionary F which consists of J vectors,

F = {b1,b2, · · · ,bJ}, (3.16)

and represent each class as a sum of L different vectors from F . It can represent JCL

different vectors, therefore, we can cover |C| classes with J � |C|. In particular, for

each class c, we randomly select L elements from {1, 2, · · · , J} as

Ic = {ic1, ic2, · · · , icL}. (3.17)

Now, the class signature wc is represented a function of B as

wc(B) =
∑
i∈Ic

bi. (3.18)

Since the number of parameters of class signatures is reduced to Jd, it is scalable to

the number of classes.
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Algorithm 4 Select k elements from B with the largest similarity to an element in A
Input A,B = {Ba}a∈A, k

Output N

1: Sort S = ∪a∈A{S(a,b)}a∈A,b∈Ba in the ascending order

2: N ← Unique top-k elements of ∪a∈ABa in S

Signature loss Within a minibatch B, we approximate the original loss of Eq.(5) as

lC(F ,X ) = −
1

|B|
∑

(x,yx)∈B

log

(
exp(S(wyx(F),x))∑
c∈CB exp(S(wc(F),x))

)
, (3.19)

where CB denotes the set of classes occurring in a minibatchB. Note that it is calculated

over a |CB| classes, rather than over the original |C| classes. Since the batch size |B| is

much smaller than the number of classes in usual and the number of different classes

occurring in a batch is not larger than a batchsize, i.e. , |CB| < |B| � |C|, calculation

of Eq.(3.19) is scalable to the number of classes.

Nearest class search In Alg. 3, for each anchor instance from class c, its nearest

αK(η − 1) classes are found as a candidate class pool Pc. To make it scalable, we

first sample M classes from C\{c} to construct a set of random candidate classes Pr.

Then, the nearest αK(η − 1) classes are searched only from Pr.

Finally, we combine the three modifications to modify the proposed method to be

scalable to the number of classes. The algorithm is summarized in Alg. 5.
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Algorithm 5 Stochastic hard sample mining
Parameters K, η,A, β

1: for t = 1 : T do

2: α← Random sample from A

3: Random sample an anchor class ca

4: Bca ← Sample η instances from {x|yx = ca}

5: B ← Bca
6: for x ∈ B do

7: Pr(x)← Random sample K classes from C\{yx}

8: end for

9: Pc ← h(Bca , {Pr(x)}x∈B, α(K − 1))

10: Ps ← g(Bca , {x|yx = c, c ∈ Pc}, β(K − 1)η)

11: Ba ← Random sample (K − 1)η elements from Ps

12: B ← B ∪ Ba

13: Perform one iteration of training to minimize the loss Eq.(3.19) using mini-

batch B

14: end for
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3.5 Loss

We jointly train the parameters of feature extractor f and the class signatures W to

minimize both triplet loss and the class signature loss:

l(W,X ) = lT (X ) + lC(W,X ). (3.20)

Note that the gradient from the class signature loss lC back-propagates to the feature

extractor. It is known from the existing works that joint triplet and classification loss

improves the accuracy from each of them [26, 126]. we tested both with and without

back-propagation of the gradient from lC to the feature extractor f in the experiments.

3.6 Feature Extractor

As a baseline feature extractor f , we closely follow the previous works [26, 56]. We

use Inception v1 [82] from input to the last pooling layer, followed by one batch nor-

malization layer, one fully connected layer, and the final l2-normalization layer.

Based on it, we design a local-aware model by applying two changes, to enhance

the discriminative power of the feature embeddings. First, we found that simply in-

creasing the input image resolution improved the accuracy in the retrieval benchmark

datasets. In Table 3.1, R@1 increases as the input resolution grows from 224 × 224

to 336 × 336. Compared to the baseline, this change does not increase the number of

parameters while taking about 2.25 times more computation in FLOPs. One possible

hypothesis for this improvement is that higher resolution image preserves more details

than the lower counterpart.

Second, to further reflect the local details to the feature embeddings, we replace

the last average pooling to a second-order pooling [20]. For an input feature map G,

the second-order pooling is formulated as

Pooling(fxy) =
1

S

∑
xy

fxy =
1

S

∑
xy

vec(gxy ⊗ gxy), (3.21)
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Table 3.1: R@1 (%) in CARS-196 and CUB-200-2011 dataset for different feature

extractors and different the input sizes

Method 224× 224 336× 336

CARS-196
Inception v1 83.6 89.7

Local 86.9 91.3

CUB-200-2011
Inception v1 55.1 60.9

Local 58.1 65.2

where gxy denotes a feature vector in G at position (x, y),⊗ denotes the outer product

and vec(·) vectorizes the input. To enlarge the resolution of the input feature map

to the second-order pooling layer, we drop the layers from Inception v1 5a block.

