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Abstract

In recent years, active sensor technologies such as light detection and
ranging (LIDAR) have been intensively studied in theory and widely adopted in
many applications, i.e., self-driving cars, robotics and sensing. Generally, the
spatial resolution of a depth-acquisition device, such as a LiDAR sensor, is
limited because of a slow acquisition speed. To accurately reconstruct a depth
image from a limited spatial resolution, a two-stage sampling process has been
widely used. However, two-stage sampling uses an irregular sampling pattern
for the sampling operation, which requires a large amount of computation for
reconstruction. A mathematical formulation of a LiDAR system demonstrates
that the existing two-stage sampling does not satisfy its timing constraint for
practical use. Therefore, designing a LiDAR system with an efficient sampling
algorithm is a significant technological challenge.

Firstly, this thesis addresses the problem of adopting the state-of-art laser
marking system of a dual-mirror deflection scanner when creating a high-
definition LIDAR system. Galvanometer scanners are modeled and
parameterized based on concepts of their controllers and the well-known raster
scanning method. The scanning strategy is then modeled and analyzed
considering the physical scanning movement and the minimum spanning tree.
From this analysis, the link between the quality of the captured image of a field
of view (FOV) and the scanning speed is revealed. Furthermore, sufficient
conditions are derived to indicate that the acquired image fully covers the FOV

and that the captured objects are well aligned under a specific frame rate. Finally,



a sample LIDAR system is developed to illustrate the proposed concepts.

Secondly, to overcome the drawbacks of two-stage sampling, we propose a
new sampling method that reduces the computational complexity and memory
requirements by generating the optimal representatives of a sampling pattern
in down-sample data. A sampling pattern is derived from a k-NN expanding
operation from the downsampled representatives. The proposed algorithm is
designed to preserve the object boundary by restricting the expansion-
operation only to the object boundary or complex texture. In addition, the
proposed algorithm runs in linear-time complexity and reduces the memory
requirements using a down-sampling ratio. Experimental results with
Middlebury datasets and Brown laser-range datasets are presented.

Thirdly, state-of-the-art adaptive methods such as two-step sampling are
highly effective while addressing indoor, less complex scenes at a moderately
low sampling rate. However, their performance is relatively low in complex on-
road environments, particularly when the sampling rate of the measuring
equipment is low. To address this problem, this thesis proposes a region-of-
interest-(ROI)-based sampling algorithm in on-road environments for
autonomous driving. With the aid of fast and accurate road and object detection
algorithms, particularly those based on convolutional neural networks (CNNs),
the proposed sampling algorithm utilizes the semantic information and
effectively distributes samples in road, object, and background areas.

Experimental results with KITTI datasets are presented.

Keywords : LiDAR, Scanning sampling patterns, Sampling, Reconstruction.
Student Number : 2015-30752
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Chapter 1: Introduction

1.1. Overview

In recent years, autonomous driving or self-driving cars is considered the next
logical step of the car industry. Not only granting more personal freedom, allow
people to free their hands and mind while driving, self-driving cars are also
expected to vastly reduce road accidents, congestion, pollution; and eliminate
the huge cost of owning personal vehicles when integrating with blooming
share-driving services [1]. There are five self-driving levels, starting with level
0 of no automation to level 5 of complete automation where drivers simply just
enter the destination and let the systems do the rest of work. While the ultimate
goal is a safe and fully autonomous driving system, current commercial systems
now can constantly sense the surrounding environments and immediately alert
the drivers of danger, traffic situations, and road conditions. Being considered a
key to the future, autonomous driving and advanced driver-assistance systems,
or ADAS, have been actively studied and developed over two decades [2]-[6].

From the sensing aspect, 3-D cameras such as RGB-D cameras and LiDAR (Light
Detection and Ranging) sensors are becoming more affordable, enabling both
academic studies and industrial applications, such as self-driving cars
employing video analytics on LiDAR captured data for path planning as well as
obstacle detection [7], [8]. To mimic the complicated natural sensing system of
humans, a vehicle is installed with different types of sensors such as
grayscale/color cameras, inertial and GPS navigation sensors, radio detection

and ranging (RADAR), and light detection and ranging (LiDAR) systems [9], [10].



One of the most critical and challenging tasks in autonomous driving is the
generation of a local map of objects (i.e., road, vehicles, and pedestrians)
surrounding a car. This task directly relies on the depth sensing technologies. In
recent years, a widely used solution for estimating a depth map is to use an
active sensor (i.e., LIDAR), which generally scans objects in a field of view (FOV)
and measures their distances. Whereas classical stereo vision techniques are
only capable of estimating distances of close objects [11]-[13], a LiDAR sensor
can produce rich information of a wide and broad FOV with a range up to 120
m [14]-[18]. However, there are two challenging problems in utilizing LiDAR
sensors. Firstly, compared to camera sensors, it has a limited resolution owing
to gradual data acquisition; hence, it is challenging to represent object-level
information rather than pixel-level masks in an FOV. Secondly, although a LiDAR
is capable of constructing a high-definition map of objects, this requires
hardware resources to process and store a large-scale point cloud. In addition,
it is noteworthy that a high-resolution LiDAR is highly expensive. To solve these
two problems, efficient and accurate sampling is required to reduce the spatial
resolution of a LiDAR, particularly for autonomous driving in on-road
environments, where the spatial and temporal resolution of a LiDAR sensor is

significantly sparser than that of an image sensor.

1.2. Scope and contributions

In this thesis, we are interested in three fundamental questions.
1- How to design a LiDAR that can scan different sampling patterns? This thesis
addresses the problem of adopting the state-of-art laser marking system of

dual-mirror scanners when creating a high-definition LIDAR system. This

2



dual-mirror LiDAR’s advantage is to scan a field of view with a designated
scanning pattern, for example, when increasing a vertical resolution or track
an object area.

What are limitations of existing sampling algorithms on LiDAR? This thesis
demonstrates that the conventional sampling problem in theory
oversimplifies the timing behaviors in a LiDAR. To address this problem,
timing behaviors in a typical LiDAR are intensively characterized and a new
sampling problem with timing constraints are proposed.

How to solve the new sampling problem for LiDAR in different cases? This
thesis demonstrates that state-of-art sampling algorithms violate the timing
constraints in the new sampling problem. In this thesis, three fast and
accurate sampling algorithms are proposed to address the LiDAR scanning
problem under different scenarios: 1) Only depth information is used; and

2) RGB images from a CMOS camera and regions of interest are provided.

1.3. Thesis Outlines

This thesis is organized as follows. Chapter 2 briefly reviews some related work.

A dual-mirror LiDAR system and its characteristics are presented in Chapter 3.

In Chapter 4, a new sampling model for LiDAR is presented and a timing-aware

sampling algorithm is proposed. Chapter 5 presents an ROI-based LiDAR

sampling algorithm in on-road environment for autonomous driving. Chapter 6

presents some implementation issues to design a LiDAR. Finally, Chapter 7

concludes this thesis.



Chapter 2: Related work

This thesis are related three areas of LiDAR: circuits and devices, sampling and

reconstruction as in Fig. 2.1.

Circuits
& Devices

Sampling/
Sensing

reconstruction

Fig. 2.1. LiDAR and three fundamental areas: circuits and devices, sampling/
sensing, and reconstruction.

2.1. LiDAR sensors

To measure distances, a LIDAR system estimates the time interval between the
emission of the light photons from the LIDAR and the arrival of the light
reflected from a distant object. According to the number of emitter and detector
pairs, LIDAR systems are categorized into two types: those which use one pair
and those which use multiple pairs as shown in Fig. 2.2. Both types have their
own advantages and disadvantages.

The well-known commercial product Velodyne LIDAR [19]-[21] was motivated
by a simultaneous use of multiple emitter/detector channels in the vertical
direction. As those channels are rotated by a motor, the system can capture an

image with multiple lines of data. For example, 16-, 32- or 64-channel versions
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Laser

I

Single mirror &
one laser

(a) (b)

Lasers

Single mirror &
multiple lasers

(c) (d)

Fig. 2.2. LiDAR Scanning mechanism. (a)-(b) 2D LiDAR with single rotating
mirror and one lasers and its scanning pattern; and (c)-(d) 3D LiDAR with
single mirror and multiple lasers and its scanning pattern.

can produce 16, 32 or 64 lines of point cloud data, respectively, corresponding
to 300,000, 700,000 or 1,200,000 measurements per second. Moreover, they
achieve a relatively high frame rate of about 10 frames per second (fps). Despite
these advantages, their prices are relatively high due to the hardware cost of
multiple channels. On the other hand, a single-channel LIDAR is widely used in
laser marking systems [22]-[25]. Because there is only a single emitter and
detector pair, the price of this system is relatively low. Moreover, the system is
easy to control and flexible to scan an arbitrarily point in a field of view (FOV).
As a result, it can be used to scan various patterns and to increase the vertical
resolution. However, the scanning speed and frame rate are not very high, and

consequently, it takes a few seconds to obtain patterns in a laser marker.
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2.2. Sampling

In general, an ultimate goal of a sampling problem is to select a sampling matrix
to minimize the reconstruction error in an entire scene or a specific region-of-
interest (ROI). This problem is directly related to the compressive sensing
theory, which has intensively studied in many decades. Several approaches to
find a sampling matrix have been presented in [26]-[31]. Generally, for a given
sampling budget, a sampling algorithm should pick samples along gradient (as
in Fig. 2.3(a)) than a regular grid sampling (as in Fig. 2.3(b)).
2.2.1. Sampling problem definition

Let x € RN bea N x 1 vector representing the depth map of an entire
scene in a field of view (FOV) of a capturing device such as LiDAR. For
straightforwardness, x is normalized such that 0 < x;< 1 for i=
1, ..., N. In general, a sensor device cannot acquire data for all the locations in
the FOV such that the depth map of the entire FOV is reconstructed from the
sampled data. Let M denote the number of samples that a sensor device can
acquire. The sampling problem is an optimization problem of selecting the
samples in the FOV to minimize the reconstruction error with the constraint
that the number of the samples satisfies the target budget M. For mathematical
formulation, let {1,..,N} denotes the set of indexes that correspond to the
locations of the entire FOV, while {i,..., iu} represents the set of the indexes that

correspond to the sample locations among {1,...,N}.

Problem P1 (Sampling problem): The sampling problem is to derive {iy,..., in} to



e o e oo
(a)

Fig.2.3. Two sampling patterns on a scene: (a) Edge-aware sampling; and (b)
Regular grid sampling.

minimize the following objective function

1x B
o 33 I3, 2
J=

where xq,..,xy are real values and Xxj,..,Xy are the values that are
estimated from M measurements Xiyy ener Xipge
Because it is not feasible to obtain a solution in a brute-force search manner,
a heuristic method is most likely used. The next subsection presents a heuristic
algorithm called Oracle random sampling or gradient-based sampling, which is
derived in [28].
2.2.2. Sampling model
In general, a probabilistic model is used to represent the sampling problem.
For N locations in an FOV, a diagonal matrix S € RN*N is used to represent the
sampling operation with the (i, i)t entry of S being

s = {1, with probability p;,
L7000, with probability 1 —p;,

(2.2)
where 0 < p;< 1 for i=1,..,N is a sequence of predefined
probabilities.

Given S, the sampled data b € RN * 1lis defined by:
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b = Sx. (2.3)
where the ith entry b; is zero if S; = 0.
The target budget is defined by the target sampling ratio ¢ with 0 < & <
1, which represents the average sampling frequency. The following constraint

is then obtained as follows:

%Z P =¢. (2.4)

For a large N, the standard concentration inequality guarantees that the
average number of ones in S is approximately éN (i.e, N = M) [28].
2.2.3. Oracle Random sampling (Gradient-based sampling)

Similar to [28], this study uses the gradient-based sampling method (called
Oracle random sampling in [28]) to identify the edges or the highly textured
areas of a given depth image. Let a = [a,, ..., ay]"be a vector that represents

the magnitude of the gradient of the depth map:

a=Vx= \/(Dxx)z + (Dyx)z. (2.5)

The intuition of the gradient-based sampling method is that the average

gradient computed by all N samples is similar to the average gradient

computed from a subset of éN samples [13]. Let {pj }?1:1 be the optimal

sampling probability for defining the samplingmap S. For a specified sampling

ratio ¢ and a gradient map, the derivation of the optimal sampling probability

{pj }yzlis formulated as the following optimization problem:



N
1 as
min E — . (2.6)

subject to %Z?’ pj=¢and 0 < p; < 1.In[32], the solution is formulated

as follows:
p; = min(raj, 1). (2.7)

where 7 is the solution of g(t) =0 and g(t) can be calculated as follows:

N
g() = 2 min(za;, 1) — &N. (2.8)
J

Note that g(r) is a piecewise linear and monotonically increasing function,
with g(4+0) =N(1—-¢) and g(0) <0 [32]. Therefore, T can be uniquely
determined as the root of g(tr). Moreover, an efficient solution for the

derivation of 7 is available.
2.3. Reconstruction

To evaluate a sampling pattern, a reconstruction or depth completion method
is used. The problem of reconstructing a dense image from a sparse number of
measurement is the compressive sensing (CS) which has been intensively
studied for two decades [33]-[37]. While Shannon’s theorem states that to
reconstruct a signal (e.g., a depth profile) a sampling rate (e.g., the spatial
resolution of our sensor) is required to be at least twice the maximum
frequency of the signal, CS revolutionized signal processing by showing that a
signal can be reconstructed from a much smaller set of samples if it is sparse in
some domain. For depth estimation from sparse measurement, S. Hawe et al.
[26] exploit the sparsity of the disparity maps in the Wavelet domain. The dense

reconstruction problem is then posed as an optimization problem that
9



simultaneously seeks a sparse coefficient vector in the Wavelet domain while
preserving image smoothness. They also introduce a conjugate subgradient
method for the resulting large-scale optimization problem. Liu et al [28]
empirically show that a combined dictionary of wavelets and contourlets
produces a better sparse representation of disparity maps, leading to more
accurate reconstruction. Ma et al. [38], [39] consider the case in which a robot
has to navigate in an unknown environment but does not have enough on-board
power or payload to carry a traditional depth sensor (e.g., a 3D LiDAR) and thus
can only acquire a few (point-wise) depth measurements. Hence, they solve the
construction problem with an assumption that the second-order derivative of
depth map is sparse, leading to faster and more accurate reconstruction,
especially when the number of sampling points are small. In recent years,
inspired by convolutional neural network (CNN), the hand-craft dictionaries
have been replaced by deep CNN in the depth completion task [40]-[43].]. Uhrig
et al. [40] introduces a sparsity-invariant CNN to reconstruct a depth from
LiDAR measurements with a sparse convolution operator. N. Chodosh et al. [41]
presents an CNN-based compressive sensing method for LiDAR depth
completion using 1,800 parameters and an iterative manner. Ma et al. [43]
introduces a LiDAR depth completion method based on a deeper network

(Resnet-18) and achieve a superior reconstruction performance.
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Chapter 3: Dual-Mirror LiDAR

3.1. Introduction

This study addresses the problem of adopting a state-of-the-art laser marking
system [22]-[25], a dual-mirror deflection scanner in this case, to create a high-
definition LIDAR system. The goal of this study is to model galvanometer
scanners; and to analyze the performance of a LIDAR system based on this type
of scanners.

Three major contributions are described below.

1- Modeling: Section 3.2 presents the controller modeling of a galvanometer
scanner in a LIDAR system by deriving the speed constraints affecting the
scanner controller. Both timing constraints on the physical speed of the
scanner and the latency of the communication interface are addressed.
Furthermore, notations and common terminologies are introduced for the
rest of the study.

2- Scanning problem: Section 3.3 defines the laser scanning problem, shows an
intuitive solution, and proves its optimality. Hence, the relationship
between a field of view (FOV) of a captured image and the frame rate is
derived. Moreover, sufficient conditions are derived to check whether the
obtained image fully covers the FOV and includes well-aligned objects for
given frame rates. Experimental results show that the scanners can achieve
frame rates of 17.6, 9.0 and 4.6 fps for image sizes of 240x16, 240x32 and
240x64, respectively.

3- LiDAR system: Section 3.4 presents a sample LIDAR system which was

11



developed based on the proposed solutions. The proposed system, able to
provide images at various resolutions depending on target frame rates, is
evaluated in terms of its speed and the resulting visual quality. The system
achieves nearly 97,000 measurements per second while only using a single
emitter/detector channel. In addition, given an FOV, scalable frame rates
(i.e.,, 600x600, 300x300, or 150x150) can be achieved by the proposed
system.

