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In nature, all free energy utilized by biological systems comes from solar 

energy that is trapped by photosynthesis. Annually, 4.2×1017 kJ of solar energy is 

harvested by photosynthesis and used in the production of oxygen and glucose 

from water and carbon dioxide (CO2). This enables to fix atmospheric CO2 on the 

ground as a carbon building block of hydrocarbon and therefore, contributes to 

sustain the equilibrium of the global carbon cycle. However, since the industrial 

revolution era, imprudent use of fossil fuel and the resulted CO2 emission has 

destroyed the balance in global carbon cycle. To restore the natural energy 

circulation, new artificial energy storage pathway should be developed. In this 



ii

thesis, designating natural photosynthesis as a model system, artificial energy 

harvesting/conversion systems are newly developed. Each system is inspired from 

the sequential energy conversion steps in photosynthesis: (1) light harvesting, (2) 

electron transfer and (3) carbon fixation. 

Although the biological system has elaborate design and superior 

functionality for energy harvesting, it should be reformed to be adopted in artificial 

devices. First, due to the delicate nature of biomaterials such as proteins, stable 

synthetic materials should additionally support or replace the biomaterials. 

Moreover, the final energy or fuel produced from the photosynthetic reaction 

should be aimed to operate engines rather than metabolize organisms. To build up 

new strategy for these issues, we have firstly studied previous research on the 

development of artificial photosynthesis. The representative examples of artificial 

photosynthesis systems are presented in Chapter 2 which includes the development 

of artificial light harvesting complexes, artificial electron transfer system and 

electrochemical CO2 fixation. After learning lessons from the previous studies, we 

have designed three novel energy conversion pathways inspired from 

photosynthesis for the production of valuable fuels. The respective systems are 

specifically presented in Chapter 3, Chapter 4 and Chapter 5.

Photosynthesis initiates by light absorption at photosynthetic proteins, 

photosystem. The protein is comprised of light harvesting complex and reaction 

center where light harvesting complex absorbs solar light and transfer the photon 

energy to reaction center. Here, the effective construction of dye assembly in 

photosystem determines the overall light absorption property and photo-energy 

transfer efficiency. Inspired from the elaborate alignment of these dye assembly, we
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newly developed porphyrin-dye based light harvesting complex on the silica-

coated gold nanoparticle templates. To precisely align dyes in atomic level, peptoid 

scaffolds were used which carry out a role of branch on the nanoparticle surface. 

The intermolecular distance between porphyrins were controlled from 6 Å to 12 Å 

which is in the range of chlorophyll distance in natural light harvesting complex. 

We also utilized surface plasmon effect of gold nanoparticle core to amplify the

fluorescence of dye. As a result, the fluorescence could be enhanced up to ~20 

times at the optimal condition which facilitated to analyze optical property of light 

harvesting complex more precisely. In detail, distinctive fluorescence spectra were 

observed from different porphyrin intermolecular alignments. This indicates the 

developed light harvesting complex can be used as platform for the investigation of 

intermolecular energy transfer in dye assemblies. 

Followed by light absorption, collected light energy is consumed in 

electron excitation at the reaction centers. The excited electrons are then transferred 

via Z-scheme which is composed of two photosystem proteins and participates in 

the water oxidation at photosystem II and NADP reduction at photosystem I. By 

using step-wise excitation of electrons, the overall redox process can be derived by 

low-energy light in visible-IR range. In artificial Z-scheme, semiconductors are 

used instead of photosystems which can replace the role of photocatalyst. The 

semiconductor materials are selected based on the energy level for the desired 

redox reaction and efficient electron transfer. In this thesis, newly developed hybrid 

Z-scheme of photosystem I and semiconductor is demonstrated. The hybrid Z-

scheme was constructed in all-solid-system by using Au or Ag mediator to 

conjugate photosystem I and BiVO4. The system produced hydrogen from water 
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under visible light. The hydrogen evolution activity and stability of the 

photocatalytic reaction was both enhanced significantly compared to the case of 

single excitation system of photosystem I using chemical reductant. We believed 

that our hybrid Z-scheme exhibited the high performance due to the stable hybrid 

structure between the inorganic template and protein.