More specifically, we use the network from the input to the Inception v1 4e block,

followed by a 1 × 1 convolution (512-dim) and a batch normalization layer to extract

the feature map G. Then, the second-order pooling is performed over the extracted

feature map followed by l2-normalization. Table 3.1 shows that the local model based

on the second-order pooling (Local) consistently improves the accuracy of the baseline

(Inception v1) which uses average pooling.

3.7 Experiments

3.7.1 Datasets

We evaluated our method on two benchmarks in person re-identification (Market-1501

and DukeMTMC) and four popular benchmarks in image retrieval.

CARS-196 [34] This dataset consists of 16, 183 images of 196 different classes of

cars. We used the first 98 classes for training (8, 052 images) and the other 98 classes

for testing (8, 131 images), following the previous work [74]. For each test identity,

two images are randomly sampled as the probe and gallery images and the average
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accuracy over 20 trials is reported as the final result.

CUB-200-2011 [89] This dataset contains images of 200 different bird species. We

used the first 100 classes for training (5, 864 images) and the other 100 classes for

testing (5, 924 images), following the previous work [74].

In-shop retrieval [35] This dataset consists of 11, 735 classes of clothing items with

54, 642 images. We used 3, 997 classes for training (25, 882 images) and other 3, 985

classes for testing (28, 760 images), following the previous work [35]. In the test set,

3, 985 classes with 14, 218 images are used as queries and the remaining 3, 985 classes

with 12, 612 images are used as the retrieval database.

Stanford onilne products (SOP) [74] This dataset has 120, 053 product images of

22, 634 classes. 11, 318 classes with 59, 551 images are used for training and 11, 316

classes with 60, 499 images are used for testing.

3.7.2 Implementation Details

We first normalize the images to 256×256 and then perform standard random crops to

224×224 and horizontal flipping for data augmentation. In the baseline batch construc-

tion proptocol, the number of triplets seen in each batch is calculated as O(Kη2(K −

1)η) = O(K2η3) = O(M2η). It indicates that for a fixed batch size, increasing the

number of positive samples per each class increases the number of composible triplets.

On the other hand, in the extream case when η = M/2, triplets consists of a limited

composition of classes. Therefore, for a batch size M = 60, we choose η = 10 for the

small datasets (CARS-196 and CUB-200-2011), which has enough number of sam-

ples per class, and η = 5 for the larger datasets (In-shop retrieval and Stanford Online

Products), which has 5 examples per each class.

55



Network architecture For the feature extractor, we initialize the parameters with

GoogLeNet [82], which was pretrained on the ImageNet ILSVRC dataset [66], and

randomly initialize an added fully connected layer. We fix the feature dimension to

512 for all the experiments.

Optimization We use stochastic gradient descent for optimization with batchsize 60.

The initial learning rate, weight decay, and the momentum are set to 0.001, 5× 10−3,

and 0.9, respectively. The learning rate is decreased by a factor of 5 after every 200

epochs.

Compact bilinear pooling The bilinear transformation over the two 512-dimensional

feature vectors result in an extremely high dimensional vector, which consumes large

computational cost and memory. To resolve this issue, we use the tensor sketch ap-

proach [62] to compute a compact representation as in [20]. The key idea of the tensor

sketching is to reduce dimensionality of two high-dimensional vectors and compute

their inner-product efficiently, which is performed implicitly in a unified framework.

Refer to [62] for the details.

3.7.3 Evaluation Metrics

For the evaluation metric, we use Recall@K (R@K). For Recall@K, all the em-

beddings of test samples are first extracted. And then, for each sample, K nearest

neighbors are retrieved from the remaining test set. If retrieved images include at least

one sample from the same class, it is considered to be correct. The Recall@K metric

measures the number of correct sample over entire sample. For the distance measure,

Euclidean distance is used, which is equivalent to the cosine distance in our case, be-

cause the feature are l2-normalized.
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Table 3.2: Recall@K (%) comparison with the baseline