3.1.1. Related work

The demand for LIDAR sensors has been increasing due to the growing
number of autonomous vehicles [2]-[5]. These sensors play a critical role in self-
driving cars by Google or Tesla. This subsection briefly reviews existing LIDAR
sensors which are available as commercial products. To this end, exiting LIDAR
products are compared with important performance parameters such as the
number of channels, the scan frequency, and the horizontal/vertical angles.
Table 3.1 summarizes the product specifications as given by the relevant
companies. LEDDAR 16M [17] uses sixteen segments simultaneously to
measure the distances of objects at sixteen angles. As its rate is 50Hz, the
number of measurements per second is 800. Riegl-VUX-1UAV Lidar [18] uses a
single pair of an emitter and a detector which can be rotated in a 330 © FOV. This
2D LIDAR is able to scan 550,000 measurements per second, and the motor
speed can be configured at different speeds between 10Hz and 200Hz. IBEO
ALASCA [16] also adopts a similar rotating method, but it uses four channels.

Therefore, it can scan a vertical angle of 3.2¢. Velodyne LIDAR sensors [19]-[21]
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TABLE 3.1
LIST OF SOME LIDAR PRODUCTS ON THE MARKET

Model Type # of Speed Horizontal Vertical # of

channels (Hz) Angle Angle Meas.

IBEO ALASCA [16] 3D 4 8-40 1600 3.20 N/A

LEDDAR 16M [17] 2D 16 50 90-950 x 800
PUCK™ VLP-16 [19] 3D 16 10 3600 +150to -15° 300,000
HDL-32E [20] 3D 32 10 3600 +100 to -30° 700,000
HDL-64E [21] 3D 64 10 3600 26.90 2,200,000
Riegl-VUX-1UAV [18] 2D 1 10-200 3300 x 550,000

also use a rotation module to extend the vertical scanning angle. They increase
the number of measurements proportionally by increasing the number of
emitter/detector channels.

These LIDAR products share a similar scanning structure in which only one
motor is used. Thus, any increase in the vertical resolution must depend on the
number of optical channels. This study suggests a solution which adopts the
scanners used in laser marking systems. This LIDAR system only requires a
single emitter/detector pair while offering various resolutions. To show the
effectiveness of this LIDAR system, this chapter aims to investigate its
performance in terms of the frame rate, resolution and FOV and also creates a

sample LIDAR system based on the proposed concept.

3.2. Modelling a controller of dual-mirror scanners

The common structure of a single-channel LIDAR system is a combination of 1)
a scanning module and 2) a single-point measurement module. This study
focuses on the scanning module, which is directly related to the FOV and the
frame rate of the system. Therefore, optical parts and depth measurements are
only briefly covered in Section 3.4.

3.2.1. Dual-mirror scanners

The single-channel LIDAR system in this study adopts the state-of-the-art laser
13



Fig. 3.1.
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(b) (c) (d)

Dual-mirror laser scanners. (a) System; and three scanning patterns:

(b) Vertical raster scanning pattern (sampling 3 out of 8 lines); (c) Vertical

raster scanning pattern (sampling 4 out of 8 lines); and (d) Diagonal raster
scanning pattern.

marking system, i.e., the dual-mirror deflection system of the type widely used

in industrial applications [22], [44]. As shown in Fig. 3.1, the scanners control

two motors to move their corresponding mirrors to a point at a specific position

in the FOV. Each mirror is responsible for scanning the direction in the FOV. In

Fig. 3. 1, scanning angles which represents the angle differences with respect to

the origins are defined by ¢, and ¢, for the x and y axes, respectively. In

practice, it is known that dual-mirror deflection systems are very accurate. For

example, the scanners adopted in this study have an angle step of 12 prad, with

each capable of scanning a maximum of 60,000 steps. Therefore, the system can
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cover a FOV of 41.20x41.2° and represent a scene with very high-resolution
images of 60,000x60,000.

3.2.2. Controller Model

3.2.2.1. FOV representation

Initially, let Xmin, Vimin, Xmax and ymax denote the minimum and maximum ranges in
the vertical and horizontal directions of the interest FOV, respectively. In this
case, these variables are expressed as follows:

0 < Ximin, Xmax,Ymin, Ymar < 60,000 31)

In practice, the entire FOV is usually represented by a set of regular grid points.
In other words, any two consecutive points are aligned by a fixed step. Let
xstep,ystep denote regular steps on the x-axis and y-axis of the FOV,

respectively. Hence, the width and height of the obtained image can be derived

as follows:
idth = Xmax — Xmin
wi - xstep (32)
height _ Ymax — Ymin (33)

ystep

Example 1: It is assumed that the LIDAR system fully covers the FOV (i.e., Xmin
= Ymin = 0 and Xmax = Ymax = 60,000), which is represented by a frame 480x240 in

size (i.e, width = 480 and height = 240). The regular scanning steps are then as

follows:
60,000
__9 — 3.4
xstep 280 125 (3.4)
height _ Ymax — Ymin (35)

ystep
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3.2.2.2. Timing constraints

To control the scanner, it is necessary to send a destination coordinate (xp, yp)
so that it can move to there from its current position (x.,y.). If the LIDAR
system measures the distance at each position, the number of measurements is
equal to the number of positions. Obviously, these numbers depend on how
many new positions are sent to the scanner and its maximum scan speed.

First, dual-mirror deflections scanners are interfaced by a communication
interface (i.e., XY2-100 industrial protocol [45]). An illustration of the protocol
is shown in the upper part of Fig. 3. 2. To control two motors, a driver must send
16-bit coordinates via the x and y channels (XCHN, YCHN) for an update.
Moreover, the protocol includes four additional control bits to form a 20-bit
packet to handle the new position. Hence, it takes 20 cycles to send the
destination to the scanners. The specification shows that the clock frequency
(CLK) is limited by 2MHz, resulting in a minimal period of 500ns. Eventually, an
update requires 10us (ie, 20 X 500ns). This implies that the maximum
number of updates is limited by 100,000 positions.

Second, the maximum speed of a galvanometer scanner is bounded by the
maximum frequency f,,, atwhich it is able to finish the travel of Xmin = Xmax
— Xmin in one second. It should be noted that the maximum frequency
parameter is usually given in the product specifications. However, the scanning
angle is not clearly stated in these specifications. Both f,,,, = 150 and
fmax = 1000 are correct if their corresponding scanning angles are not
provided. Intuitively, setting a narrower scanning angle results in a faster scan

speed. This intuition offers a solution to increase the frame rate by narrowing
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Fig. 3.2. Controller design for galvanometer scanners using the XY2-100
protocol and a raster scanning pattern.

the scanning FOV.

3.2.2.3. Maximum Speed of LiDAR scanners

In this subsection, the maximum speed of the galvanometer scanner is formally
derived. Due to inertia, updating of the position starts by slowly increasing its
speed, reaching to a stable speed, and finally slowly decreases to zero when
moving to the destination. This study assumes that the speed is constant during
the movement if it is still under the maximum speed, as this approach does not

sacrifice generality.
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2 — X
v S 'I]max — fmax(xmlc;x xmm) (36)

Here, v,,,, is the maximum average speed of a scanner, and the numerator,
2 fmaxXmax — Xmin), is the path length that the scanner traverses in one
second.

Example 2: Assume that the galvanometer scanner is able to scan at a
maximum frequency f,q, = 150 atan angle of 45° with Xmex= 60,000 and Xmin

= 0. Then, its speed is bounded as follows:

2x150x 60,000 18
1s - us

V < Umax = (3.7)

This indicates that the scanner is not able to move along a path longer than 18
within one microsecond. For example, if each step unit is 12 prad, the scanner

cannot move through an angle longer than 18 step units during that time.
3.3. LiDAR scanning optimization problem

Existed double galvanometers are often used in laser marking systems [22]-[25]
which are often required to handle an arbitrary pattern. The arbitrary pattern
is derived by a complicated algorithm such as a genetic-based approach [24].
This complex scanning pattern is possible because a marking system does not
require a fast scanning speed as the marking repetition rate is only about 1kHz
to 5kHz [22]. On the other hand, the scanning speed is very important for a
LIDAR system so that this study attempts to find the scanning pattern that
increases the scanning speed. To this end, this study proposes to use a special

scanning mode which is a simple yet fast scanning mode. More importantly, our
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approach gives the optimal scanning pattern for a LIDAR scanning system.
3.3.1. Scanning Problem
This subsection addresses the scanning problem of finding the optimal path
along which scanners run at the maximum speed. The formal definition of the
problem is as follows:

Definition 1 (Scanning Problem): Given a set of N positions in the FOV, the
scanning problem is to find the Eulerian trail which visits every position exactly
once.

Let {p;}., denote the positions in the FOV. The scanning problem is to find
a trail, q; » q, = - = qy, where the set {qf}?]=1 is equal to {p;}V~,.

Although two sets may have identical elements, the orders of their elements can
differ. This condition does not indicate that the coordinates of g; must be
identical to those of p; for any i =1,...,N. In other words, the problem to

solve is to find the scanning order in which all positions are visited exactly once.
N
It should be noted that {qj}j=1 is a permutation of {pi}?;l and that any

such permutation results in a valid order for scanners. Additionally, the
condition which holds that every position should be visited exactly once reflects
the actual case, in which it is desired to have only one distance measurement at
a single position for an image.

When N positions are given, there are N! possibilities to obtain a valid trail
for scanners, as N! permutations of {p; ?’:1 exist. The natural demand is to
find the trail along which the scanners can travel in the shortest time or along

the shortest path. Given the assumption that the speed of the scanner is
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constant during the movement, the traversing time is proportional to the path

length. Therefore, the optimal scanning optimization is defined as follows:

Problem 1 (Optimal Scanning Problem): Given a set of N positions  {p;}I,
in the FOV, find the trail g; = g, = +-- = qy that minimizes the total length of

the traversing path,

Ly= X5l — qisal], (3.8)

where the set {qf}?]=1 is equal to {p;}}; and where ||.||2 denotes a

Euclidian distance (i.e., L2-norm), which is formulated as follows:

llg; — CIi+1||2 = — x41)2 + i — Yig1)? (3.9)

3.3.2. Optimal scanning pattern

3.3.2.1. Grid-graph representation of Field of View

An FOV is usually represented by a grid graph in which any two consecutive
points are aligned at fixed steps. Similar to Section 3.2.1, let xstep, ystep
denote regular steps on the x-axis and y-axis of the FOV, respectively. Without a
loss of generality, it is assumed here that xstep is equal to or smaller than
ystep. The optimal scanning problem is then to find an optimal trail on the grid
graph. First, a feasible solution is considered, i.e., the raster scanning pattern, as
shown in the lower part of Fig. 3.2. Starting from point (Xmin, ¥min), SCanners visit

the next point (Xmin + xstep, Ymin). They then iteratively visit others along the
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Algorithm 3.1: Raster Scanning Algorithm with Laser Scanners

N~

OCONO LW

11

12
13
14
15
16
17

Inputs: Xmin, Xmax, Ymin, Ymax, XStep, ystep
Outputs: x, y

X=Xmin, Y=Y min, dir=0
While y < ymax

/* Even line */
If x==0
While x < Xpax - Xstep
Measure an object’s distance at the scanning angle

X 1= X+Xstep
End while
dir=1
Else

/* 0dd Line*/
Measure an object’s distance at the scanning angle

X 1= X-Xxstep
End while
dir=1
End if

y 1= y+ystep
End while

same line until they reach the right border (Xmax — Xstep, ymin). After going over
all points on the first line, the scanners scan the next line in a similar manner.
This procedure is repeated until all points on the grid graph are visited. The
raster scanning pattern is shown in Alg. 3.1 and explained in detail in the next
subsection.
3.3.2.2

This subsection proves the optimality of the raster scanning pattern by the

Optimal scanning pattern

proposed theorem, as follows:

21



Theorem 1 (Optimality): If N positions forming the grid graph in the FOV
are given and xstep is equal to or smaller than ystep, the scanning pattern in

Alg. 1 provides an optimal solution to Problem 1.

Proof: The scanning pattern derived by Alg. 3.1 forms a tree because it does
not include any cycle. In addition, the tree consists of all vertices in the graph.
Therefore, the proof for Theorem 1 is equivalent to the problem of showing that
the tree which is the derived raster scanning pattern is the minimum spanning
tree (MST) [46] of the graph. In this study, the procedure of the well-known
Prim algorithm [47] for the MST problem is adopted to address this problem.
Let q1 = (Xmin, Ymin) be the first node in the MST. In the Prim algorithm, the next
node is the candidate of g, which is closest to q:. A candidate solution is the
point (Xmin +Xstep, Ymin) due to xstep being equal to or smaller than ystep. The
procedure of choosing nodes for the MST on the first line is repeated until the
rightmost node (Xmax, Ymin) is reached. Because there is no remaining node in
this current line, the next node must be on the second line. According to the
Prim algorithm, the MST can be expanded to any node on the second line.
However, in order to guarantee the conditions of the MST, the rightmost one
(Xmax-Xstep, Vmin + Xstep) 1S Selected when its current position is (Xmax- Xstep, Ymin)- This
procedure will be iteratively applied until all nodes in the grid graph are added
to the tree to continuously form the MST.

Example 3: Consider an example with six positions, as shown in Fig. 3.3. Every
two nodes are connected by an edge, which is the Euclidean distance between

them. The problem is to find the MST over the graph. Here, we push node “1”
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Fig. 3.3.  An example of the Prim algorithm to find a raster scanning pattern
on a grid graph.

into the set. Clearly, the minimum edge is “a,” which should be added to the MST,
after which node “2” is inserted into the set. The next edge will be the minimum
weight edge connected to the set {“1”, “2”}. Therefore, edge “b” is inserted into
the MST and node “3” is added to the set. At this point, a minimum edge
connected to the set {“1”, “2”, “3”} is required. There are three possible options:
“c”, “g” and “f". Mathematically, it is possible to select any of them, as the graph
considered is an undirected graph. However, in reality, it is clear that the current
position of the galvanometer is now at node “3.” Eventually, edge “c” is selected
and the node “4” is added to the set. Next, edge “d” will be added to the MST
similarly and node “5” is inserted into the set. Finally, edge “e” is added to the
MST, and the MST is completely constructed.

Although the raster scanning is a series of heuristic steps, it is the optimal
solution in this specific case. It should be noted that the assumption that xstep

is equal to or smaller than ystep is only used for expressing the proof clearly

without a loss of generality. In case xstep is larger than ystep, the
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requirements of Theorem 1 can still be met by slightly modifying Alg. 3.1 by

exchanging the x-axis and the y-axis.

3.3.2.3. Combining an optimal sampling pattern with timing
constraints

Here, we reconsider the controller in the center of Fig. 3.2. It requires six
parameters: Xmin, Xmax, Ymin, Ymax, XStep and ystep. Xmin, Xmax, Ymin aNd Ymax define
the FOV of interest, whereas xstep and ystep determine the resolution of the
captured image. The goal of this subsection is to investigate the link between
the frame rate and the resolution factors.

3.3.2.3.1. Constraining in moving steps

Let t, and t, denote the time for scanners to travel the distances of xstep
and ystep, respectively. The speed of Galvanometer scanners in each small
step should satisfy the condition in (3.6), which states that the maximum speed
constraint and thus the speeds of the scanners, v, and v,, must satisfy the

following conditions:

xste 2 X — Xpmi
Ux — p S Umax — fmax( mlc;x mm) [310)
X
ystep 2 fmax Vmax — Ymin)
Uy =T S Vinax = B pe— (3.11)

These conditions are defined based on the speed constraints; thus, they can be

directly rewritten under the timing constraints, which are derived as follows:

1s Xmax — Xmin
< Xt .
2 fmax xstep * (312)
1s — Vini
< ymax ymln X ty (313)

2fmax ~  yStep

Intuitively, the right sides of (3.12) and (3.13) indicate the times required for
24



Galvanometer scanners to complete the scan of the horizontal and vertical lines,

respectively. Therefore, each frame requires the following time,

1 Ymax~Ymin  ¥max~Xmin Ymax~Ymin
= X t Jmax 7 min
FPS ystep xstep X ystep ¥ (3.14)

where FPS denotes the frame rate. The first term on the right side of (3.14)
represents the x-axis scanning time, which is determined by multiplying the
number of lines by the horizontal-line scanning time, whereas the second term
on the right side of (3.14) is the vertical-line scanning time. It should be noted
that the raster scanning pattern in Alg. 3.1 is used for this derivation.
3.3.2.3.2. Two constrains on frame rate

Based on (3.12), (3.13), and (3.14), the first constraint on the frame rate is

derived as follows:

1 vy
> (ymax ymln + 1) X (3-15)

FPS — ystep 2fmax

This implies that the frame rate depends on the number of lines in the acquired

image. If the scanners scan more lines, (%) FPS becomes smaller. On

the other hand, if they scan fewer lines, FPS becomes larger.