In photosynthesis, CO2 fixation for glucose synthesis occurs lastly by 

using electrochemical energy produced from light dependent reaction. In artificial 

electrochemical devices, CO2 can be directly reduced by applied potential. As a 

result, it can be directly converted into valuable fuels or inserted into hydrocarbon 

feedstocks by carboxylation to make value-added fuels. In this thesis, inspired from 

the carbon fixation in photosynthesis, new platform for the carboxylation of 

unsaturated hydrocarbon substrate using CO2 presented. Instead of using chemical 

reductant as natural system, electrochemical method was used for stable, fast and 

mass production of fuel. As a result, site-selective carboxylic acids were produced 

from the carboxylation of unsaturated hydrocarbons such as styrenes, dienes and α-

olefins by using CO2 and water as carbon and proton source. We envision that the 

electrochemical platform will aid to open new carbon fixation pathway by 

producing valuable hydrocarbon fuels from CO2 and water. 

In conclusion, hybrid energy pathway for sustainable carbon fuel cycle 

was developed in this thesis. The design and concept of system is based on natural 

photosynthesis, but the virtual construction was modified and upgraded by using 

hybrid materials from both biological and synthetic materials. Consequently, we 

could achieve synergetic effect from the hybrid system in the aspect of amplified 

activity and stability of the complex or device compared to the biological system. 
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This study will aid understanding the underlying material science in photosynthesis 

and further exploit the desired fuel production reactions. We also envision that this 

study will be extended to excellent artificial photosynthesis where the light reaction 

and dark reaction are combined together. 

Key words: Artificial photosynthesis, Photosynthesis, Water splitting, CO2

conversion, Carbon Cycle, Electrochemistry

Student Number: 2013-20587
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Chapter 1. Introduction

1.1 Global Carbon cycle

Carbon dioxide (CO2) is the representative greenhouse gas which has the 

largest contribution to the global climate change. Over the past century, the 

concentration of CO2 have dramatically increased and accelerated global warming. 

Indeed, according to the Global monitoring division from Earth system research 

laboratory (www.esrl.noaa.gov/gmd), concentration of CO2 have increased by 40% 

from 278 ppm in 1750 to 406.99 ppm in 2018 with the growth rate of 2 ppm/year 

in the last 10 years. The atmospheric CO2 amount recorded since 1960 is shown in 

Figure 1.1. As it is turned out that the dramatic rise of CO2 has been resulted from 

human activities since the industrial revolution, movements to reduce the CO2

emission has emerged in international society.

The first climate agreement was Kyoto Protocol set in 2008. The 

countries under Kyoto Protocol complied the target by reducing CO2 emissions or 

through use of the Kyoto Protocol’s “flexible mechanisms” by which industrialized 

countries can earn emission credits from emissions reduction projects in 

participating developing countries and economies in transition (EITs). In December 

2015, Paris agreement was adopted in the international community. Here, climate 

agreement was extended to both developed and developing countries. However, it 

is still far insufficient to stop the catastrophic change resulted from CO2 only by 

reducing the emission quantity.
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On earth, natural carbon cycle exists which can maintain the balance of 

the carbon in ecological system. Figure 1.2 shows simplified scheme of carbon 

cycle before (black arrow) and after (red arrow) the industrial era.1 The most of the 

carbon in the atmosphere is gaseous CO2, and it can be fixed on the ground by 

changing the form into hydrocarbons or minerals. Through various pathways in 

carbon cycle, the amount of carbon in the atmosphere, ocean and ground keep a 

balance. However since the industrialization, tremendous amount of carbon has 

been newly emitted to the atmosphere and induced severe imbalance of the carbon 

cycle. Particularly, the contribution of carbon emission from the fossil fuel is 

significantly massive, where 7.8 x 1015 g of carbon are annually generated.2 While 

the usage of carbon fuel has been developed dramatically, new pathway for carbon 

storage from atmosphere to the ground has been never developed. 

In the natural carbon cycle, photosynthesis is the only existing carbon 

storage pathway that can directly convert gaseous CO2 into hydrocarbons on the 

ground. This process captures the largest amount of gaseous carbon among the 

overall pathways on earth including ocean gas exchange. Photosynthesis is 

powerful strategy to fix the carbon not only due to its large contribution but also 

because it can produce valuable fuels. In this regard, it is an excellent model 

system for developing new carbon storage pathway. The lessons from the 

photosynthesis can provide insights to construct artificial energy conversion 

systems in the aspect of material design, structure engineering and mechanistic 

study.
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Figure 1.1. Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, 

Hawaii. The red curve is carbon dioxide data (red curve), measured as the mole 

fraction in dry air and the black curve represents the seasonally corrected data. 