CARS-196

K 1 2 4 8

Smartmining [26] 64.7 76.2 84.2 90.2

Inception v1

Baseline [116] 78.2 86.0 90.9 94.2

Class Mining (Alg. 1) 81.3 87.8 92.6 95.6

Stochastic Mining (Alg. 3, var1) 81.3 88.3 92.3 95.5

Stochastic Mining (Alg. 3, var2) 82.5 89.2 93.4 96.2

Stochastic Mining (Alg. 3) 83.4 89.9 93.9 96.5

Table 3.3: Recall@K (%) comparison with the baseline

CUB-200-2011

K 1 2 4 8

Smartmining [26] 49.8 62.3 74.1 83.3

Inception v1

Baseline [116] 52.4 64.4 74.9 84.2

Class Mining (Alg. 1) 52.9 64.8 75.6 84.1

Stochastic Mining (Alg. 3, var1) 54.1 66.3 76.7 84.8

Stochastic Mining (Alg. 3, var2) 55.1 66.4 76.2 84.8

Stochastic Mining (Alg. 3) 56.0 68.3 78.2 86.3
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Table 3.4: Recall@K (%) comparison with the baseline

In-shop retrieval

K 1 10 20 30

Inception v1

Baseline [116] 86.4 96.5 97.9 98.4

Class Mining (Alg. 1) 88.0 96.7 97.8 98.3

Stochastic Mining (Alg. 3, var1) 87.3 96.3 97.4 97.9

Stochastic Mining (Alg. 3, var2) 89.0 97.3 98.1 98.6

Stochastic Mining (Alg. 3) 90.8 98.0 98.6 98.9

Table 3.5: Recall@K (%) comparison with the baseline

Stanford online products

K 1 10 102 103

Inception v1

Baseline [116] 67.8 84.0 93.2 97.9

Class Mining (Alg. 1) 70.6 84.9 93.1 97.7

Stochastic Mining (Alg. 3, var1) 68.7 82.4 90.8 96.2

Stochastic Mining (Alg. 3, var2) 72.1 85.9 93.3 97.6

Stochastic Mining (Alg. 3) 75.2 87.5 93.7 97.4
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3.7.4 Effect of the Stochastic Hard Example Mining

Image retrieval datasets We evaluate the proposed stochastic hard example min-

ing method in two aspects: hardness and diveristy of the mined triplets. Figure 3.8

shows the comparison of the number of triplets of non-zero loss, occuring in each

minibatch during the training. Compared to the random sampling [116], class-level

mining (Alg. 1) and the stochastic mining (Alg. 3) result in far more triplets that have

non-zero loss. Comparing the class-mining and the stochastic mining, the latter re-

sults in about 2-5 times more triplets with non-zero loss thanks to the instance-level

refinement.

Figure 3.4 compares the diversity of the mined triplets between class-mining and

the stochastic mining. For a given anchor class ca, the change of chosen negative

classes in each minibatch is illustrated. The x-axis and y-axis correspond to the train-

ing iteration and class index, respectively. At iteration t, the corresponding column

illustrates all the negative classes used to construct a minibatch, i.e. 1 if it is chosen

and 0 otherwise. It shows that the combination of classes of seen triplet varies over

the iteration in Alg. 3 (b), while they are mostly fixed in Alg. 1 (a). It verifies that the

proposed method effectively diversify the examples shown during the training.

To evaluate the effect of the proposed stochastic hard example mining, we compare

our method (Alg. 3) with a baseline protocol [116], class mining (Alg. 1), and two vari-

ants of ours. Table 3.2–3.9 show the accuracy comparision on four popular datasets:

CARS-196, CUB-200-2011, In-shop retrieval, and SOP. It is known that training the

feature extractor with joint loss of triplet and classification enhances the accuracy from

the baseline which uses only triplet loss. To discriminate the effect of the hard sam-

ple mining and the addition of loss (Eq. 3.4), we show both results, only with mining

(var2) and the full model. In var2, the class signature loss does not back-propagate to

the feature extractor. Another variant (var1) replaces the proposed class signature with

the class-wise average of features, extracted from the Inception v1 pretrained on the

ImageNet dataset. Table 3.2–3.9 show that the proposed method consistently improves
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Table 3.6: Recall@K (%) comparison with the baseline

CARS-196

K 1 2 4 8

Smartmining [26] 64.7 76.2 84.2 90.2

Baseline [116] 78.2 86.0 90.9 94.2

Scalable Mining (Alg. 5) 80.4 87.7 92.4 95.6

the accuracy compared to the random sampling baseline in all four datasets.

Figure 3.5–3.7 compares the minibatches constructed using different batch con-

struction methods on the In-shop retrieval dataset. For a given anchor and its sampled

instances in the first row, the remaining images show the selected negative examples.