Next, the second constraint is derived to compensate for (3.15),as (3.15) does
not include x-axis parameters which represent the number of pixels on a line
(width). It should be noted that t, and t, are the timing intervals to update
the positions on the horizontal and vertical directions, respectively. Therefore,
they must be equal to or greater than the timing unit 7 by the communication
interface (ie, ty =7 and t, =1). Thus, the second condition is directly

derived from (3.14), as follows:
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1 — Ymin X = Xmi = VYmi
2 (ymax ymm X max min + ymax ymln) X
FPS ystep xstep ystep

(3.16)
The term on the right of (3.16) is obtained by multiplying the number of pixels
in the image by the time unit for updating the position in the FOV. The
inequalities in (3.15) and (3.16) provide conditions which link the frame rate,
the solution, and the FOV. The following subsection investigates these
conditions with numerical examples.

3.3.2.3.3. Numerical examples

Example 4: For the example of the frame rate, the settings in Example 1 in which
the galvanometer scanners scan at the maximum frequency (f;q4, = 150) and

the frame image has the size of 480x240 are reused. Then, (3.15) can be

changed as follows:

1 . s
75 = (height + 1) X raiad FPS < 1.25 (3.17)

1

F. 2fmax
Consider the case in which scanners use the XY2-100 industrial protocol [12]
for the communication interface. In this case, each update requires 10us (ie,

T = 10us), and (3.16) is changed as follows:

1
7PS > (height x width + height) X T = FPS < 0.867 (3.18)

From (3.17) and (3.18), the maximal frame rate is determined to be 0.867
because (3.18) has a smaller inequality criterion. However, (3.17) only depends
on the “height” parameter. If the frame width is decreased to 240, (3.16) is

changed as follows:

—= 2 (height X width + height) X T = FPS < 1.73 (3.19)

From (3.17) and (3.19), the maximal frame rate is determined to be 1.25

because (3.17) has a smaller inequality criterion. This example clearly shows
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TABLE 3.2
FRAME RATES OVER DIFFERENT RESOLUTIONS OF AN ACQUIRED IMAGE

FPS by FPSby  Final FPS
height  width (3.15) (3.16) (fos)
(fps) (fps)

16 240 17.647 25.934 17.647
16 480 17.647 12.994 12.994
16 640 17.647 9.750 9,750
16 1280 17.647 4.879 4.879
32 240 9.091 12.967 9.091
32 480 9.091 6.497 6.497
32 640 9.091 4.875 4.875
32 1280 9.091 2.440 2.440
64 240 4.615 6.483 4.615
64 480 4.615 3.248 3.248
64 640 4.615 2.438 2.438
64 1280 4.615 1.220 1.220

that either (3.15) or (3.16) can be dominant according to the setting of the
resolution.

Recall that existing LIDAR systems usually adopt multiple channels of
emitters and detectors. Therefore, multiple lines can be scanned
simultaneously. The following part investigates the performance of the
proposed controller with the same line settings used in the other cases.
Consider the Velodyne systems VLP-16 [19], HDL-32E [20], and HDL-64E [21],
which simultaneously scan 16, 32 and 64 data lines, respectively. Thus, height
is set to 16, 32, and 64 for each corresponding system. In Table 3.2, the
corresponding frame rates according to different resolutions are presented. It
should be noted that the FPS by (3.15) in the third column is only proportional
to height; whereas FPS by (3.16) in the fourth column is proportional to both
width and height. The lower values for these two columns are selected for the
final FPS in the fifth column. These results show that the scanners are able to

achieve an fps of approximately 17.647 when acquiring an image resolution of
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240x16, whereas acquiring an image of 1280x16 leads to a frame rate of 4.879
fps. This outcome indicates that a higher resolution results in a lower frame
rate. In other words, the frame rate decreases linearly as the number of
scanning lines increases.

Example 5: For the example of the FOV, the FOV factor which is not
investigated in Example 3 is considered here. In particular, the frame rate and
resolution do not indicate the coverage area in the FOV of interest. One
assumption in Example 3 is expressed as follows:

ty =t, =7 =10us (3.20)
This indicates that the update time for the position is 10 ps. Hence, the
maximum moving step is 180 due to the constraints on the speed of the

scanners. This correlation can be expressed as follows:

ax ("iﬂyiﬂ) < V0, = 180 (3.21)
x y
= xstep < 180 and ystep < 180 (3.22)

Table 3.3 shows the FOVs corresponding to the different frame sizes and frame
rates. The first and second columns represent the frame height and width,
respectively. From (3.22), the maximum angles can be derived by multiplying
the width and height with the moving steps. Columns from 3 to 6 show the
angles of the FOV. The vertical angle gradually decreases due to the maximum
speeds of Galvanometer scanners. In practice, the FOV of interest can be
extended by increasing t, in (3.20). Eventually, s, is increased and the vertical
angle is extended accordingly. Note that ¢, represents the time unit for updating
a scanning line. In general, it only needs height-1 times to switch from the

current line to the next one. Thus, the FPS only increases slightly.
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TABLE 3.3
FOVS OVER DIFFERENT RESOLUTIONS OF AN ACQUIRED IMAGE

. _ FOV, Fov,
height  width Xmax  ANGleXmax  Ymax  angleYmax
240 | 43200 29.7¢
480 |60,000 41.20 0
16 ¢40 60000 4120 2880 198
1280 | 60,000  41.2¢
240 | 43200 29.70
480 | 60,000 41.20 o
32 620 | €0.000 4100 5760  3.95
1280 | 60,000  41.2°
240 | 43200 29.7¢
480 |60000 41.20 0
64 640 |60000 4120 1120 791
1280 | 60,000  41.20




3.4. LiDAR system Prototype

This section presents the sample LIDAR system developed under the proposed
concepts.
3.4.1. System overview

In addition to idealistic concepts, it is important to consider an actual
verification framework, as it is directly linked to practical applications. Based
on this objective, a sample LIDAR system is proposed. Its system block diagram
is shown in Fig. 3.4. The central component of the proposed system is a
controller which is built with a combination of a Raspberry PI Il board [48] and
a LOGI-PI board [49]. The Raspberry PI serves as a high-level communication
interface bridge to send the depth measurements from the LOGI-PI board to the
display PC via the TCP-IP Ethernet protocol [50]. All low-level interfaces are
handled on the FPGA board, LOGI-PI, which uses a low-cost device, a Spartan 6-
XC6SLX9-2TQG144C from Xilinx. The controller is connected to the
Galvanometer scanners (motor and motor drivers) [44], a laser source (i.e., a
laser diode, LD), a programmable gain amplifier circuit (PGA), and a time-to-
digital converter (TDC) [51]. Signals reflected from objects are captured by a
photodetector (PD) [52]. The distance measurement methods [53]-[54] are
likely to be integrated in our framework. However, it should be noted that this
study concentrates on the interface between the controller and the
Galvanometer scanners. The selection of elements of other optical elements and
the timing measurement circuits may be different, which is out of the scope of

this study.
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Fig. 3.4. Block diagram of the proposed sample LIDAR system. LD- Laser
diode, PD- Photodiode, TIA- Transimpedance Amplifier, PGA - Programmable
operational amplifier, TDC- Time-to-digital Converter

Fig. 3.5 illustrates the main routine of measuring the distances. The raster
scanning algorithm in Alg. 1 is simplified in Fig. 3.5(a), in which the
measurement of a single point is conducted by iteratively mapping the position
to the measured distance. Each measurement starts by triggering an LD to emit
light at the position and also enabling a TDC by the START signal. It should be
noted that the emitted light comes to the object and that a reflected signal
returns to the system and reaches the detector PD (referred to as a STOP signal).
The TDC then measures the time interval between two signals, which is read out
to the controller and translated into the distance. This procedure is summarized

in Fig. 3.5(b).
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Fig. 3.5. Routine of measuring distances in a LiDAR system. (a) Simplified
measurement flow in a LiDAR; and (b) Flowchart to measure a distance of a
single point.

In this system, considering the interface between the controller and the
LiDAR scanners, two subjects, the efficiency of various resolutions and the
frame rate adjustment, should be addressed. These are explained in the
following subsections.

3.4.2. Speed evaluation

This subsection discusses experiments with the proposed LIDAR system at
different frame rates. The results of the experiments are presented in Table 3.4.
The proposed LIDAR system achieves various frame rates by setting the

corresponding frame size. For example, from the second row to the sixth row,

the width in the second column is fixed at 360, but the height in the third column
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TABLE 3-1V
PARAMETER SETTINGS WITH THE PROPOSED SAMPLE LIDAR SYSTEM FOR A GIVEN

FRAME RATE
Number of
Frame Width Height pixels per Number of
rate measurements
frame

20 360 12 4,320 86,400
10 360 27 9,720 97,200

5 360 54 19,440 97,200

2 360 135 48,600 97,200

1 360 270 97,200 97,200
0.5 450 440 198,000 99,000

is adjusted to vary the frame rates in the first column to 20, 10, 5, 2, and 1. The
fourth and last columns present the number of pixels per frame and the number
of measurements, respectively. It should be noted that the number of
measurements must be equal to or less than 100,000, which is the maximum
number of updates. The results show that the proposed system can achieve
nearly 100,000 measurements per second despite the fact that it only uses one
emitter and detector pair. On the other hand, the Velodyne LIDAR sensors VLP-
16, HDL-32E, and HDL-64E, which use 16, 32, and 64 channels, respectively,
correspondingly achieve 300,000, 700,000, and 2,200,000 measurements per
second. These results indicate that each channel for these sensors only provides
approximately 20,000 measurements per second. Therefore, the proposed
system shows much better performance and is also able to adjust the
parameters to fit the desired frame rate.

3.4.3. Subjective Evaluation

Fig. 3.6 shows the experimental images provided by the proposed sample
LIDAR system. Nine images were taken at various resolutions of 600x600,

500x500, 400x400, 300x300, 200200, and 150x150. The results show that
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the images 600x600, 500x500, and 400x400 in size nicely capture the same
FOV and clearly identify the objects at different distances. Meanwhile, as the
resolutions decrease, the FOVs are gradually narrowed in the captured images
of 300x300, 200x200 and 150x150. These images also contain boundary
artifacts. These phenomena can be explained as follows. Consider the images of
400%x400 and 300x300. If the FOV is 60,000x60,000, the moving steps will be
150 and 200, respectively. Recall the speed constraint in (3.22), which is derived
from (3.6) and (3.7). Therefore, the moving step when obtaining a 400x400
image encounters (3.2), whereas the step when obtaining a 300x300 image
does not. In practice, the scanners cannot exceed the maximum speed.
Eventually, the FOV decreases. Furthermore, boundary artifacts arise because
the scanners change the scanning directions in those areas and then require
more time for scanning. In summary, the images show the visual impact of the
derivations in this study. The message is that violating the conditions leads to a
narrowing of the FOV and to boundary artifacts. In other words, derivations in

(3.22) provide a sufficient condition to achieve a “good” image.
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(a) 600<600 (d) 300300

(b) 500500 - "~ (e) 200200

(c) 400400 (f) 150<150

Fig. 3.6. Images according to various resolutions by the proposed sample

LIDAR system.
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3.4.4. Accuracy Evaluation

This subsection briefly discusses the accuracy of our LIDAR system based on
two criteria: the vertical resolution and ranging accuracy. The vertical
resolution is an important factor to define an object for general object detection
applications. Table 3.5 reports the vertical resolutions of various LIDAR systems
including our LIDAR prototype. The results show that our system outperforms
the existing systems in terms of vertical resolution. By utilizing the high
resolution of galvanometers, our LIDAR system can achieve 12urad (=0.0007°)
vertical resolution. Moreover, the vertical resolution is likely to be adjusted for
specific applications as shown in Section III-C. In particular, the resolutions are
configured to achieve the desired frame rate and FOV.

The evaluation for the ranging accuracy of our LiDAR system is conducted on
the obtained images in Fig. 3.6 of the original manuscript as follows. First, a box
at center or close points is cropped. Second, six positions in the small box are
selected and sixes 8x8 corresponding blocks are taken as shown in Fig. 3.7.
Finally, for each small block, the mean and deviation are calculated. This simple
experiment makes an assumption that distances in a small block are similar.
Therefore, each position is marked with a mean and deviation which are
considered to the measured distance and error, respectively. The detailed
results are reported in Table 3.6. For each position, its mean and deviation of
distances are reported. For example, the position 1 in the image 600x600 is at
3.407m with the error is 0.037m (or 3.7cm). On average, the error is about
0.055m or 5.5cm. To this end, the experimental results show that the average

error is about 5.5cm, which is suitable for many practical applications.
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TABLE 3.5
VERTICAL RESOLUTION COMPARISON OF VARIOUS LIDAR SYSTEMS

Numbers Vertical Vertical
Model of channels Angle Resolution
IBEO ALASCA [16] 4 3.20 0.8°
LEDDAR 16M [17] 16 x x
PUCK™VLP-16 [19] 16 +150to -15° 20
HDL-32E [20] 32 +10° to -30° 1.330
HDL-64E [21] 64 26.9° 0.40
Riegl-VUX-1UAV [18] 1 x x
Our LIDAR system 1 41.20 up to
0.0007¢

(@) (©

Fig. 3.7. An experiment setup for the ranging accuracy estimation. (a) The
center-cropped position. (b) The cropped region of interest and positions. (c)
The corresponding map.

TABLE 3.6
MEAN/DEVIATION OF DISTANCE MEASUREMENTS AT DIFFERENT POSITIONS AND
RESOLUTIONS.

Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6
(m) (m) (m) (m) (m) (m)
3409/ 3.481/ 2934/ 2982/ 2.246/ 2.088/
0.037 0.048 0.046 0.052 0.072 0.043
3432/ 3.493/ 2927/ 3.011/ 2.226/ 2.078/
0.035 0.048 0.056 0.060 0.065 0.062
3436/ 3.469/ 2959/ 3.019/ 2.266/ 2.101/
0.041 0.068 0.057 0.049 0.068 0.089

Image

600x600

500x500

400%400
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Chapter 4: Sampling for Dual-Mirror LiDAR:

Sampling Model and Algorithm

4.1. Introduction

Efficient and accurate sampling is eventually required to reduce the spatial
resolution of such scanning systems. For a broad use in depth-data acquisition
systems, a sampling method should have the following properties:

1. Perceptually capture groups or regions that generally reflect the global
aspects of a depth image. Given a sample budget, a sampling method should
be capable of capturing details in the object boundary while omitting details
in the smooth areas. The definition of sampling is formulated to represent
these properties for an enhanced understanding of the method and to
facilitate the comparison of different techniques.

2. Being computationally efficient implies having a computational complexity
of O(n), where n is the number of image pixels. For practical use, sampling
methods must run at a speed that is similar to that of gradient computation
or other low-level visual-processing methods, implying approximately
linear time with low constant factors.

Uniform random or grid sampling is the most straightforward approach that
is highly efficient and satisfies the second property. However, this method is
generally inefficient in capturing perceptually critical non-local properties of an
image such as the object boundary. Therefore, reconstruction quality is
relatively poor and does not satisfy the quality requirements in several
applications. On the other hand, a non-uniform sampling strategy can
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significantly enhance the signal to noise ratio (SNR) [26]-[30]. An effective
sampling approach is proposed in [26] under the assumption that the global
properties of a depth image (e.g. its gradients) are available. This method
efficiently samples the depth image along edges. Unfortunately, the gradient is
not available prior to sampling, which renders the assumption unrealistic in
practical uses. Nonetheless, the sampling method provides strong evidence of
the feasibility of a more effective sampling method to capture the global aspects
of an image; thereby enhancing the SNR or reconstruction quality. To obtain the
global properties, several sampling schemes are proposed in [28]-[30]
according to which the sampling operations are performed in two stages. In the
first stage, the scheme adopts a uniform strategy using only a part of the sample
budget. The sampled data are used to reconstruct an image and then extract
global information such as gradient map [28] and object saliency map [29], [30].
Non-uniform sampling approaches are used in the refinement stage, and then
the sampling result is merged into those of the first one.

Although previous two-step sampling methods significantly enhance the SNR,
they exhibit two drawbacks. First, they invoke an intermediate reconstruction
that is complicated, which makes it challenging to reconstruct an image in real
time even though numerous approaches for efficient reconstruction such as
convex optimization and greedy methods [26], [28], [33]-[39] have been
extensively studied. Second, an irregular sampling pattern usually requires
additional storage space or transmission bandwidth, which must be included in
the budget of samples and therefore reduces the number of feasible samples.

These two challenging issues limit the use of a two-step approach to practical

39



applications such as data acquisition or laser measurement systems, which
strictly require an efficient sampling method.