Reprint from
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Figure 1.2. The scheme of carbon cycle. The black numbers and arrows indicate 

reservoir mass and exchange fluxes estimated for the time prior to the Industrial 

Era. The red numbers and arrows indicate annual fluxes averaged over the 2000-

2009 time period.
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1.2 Role of photosynthesis in sustainable energy storage

Photosynthesis is the only existing light-driven energy harvesting and 

conversion process in nature. The annual energy trapped by photosynthesis is 

approximately 4.2 x 1017 kJ where the energy is mostly used in fixation of CO2 to 

hydrocarbon fuels. The process carry out in living organisms as plants, 

cyanobacteria and some primitive bacteria. Plants and cyanobacteria undergo 

oxygenic photosynthesis, the most typical photosynthetic reaction. Here, glucose 

and oxygen are produced from CO2 and water under sunlight. Few bacteria species 

as green sulfur bacteria, purple bacteria, acidobacteria and heliobacteria perform 

anoxygenic photosynthesis where H2S or other organic compounds are utilized 

instead of water, thus do not evolve oxygen during photosynthesis.3 In this thesis, 

photosynthesis mainly indicates oxygenic photosynthesis.

The net photosynthesis can be expressed as follows. 

6CO2 + 6H2O + light energy → C6H12O6 + 6O2

This process occurs in two steps: the light dependent reaction and the 

dark reaction. The light dependent reaction occurs in the thylakoid membrane and 

produces a reducing power (Reduced nicotinamide adenine dinucleotide phosphate, 

NADPH) and phosphate bond energy (adenosine triphosphate, ATP) under sunlight. 

The generated biochemical energy is utilized in dark reaction to capture CO2

through Calvin cycle and produce glucose.

From the perspective of an energy cycle, photosynthesis can be divided 

by three sequential processes: light harvesting, electron transfer and carbon storage. 



6

Figure 1.3 shows the simplified scheme of the processes. Through these energy 

transformations, the overall photosynthesis can be described as the process of 

energy conversion from light, through electrical energy and chemical energy, to 

hydrocarbon fuel. In plants, the chloroplast is the principle organelle that conducts 

net photosynthesis. Its interior consists of piled thylakoid membranes where the 

photosynthetic proteins that participate in the light reaction are tightly embedded, 

and the exterior is called the stroma, where the dark reaction takes place. The 

systematically constructed organs connects each energy converting processes 

effectively.

The efficiency of each energy conversion steps are also reported.4 First, 

37% of sunlight is harvested as useful photon energy, 76% of photon energy is 

converted to biochemical energy through electrical energy, and 32% of biochemical 

energy is used to synthesize glucose from CO2. Taken together, the net efficiency of 

photosynthesis in plant is approximately 5.4%, however, each energy conversion 

process has appreciable efficiency. Each reaction steps of photosynthesis will be 

described in detail in the following parts.
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Figure 1.3. Scheme of three steps in photosynthesis: light harvesting, electron 

transfer and carbon fixation
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1.3 Light dependent reaction

Light dependent reaction takes place via series of photosynthetic 

proteins packed in the thylakoid membrane. Photosynthetic proteins are composed 

of reaction center (RC) and light harvesting complex (LHC). Here, LHCs absorb 

solar light and concentrate this energy to RCs. Then at the RC, the positive and 

negative charge is separated across the thylakoid membrane where the hole 

participates in water oxidation and excited electrons are consumed in NADP 

reduction. The composition and type of RC and LHC varies from species to species. 

As illustrated in Figure 1.4, plants, cyanobacteria and anoxygenic photosynthetic 

bacteria have different types of or compositions of photosynthetic proteins. Plants 

have two types of RCs, photosystem I (PSI) and photosystem II (PSII), and two 

types of LHCs, light harvesting complex I (LHCI) and light harvesting complex II 

(LHCII). Cyanobacteria have the same RC as plants, PSI and PSII, but a large LHC, 

which is called a phycobilisome. Anoxygenic photosynthetic bacteria have only 

one type of RC called bacterial RC and generally two types of LHCs called light 

harvesting complex I (LHI) and light harvesting complex II (LHII).