Compared to the random sampling baseline (Figure 3.5), which selects diverse and

easily distinguishable negative examples, the hard class mining (Figure 3.6) samples

classes that are more likely to be confused with the anchor class. For example, random

sampling contains pants as a negative class, which is easily discriminated and does

not contribute to the training with zero loss, while hard class mining selects only tops

which mostly consist of the upper body images. Finally, the proposed hard negative

mining (Figure 3.7) chooses more similar images in an instance level. Each negative

instances are selected as the nearest neighbor of an anchor instance with color and

type of the clothes, thereby generating a large number of hard triplets to be used for

training.

The evaluation of the scalable extension is shown in Table. 3.6-3.8. It shows that

the proposed scalable extension (Scalable Mining) consistently improves the result

from the random sampling baseline on the four popular datasets for retrieval.

Person re-identification datasets We also evaluate out method on two popular per-

son re-identification datasets: Market-1501 and DukeMTMC. In our experiments, back-

propagating the class signature loss LC to the feature extractor f lowered the accu-
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Table 3.7: Recall@K (%) comparison with the baseline

CUB-200-2011

K 1 2 4 8

Smartmining [26] 49.8 62.3 74.1 83.3

Baseline [116] 52.4 64.4 74.9 84.2

Scalable Mining (Alg. 5) 54.5 66.2 77.2 85.4

Table 3.8: Recall@K (%) comparison with the baseline

In-shop retrieval

K 1 10 20 30

Baseline [116] 86.4 96.5 97.9 98.4

Scalable Mining (Alg. 5) 88.2 97.2 98.1 98.5

Table 3.9: Recall@K (%) comparison with the baseline

Stanford online products

K 1 10 102 103

Baseline [116] 67.8 84.0 93.2 97.9

Scalable Mining (Alg. 5) 70.6 85.6 93.5 −

Table 3.10: Recall@K (%) comparison with the baseline

Market-1501 DukeMTMC

K 1 5 10 20 1 5 10 20

Baseline [116] 83.4 92.9 95.5 97.1 72.8 84.4 88.9 91.6

Stochastic Mining (Alg. 3, var2) 83.7 92.8 95.4 97.3 73.2 85.6 89.0 91.5
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Figure 3.5: A minibatch example from the In-shop retrieval dataset constructed using

the random sampling. For a given anchor class and its instances in the first row, selected

negative instances are shown in the remaining rows.
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Figure 3.6: A minibatch example from the In-shop retrieval dataset constructed using

the hard class mining (Alg. 1). For a given anchor class and its instances in the first

row, selected negative instances are shown in the remaining rows.
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Figure 3.7: A minibatch example from the In-shop retrieval dataset constructed using

the hard negative mining (Alg. 3). For a given anchor class and its instances in the first

row, selected negative instances are shown in the remaining rows.
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Figure 3.8: The comparison of the number of triplets of non-zero loss in each minbatch

during the training.

racy for the person re-identification task. Therefore, we used var2 for the person re-

identifciation task. The results are shown in Table 3.10. It shows that the propsoed

method improves the accuracy on both datasets.

3.7.5 Comparison with the Existing Methods on Image Retrieval Datasets

We compare our method to the state-of-the-art methods in Table.3.11–3.14. Since the

backbone network architecture affects the retrieval accuracy, we show the architec-

ture in the parenthesis. Overall, when compared to the previous works which use the

same network architecture (Incetpion v1), our method achieves the best accuracy in all

datasets (underlined), except for the SOP, where we achieved the second best. When

compared to the existing hard sample mining method [26], ours achieve higher accu-

racy. Note that SmartMining only provided their result in small datasets. We also report

the accuracy of proposed mining method applied to the local-aware model (+local). In

every dataset, our method outperforms the previous state-of-the-art with comparable

compuational cost.
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Table 3.11: Accuracy comparison on CARS-196