To address the above two drawbacks, this study proposes a new
mathematical formulation of the constraints for a practical sampling method in
a LiDAR system. Based on the proposed mathematical formulation, it is shown
that existing two-stage sampling approaches are not suitable for a practical
LiDAR system. Therefore, this study presents a novel sampling method to
efficiently perform non-uniform random sampling. The proposed algorithm
extends the two-step method in the previous designs [28]-[30] to reduce the
computational complexity and the requirements of additional storage or
bandwidth while still achieving high SNR quality. The proposed method
performs uniform sampling at the pilot stage and non-uniform sampling at the
refinement stage. However, unlike in the previous methods, the proposed
technique efficiently derives non-uniform sampling based on the gradient of the
downsampled image. Consequently, the proposed method follows implicit
global properties notwithstanding decision-making using a greedy approach.
More critically, the proposed method for computing the gradient and
refinement-sampling map is substantially faster than other methods because it
does not require intermediate reconstruction. Consequently, it is
computationally efficient with O(n) complexity for n image pixels. In
addition, the proposed method reduces the requirement of additional memory
(or bandwidth) to store (or transmit) the sampling pattern. To this end, the
proposed method outperforms grid sampling by at most 5.92 dB. As a result,

the proposed sampling achieves a reconstructed quality that is similar to the

40



optimal sampling in the previous design, while substantially reducing the

computation time and memory requirements.

4.2. Sampling Model for Dual-Mirror LiDAR

The conventional sampling model in Chapter Il is intuitive. However, it over-
simplifies a practical LiDAR system because a timing constraint is not fully
considered. The reason is that the derivation of an optimal sampling pattern is
time-consuming, which consequently increases the overall data acquisition
time even though the number of sampling points is reduced. Furthermore, a
practical LiDAR system demands the minimal use of hardware resources such
as memory footprint. To address these issues in the design of a practical LiDAR
system, this section discusses the constraint required by a LiDAR system and
presents a modified formulation of the sampling problem discussed in the
previous section.

4.2.1. Timing constraints

A LiDAR system usually operates by performing multiple point-wise
measurements in a FOV. A block diagram of a LiDAR is illustrated in Fig. 4.1. A
typical measuring procedure of the LiDAR system is described as follows. A
controller in the LiDAR system starts by computing a target location in the FOV,
which requires a computation time tros. In the next step, the target position is
transmitted to a mechanical scanner that controls motors and mirrors to direct
the emitted light. This step requires the communication and motor control time,
which is denoted by tscan, After the mirror is aimed at the target, the laser diode
in the LiDAR system emits a laser beam in time temit, Next, the LiDAR waits until

the laser reaches an object and its reflected signal arrives at a photodetector.
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The time interval between the emitted and detected signals is generally referred
to as time of flight (TOF) and is denoted as t7°F. Finally, the measurement of t70F
is converted to an electric signal and transmitted to the optical device controller
that calculates the TOF from the signal. This time is denoted by tcak, In the last
step, the result is transmitted to the main controller that reads the signal in time
tread, For a given position, g, in an FOV, let ty denote the time required to measure
its distance. Therefore, tx is a function f{.) of the variables tros, tscan, temit, tTOF, gealc,
and tread, Obviously, the upper bound of t is the summation of all variables when
all steps are operated in a sequential manner. Meanwhile, the lower bound of ¢
is the maximum among all variables assuming that all steps are operated in a

pipelined manner. To this end, ty must satisfy both upper and lower bounds.

t, = f(tlzgos, tican, t;mit} thF, t](éalc, t}?{"ead) [4_1_a)
tye = max{th, tiean, g™, ¢LOF pfale ¢read) (4.1-b)
tre S tDO° 4 giean 4 ¢gmit 4 ¢TOF 4 grale 4 read (4.1-a)
Three variables tZ™¢, t£%¢ and t}°®® are likely to be fixed as their

operations are the same for all measurements. Therefore, txusually depends on

P . os
three remaining variables, t;°°, t3°*", and ¢[°F.

pos
tk

The derivation of a sampling pattern affects , which indicates the time to

determine the sampling point. If a sampling pattern is predetermined, it does
not require the time to compute a target location (or t,fos = 0 forall k). On the

other hand, the derivation of a complex sampling pattern might require a

considerable amount of time so that t,z(ms becomes very large.
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Fig. 4.1. A typical LiDAR system, (a) Block diagram; (b) Dataflow to measure a
distance; and (c) Pipelined timing schedule to measure a distance.
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When the LiDAR system measures at M locations corresponding to indexes

iy, ..., iy, the total time is expressed as follows:
M (4.2)
M _ pos scan pemit TOF rcalc jread
ty' = 2 f (tik B e A A )
k=1

Given a time budget T for scanning M locations, the following constraint must
be satisfied:

(4.3)

|
M=

pPos .scan remit TOF ;calc jread
gl = ) f (b eiem, egmie, e OF, egote, reed) < T
k=1

In practice, a LiDAR captures an image frame by frame, and therefore, the time
budget T is usually set for a single frame. For example, T is 33 milliseconds if 30
frames are captured for every second. For the two-stage sampling in [13], the
M/2 samples in the first stage are predefined so that they do not require time
to calculate their locations. Meanwhile, the M/2 remaining samples require
complex computation to derive their patterns, which results in longer
computation times to generate the pattern (i.e., 20 seconds as reported in [28]).

Therefore, this sampling does not satisfy the timing constraint:
M M
M pos ,scan gemit ,TOF ,calc jread pos
ty 2 z max (tik Sttty it ) = z ti,
k=1

> 20s.

Obviously, t’EV’ becomes much larger than the time budget T that is, in general,

a fraction of second in practice. Consequently, the two-stage sampling in [28]
cannot be used for practical LiDAR sampling with the timing constraint

considered.
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4.2.2. Memory-space constraint
This subsection presents an analysis of memory and bandwidth in a LiDAR
system. Consider the practical case in which LiDAR is integrated in a system and
a sampling method must satisfy the memory or bandwidth constraint of the
system. In particular, let C denote the available memory capacity (or an available
transmission bandwidth) for storing (or transmitting) LiDAR data. Meanwhile,
let G(.) be a function that represents the amount of stored/transferred data.
Therefore, G(.) depends on the sampling budget ¢, depth resolution n, and a
sampling pattern S.
G nS)=G6M,n,iq, ..., iy} (4.5)
In addition, the amount of data G(&,n,S) must satisfy the following inequality:
G(¢,nS) < C. (4.6)
The straightforward derivation of G(&,n,S) for a given non-uniformly random
sampling (i.e., two-stage sampling in [28]) is described as follows. Because each
pixel in b consists of n bits, the amount of data becomes n X ¢ X N bits.In
addition, the sampling pattern S is also stored and/or transmitted because it
is non-uniform and irregular. Because one bit is necessary for each pixel in the
input image of size N, the amount of data for § is N. Therefore, the total
amount of data G(&,n,S) is derived as follows:
GEnS)=n x & x N + N. (4.7)
Generally, for a practical capturing device, the memory space inside the device
and/or the transmission bandwidth to the external system is limited. Therefore,
it is necessary to select the sampling ratio to satisfy the memory and/or

bandwidth requirement. By combining (4.6) and (4.7), with a given memory
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and/or bandwidth capacity C, the amount of data G(&,n,S) must satisfy the
following inequality:

nx &x N+ N < C (4.8)
From (3.8), the target sampling ratio ¢ is limited by the available memory
space C, resolution n, and image size N:

C - N (4.9)
“ n X N

A new terminology target compression ratio, y is defined to represent the
ratio of the size of the available memory space C to the size of the input image
(n X N):

_c (4.10)
n X N

X
The compression ratio represents the extent to which the original data should
be compressed to satisfy the available memory capacity. The relationship
between the sampling ratio ¢ and compression ratio y can be obtained from
(4.9) and (4.10) and can be expressed as follows:
& < x—-N/(nxN). (4.11)
Uniform grid sampling does not require the storage of the sampling map S
because the pattern is fixed. Therefore, the required memory space
G(&,n,S) is modified as follows:
G¢nS)=n x & Xx N < C. (4.12)
where the second term in (4.8) is removed. In this case, the sampling ratio

becomes

=1 (4.13)
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Example 1: A depth image of size 512x512 with 8-bit resolution (data size =
256KB) is sampled and stored in memory of size 64 KB (i.e, N=32 KB, n =8,
and C = 64 KB). This implies that 32 KB (= 64 KB - 32 KB) is used to store the
sampled depth map b. If b is obtained from the non-uniform sampling, the

sampling ratio ¢ islimited to the following value:

€ - N _ 64 — 32

= = = 12.5%. 4.14
n X N 8 x 32 12.5% ( )

$

On the other hand, the uniform grid uses 64 KB to store b, thereby resulting in

the following value of &

- ¢ _ = 25% (4.15)
" T x N T 8x3:2 - 0 '

This result demonstrates that the uniform grid stores twice as many samples as
the non-uniform grid does. This implies that the uniform grid is likely to achieve
higher image quality than that of the non-uniform grid when memory space is
limited, which is true in numerous real-world applications.
4.2.3. New sampling problem with constraints

Based on those two constraints discussed in the previous two subsections,

Conventional sampling problem is modified as follows:

Problem 2 (New sampling problem for LiDAR): The sampling problem is to

derive {iy,..., im} to minimize the following objective function:

l1,-lpm

N
1
‘min NZ(xj — 3?])2 (4.16)
j=1

subject to the following two constraints:

a. (timing constraint)
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M

M _ pos . scan pemit TOF rcalc ;read

tZ = Zf(tik 'tik 'tik 'tik 'tik 'tik )<T
k=1

b. (memory-space constraint)
GM,n,iq,...,iy) < C
where x4,..,xy are the real values and Xx7j,..,Xy are values that are
estimated from M measurements x;, ..., x;,. Problem 2 is modified into two
variations by ignoring either the timing or memory constraint. Problem 2a is
the same problem as Problem 2 with the removal of the memory-space
constraint and Problem 2b is derived from Problem 2 by removing the timing

constraint.

While the use of non-uniform sampling enhances the image quality of the
reconstructed image, it involves considerable computational complexity and
additional memory space. This illustrates the trade-off between higher image
quality and faster execution time/larger memory requirement. This study
proposes a novel algorithm that improves image quality while reducing

computational complexity and memory requirements.

4.3. Proposed sampling Algorithm and Its Properties

4.3.1. Downsampling and k-NN expanding operator

To reduce the required memory space, the proposed algorithm attempts to
reduce the second term on the right side in (4.7). The concept is explained using
an example illustrated in Fig. 4.2. Fig. 4.2(a) illustrates an “Aloe” image in the
Middlebury benchmarks [11], [12]. Down-sampling this image by 3:1 yields the

image illustrated in Fig. 4.2(c), which is one ninth of the original image.
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Fig. 4.2. Example of a down-sampling operator and its graph representation.
(a) —-(b) original “Aloe” image and its gradient; (c)-(d) a down-sampled image
(1:3), its gradients and its gradient-based sampling map. (e)-(f) an example of
a 4 x 4 down-sampled image and its corresponding 12 x 12 image, which can
be considered as sixteen disjointed sets represented by 16 representatives.

Notwithstanding the down-sampling, the smaller image perceptually captures
groups or regions. These image characteristics are illustrated in Figs. 4.2(b) and
(d), which present the gradient images of Figs. 4.2(a) and (c), respectively. It
should be also noted that in the downsampled image, object boundaries and
textured patterns are perceptually captured in most regions. Fig. 4.2(e)

demonstrates a sampling map generated from the “downsampled” gradient
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image in Fig. 4.2(d) in which sampled points are densely located in objects
boundary. It suggests that a “downsampled” sampling map in Fig. 4.2(e) can be
considerred as an indicator to detect texture areas in a scene. Fig. 4.2(f)-(g)
show an example of a graph respresentation to visualize this indicator
described above. Fig. 4.2(f) shows a set of representatives, playing a role of
indicator in Fig. 4.2(e). Each point in Fig. 4.2(g) is mapped to a resprensentative
point in Fig. 4.2(f) marked with gray. This mapping allows to copy a
characteristics from Fig. 4.2(f) to Fig. 4.2(g). For example, if a point in Fig. 4.2(f)
is a texture area, its mapping point and neighboring points in Fig. 4.2(g) are
likely to be in a texture area. This is named as a k-NN expanding operator
explained in Fig. 4.3.

The proposed algorithm captures the gradient information Vx from the
downsampled image and then derives sampled depth map b from the
downsampled gradient information. If the image is downsampled by 3:1 in both
the horizontal and vertical directions, the size of the sampled depth map is
reduced to 1/9 of the original image. The second term of the right side in (4.7)
is also decreased to N/9. On the other hand, the down-sampling results in
aliasing artifact in the highly textured or boundary regions. This implies that
image quality will likely degrade because of the loss of information by down-
sampling. Increasing the number of samples facilitates the capture of more
information (e.g., details of the boundary object or highly textured areas). To
reduce this artifact, the proposed algorithm uses additional samples in the
textured region. In case that a pixel is in a highly textured region, its neighboring

pixels are also likely to be in the highly textured region because of the non-local
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Fig. 4.3. An example of the proposed expanding operator.

image characteristic. Utilizing this characteristic, the proposed algorithm
selects samples in the neighbors of the sampled data observed in a highly-
texture region. To achieve this, the algorithm uses the k-NN expanding
operation, which is explained in Fig. 4.3.

Example 2: Fig. 4.3 illustrates an example of the proposed expanding
operation. Each central node is representative of its respective set, which
includes the four of its neighbors. In Fig. 4.3(a), the central node is marked with
label 0, indicating that it is in a smooth area. The operator predicts that the four
neighbors of this node are also in the smooth area by assigning zero to their
labels. On the other hand, the central node in Fig. 4.3(b) is marked as one,
indicating that it is in a highly textured area or on the boundary of an object.
The proposed algorithm sets one to its neighbors and predicts them to be in a
highly textured area.

The sampling map is constructed as follows: The sampling map consists of all
the representatives and their neighbors marked by non-zero labels. In Fig.
4.3(a), the four neighbors have not been included in the sampling map as they
are marked zero. Meanwhile, the four neighbors in Fig. 4.3(b) are added to the
sampling set. An intuitive approach is to undertake dense sampling in highly

textured areas and sparse sampling in smooth areas.
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4.3.2. Proposed Sampling Algorithm with k-NN Expanding

The proposed sampling procedure consists of two stages: a pilot stage to obtain
a coarse regular sampling map and a refinement stage to enhance the sampling
map. The pilot stage selects the partial ratio ¢ (0 < @ < 1) from the budget. A
uniform grid sampling is used in this stage, resulting in sampling map S® with
a X & X N non-zero elements. The sampling period is identical in both the
horizontal and vertical directions such that it is straightforwardly defined by

step as follows:

1
axé&é’

step = (4.17)

For a specified image, let W and H denote its width and height, respectively.
Then, N=WxH can be obtained. In uniform sampling with the step expressed in
(4.17), Si=1 if and only if the index i satisfies the following condition:

i = lig X step] x W + |iy X step]. (4.18)
where |.| represents the floor operation, and iy and iy are integer
numbers such that the corresponding |iy X step] and [iy, X step] are the

coordinates of the pixel in the 2D image. Apparently, iy and i, satisfy the

following conditions, iy € {1,2, ., l% } and iy € {1,2, . l% }

Given S, the sampled depth map b(Vis derived as follows:
bW = sy, (4.19)
and its corresponding downsampled map x() is downsampled by the step in
(4.17). The size of x(1) corresponds to M, = a X & X N , where M,
represents the size of x(1) hereafter in this study. It must be noted that this is

the main variation between the proposed study and that in [13]. The map x
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in the proposed study is straightforwardly a downsampled image of a
substantially smaller size than that of the original image. Fig. 4.4 illustrates a
visual comparison between the proposed sampling scheme and that of [28]. Fig.
4.4(a) illustrates the proposed sampling scheme where x(1) is directly derived
by down-sampling operation. Meanwhile, the x(1) in [28] is the reconstructed

image derived from b as illustrated in Fig. 4.4(b).
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Fig. 4.4. Comparison of two sampling algorithms: (a) the proposed sampling
algorithm and (b) two-stage algorithm in [28].
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In the second stage, the downsampled image x(1) is used as a guide to compute
the gradient Vx(). The gradient map Vx™ = [al, s aMa]T is derived as
explained in Chapter 2. By formulating the optimization problem of (2.6), the
optimal probability and sampling map S, are obtained. By applying the k-NN
expanding operator to S, where xWis used as the set of representatives for the
original image, S can be obtained. The sampling ratio n is separate from ¢,
and it is derived as follows.