The light harvesting process is the first step in photosynthesis which 

directly leads to charge separation at the reaction center photosystems. The antenna 

of the photosynthetic system has evolved to absorb sufficient sunlight and 

effectively concentrate the collected energy in the reaction center. The ingeniously 

arranged natural pigments supported by a large protein complex teach us an 

essential lesson for a well-made light harvesting system. In nature, the overall light 

harvesting takes place in a light harvesting complex that is mainly composed of 

organic pigments. Because the main output of solar irradiance is in the visible and 
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near IR region, the absorbance spectrum of photosynthetic pigments mostly falls 

within this range. Nature has chosen chlorophyll as a prime building block of the 

light harvesting complex, and it exhibits optimized absorption properties for the 

solar spectrum, supported by other accessory pigments. The pigments collectively 

assemble into the light harvesting complex and ultimately play a role as an antenna, 

transferring energy to the reaction center to induce charge separation. 

Chlorophyll is the major photosynthetic pigment in the natural light 

harvesting complex. It has a porphyrin ring with a magnesium ion at its center, and 

its absorption spectrum is tuned depending on the substituents of the structure and 

the chemical bond saturation. Chlorophyll a is the main component in universal 

organisms, and it also acts as a primary donor pair for the reaction center of 

photosystems. The absorption range of chlorophyll encompasses most of the 

spectrum of visible light but shows an absence of absorption between 500 nm and 

600 nm, which makes the pigment green. This ‘green gap’ is filled by other 

accessory pigments such as carotenoids and phycobilins.5

When the pigments reach the excitation state by absorption, the excited 

energy is immediately transferred to other adjacent pigments and ultimately 

collected in the reaction center. To retain the optimal energy pathway, the pigment 

molecules are positioned to keep a proper arrangement with nearby molecules. The 

classical mechanism for excited energy transfer is based on Forster resonance 

energy transfer (FRET), which is derived from electric dipole-dipole interactions 

between molecules. Herein, an exciton from a donor molecule hops to an adjacent 

acceptor at a speed proportional to R6 (R, distance between two pigments). 

However, recent studies have repeatedly raised the objection that the extremely fast 
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energy transfer cannot rely solely on FRET. Additionally, Engel et al. observed 

crucial evidence of quantum coherence for the energy transfer in the antenna of 

green sulfur bacteria in 2007.6 Since then, quantum coherence has been suggested 

as a rational strategy for efficient energy transfer in the photosynthetic antenna. 

Coherently oscillating excitons can travel over molecules as a huge wave and 

provide very fast energy transfer in less than 1 ps.7 There is still a need to clarify 

the energy transfer mechanism in the photosynthetic antenna, but the distinct lesson 

is that three-dimensional arrangement of the pigments regulates the intermolecular 

force that controls the net energy transfer.

In biological system, protein is the template of the antenna that supports 

the pigments in the complex. Therefore, the pigments can be stably fixed into the 

desired arrangement for the optimal energy absorption and transfer. Integrated with 

protein, chlorophylls maintain an average neighbor distance of 1 nm and form a 

particular shape and size of the light harvesting complex that avoids quenching but 

facilitates energy transfer.8 The protein scaffold also dominates the net absorption 

wavelength. By organizing the pigments diversely with a specific protein scaffold, 

the absorption wavelength can be easily tuned, and this is one of the survival 

strategies of photosynthetic organisms to secure sufficient light in varying 

situations. The branched residues of the protein scaffold can directly interact with 

pigments by the formation of hydrogen bonds or the stabilization of the pigment.9

Thus, the interaction of the proteins and the pigments is the main factor in the 

construction of the light harvesting complex in nature.

The ultimate function of the light reaction of photosynthesis is to convert 

light energy into chemical energy that can be used in the metabolism of the 
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organism. Following the photo-induced charge separation in the reaction center of 

the photosystems, the excited electrons move through the photosystem and 

generate a chemical reductant. Although the electron transfer pathway is vary 

between oxygenic and anoxygenic photosynthesis as illustrated in Figure 1.5, the 

final product from both process is the biochemical reductant. The electron-to-

chemical energy conversion model has inspired the development of various 

electrochemical energy devices adapted to man’s demand.

In oxygenic photosynthesis, the step-wise excitation of electrons occurs 

in two consecutive RCs called photosystems, derived from light harvesting. These 

photosystems are membrane-intrinsic proteins that are composed of 10-20 subunits. 