Method R@1 R@2 R@4 R@8

Lifted [74] (Inception v1) 53.0 66.7 76.0 84.3

Facility [73] (Inception v1) 58.1 70.6 80.3 87.8

SmartMining [26] (Inception v1) 64.7 76.2 84.2 90.2

N-pair [72] (Inception v1) 71.1 79.7 86.5 91.6

Angular [95] (Inception v1) 71.4 81.4 87.5 92.1

Proxy NCA [56] (Inception v1) 73.2 82.4 86.4 88.7

HDC [109] (Inception v1 + ensemble) 73.7 83.2 89.5 93.8

DAML [17] (Inception v1) 75.1 83.8 89.7 93.5

HTG [118] (Inception v1 + att) 76.5 84.7 90.4 94.0

Margin [99] (ResNet-50) 79.6 86.5 91.9 95.1

HTL [22] (BN-Inception) 81.4 88.0 92.7 95.7

A-Bier [58] (Inception v1 + ensemble) 82.0 89.0 93.2 96.1

ABE [32] (Inception v1 + ensemble) 85.2 90.5 93.9 96.1

DREML [106] (Inception v3 + ensemble) 84.2 89.4 93.2 95.5

DREML [106] (ResNet-18 + ensemble) 86.0 91.7 95.0 97.2

Hard negative mining (Inception v1) 83.4 89.9 93.9 96.5

Hard negative mining + Local 91.7 95.3 97.3 98.4
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Table 3.12: Accuracy comparison on CUB-200-2011

Method R@1 R@2 R@4 R@8

SmartMining [26] (Inception v1) 49.8 62.3 74.1 83.3

Proxy NCA [56] (Inception v1) 49.2 61.9 67.9 72.4

N-pair [72] (Inception v1) 51.9 64.3 74.9 83.2

DAML [17] (Inception v1) 52.7 65.4 75.5 84.3

HDC [109] (Inception v1 + ensemble) 53.6 65.7 77.0 85.6

Angular [95] (Inception v1) 54.7 66.3 76.0 83.9

HTL [22] (BN-Inception) 57.1 68.8 78.7 86.5

A-Bier [58] (Inception v1 + ensemble) 57.5 68.7 78.3 86.2

HTG [118] (Inception v1 + att) 59.5 71.8 81.3 88.2

ABE [32] (Inception v1 + ensemble) 60.6 71.5 79.8 87.4

Margin [99] (ResNet-50) 63.6 74.4 83.1 90.0

DREML [106] (inception v3 + ensemble) 58.9 69.6 78.4 85.6

DREML [106] (ResNet-18 + ensemble) 63.9 75.0 83.1 89.7

Hard negative mining (Inception v1) 56.0 68.3 78.2 86.3

Hard negative mining + Local 66.2 76.3 84.1 90.1
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Table 3.13: Accuracy comparison on In-shop retrieval

Method R@1 R@10 R@20 R@30

HDC [109] (Inception v1 + ensemble) 62.1 84.9 89.0 91.2

DREML [106] (ResNet-18 + ensemble) 78.4 93.7 95.8 96.7

HTG [118] (Inception v1 + att) 80.3 93.9 95.8 96.6

HTL [22] (BN-Inception) 80.9 94.3 95.8 97.2

A-Bier [58] (Inception v1 + ensemble) 83.1 95.1 96.9 97.5

ABE [32] (Inception v1 + ensemble) 87.3 96.7 97.9 98.2

Hard negative mining (Inception v1) 89.9 97.4 98.2 98.6

Hard negative mining + Local 91.9 98.0 98.7 99.0
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Table 3.14: Accuracy comparison on Stanford online products

Method R@1 R@10 R@102 R@103

N-pair [72] (Inception v1) 66.4 83.2 93.0 −

DAML [17] (Inception v1) 68.4 83.5 92.3 −

HDC [109] (Inception v1 + ensemble) 69.5 84.4 92.8 97.7

Margin [99] (ResNet-50) 72.7 86.2 93.8 98.0

Proxy NCA [56] (Inception v1) 73.7 − − −

A-Bier [58] (Inception v1 + ensemble) 74.2 86.9 94.0 97.8

HTL [22] (BN-Inception) 74.8 88.3 94.8 98.4

ABE [32] (Inception v1 + ensemble) 76.3 88.4 94.8 98.2

Hard negative mining (Inception v1) 73.4 86.3 93.1 97.0

Hard negative mining + Local 76.6 88.7 94.6 97.9
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3.8 Summary

We proposed a scalable hard class mining method for triplet loss. The proposed method

avoids heavy computational cost to mine hard samples by learning a set of class sig-

natures and estimating the neighbor of the feature embedding based on them. In par-

ticular, we propose a stochastic batch construction framework which diversifies the

examples seen during the training while keeping them difficult enough for efficient

training. Experimental results show that our method consistently improves the base-

line.
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Chapter 4

Integrated System for Person Re-identification

4.1 Introduction

In the previous chapter, we focused on designing a general batch construction method

based on the hard negative mining. Although it consistently improved the accuracy

from the baseline in the image retrieval benchmarks, it showed relatively small ac-

curacy gain for the person re-identification task (Section 3.7.4). In this chapter, we

propose a batch construction method while focusing on improving the person re-

identification performance. In particular, we propose a hard positive mining method

that encourages the batch constructor to contain not only hard negatives but also the

hard positives. Since the performance of person re-identification heavily relies on the

ability to identifying the same person with large viewpoint or pose difference, hard

positive mining is specifically effective on the person re-identification task.