Recall that the downsampled image x(1) is the set of representatives for the
original image. Based on the k-NN expanding operator in Section IV-B, for each
representative, k neighboring points are added into the final sampling map.
Note that the number of remaining samplesis (1 — a) X & X N because
My,=a X & X N samples are used in the pilot stage. Using the k-NN
expanding operator, each of the representatives are extended to their k
neighboring pixels. Consequently, the number of representatives added in this
refinement stage can be derived by dividing the remaining samples by k and can

be expressed as follows:

1 —a) X & XN
” :

(4.20)

This results in the sampling ratio n for the downsampled image x(1), which can

be expressed as follows:

1 - a) x ¢ X N
= k =(1-0()X5XN=1—0( (4.21)
M, k x a x ¢ x N k X a
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Algorithm 4.1: Proposed Sampling Algorithm

1: Input: N,¢,b,k, a

2: Output: S

3: Pilot Stage

4: Obtain S by a uniform grid sampling with a budget ratio a X ¢.
5: Compute b™) from S,

6: Compute x( from b1,

7: Refinement Stage

8: Compute Vx®,

9: Conduct the optimal sampling on Vx(® to obtain the set S, with
the sampling ratio n = lk — 0;

10: Compute S@by k-expanding of Sy
11:  Compute S =SW 4+ 5@,

Fig. 4.5. Proposed sampling algorithm with k-NN expanding operator.

Given S, the proposed k-NN expanding operator is applied for the derivation

of the refined sampling map S@. As each representative expands only to its
neighbors, S® and S@ are exclusive. Therefore, the final sampling map S, is
obtained by S=SM+S@). The algorithm is summarized in Fig. 4.5.

Example 3: Assume that the target sampling ratio is 20% (¢ = 0.2) and
half of the budget is used at the first stage (¢ = 0.5). Then, the size of the
downsampled image in the first stage includes 10% of the original image’s size.
The refinement stage applies the straightforward four-node pattern (k=4). To
obtain the remaining 10% of the samples, 2.5% of the representatives must be
selected from the downsampled image. From (4.20), the sampling ratio n in

the downsampled image is selected as 25%.

1 — 05
= —— = (.25. 4.22
n 4 x 05 0.25 ( )
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4.3.3. Example with Synthetic Data

An example of the implementation of the proposed sampling algorithm is
illustrated in Fig. 4.6. The synthetic image has 25 x 25 pixels, and the sampling
ratio is 20% (£=0.2). Fig. 4.6(a) illustrates the sampling map S@ when 10% is
used by a uniform grid sampling (@=0.5). From (4.17), the sampling period is
derived as step=y/10. Without loss of generality, the starting index is selected as
2 (=1+step/2) such that a pattern is derived (see Fig. 4.6(a)). Therefore, the 8 x
8 downsampled image x(1) is obtained in Fig. 4.6(b). For convenience, x(1)
exhibits a straightforward shape having a smooth 4 x 4 square in its center. The
gradient Vx® s illustrated in Fig. 4.6(c). The refinement stage applies the
straightforward 4-NN pattern (k=4) in Section IV. 16 representatives are then
selected from the available 8 x 8 gradient image. The feasible solution of (2.6)
is displayed in set S, in Fig. 4.6(d), wherein the black pixels represent highly-
textured areas, and the white pixels indicate smooth ones. It is random in a
general case. However, a feasible solution is selected as an example because the
randomness is not likely to be true if the number of samples is substantially
small. The use of a random solution will likely result in bias such that the
selected samples are not located on the object boundary. Finally, an expanding
operator is applied to S, and then the derived sampling S is merged to S® to
form the final sample S, which is illustrated in Fig. 4.6(e). In S, the white squares
are omitted while the remaining ones are sampled. Meanwhile, the uniform grid
sampling pattern is illustrated in Fig. 4.6(f) as the entire sampling budget is
used to derive the pattern. The sampling pattern in Fig. 4.6(e) preserves more

points in the boundary area than that in Fig. 4.6(f). Note that the difference
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®  © @

Fig. 4.6. Example of the operation results by the proposed algorithm: (a)

SW (b) xM () VxD (d) Sy (€) $=5W+ 5@ and (f) the grid sampling.
between S and S@ is that SO is the representative obtained from S and S
represents the pixels expanded from S@), which does not include S®. For
example in the figure below, S represents the shaded pixels in Fig. 4.6(a) and
S@ represents the neighboring pixels around the shaded pixels in Fig. 4.6(e).
Because S@ does not include the shaded pixels, S@) is exclusive to S(1.

Fig. 4.7 demonstrates a synthetic example in which our two-stage sampling
method is used in a LiDAR. At the first stage, LiDAR scanners in Fig. 4.7(a) scans
a grid sampling pattern as shown Fig. 4.7(b) in which sampled points are
marked with black (i.e. nine black points in this case). Fig. 4.7(c) shows the way
to generate a sampling pattern for the second stage. At first, a gradient map is
computed, and four points with big gradients are selected out of nine points and
marked with red. For each red point, its four neighbors are scanned in the
second stage and marked with blue. Finally, the LiDAR scanners scans all blue

points. All colored points in Fig. 4.7(d) forms measured map.
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Fig. 4.7. An example of the operation results by the proposed algorithm: (a)
S (b) S = SMW+ S@ and (d) Sampling pattern.

4.3.4. Proposed sampling algorithm with interpolation

In Algorithm 4.1, the gradients are computed on a very small down-sampled
image x( to find the optimal sampling map Sn, which significantly reduces the
time complexity compared to [28]. However, this may lead to finding an
incorrectSn as alarge information of the image might be lostin down-sampling.
To address this problem, an interpolation-based two-stage algorithm is
proposed by modifying two steps in lines 9 and 10 of the Algorithm 4.1 to derive
the sampling S@ . First, instead of obtaining a set Sy in line 10 of Algorithm 4.1,
a probability p is obtained from p(1). First, a “downsampled” probability map p(®

is computed from Vx(Y. Next, a probability map p is derived from p® by
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interpolation. Finally, S@ is derived from p. Algorithm 2 is summarized in Fig.
4.8.

Fig. 4.9 demonstrates a visual explanation of interpolation-based sampling
algorithm in LiDAR. At the stage, LiDAR naturally does a grid sampling to obtain
a “downsampled” image x® of an FOV in step (1). Downsampled gradient Vx
and its corresponding probability p(1) are derived in steps (2) and (3). Because
a large information of the image might be lost in down-sampling, the proposed
algorithm computes a probability map p from p() by interpolation in step (4). It
should be noted that p captures texture regions of an image, results in an find

sampling map S@ having many sampling points in object boundaries.
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Algorithm 4.2: Proposed Sampling Algorithm (Interpolation)

1: Input: N,¢,b,k, a

2: Output: S

3: Pilot Stage

4: Obtain S by a uniform grid sampling with a budget ratio a X ¢.
5: Compute b™) from S,

6: Compute x( from b1,

7: Refinement Stage

8: Compute Vx®,

9: Compute down-sampled probability p® from Vx(,

10: Compute probability p from p() by a linear interpolation.
11: Obtain S@® from p.
12: Compute S =S 4 §@),

Fig. 4.8. Proposed sampling algorithm with interpolation.

scanner 2!

scanner 1 ]

Fig. 4.9. Proposed sampling algorithm.
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4.3.5. Timing and memory constraints
This subsection discusses the memory requirements and the time complexity
of the proposed algorithm to test whether the proposed algorithm satisfies the

two constraints in Problem 2.

4.3.5.1. Timing constraint

Among the timing parameters discussed in Section 4.2, tros indicates the time
for generating a refinement sampling pattern S@. The derivation of x(1) in the
pilot stage (lines from 3 to 6 in Fig. 4.5) is not time-consuming because it is a
result of uniform grid sampling. Next, the operation in line 8 in Fig. 4.5 is a
simple derivation of a gradient and takes less than 10 cycles in most hardware
circuits. In addition, this computation can be executed on-the-fly if the input is
received in the raster-scan order. The computation of the line 9 in Fig. 4.5 aims
to obtain aroot of g(r) thatisa piecewise linear and monotonically increasing
function, with g(4+0) = N(1 —¢) and (0) < 0. Therefore, the root is unique
and its derivation is performed in an iterative way. This step, in practice, is likely
to obtain a root within a small number of iterations (i.e., 64 iterations) and
therefore, it can be processed within 1,000 cycles in most hardware. For more
information, a flowchart of the iterative algorithm is given in Appendix B. Note
that experimental results also demonstrate that the number of iterations is less
than 32 for all locations to be derived. The last step in Line 10 is simply an
expanding operator. Given a sampling pattern in line 9 in Fig. 4.5, it is
straightforward that this step can executed within a single hardware cycle. In
summary, the proposed algorithm can be implemented in hardware within
1,000 cycles, taking less than 10 microseconds for an operating clock frequency
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of 100MHz.

In general, the time complexity of the proposed algorithm can be analyzed as
follows. A sequential visit of sampling points with the steps defined above
permits the simultaneous derivation of S®), b(1), and x(). This stage is executed
in linear time, O(M), with respect to the number of pixels. In the refinement
stage, the gradient computation and the gradient-based optimization are
executed in linear time, O(M). These steps are performed using the
downsampled image, which further reduces the complexity. The expanding step
is also fast and executes in linear time, O(M). In summary, the proposed

sampling algorithm satisfies the timing constraints of the LiDAR system.

4.3.5.2. Memory constraint
The memory space (or communication bandwidth) required in the proposed
algorithm can be analyzed in a manner similar to that in Section III-B. The
sampling map, S in the pilot stage is uniform grid such that it does not require
a memory space for storage. Meanwhile, the sampling map, S,, in the
refinement stage must be stored because it is a non-uniform pattern. The size
of S, is equal to that of the downsampled image, which requires a X ¢ X
N bits. In addition, the sampled depth map requires memory space of size,
n X & X N,where n indicates the resolution of the depth map. Therefore,
the total memory space can be expressed as follows:

G¢EnS)=n x & X N+ a x & X N. (4.23)

Given the available memory space C, as the sampling ratio is limited, it can be
expressed by the following inequality:
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C
n + a) X N

(4.24)

When compared with the sampling ratio ¢ in (4.9), the value in (4.24) is
significantly bigger because « is substantially smaller than n, and N is
substantially larger than n and «. This analytical comparison demonstrates
that the proposed algorithm has a sampling ratio &, which is substantially
larger than that of the previous algorithm in [28]. This illustrates that the
proposed algorithm has a larger number of pixels in the sampled depth map,
thereby resulting in higher reconstruction quality.

Example 1 (continued): For an equivalent memory space and the depth
image specified in Example 1, the proposed algorithm is used to derive the
sampled depth map. If half of the samples is selected in the first stage (i.e., a =

0.5), the sampling ratio is derived from (4.24):

64
< = 23.5%. .
$ = @ ¥ 05 x 32 235% (4.25)

This value is much larger than that for [28] in Example 1 (¢ = 12.5%) and is
close to the value for the uniform grid sampling (¢ = 25%).

For various cases, see Table 4-III for details.

4.4. Experimental results

This section presents an evaluation of the proposed sampling method in
comparison to three reference algorithms, uniform grid sampling, gradient-
based optimal sampling in [26], and two-stage sampling in [28]. From Sections
4.4.1 to 4.4.4, four sampling methods are compared for Problem 2b, which is
derived from Problem 2 by maintaining the memory space constraint but

ignoring the timing constraint. On the other hand, Section 4.4.5 compares the
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proposed and uniform grid sampling approaches that satisfy the timing
constraint. Experiments are conducted using the six testbeds in the Middlebury
datasets?: Aloe, Art, Baby2, Moebius, Dolls, and Rocks [11], [12].

4.4.1. Comparison on the conventional sampling problem

4.4.1.1. Subjective comparison

This subsection compares grid sampling, [28], and two proposed sampling
methods on “Aloe”, “Art” and “Moebius” at sampling rate 10%. To evaluate the
reconstruction quality, both timing and memory-space constraints are ignored
in this case. On each reconstructed image, two small regions are cropped and
zoomed in for comparison. Experimental results are demonstrated in Fig. 4.10.
For each test image, grid sampling gives the lowest reconstruction quality.
Meanwhile, both of two proposed sampling method only slightly degrades a
reconstruction performance when being compared with [28]. Fig. 4.10 shows
an example to compare four sampling methods at sampling ratio ¢ = 0.1. Fig.
4.10(a)-(d) shows the sampling maps of grid, [28], our Alg. 1 with k-NN and our
Alg. 2 with interpolation. Fig. 4.10(e)-(h) shows the reconstructed images of
four sampling maps with zoom-in cropped areas. The results demonstrate that
our proposed methods significantly improve reconstruction quality of a grid
method; achieving PSNRs of 31.97 dB and 32.44 dB compared to 28.95 dB.
Meanwhile, they only slightly degrade reconstruction quality of the state-of-art
sampling method in [28].

4.4.1.2. Quantitative comparison

PSNR results of four sampling algorithms are presented in Table 4-1. Table 4-1.A

D http://vision.middlebury.edu/stereo/data/
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shows the PSNR results of all six testbeds, while Table 4.1.B shows the average
PSNR differences of our approaches over grid sampling and that in [28]. Note
that for fair comparison, PSNR results of the two-stage sampling method in [28]
are reported in two cases: 1) use a gradient of an RGB image to sample the first
half as reported in [28] (marked with “RGB”); and 2) perform uniformly random
sampling in the first stage by running the code by the authors. Experimental
results demonstrate that both of two proposed methods outperforms the grid
sampling. Particularly, as shown in Table 4.1.A, compared to the grid, our
proposed method with interpolation improves PSNR by 2.23, 3.77, 5.21, 5.88
and 6.89 (dB) corresponding to percentage of samples of 5%, 10%, 15%, 20%
and 25%. Our proposed sampling method with an k-NN expanding operator
also achieves 0.93, 2.24, 3.58, 3.76, and 3.87 dB improvements when being
compared with the grid. Meanwhile, our proposed method only slightly
degrades the state-of-art two-stage ones in [28] as it only degrades PNSRs by
0.15,0.30,0.77,1.23 and 2.11 dB for sampling ratios of 5%, 10%, 15%, 20% and

25%, respectively.
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Two-stage [28] This work (inter)  This work (k-NN)

PSNR = 28.91dB PSNR = 31.36dB PSNR = 31.43dB PSNR =30.88dB
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Grid Two-stage [28] This work (inter)  This work (k-NN)
PSNR =28.95dB PSNR = 33.04dB PSNR =32.44dB PSNR =31.97dB
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Grid Two-stage [28] This work (inter)  This work (k-NN)
PSNR = 28.72dB PSNR =32.86dB PSNR =32.93dB PSNR =30.63dB

Fig. 4.10. Subjective comparisons on “Aloe”, “Art” and “Moebius” images.
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TABLE 4.1.A
COMPARISON OF PSNRS OF THE RECONSTRUCTED IMAGE

Percentage of samples/

IrTlealsge i?:;ﬁggsg Reconstruction quality (PSNR)
5% 10% 15% 20% 25%
Grid 2532 2891 30.09 3130 3235
[28] (RGB) 27.60 3139 3337 36.41 38.63
Aloe [28] (Depth) 2787 3136 34.12 36.31 39.33
This work (inter) 27.95 31.43 3349 3585 37.99
This work k-NN 27.13 30.88 3341 35.24 36.32
Grid 27.52 2895 30.84 3252 3371
[28] (RGB) 30.87 34.15 37.28 4297 48.00
Art [28] (Depth) 29.55 33.04 35.77 37.54 39.60
This work (inter) 29.07 32.44 35.30 3850 40.65
This work k-NN 28.34 3197 35.10 36.21 37.83
Grid 3444 36.80 37.67 39.05 40.07
[28] (RGB) 39.70 4490 48.66 52.50 52.00
Baby [28] (Depth) 38,55 43.05 46.51 49.17 54.59
This work (inter) 38.50 42.54 46.38 47.89 49.08
This work k-NN 35.81 39.13 42.17 43.25 44.24
Grid 2849 29.05 30.09 30.81 31.67
[28] (RGB) 29.51 32.53 34.00 36.27 37.65
Dolls [28] (Depth) 29.32 31.52 3292 36.88 38.20
This work (inter) 29.22 31.48 33.48 34.30 37.26
This work k-NN 28.80 30.59 32.03 33.13 34.85
Grid 27.69 28.72 29.85 31.17 32.24
[28] (RGB) 31.07 35.11 37.76 3992 41.89
Moebius [28] (Depth) 2995 3286 36.11 3844 40.79
This work (inter) 30.13 3293 34.56 36.44 38.20
This work k-NN 28.64 30.63 33.21 34.72 35.53
Grid 27.69 28.72 29.85 31.17 32.24
[28] (RGB) 30.77 3540 37.51 4045 4251
Rock [28] (Depth) 30.17 33.75 38.83 4035 43.75
This work (inter) 29.66 32.97 36.46 3832 40.43
This work k-NN 28.01 3136 3395 36.03 36.72
TABLE 4.1.B
THE PSNR COMPARISON OF THE RECONSTRUCTED IMAGE
i Percentage of samples/ PSNR
Sampling Methods 50  10%  15%  20% _ 25%
Grid (baseline) 28,52 30.19 3140 32.67 3371
This work (inter) 223 377 521 588 6.89
This work k-NN 093 224 358 376 387
Two-stage [28] (baseline) 30.90 34.26 37.38 39.78 42.71
This work (inter) -0.15 -0.30 -0.77 -1.23 -2.11
This work k-NN -145 -184 -240 -335 -5.13
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4.4.2. Comparison on the new sampling problem for LiDAR

4.4.2.1. Compression ratios

In these images, the depth is represented in 8-bit resolution (n = 8). The target
compression ratios, y, in (4.10) are selected as 5%, 10%, 15%, 20%, and 25%
of the size of the original image. The sampling ratio, ¢, is derived from (4.9),
(4.13), and (4.24), and the results are presented in Table 4.2. The first column
presents the sampling methods. From the second to the sixth columns, the
sampling ratios are reported for various target compression ratios (y). For the
uniform grid sampling, ¢ and y are equivalent because no additional data is
necessary to store the sampling pattern. On the other hand, the previous
sampling methods in [26] and [28] require memory space for their sampling
patterns. As discussed in Chapter 2.3, these methods require 12.5% of the space
required by the original image when the depth uses 8-bit resolution. Therefore,
it is not feasible to use those methods if the target compression ratio is either
5% or 10%. When the target compression ratios are 15%, 20%, or 25%, their
sampling ratios are 2.50%, 7.5%, and 12.5%, respectively. The sampling ratios
of the proposed sampling method are presented in the last row of Table 4.2,
which evidently illustrates that the sampling ratio approaches the available
memory space because the amount of data needed to store the sampling pattern
is significantly smaller than that for the previous sampling methods.