Finally, based on the updated batch constructor, we propose an integrated per-

son re-identification system by combining it with the part-aligned feature extractor.

The experiments show that the integrated system improves the performance from

each of them, achieving the state-of-the-art accuracy in the two popular person re-

identification benchmarks: Market-1501 and DukeMTMC.
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4.2 Hard Positive Mining

In Alg. 3, there is no constraint on the number of samples per each class within a

minibatch. As a result, in an extreme case when every negative samples come from

different classes, the positive pairs can be generated only from the anchor class. Since

a triplet consists of one positive and negative with respect to an anchor, the number

of positive pair is an upper-bound of the number of triplets, i.e. η2. Compared to the

class mining baseline which has K(K − 1)η3 triplets, it severely reduces the number

of triplets composable from each minibatch and results in inefficient training.

To eliminate this potential drawback and stabilize the training, we propose a vari-

ant of Alg. 3. To make the number of hard positive pairs within each minibatch to

be large enough, we explicitly enforce the number of samples per each class to η. In

addition, to construct each minibatch with harder examples, we formulate the problem

of hard positive sampling as a k-center problem [29], which selects k most diverse el-

ements from the input set P , i.e. S = gkcenter(P, k). It is formulated as the following

optimization problem:

maximize min
p∈P

s(p,S) (4.1)

s.t.|S| = k

For person re-identification, the major difficulty comes from the large intra class vari-

ation from viewpoint / pose change compared to the small inter class differences.

Therefore, seeing an enough number of hard positive pairs is critical for training an

distinctive feature extractor. Meanwhile, outliers are not likely to be frequently sam-

pled by random sampling because their ratio is relatively small compared to the regular

detections. With this formulation, outlier instances are sampled every time with a high

probability for each class.
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Algorithm 6 Greedy k-Center [29]
Inputs P, k

Outputs S

1: S ← Random sample from {1, · · · , k}

2: for p ∈ P do

3: s[p]← −1

4: end for

5: S ← φ

6: for i = 1 : k do

7: u← argminp s[p]

8: S ← S ∪ u

9: for p ∈ P do

10: s[p]← max(s[p], S(p,u))

11: end for

12: end for

Batch 
Constructor

Feature
Extractor LossTraining

Set

Chapter2Chapter3

Chapter4

Figure 4.1: Overview of the training process of the integrated system
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Algorithm 7 Stochastic hard sample mining
Parameters K, η,A, β

1: for t = 1 : T do

2: α← Random sample from A

3: Random sample an anchor class ca

4: if rand > 0.5 then

5: Bca ← Sample η instances from {x|yx = ca}

6: else

7: Bca ← gkcenter({x|yx = ca}, η)

8: end if

9: B ← Bca
10: Pc ← g(Bca ,W\{wca}, α(K − 1))

11: Ps ← g(Bca , {x|yx = c, c ∈ Pc}, β(K − 1)η)

12: C ← Random sample K − 1 instances from Ps

13: for c ∈ C do

14: B ← B ∪ gkcenter({x|yx = yc}, η) with intial point c

15: end for

16: Perform one iteration of training to minimize the loss Eq.(3.20) using mini-

batch B

17: end for
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Table 4.1: Recall@K (%) comparison with the baseline (Inception v1)

Market-1501 DukeMTMC

K 1 5 10 20 1 5 10 20

Baseline 83.4 92.9 95.5 97.1 72.8 84.4 88.9 91.6

Hard negative mining (Alg. 3) 83.7 92.8 95.4 97.3 73.2 85.6 89.0 91.5

Hard positive mining 83.8 93.0 95.6 97.3 74.1 85.2 89.0 91.9

Hard positive mining + stochastic (Alg. 7) 83.7 92.8 95.2 97.3 74.6 85.2 89.5 92.0

4.3 Integrated System for Person Re-identification

Finally, we propose an integrated system for person re-identification by combining the

part-aligned feature extractor (Chapter 2) and hard example mining technique (Chap-

ter 3) as shown in Figure 4.1. Hard positive mining technique (Section 4.2) can be

optionally added to the batch constructor to further enhance the performance of person

re-identification.

4.4 Experiments

4.4.1 Comparison with the baselines

We evaluate the effect of each components, hard positive sample mining and stochastic

mining. Table 4.1 shows the accuracy comparison of the proposed method. Here, the

baseline is a random sampling method and the hard negative mining refer to the Alg. 3

proposed in Chapter 3. Compared to the case when using only hard negative mining,

additional hard positive mining improves the accuracy in both datasets. Stochastically

varying the strategy for anchor class and the instance selection (+ stochastic) further

improves the accuracy.

Figure 4.2–4.5 compares the minibatches constructed using different batch con-

struction methods on the Market-1501 dataset. For a given anchor and its sampled
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Figure 4.2: A minibatch example from the Market-1501 dataset constructed using the

random sampling. For a given anchor class and its instances in the first row, selected

negative instances are shown in the remaining rows.

76



Figure 4.3: A minibatch example from the Market-1501 dataset constructed using the

hard class mining (Alg. 1). For a given anchor class and its instances in the first row,

selected negative instances are shown in the remaining rows.
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Figure 4.4: A minibatch example from the Market-1501 dataset constructed using the

hard negative mining (Alg. 3). For a given anchor class and its instances in the first

row, selected negative instances are shown in the remaining rows.
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Figure 4.5: A minibatch example from the Market-1501 dataset constructed using the

hard positive mining (Alg. 5). For a given anchor class and its instances in the first

row, selected negative instances are shown in the remaining rows.
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instances in the first row, the remaining images show the selected negative examples.

Compared to the random sampling baseline (Figure 4.2), which selects diverse and

easily distinguishable negative examples, the hard class mining (Figure 4.3) samples

classes that are more likely to be confused with the anchor class. For example, as the

person in the anchor class is wearing pink shirts, people wearing shirts in similar col-

ors (pink, red, and gray) are selected as the negative classes in Figure 4.3. Figure 4.4

shows that the proposed hard negative mining chooses more similar images in an in-

stance level. However, it shows that the negative examples are from too diverse classes

and there are only one or two samples for each negative person. When the number of

positive pairs composable from a minibatch is small, the training becomes inefficient

because the number of triplets used for training becomes correspondingly small. Fig-

ure 4.5 shows that the proposed hard positive mining chooses more similar images in

an instance level while keeping the number of samples per each person to be larger than

a certain threshold. It keeps the number of composable triplets within each minibatch

large enough, making the training efficient.

4.4.2 Comparison with the existing works

Table 4.2 and 4.3 show the accuracy compared with the existing works on the Market-

1501 and MARS dataset, respectively. Our integrated method further improves the

result from the part-aligned model and achieves the state-of-the-art accuracy.

4.5 Summary

In this chapter, we proposed a hard positive mining method. By combining two inde-

pendent approaches proposed in Chapter 2 and Chapter 3 with the new hard positive

mining method, we propose an integrated person re-identification. Experimental re-

sults show that the components are orthogonal to each other, and the integrated system

improves the accuracy from each of them.
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Table 4.2: Accuracy comparison on Market-1501

Sinlge Query

Rank 1 5 10 20 mAP

Varior et al. 2016 [87] 61.6 - - - 35.3

Zhong et al. 2017 [128] 77.1 - - - 63.6

Zhao et al. 2017 [115] 80.9 91.7 94.7 96.6 63.4

Sun et al. 2017 [81] 82.3 92.3 95.2 - 62.1

Geng et al. 2016 [23] 83.7 - - - 65.5

Lin et al. 2017 [45] 84.3 93.2 95.2 97.0 64.7

Bai et al. 2017 [3] 82.2 - - - 68.8

Chen et al. 2017 [12] 72.3 88.2 91.9 95.0 -

Hermans et al. 2017 [27] 84.9 94.2 - - 69.1

Zhang et al. 2017 [113] 87.7 - - - 68.8

Zhong et al. 2017 [129] 87.1 - - - 71.3

Chen et al. 2017 [11] (MobileNet) 90.0 - - - 70.6

Chen et al. 2017 [11] (Inception-V3) 88.6 - - - 72.6

Ustinova et al. 2017 [85] (Bilinear) 66.4 85.0 90.2 - 41.2

Zheng et al. 2017 [120] (Pose) 79.3 90.8 94.4 96.5 56.0

Zhao et al. 2017 [114] (Pose) 76.9 91.5 94.6 96.7 -

Su et al. 2017 [75] (Pose) 84.1 92.7 94.9 96.8 65.4

Part-aligned (Inception-V1, OpenPose) 90.2 96.1 97.4 98.4 76.0

+ dilation 91.7 96.9 98.1 98.9 79.6

+ dilation + hard sample mining 92.6 96.7 98.0 98.6 79.4
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Table 4.3: Accuracy comparison on MARS