Because of the randomness in the selection of data samples in (2.1) and (2.2),
the amount of sampled data may not be equal to the target sampling ratio ¢.
Therefore, the experiment is conducted to demonstrate the extent to which the
sampling operation satisfies the target sampling ratio £. In this regard, Table
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TABLE 4.2
THE SAMPLING RATIO (§) MATHEMATICALLY DERIVED FROM (4.9), (4.13), AND (4.24)
FOR A GIVEN TARGET COMPRESSION RATIO (x)

Sampling Target Compression Ratio ()
methods 5% 10% 15% 20% 25%
Uniform grid 5% 10% 15% 20% 25%
[26] N/A N/A 2.5% 7.5% 12.5%
[28] N/A N/A 2.5% 7.5% 12.5%
Proposed 4.71% 9.41% 14.12% 18.82% 23.53%

TABLE 4.3
THE MEASURED SAMPLING RATIO (¢) AVERAGED OVER SIX TEST IMAGES FOR A GIVEN
TARGET COMPRESSION RATIO ()

Sampling Target Compression Ratio ()

methods 5% 10% 15% 20% 25%

U‘:g‘rf?gm 5.0376  10.0319 149563  20.0663  25.0566
[26] N/A N/A 2.5069 7.5041 12.5043
[28] N/A N/A 2.4965 7.4968 12.5102

Proposed | 4.7321  9.5067 14.198 18.8839  23.0648

4.3 presents the sampling ratio ¢ measured by experiments with Middlebury
six test images for a specified target compression ratio. The measurement
results are averaged over six images. The numbers in Table 4.3 are comparable
to those in Table 4.2. This demonstrates that the sampled data ratios are
approximately equal to the target sampling ratios.

4.4.2.2. Quantitative evaluation with Peak-signal-to-noise-ratio
The conventional approach to evaluating a sampling pattern is to reconstruct
the estimation of the original image from its samples and compare the
reconstructed image with the original image. For this evaluation, the alternating
direction method of multipliers with the wavelet dictionary is used as the
reconstruction algorithm. The details of this metric are available in [28]. The

MATLAB toolbox® of [28] is publicly provided by the authors. For evaluating

@ http://videoprocessing.ucsd.edu/~leekang/projects.html
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the quality of the reconstructed image, the PSNR (Peak-signal-to-noise ratio) of
the reconstructed image with the six testbeds in the Middlebury datasets is
reported in Table 4.4. As reported in Tables 4.2 and 4.3, the target compression
ratios are selected as 5%, 10%, 15%, 20%, and 25%. The experimental results
demonstrate that the proposed sampling is superior to grid sampling in terms
of the PSNRs at most target compression ratios. Furthermore, at the
compression ratios of 10% and 15%, the proposed sampling achieves the best
reconstruction quality among all the methods. In the case of the target
compression ratios of 20% or 25%, the optimal sampling in [26] achieves the
best quality. However, it should be noted that the optimal sampling approach is
proposed in [26] under the assumption that the global properties of a depth
image (e.g. its gradients) are available, but in practice, the gradient is not
available prior to data sampling, which renders the assumption unrealistic in
practical applications. The proposed sampling achieves quality that is similar to
the method in [28], while the proposed sampling is substantially faster and
requires much less memory than the sampling method in [28]. [t must be noted
that the experimental results with the method in [28] are adjusted to solve
Problem 2b. Particularly, the results are obtained with the target-sampling ratio
¢ instead of target compression ratios () such that they are different from
those reported in [28]. For example, with y =15% the sampling ratio ¢ isonly
2.5% as shown in Table 4.2 such that the corresponding PNSR results in Table
4.3 become much smaller than those in [28].

There are some cases in which the PSNRs are degraded notwithstanding the

increase in the sampling ratio (y). For example, the PSNR with “Baby” in the grid
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TABLE 4.4
THE PSNRS OF THE RECONSTRUCTED IMAGE FOR A SPECIFIED MEMORY SPACE

Test Sampling Target Compression Ratio ()
Images Methods 5% 10%  15%  20%  25%
Grid 24.02 27.15 28.52 30.53 31.41
Aloe Proposed 23.65 2813 30.63 32.08 32.83
[28] NA NA 23.25 28.41 31.48
[26] NA NA 23.66 32.82 37.03
Grid 2483 26,51 27.08 30.05 30.15
Proposed 23.59 27.60 29.20 30.65 31.16
Art [28] NA NA 23.50 28.18 30.74
[26] NA NA 21.01 30.74 34.60
Grid 29.18 31.66 32.21 36.71 35.26
Baby Proposed | 29.64 36.08 38.13 39.64 37.57
[28] NA NA 30.09 37.43 41.84
[26] NA NA 29.99 41.04 49.17
Grid 27.51 2789 2822 31.59 30.32
Dolls Proposed 2651 30.52 3196 33.07 32.21
[28] NA NA 28.55 31.09 32.46
[26] NA NA 28.62 36.31 41.36
Grid 26.65 27.24 27.62 30.76 30.59
Moebius Proposed 25.03 30.55 3149 34.00 32.89
[28] NA NA 27.51 31.28 33.81
[26] NA NA 26.72 38.00 43.34
Grid 2454 2681 27.64 29.85 30.44
Rocks Proposed 2494 28.77 31.03 33.08 32.54
[28] NA NA 25.10 29.52 32.60
[26] NA NA 2596 3596 41.09
Grid 26.12 2788 28.55 31.58 31.36
Average Proposed 2556 30.28 32.07 33.75 33.20
[28] NA NA 26.33 30.99 33.82
[26] NA NA 2599 35.81 41.10

sampling and the proposed sampling is degraded with y varying from 20% to
25%. This occurs when the sampling grid matches the object boundary at y =
20% butnotat y =25%.

4.4.2.3. Quantitative evaluation with Percentages of bad pixels

This subsection evaluates the reconstruction quality with another metric, the
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Percentage of Bad Pixels (PBP). A pixel is labeled as a “bad pixel” if the variation
between its true and estimated values is larger than a certain threshold th.

Then, PBP is defined as follows [1]:
1 N
PBP = N z (|Jxout; — x;| > th). (4.26)
i=1

where xout; is the reconstructed image and x; is the original image. In
general, the PBP is used to measure the quality of the reconstructed image for
representing the absolute difference metric apart from the PSNR that compares
the mean squared metric. It should be noted that lower PBP values denote
better quality. Each test is performed 10 times, and the reported results are the
average values because the random sampling generates a different result for
each trial. Three values of the threshold th are used for this experiment, varying
among 1, 2, and 3.

The experimental results with the PBP metric are shown in Table 4.4, which
demonstrates that the proposed sampling achieves optimal performance in a
majority of the cases. Non-uniform sampling yields lower PBP than uniform
sampling and the proposed sampling because the non-uniform sampling
effectively addresses blurring artifacts on the object boundary and
consequently enhances the PSNRs. However, it may result in a loss of detail in
smooth areas. As the smooth areas are generally larger than the boundary areas,

non-uniform sampling is adversely affected by a large PBP.

73



TABLE 4.5
THE PBPS OF THE RECONSTRUCTED IMAGE FOR A SPECIFIED MEMORY SPACE

Test Sampling % of Bad Pixels [th = 1]
Images Methods Target Compression Ratio ()
5% 10% 15% 20% 25%
Grid 30.02 1853 12.80 9.43 6.89
Aloe Proposed 3353 17.53 10.25 7.27 5.41
[28] NA NA 50.68 19.39  10.06
[26] NA NA 83.45 39.63 23.57
Grid 3201 1681 11.78 8.87 6.68
Proposed 37.93 18.03 11.53 8.28 6.14
Art [28] NA NA 5524 1892  9.76
[26] NA NA 82.33 37.69 2191
Grid 15.72  6.72 4.96 3.15 2.32
Baby Proposed 20.71 7.86 4.02 2.54 1.93
[28] NA NA 28.56 8.76 4.10
[26] NA NA 59.81 21.60 6.89
Grid 31.53 17.68 13.05 9.10 6.52
Dolls Proposed 40.27 21.15 13.74 9.79 7.75
[28] NA NA 55.81 23.31 13.69
[26] NA NA 70.90 45.35 24.38
Grid 23.63 12,54 945 6.93 4.94
Moebius Proposed | 25.48 12.80 8.37 5.68 4.15
[28] NA NA 41.09 13.60 7.12
[26] NA NA 6784 2608 11.71
Grid 18.47 8.83 5.96 4.26 3.17
Rocks Proposed 2440 11.04 6.28 3.71 2.89
[28] NA NA 38.57 12.09 5.83
[26] NA NA 64.27 38.00 12.79
Grid 30.02 18.53 12.80 9.43 6.89
Average Proposed 33,53 17.53 10.25 7.27 5.41
[28] NA NA 50.68 19.39 10.06
[26] NA NA 83.45 39.63 23.57
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TABLE 4.5 (CONT’)

THE PBPS OF THE RECONSTRUCTED IMAGE FOR A SPECIFIED MEMORY SPACE

Test Sampling % of Bad Pixels [th = 2]
Images Methods Target Compression Ratio ()
5% 10% 15% 20% 25%
Grid 21.22 11.58 8.23 5.94 4.31
Aloe Proposed 2349 11.36 6.65 5.03 3.85
[28] NA NA 3545 11.17 5.65
[26] NA NA 74.47 25.77 12.44
Grid 19.25 10.68 8.34 6.00 4.29
Proposed 24.61 12.13 8.18 6.09 4.75
Art [28] NA NA 3929 1099 627
[26] NA NA 69.69 2390 12.12
Grid 8.24 4.04 3.16 2.18 1.71
Baby Proposed 11.52 3.88 2.16 1.32 1.17
[28] NA NA 16.46 3.89 1.61
[26] NA NA 38.70 11.06 2.16
Grid 17.18 8.71 6.48 4.44 3.25
Dolls Proposed 23.29 1098 6.60 4.72 3.89
[28] NA NA 35.82 10.67 5.88
[26] NA NA 55.22 2443 8.57
Grid 13.68 7.77 6.09 4.51 3.05
Moebius Proposed 15.72 7.58 5.14 3.56 2.74
[28] NA NA 24.61 6.74 3.66
[26] NA NA 49.27  11.27 3.41
Grid 9.10 4.86 391 2.74 2.18
Rocks Proposed 13.37 5.30 2.97 1.96 1.77
[28] NA NA 22.49 4.96 2.22
[26] NA NA 55.47  23.33 4.32
Grid 21.22 11.58 8.23 5.94 4.31
Average Proposed 2349 11.36 6.65 5.03 3.85
[28] NA NA 35.45 11.17 5.65
[26] NA NA 74.47 25.77 12.44
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TABLE 4.5 (CONT’)
THE PBPS OF THE RECONSTRUCTED IMAGE FOR A SPECIFIED MEMORY SPACE

Test Sampling % of Bad Pixels [th = 3]
Images Methods Target Compression Ratio ()
5% 10% 15% 20% 25%
Grid 18.56  9.45 7.07 5.04 3.76
Aloe Proposed 19.82 9.39 5.70 4.42 3.47
[28] NA NA 27.26 8.88 4.65
[26] NA NA 68.72 17.24 7.96
Grid 16.09 9.47 7.58 5.15 3.88
Proposed 19.97 10.72 7.29 5.47 4.32
Art [28] NA NA 3155 935 555
[26] NA NA 62.58  18.62 7.98
Grid 6.09 3.46 2.87 1.99 1.58
Baby Proposed 8.43 2.80 1.69 1.06 1.01
[28] NA NA 11.66 2.49 0.97
[26] NA NA 31.20 6.88 0.95
Grid 11.81 6.03 4.75 3.36 2.57
Dolls Proposed 16.80 7.41 4.49 3.32 2.85
[28] NA NA 2555 684  3.70
[26] NA NA 44.50 14.04 3.95
Grid 10.91 6.34 4.97 3.71 2.53
Moebius Proposed 12.84 5.93 4.06 2.83 2.31
[28] NA NA 18.41 4.99 2.83
[26] NA NA 39.91 5.31 2.06
Grid 6.63 4.06 3.42 2.41 1.94
Rocks Proposed 9.06 3.84 2.28 1.61 1.52
[28] NA NA 13.84 3.17 1.56
[26] NA NA 49.35 15.10 1.59
Grid 18.56 9.45 7.07 5.04 3.76
Average Proposed 19.82 9.39 5.70 4.42 3.47
[28] NA NA 27.26 8.88 4.65
[26] NA NA 68.72 17.24 7.96
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4.4.3. Subjective evaluation

Fig. 4.11 illustrates the subjective quality of the reconstructed image produced
by the proposed algorithm in experimenting with the “Aloe” image. The target
compression ratios, y, are selected as 5% and 25%, resulting in the two
sampling patterns illustrated in Figs. 4.11(a) and (d), respectively. Evidently, the
sampling map at a ratio of 25% appears denser than that at 5%. The
reconstructed images are evidently different. The reconstructed image with 5%
in Fig. 4.11(b) suffers from blurring artifacts at the object boundaries, resulting
in a significant variation from the image in Fig. 4.11(c). On the other hand, the
reconstructed image with 25% appears similar to that in Fig. 4.11(e), and the
variation in Fig. 4.11(f) is mostly black. The variations are intuitively
understandable considering that the large compression ratio is a trade-off with

the degradation in the reconstructed image quality.
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(d) (£)
Fig. 4.11. Subjective quality of the image reconstructed by the proposed
sampling algorithm with two target compression ratios. (a), (b), (c) Sampling
pattern with 5% compression ratio, its reconstructed image and Variation
from the original image with 5% compression ratio. (d), (e), (f) Sampling
pattern with 25% compression ratio, its reconstructed image and variation
from the original image.
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4.4.4. Proposed grid sampling and grid sampling method
Recall that the two-stage sampling algorithm in [28] is too time-consuming to
satisfy the timing constraint of Problem 2. Therefore, the sampling method in
[28] is not compared in this subsection, and only the grid sampling and the
proposed two-stage sampling are compared. The experiments are conducted
with 24 disparity images from the Middlebury datasets [11], [12]. The
reconstruction methods® in [39]-[39] are selected for the sake of running time
and reconstruction quality.
4.4.4.1. Middlebury datasets

Fig. 4.12 demonstrates a comparison of reconstructed images that are
obtained from the uniform grid and the proposed sampling schemes with Aloe,
and Art from the Middlebury sets at a sampling rate of 20%. For each set, the
first, second, and third rows present the ground truth images and the
reconstructed images obtained from the uniform grid and the proposed
samplings, respectively. In the “Art” image, especially in the regions of face and
sticks, the proposed sampling pattern produces much better reconstruction
quality than in the case of uniform grid sampling. In particular, the region
surrounding the face in the reconstructed image of the uniform grid sampling
suffers from large artifacts. On the contrary, the proposed sampling efficiently
includes more samples in the same area so that its reconstructed image looks
better.

Fig. 4.13 presents the PSNR comparison between the proposed and the

uniform grid samplings with the Middlebury datasets. Fig. 4.13(a) and Fig.4.