Rank 1 5 10 20 mAP

Xu et al. [104] (Video) 44 70 74 81 -

McLaughlin et al. [55] (Video) 45 65 71 78 27.9

Zheng et al. [119] (Video) 68.3 82.6 - 89.4 49.3

Liu et al. [47] (Video) 68.3 81.4 - 90.6 52.9

Zhou et al. [130] 70.6 90.0 - 97.6 50.7

Li et al. [36] 71.8 86.6 - 93.1 56.1

Liu et al. [50] 73.7 84.9 - 91.6 51.7

Hermans et al. [27] 79.8 91.4 - - 67.7

Part-aligned (Inception V1, OpenPose) 83.0 92.8 95 96.8 72.2

+ dilation 83.1 94.2 95.8 − 74.8

+ dilation + hard sample mining 83.8 94.4 96.2 − 74.9
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Chapter 5

Conclusion

5.1 Contributions

In this thesis, we proposed a person re-identification system that improves the perfor-

mance of the baseline in two aspects: 1) A better image representation model using

human poses and 2) an effective training strategy using hard sample mining.

First, we proposed a novel way of using the human pose to solve person re-

identification problem. In particular, we represented parts using part maps, differently

from the previously work which used box-based representations [75, 120, 75, 5, 114],

and use bilinear pooling to obtain a part-aligned representation. The part maps are

learned to minimize the re-identification loss with the guidance of the pre-trained pose

estimation model. The learnt part map representation provides a fine-grained/robust

differentiation of the body part depending on their usefulness for re-identification and

effectively handles the body part misalignment problem. Second, we proposed a scal-

able hard class mining method for triplet loss. The proposed method avoids heavy

computational cost to mine hard samples by learning a set of class signatures and esti-

mating the neighbor of the feature embedding based on them. In particular, we propose

a stochastic batch construction framework which diversifies the examples seen during

the training while keeping them difficult enough for efficient training. Finally, the com-

83



bined system shows the promising performance on the popular benchmarks of person

re-identification.

5.2 Future Works

First, extension of the proposed part-aligned representation to generic object is an

interesting direction to explore. To replace the strong supervision on human poses,

which is not available in general, one may need to exploit the prior knowledge such as

consistent spatial part arrangements. Second, we believe that our insight on the desired

property of the batch constructor for deep metric learning shows promising future

research directions. It can be extended to improve various metric learning losses such

as contrastive loss and structured losses, beyond the triplet loss. Also, since current

class-level approximation becomes less accurate when there are only a small number

of examples, one possible future research is to develop a fast and adaptive approximate

of pairwise feature distances without using class information.
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초록

동일인판별문제는다른카메라로촬영된각각의영상에찍힌두사람이같은사

람인지 여부를 판단하는 문제이다. 이는 감시카메라와 보안에 관련된 다양한 응용

분야에서 중요한 도구로 활용되기 때문에 최근까지 많은 연구가 이루어지고 있다.

그러나같은사람이더라도시간,장소,촬영각도,조명상태가다른환경에서찍히면

영상마다보이는모습이달라지므로판별을자동화하기어렵다는문제가있다.

본 논문에서는 주로 감시카메라 영상에 대해서, 각 영상에서 자동으로 사람을

검출한 후에 검출한 결과들이 서로 같은 사람인지 여부를 판단하는 문제를 풀고자

한다.이를위해 1)어떤모델이영상을잘표현할것인지 2)주어진모델을어떻게잘

학습시킬수있을지두가지질문에대해서연구한다.먼저벡터공간상에서의거리

가이미지상에서대응되는파트들사이의생김새차이의합과같아지도록하는매

핑함수를설계함으로써검출된사람들사이에신체부분별로생김새를비교를통해

효과적인 판별을 가능하게 하는 모델을 제안한다. 두번째로 학습 과정에서 클래스

정보를활용해서적은계산량으로어려운예시를많이보도록함으로써효과적으로

함수의 파라미터를 학습하는 방법을 제안한다. 최종적으로는 두 요소를 결합해서

새로운동일인판별시스템을제안하고자한다.본논문에서는실험결과를통해제

안하는 방법이 다양한 환경에서 강인하고 효과적으로 동작함을 증명하였고 보다

일반적인환경으로의확장가능성도확인할수있을것이다.

주요어:동일인판별,영상검색,영상임배딩,거리학습

학번: 2014-30305
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