® https://github.com/sparse—depth—sensing/sparse—depth—sensing
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13(b) demonstrate the PSNR results of the uniform grid and the proposed
samplings, respectively, while Fig. 4.13(c) presents the PSNR enhancement by
the proposed sampling. Experimental results demonstrate that the proposed
sampling consistently outperforms that of the uniform grid for all test images
and at all five sampling rates. The best PSNR improvement of about 16dB is
achieved for “Wood2” image at a given sampling rate of 25%. At the sampling
rates of 5%, 10%, 15%, 20%, and 25%, the proposed sampling achieves the
averaged PSNR improvements of 1.16, 1.50, 2.54, 3.79, and 6.27dB, respectively.
4.4.4.2. Brown Laser range datasets

Fig. 4.14 presents the PSNR comparison between the proposed and the
uniform grid samplings with the Brown laser range datasets [55]. Fig. 4.14(a)
and Fig. 3.14(b) demonstrate the PSNR results of the uniform grid and the
proposed samplings, respectively, while Fig. 4.14(c) presents the PSNR
enhancement by the proposed sampling. Experimental results demonstrate
that the proposed sampling consistently outperforms that of the uniform grid
for all test images and at all five sampling rates. The best PSNR improvement of
about 16dB is achieved for “Wood2” image at a given sampling rate of 25%. At
the sampling rates of 5%, 10%, 15%, 20%, and 25%, the proposed sampling
achieves the averaged PSNR improvements of 1.26, 1.48, 2.04, 2.93, and 6.97dB,

respectively.
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Fig. 4.12. Subjective comparison of the ground truth (first row), the grid
sampling (second row), and the proposed method (third row) on (a) “Aloe”,
(b) “Art”.
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Fig. 4.13. PSNR improvements of the proposed method over the uniform grid
sampling on Middlebury datasets. (a) Grid sampling; (b) Proposed sampling;

and (c) Comparison.
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Fig. 4.14. PSNR improvements of the proposed method over the uniform grid
sampling on Brown laser range datasets. (a) Grid sampling; (b) Proposed

sampling; and (c) Comparison.
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Chapter 5: ROI-based LiDAR Sampling in On-Road

Environment for Autonomous Driving

5.1. Introduction

An ultimate goal of a sampling problem is to select a sampling matrix to
minimize the reconstruction error in an entire scene or a specific region-of-
interest (ROI). This problem is directly related to the compressive sensing
theory, which has intensively studied in many decades. Several approaches to
find a sampling matrix have been presented in [26]-[31]. Motivated by the
property of the wavelet transform that the relevant coefficients coincide with
discontinuities, S. Hawe et al. [26] recommended that a data acquisition system
should pick samples at the discontinuities or along gradients. However, this
approach is not practical for two reasons. First, the gradient of the disparity map
is not available prior to sampling. Therefore, all the gradient information needs
to be inferred from the color image. Second, the gradient of a color image could
be significantly different from that of the disparity map. Thus, inferring the
disparity gradient from the color image is challenging. L. K. Liu et al. [27]
recommended using outlier elimination prior to edge disparity estimation.
Meanwhile, S. Schwartz et al. [29], [30] proposed a saliency-guided sampling
approach to perform sampling in a two-stage manner. First, approximately 10%
of the samples are sampled randomly, and an approximate depth map is derived
from those sampled data. Subsequently, object information or saliency is
extracted from the estimated depth to select better locations with the remaining
sample budget. Following this approach, L. K. Liu et al. proposed a similar two-
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step sampling in [28]. Particularly, at the pilot stage, half of the sample budget
is sampled randomly or along the gradients of a color image. In the second stage,
called the refinement stage, sampled points are used to estimate a round
disparity map and then to compute locations for the remaining sample budgets.
However, these approaches [28]-[30] involve time-consuming rough disparity
estimation. In [31], L. K. Liu proposed a sampling framework for acquiring a
depth video. Considering the merit of spatial information, this method
estimates the motions between two color frames and uses them to compute a
depth map from a previous estimated depth frame. A rough estimated map is
used as a guide for a gradient-based sampling; so that the sampling procedure
is completed in one stage rather than two. However, this method still involve
time-consuming disparity estimation. In addition, the method is verified only
with relatively simple synthetic datasets for which motion estimation becomes
highly accurate, rendering accurate-sampling relatively convenient. However, in
out-door environments; it is challenging to estimate motion accurately, owing
to illumination, noise, and other camera factors. Furthermore, the sampling
schemes in [26]-[31] are inappropriate for autonomous driving in on-road
environments for the following two reasons. Firstly, as shown in Fig. 5.1, a scene
in an outdoor environment generally consists of a complex background; this
caused previous methods to allocate excessively high number of samples into
non-interested areas (i.e., trees in Fig. 5.1). Secondly; it is challenging to obtain
a reliable gradient image of a scene in an outdoor scenario because generally,
its RGB image is complicated and its raw depth image too sparse to estimate a

reliable gradient map (i.e., 1-2% sparse compared to an RGB image).
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(b)

Fig. 5.1. Example of a sampling mask in on-road scenario. a) RGB image
and sampling points. b) Sampling mask for a given sampling rate of 25%.

Inspired by the dual-mirror LiDAR in [56], Nguyen et al. in [57] proposed a
sampling method to distribute samples in road and object regions based on the
ratio between their areas. Given a fixed number of samples in road and ROI
areas, the method efficiently distributes samples from road to object regions
and thus significantly enhances the reconstruction quality of objects. However,
in aroad environment, it is challenging to fix the number of samples in road and
object regions.

As a single type of sensor is likely to be inadequate for mimicking the sensing
system of humans during driving, the main objective of this study is to present
a framework exploiting the semantical information from camera sensors to
enhance the data acquisition of a LiDAR. The proposed framework addresses a

general LiDAR sampling case, where the budget of an entire frame is fixed. In
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addition, the proposed sampling method extends the state-of-the-art Oracle

random sampling method in [28]; hence, it is highly efficient and applicable for

various scenarios, i.e., on-road environments. To this end, the contributions of

this work are as follows:

1.

A systematical framework of depth acquisition in an on-road
environment is presented. Unlike previous approach, our proposed
detects the objects in a road and segments a scene into background, RO],
and object areas. From the segmentation result, the approach distributes
samples across the segmented areas.

An ROI-based sampling problem is proposed to optimize a depth sensing
system in a LiDAR for an on-road environment. The optimization problem
has an optical solution, which effectively addresses the two problems of
the LiDAR discussed above. Experimental results demonstrate that the
proposed approach significantly reduces the mean-absolute-error (MAE)
in the object area by at most 52.8%. Moreover, it achieves robust
reconstruction quality at a very low sampling rate of 1%. In addition, the
proposed sampling is remarkably fast (i.e.,, within a few milliseconds),

rendering it applicable to a real-time acquisition system.

5.2. Proposed ROI-based sampling algorithm

This section presents the main concept and mathematical derivation of the

proposed sampling.

5.2.1. Motivating example

Before addressing the sampling problem, particularly for on-road scenarios,

it is necessary to determine the type of sampling pattern that should be used in
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Fig.5.2. Profiling of mean absolute error (m) on object, road and overall
areas over sampling rates.

this case. This subsection demonstrates the characteristics of road, object, and
background regions and the utilization of these characteristics to generate a
sampling pattern. Fig. 5.2 shows an average MAE of test images for specified
sampling rates ranging from 1% to 30%. Errors are measured in three regions:
an entire scene, on-road, and object areas. Fig. 5.2 illustrates that three error
lines gradually decrease when the sampling rate increases. In particular, the
overall error of the entire scene decreases from 1.97 m to 0.55 m when the
sampling rate increases from 1% to 30%. In addition, the number of errors on
the road areas is approximately two times that on the entire scene. For example,
at the sampling rate of 1%, the MAE error on the object area is approximately
3.88 m, which is approximately two times of that on the entire area (1.97 m).
Meanwhile, the number of MAE errors on the road is relatively small. When the

sampling rate increases from 1% to 30%, the error decreases from 0.65 m to
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0.06 m. The profiling results in Fig. 5.2 indicate a strong message: For a given
sampling budget, 1) it is likely to give more samples on an object area as this
area plays a critical role for self-driving tasks, for example, obstacle detection
and path planning; 2) a sampling budget on a road area is likely to be decreased
without a significant degradation on MAE error.

Fig. 5.3 demonstrates a sampling pattern constructed under the above
characteristics. First, thanks to various fast and accurate road and object
detection algorithms [58]-[64], a single scene is assumed to be segmented into
road, object, and background regions as shown in Fig. 5.3(a), (b), and (c),
respectively. Meanwhile, three random patterns at sampling rates of 1%, 5%,
and 20% are given in Fig. 5.3(d), (e), and (f), respectively. The synthetic
sampling pattern is derived in the bottom image as follows. The sampling
locations on the road region are obtained by applying locations on the road
mask in Fig. 5.3(b) and those in the random sampling pattern in Fig. 3(d). Next,
the locations on the object region are derived from the pattern at the rate of 20%
(Fig. 5.3(f)) with the object mask in Fig. 5.3(c). Finally, the remaining locations
in a background region are selected from the pattern at a sampling rate of 5%
(i.e., Fig.5.3(e))- The final sampling map is shown in Fig. 5.3(g); it has a sampling
rate of 5.1%, which is close to that in Fig. 5.3(e). However, the MAE error on a
road area is approximately 1.39 m, which is significantly smaller than that of the
random error (i.e, 2.49 m). For this particular case, the overall MAE is
approximately 0.82 m, which is smaller than that of the uniformly random

sampling (0.89 m).
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(8)

Fig. 5.3. Motivational example for ROI-based sampling. (a) RGB image; (b)
Road mask; (c) Object mask; (d), (e), (f) Random sampling masks at sampling
rates of 1%, 5%, and 20%, respectively; and (g) Expected sampling map.
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5.2.2. ROI-based Sampling Problem
To address the sampling problem in an on-road environment, a scene is
assumed to be segmented into three regions: roads, objects, and background
ones. Aided by convolutional neural networks (CNNs), various road and object
detection algorithms have been rapidly developed in recent years;
consequently, their accuracy and speed have improved significantly [58]-[64].
Numerous road detection approaches submitted to the KITTI road detection
benchmark have precisions of over 96%, whereas the runtime is approximately
0.06 s [61]. Considering the effectiveness of available state-of-the-art road and
object detection algorithms, it is reasonable to assume that both the road and
object masks yielded by an RGB image of a scene are specified prior to the
sampling operation in a LiDAR. Fig. 5.4 illustrates a system configuration for
LiDAR sampling in an on-road environment. The three input images for a
sampling module are an RGB image, an object mask, and a road mask. The
sampling procedure operates as follows: First, an RGB image is captured,
requiring approximately 16.7 ms for a high-speed 60-fps camera sensor. Next,
both the object and road masks are derived from the specified RGB image,
requiring less than 20 ms because the object and road detections can be
performed at the frame rate of 50 fps [58, 61]. Finally, a sampling pattern is
derived in 1 or 2 ms to guide the data acquisition in a LiDAR.

Given this configuration, the sampling problem in a LiDAR is derived as

follows. Let Sp, Sk, and S, denote the index sets of the points in background,
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Sampling — LiDAR

Fig.5.4. System configuration for LiDAR sampling in an on-road
environment. It is assumed that object and road masks are specified prior to
sampling. The output sampling is used by a LiDAR sensor.

road, and object areas, respectively. Thus, the union of three sets is equal to
{1, ..., N}, and an intersection of any two sets is an empty set.
SgUSR URy, ={1,...,N}. (5.1-a)
SgNSp=SgNSop=SoNSg=0. (5.1-b)
The points in the background, road, and object areas have different
characteristics so that they are likely to be sampled with different priorities. Let
Ag, Ag, and A, be weighted-parameters representing sampling priorities for
the background, road and object areas, respectively. Therefore, the sampling

problem in Chapter 2 is modified as follows:

Problem P2 (Sampling problem for a LiDAR): Given Ag, Ag, and 4,, the

sampling problem is to derive {iy,..., in} that minimizes the following objective

function:
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where xq,...,xy are real values and x7j,...,Xy are the values estimated from
the M measurements Xiyrwes Xipye

Compared to Problem P1 in Chapter 2, Problem P2 has additional
weight parameters Ag, Ag, and A,. Apparently, when Az, Ag, and A, are
equal to one, the objective function in (5.2) becomes that in (2.1). That is, the
background, road, and object areas have identical sampling priority. As
mentioned above, it is not feasible to determine a solution in a brute-force
search manner; therefore, a heuristic method is necessary. Similar to the

derivation in Chapter 2, Problem 2 is transformed into a gradient-based

sampling in the following section.

5.2.3. Proposed ROI-based sampling algorithm

For consistency, let a = [ay,..,ay]” be a vector indicating the prior
information of the depth map. It should be noted that the vector a may be
defined as the gradient of the depth map as shown in (2.5) in Chapter 2.
However, it represents any prior information. Using the probabilistic model in
[28], the gradient-based sampling is modified as follows. For a specified

sampling ratio &, the prior map, and hyper-parameters Az, A, and A, the

derivation of the optimal sampling probability {pj }ilis formulated as the
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following optimization problem:

.1 af aj ai
min ABZf+ARZf+AO i (5.3)
PPN iESp t JESR p] k€eSo Pk

subject to %Z?’pj =¢and 0 < p; < 1; here, Sp, Sg,and S, are defined
as (5.1-a) and (5.1-b).

Compared to (2.6), the optimization in (5.3) has additional parameters, Ap,
Ar,and Ay, which represent the sampling priority in the background, road, and
object areas, respectively. When Ap, Az, and A, are equal to one, the
optimization problem in (5.3) becomes that in (2.6). Therefore, the proposed
optimization can be considered as a generalized variation of the conventional
problem.

5.2.4. Practical considerations

As described in Section I, a gradient generally becomes excessively noisy in
an on-road environment so that it is challenging to generate a “desired”
sampling pattern from the problem in (2.6). Therefore, this study considers an
extreme and widely used case where the gradient information is unspecified or

is under the following condition:

= ap=-=ay=1 (5.4)
Recall that a road area is generally flat so that the MAE does not change
significantly as the sampling rate changes. Therefore, the parameter A, for a
road area is likely to be smaller than the one for a background area. Considering
this, Az and Ap must satisfy the following equation:

A =aX g (5.5)
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where a is a constant and a < 1. The parameter a indicates that the

sampling rate in a road area is likely to be a times that in a background area.

Meanwhile, points in an object area are more likely to be sampled rather than
those in a road area. Therefore, 1, and Az must satisfy the following

equation:

lo =B X Ag (5.6)
where [ is a constant bigger or equal to one, such that the sampling rate in a
road area is likely to be 8 times that in a background area.

Without loss of generality, the optimization problem in (5.3) is modified as

follows. For a given sampling ratio ¢, the prior map, and parameters a and g,

the derivation of the optimal sampling probability {p j }7:115 formulated as the
following optimization problem:
1 a? a? a2
mlnﬁ 2—+a2—+ﬂz— (5.7)
PPN i€Sp Pi JESR P kESo Pk
subject to %Z?’ pj=%¢and 0 < p; < 1;here, Sp, Sk, and S, are defined

as (5.1-a) and (5.1-b).

5.2.5. Distortion optimization problem
Obviously, given weight parameters a and f, solving (5.8) is similar to solving
(2.6) with an exaction solution described in (2.7) and (2.8). This subsection

presents an optimization problem to derive these parameters.

Problem P3 (a,f - distortion problem): Parameters a,f are derived by

solving the following optimization problem:
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l'(I:ll’iﬁn MAEOb] + AMAEa” (58)

where MAE,,; and MAEg; are reconstruction errors on road an overall

regions, respectively; and A is a weight factor.

Problem P3 clearly demonstrates that for «,f selection, it is necessary to
consider both a quality enhancement on an ROI and a degradation on the other.
However, similar to the sampling problem, it is a chicken-and-edge problem,
which is not feasible to determine a solution in a brute-force search manner.
In practice, a numerical solution is obtained as shown in the following

subsection.

5.3. Experimental results

This section describes the experimental environments and then demonstrates
the results of the proposed design. Firstly, Sections 5.3.1 and 5.3.2 describe the
datasets and experimental results of the proposed ROI-based sampling method
with the parameters a and f.Subsequently, a detailed comparison with the
previous results is presented. Sampling rate ¢ is set to either 5%, 10%, 15%
or 20%, and 18 datasets in the KITTI dataset are used in the experiments.
5.3.1. Datasets

A set of 18 test images is acquired from the well-known KITTI dataset [9], [10]
to cover several typical on-road scenarios. The set profiles are included in Fig.
5.5. Firstly, Fig. 5.5(a) shows the captured color images of these datasets; these
images display various typical on-road scenarios such as a clear scene without

any object and a scene with close and distant vehicles. Fig. 5.5(b) shows the
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sampling rates of the groundtruth depth images. As shown in [9]-[10], a depth
image is obtained by projecting a point cloud data provided by a LiDAR sensor
into a color image domain. However, the number of measurements of the LiDAR
(i.e., a 64-channel Velodyne LiDAR) is significantly sparser than that of an RGB
image. For these datasets, the sampling rate is approximately 4.26% on an
average and ranges from 3.70% to 4.62%, as shown in Fig. 5.5(b). It is
noteworthy that the sampling method in [15] is based on a wavelet, and the
contour-based reconstruction method performs ineffectively when the sample
budget is small (i.e., 1% or 2%) [18], [19]. That is, it is challenging to obtain a
reliable gradient image of a scene in an outdoor scenario because generally, its
RGB image is complicated and its raw depth image excessively sparse to
estimate a reliable gradient map (i.e., 1%~2% sparse compared to an RGB
image).

In addition, Fig. 5.5(c) demonstrates the profiling area ratios of the
background, road, and object regions in the datasets. In particular, the ratio of
the object areas is approximately 8.24% on average and ranges from 0% to
55.7%. Meanwhile, the ratio of the road areas is approximately 17.24% on
average and ranges from 10.94% to 37.5%. The remaining background occupies
an average area ratio of 74.33% and ranges from 33.35% to 86.81%. Two
inferences can be noted from this numerical analysis. Firstly, it is too tight to fix
a budget sample for the road and object areas as in [56]. Secondly, distributing
a specified budget based on the computing areas of the road and object regions

as in [56] cannot address various practical cases.
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Fig.5.5. Testimages from KITTI datasets [1, 2]. (a) Color images; (b)
Sampling rates of depth images; and (c) Background, object, and road area

ratio.
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5.3.2. Evaluation with different parameters

This subsection presents the experimental results with various values of the
parameters @ and f.Asthe sampling rate is set to 5%, 10%, 15%, or 20%, the
minimum value of « is setas 0.25 to maintain a considerable sampling rate in
a road area (approximately 1.25%, 2.5%, 3.75%, or 5%, respectively).
Meanwhile, the maximum value of § is set as four as the maximum sampling
rate in the object regions is approximately 80% (= 20% x 4). In particular, a is
set to 0.25, 0.5, 0.75, or one, whereas f is set to one, two, three, or four. Fig.
5.6(a), Fig. 5.6(b), and Fig. 5.6(c) show the average MAEs of the object, road, and
entire areas, respectively. The first, second, and third rows display the MAEs of
the object, road, and overall areas, respectively. In each row, the first, second,
third, and fourth columns display the MAEs at the sampling rates of 5%, 10%,
15%, and 20%, respectively. It should be noted that the MAEs on the object
areas significantly decrease when the value of the parameter f increases. For
example, considering the baseline sampling @« = f = 1 and the sampling a =
0.25, f =4. Note that with « =f =1, the sampling method becomes a
uniform random sampling. The MAEs on the object area with this setting are
shown in Fig. 5.6(a); here, the MAEs decrease by 0.83 m, 0.97 m, 0.87 m, and
0.48 m at the sample rates of 5%, 10%, 15%, and 20%, respectively. Meanwhile,
the overall MAEs shown in Fig. 5.6(c) do not change significantly when the MAE
differences between the various parameters shown in the third row of Fig. 6 are
likely less than 0.1 m in all the cases. In addition, the average MAEs on the road
area shown in Fig. 5.6(b) increase to an average of approximately 0.18 m and

ranges from 0.1 m to 0.26 m. To reflect the importance of the object regions,
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Fig. 5.6. MAEs at the sampling rate of 5%, 10%, 15%, and 20% on different
regions: (a) Object; (b) Road; and (c) Overall.

B = 4 isused for comparison. Meanwhile, the lower and upper values of a are
experimentally selected as 0.25 and one, respectively. These experimental
results demonstrate that the proposed sampling method with a = 0.25, g =4
significantly improves the reconstruction quality on the object area. Similarly,
the proposed sampling with ¢« = 1, f = 4 also achieves a large improvement
on the road area compared to the baseline. In this case, the average MAE on the
road areas decrease to an average of approximately 0.84 m and ranges from
0.67 m to 0.98 m for various sample rates. It should be noted that 0.84 m is
highly critical when compared to the sizes of the cars on the road.

Fig. 5.7 demonstrates the subjective comparison between the proposed
sampling with a = 0.25, f =4 and the uniformly random sampling at the
sampling rate of 10%. Fig. 5.7(a) shows the color view of a scene, because a car

is considered as an object of interest. The 3D point cloud view of a scene is

100



Groundtruth £=10%, o=1, 8 =1 £=10%, =0.25, 3 =4

AN T
e B‘
2 ::..;,::'_: o 2

30

ol o N
ol o N

(®) © @

Fig.5.7. Subjective comparison between the proposed sampling (a = 0. 25,
B = 4) with the baseline (& = 1, = 1) or uniformly random sampling. (a)
RGB image; (b) Ground truth point cloud; (c) Samples obtained by random
sampling at the sampling rate 10%; and (d) Samples obtained by the proposed
sampling.

displayed in Fig. 5.7(b). Meanwhile, the sampling points of the random sampling
and the proposed method are shown in Fig. 5.7(c) and (d), respectively. It is
apparent that the number of samples in Fig. 5.7(c) and (d) are substantially less
than that in Fig. 5.7(b); this results in a substantial reduction in memory storage
and computational power in an actual case. However, visually, the samples in
Fig. 5.7(d) appear significantly better than those in Fig. 5.7(b) because the
samples surrounding the car are effectively captured in this sampling. It should
be noted that only very few points of the car are captured in Fig. 5.7(c); this is
likely to cause ambiguity in obstacle avoidance or path planning in practical
autonomous driving. This subjective comparison clearly demonstrates the

advantage of the proposed ROI-based sampling over the uniformly random

sampling.
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5.3.3. Object and quantitative comparisons

This subsection compares the proposed sampling method with three previous
sampling approaches: random sampling, color-image-guided sampling [26],
and two-stage sampling [28]. To reflect the importance of the object regions,
B =4 is used for comparison. The lower and upper values of a are selected
as 0.25 and one, respectively. In particular, for the proposed method, two
settings are « =1, f =4 and a = 0.25, = 4. It should be noted that the
sampling methods in [26], [28] are used with synthetic disparity datasets [11],
[12] rather than on-road KITTI datasets [9], [10]. Therefore, for a fair
comparison, they are modified to be used for KITTI datasets. In particular, the
color-image-guided sampling [26] uses a half of the sample budget used for
random sampling. For the remaining budget, it computes the gradient of a gray
image and computes the remaining locations based on the gradient-based
sampling in Chapter 2. Moreover, the two-stage sampling [28] is modified by
using the interpolation method in Matlab for estimating a depth map because
the reconstruction quality of the method in [28] is excessively low when the
sparsity of the depth map is approximately 1-4%.

The comparison of the MAEs on the object, road, and overall areas are
reported in Tables 5-I, II, and III, respectively. On each table, the first, second,
and third rows display the experimental results with uniformly random
sampling, color-image-guided sampling [26], and two-stage sampling [28],
respectively; the fourth and fifth rows display the results with two variations in
the proposed methods. In each row, the second, third, fourth, and fifth columns

report the results with the sampling rates of 5%, 10%, 15%, and 20%,
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respectively. Table 5.1 shows that the proposed sample achieves the highest
performance among all the methods on the object area, which is critical in
autonomous driving. Compared to [26], the variation in the proposed method
in the fifth row reduces the MAE by 0.852 m on average, ranging from 0.79 m to
0.955 m. A reconstruction error or an MAE is commonly used to verify the
effectiveness of a sampling pattern. Objects refer to cars, trucks, or pedestrians,
whose size is relatively small. Thus, a reduction in the MAE by approximately 1
m is significant.

This study also presents a visual example in Fig. 5.7. Apparently, the absence
of measurements in the object areas in Fig. 7(c) causes significant degradation
of an MAE. When compared to the two-stage sampling [28], the variation of the
proposed method reduces the MAE by 0.382 m on an average (ranging from
0.258 m to 0.631 m). That is, the proposed method achieves 35.75% reduction
on an average (ranging from 26.84% to 52.8%) in the MAE on the object area
when compared to [28]. Tables 5.2 and 5.3 present the MAEs on the road and
overall areas of less importance. The results indicate that the two-stage
sampling [28] achieves the highest performance with these criteria. However,
compared to [28], the proposed method decreases the MAE on the road and
entire areas by at most 0.265 m and 0.194 m, respectively. It should be noted
that the MAE degradation mainly occurs on the background region; it consists
of trees or buildings, which are less important for obstacle detection and
localization. Hence, the proposed sampling method provides an effective trade-

off between errors on the object and those on the remaining areas.
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TABLE 5.1
COMPARISONS OF MAES (M) AMONG VARIOUS SAMPLING ALGORITHMS ON OBJECT AREA AT
SAMPLING RATES OF 5%, 10%, 15%, AND 20%
5% 10% 15% 20%

Random
2.176 1.871 1.433 1.315

Color image-guided [26] 2306 1702 1.350 1136

Two-stage [28
wo-stage [28] 1.981 1.230 0.819 0.581

Thiswork a =1, B =4
1.506 0.892 0.667 0.365

Thiswork a =0.25, =4
1.350 0.900 0.561 0.274

TABLE 5.2
COMPARISONS OF MAES (M) AMONG VARIOUS SAMPLING ALGORITHMS ON ROAD AREA
5% 10% 15% 20%

Random
0.193 0.135 0.100 0.083

Color image-guided [26] 0211 0.137 0.103 0.084

Two-stage [28
W ge [28] 0.189 0.116 0.086 0.067

Thiswork a =1, B =4
0.211 0.144 0.110 0.083

This work a@ = 0.25, B =4
0.454 0.350 0.243 0.183

TABLE 5.3
COMPARISONS OF MAES (M) AMONG VARIOUS SAMPLING ALGORITHMS ON OVERALL AREA
5% 10% 15% 20%

Random
1.121 0.893 0.764 0.682

Color image-guided [26] 1.123 0.877 0.735 0.627

Two-stage [28
wo-stage [28] 1.041 0748 0573 0437

Thiswork a =1, B =4
1.137 0.891 0.759 0.655

This work @ =0.25, g =4
1.149 0.903 0.750 0.631
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The final reconstructed images are shown in Fig. 5.8. Fig. 5.8(a) shows the
reconstruction result from a raw depth map. Note that a raw depth is also
sparse. As demonstrated in Fig. 5.8(b), (c), and (d), the road areas are effectively
reconstructed for all the three methods, i.e., random sampling, modified two-
stage sampling [28], and this work, respectively. In addition, the proposed
algorithm generates the closest output compared to the upper-bound
performance, whereas the random sampling yields the lowest performance. Fig.
5.8(e), Fig. 5.8(f), Fig. 5.8(g), and Fig. 5.8(h) show the reconstruction results and
zoomed-out object regions from a raw depth image, random sampling, modified
two-stage sampling [28], and this work, respectively. Evidently, the proposed

sampling method yields the best performance on an object area.
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(b)

(d)
Fig. 5.8. Example of reconstruction results at road and object areas by various
sampling methods. (a) raw depth; (b) random sampling, (c) two-step sampling
[28]; (d) this work.
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Fig. 5.8 (cont’). Example of reconstruction results at road and object areas by
various sampling methods. (a) raw depth; (b) random sampling, (c) two-step
sampling [28]; (d) this work and (e), (), (g), and (h) the zoom-out results of
the object areas from of (a), (b), (c), and (d), respectively.
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Chapter 6: Implementation Issues

6.1. Implementation of gradient-based sampling

This subsection presents an efficient method for solving the gradient-based

sampling. For a specified sampling ratio ¢ and a gradient map, the derivation
of the optimal sampling probability {pj }ilis formulated as the following

optimization problem:

N
o1 Z a 61
min — ) — . .
pl,...,pNN - i ( )
subject to %Z?’ pj=¢and 0 < p; < 1.In[32], the solution is formulated

as follows:
p; = min(raj, 1). (6.2)

where 7 is the solution of g(t) =0 and g(t) can be calculated as follows:
N

g() = 2 min(za;, 1) — ¢N. (6.3)
J

Fig. 6.1 presents the Matlab code for determining a sampling pattern for a
specified gradient map. A detailed flowchart is illustrated in Fig. 6.2. In general,
the flow chart presents an iterative binary search. The number of pixels N,
sampling rate &, and number of iterations are the inputs. To compute the
output P, two variables A and B are first initialized as a lower bound and an
upper bound. In each iteration, a variable C is computed by averaging A and B;
P is computed from C using Eq. (6.2). Note that this flowchart does not include
multiplication, so that it can be efficiently implemented in hardware at a high

clock speed (i.e.,, 100 MHz) Fig. 6.3 and Fig. 6.4.
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Matlab Code

1:
2:

W

~

8:

9:

10:
11:
12:

% objfunc

function out = objfun(x,b,k)
out = sum(min(1,b*x))-k;
end

% Gradient sampling
function Sout = gradient_sampling(grad, xi)
[H, W] =size(grad);

N = W*H;
myfun =
@(v)objfun(v,grad(:),round(N*xi));
tau = fzero(myfun,[0,1e16]);
p = max(le-16, min(1,grad
Sout = (rand(H,W)<=p);
end

Fig. 6.1. Matlab code to determine a sampling pattern for a specified gradient

map.

Initialize 4 = 0, B = gradient
N, &, max_iters, iter =1

2

C=(4+B)/2
v

P =min(1,C)
v

2 =sum(P)

no
B=C
yes
A=C

v

A

iter++

4

no

iter>max_iters

Fig. 6.2. Flowchart of efficient solution for gradient-based sampling.
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6.2. System overview

Our LiDAR system prototype are presented in Fig. 6.5. The system consists of
following main components: laser source, galvanometer, optical lenses with
band-pass filter, detector circuit, LiDAR controller module with FPGA and a PC.
The simplified flow from a laser source to a detector is illustrated in Fig. 6.6.

Captured images at resolutions of 80x80, 160x160 and 320x320 are presented

in Fig. 6.7.

Fig. 6.5. LiDAR system prototype.

Electric pulse
generator

980

| Collimating | |

Target
Noise filter & | | . [ Collecting |,
r Voltage loading circuit | | Photodiode | |__Optics |
Oscilloscope
Fig. 6.6. Simplified flow for laser and detection modules.
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(c) Pointcloud of 320x320
Fig. 6.7. Captured images at resolutions of 80x80, 160x160 and 320x320.
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Chapter 7: Conclusion

This thesis investigates dual-mirror LiDAR imaging under three aspects: System,
Sampling model, and Sampling algorithm.

Firstly, by replacing the conventional scanning scanners by dual-mirror ones,
we demonstrates that a LiIDAR can obtain different scanning patterns for a given
timing budget. When sampling points form a grid graph, a sampling problem is
defined, and its optimal solution is obtained by exploiting a minimum spanning
tree concept. Hence, the relationship between an FOV of a captured image and
the frame rate is derived. Sufficient conditions are derived to check whether the
obtained image fully covers the FOV and includes well-aligned objects for given
frame rates. Experimental results show that the scanners can achieve frame
rates of 17.6, 9.0 and 4.6 fps for image sizes of 240x16, 240x32 and 240x64,
respectively.

Secondly, this study proposes a new mathematical formulation of the
constraints for a practical sampling method in a LiDAR system. Based on the
proposed mathematical formulation, it is shown that existing two-stage
sampling approaches are not suitable for a practical LiDAR system. Therefore,
this study presents a novel sampling method to efficiently perform non-uniform
random sampling. The proposed method performs uniform sampling at the
pilot stage and non-uniform sampling at the refinement stage. However, unlike
in the previous methods, the proposed technique efficiently derives non-
uniform sampling based on the gradient of the downsampled image.
Consequently, the proposed method follows implicit global properties

notwithstanding decision-making using a greedy approach. More critically, the
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proposed method for computing the gradient and refinement-sampling map is
substantially faster than other methods because it does not require
intermediate reconstruction. Consequently, it is computationally efficient with
O(n) complexity for n image pixels. In addition, the proposed method
reduces the requirement of additional memory (or bandwidth) to store (or
transmit) the sampling pattern. To this end, the proposed method outperforms
grid sampling by at most 5.92 dB. As a result, the proposed sampling achieves a
reconstructed quality that is similar to the optimal sampling in the previous
design, while substantially reducing the computation time and memory
requirements.

Thirdly, this study addresses the LiDAR sampling problem when an RGB image
and regions of interest are provided. A systematical framework of depth
acquisition in an on-road environment is presented. Unlike previous approach,
our proposed detects the objects in a road and segments a scene into
background, ROI, and object areas. From the segmentation result, the approach
distributes samples across the segmented areas. An ROI-based sampling
problem is proposed to optimize a depth sensing system in a LiDAR for an on-
road environment. The optimization problem has an optical solution, which
effectively addresses the two problems of the LiDAR discussed above.
Experimental results demonstrate that the proposed approach significantly
reduces the mean-absolute-error (MAE) in the object area by at most 52.8%.
Moreover, it achieves robust reconstruction quality at a very low sampling rate
of 1%. In addition, the proposed sampling is remarkably fast (i.e., within a few

milliseconds), rendering it applicable to a real-time acquisition system.
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