The electrons excited from photosystem II (PSII) transfer to photosystem I (PSI) by 

electron mediators, including quinones and cytochromes, and are re-excited in PSI 

to be used in the reduction of NADP+ into NADPH. The two-step excitation 

enables the electrochemical energy conversion from only water and mild visible 

light (680 nm for PSII excitation, 700 nm for PSI excitation).10 The electron 

transport chain is called the Z-scheme, a typical electron pathway comprising step-

wise excitation using relatively low energy.

Z-schematic electron transport takes place in the thylakoid membrane, 

where all photosystems and electron carriers are contiguously inserted. Herein, the 

adjacent carriers possess a suitable redox potential to accept and pass over the 

electrons so that they can travel through the long distance of the thylakoid 

membrane.10 Because protein has a particular position that accepts and donates 

electrons, unlike isotropic inorganic materials, the alignment direction of the 

protein and carrier molecules also affects the electron transfer efficiency. 
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ATP is another essential source of biochemical energy produced via the 

Z-scheme along with NADPH. While NADP+ directly accepts an excited electron 

via the Z-scheme, ATP synthesis is derived from the proton gradient over the 

thylakoid membrane generated during the electron transport. Protons are generated 

during the water oxidation at the Mn cluster of PSII and during the redox electron 

transfer at plastoquinone.11, 12 Because the protons are only released to the interior 

side of membrane, the accumulated protons induce a pH gradient, acidic interior 

and basic stroma, which is the driving force of proton pumping at ATP synthase.13

Finally, ATP is synthesized using the proton pumping and utilized as biochemical 

energy with NADPH in the dark reaction to produce final hydrocarbon fuel.
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Figure 1.4. Type of reaction centers and light harvesting complex proteins in (a) 

plants, (b) cyanobacteria and (c) anoxygenic photosynthetic bacteria.
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Figure 1.5. The redox potential diagram of electron transfer cofactors in reaction 

centers of (a) oxygenic photosynthesis and (b) anoxygenic photosynthesis.
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1.4 Dark reaction

Concurrently with the light dependent reaction in the thylakoid 

membrane, the dark reaction proceeds in the stromal region. As it directly utilizes 

the biochemical energy produced from the light reaction (NADPH and ATP), it also 

occurs during the daytime, although it is called the ‘dark’ reaction. The net reaction 

consists of three cyclic sequential steps: carbon fixation, reduction and 

regeneration of ribulose. Overall, it is called the ‘Calvin cycle’, in which three 

carbon dioxide and five water molecules are converted into a 3-carbon sugar, a half 

molecule of glucose (3CO2 + 6NADPH + 5H2O + 9ATP → glyceraldehyde-3-

phosphate (G3P) + 2H+ + 6NADP+ + 9ADP + 8Pi). The simplified scheme of 

Calvin cycle is presented in Figure 1.6.

Carbon fixation is the first process in the Calvin cycle, in which the 

carboxylation of a 5-carbon compound, ribulose, into a 6-carbon compound 

proceeds by the insertion of CO2. Herein, an enzyme called Rubisco facilitates CO2

binding and induces carboxylation at its active site.14 The detailed structure of the 

active site and the form of intermediate are illustrated in Figure 1.7.15 Due to the 

effective binding of enediolate intermediate on the active site of Ribulose, the 

reactivity with CO2 can be enhanced. The intermediate then underdoes 

carboxylation reaction at the unsaturated carbon bond and form new carboxylate 

group which finally leads to 6-carbon product (Figure 1.8). This compound 

immediately splits into two 3-carbon compounds due to its structural instability and 

is chemically reduced by ATP and NADPH in the following steps. The water 

molecules are also utilized as proton source during the cyclic processes. Finally, the 

reduced form of the carbons is regenerated into ribulose, the 5-carbon starting 
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compound for carbon fixation, through several chemical synthetic processes, which 

completes the cycle.

The fixation of CO2 by Rubisco is indispensable for the production of 

almost every form of bioenergy, but at the same time, it is the limiting step in the 

Calvin cycle. Rubisco is one of the most abundant enzymes existing on earth and is 

the primary contact point for fixing inorganic carbon. Despite its significant 

function, the efficiency is low, limiting that of the net cycle. Because its active site 

also accepts oxygen as a substrate and catalyzes photorespiration, the net 

carboxylation is suppressed.14, 16 Thus, the activity is highly sensitive to the cellular 

gas concentration and is also regulated by other factors including temperature, 

water stress and ion concentration. 
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Figure 1.6. Calvin cycle.
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Figure 1.7. Carbon fixation at Rubisco in Calvin cycle.15
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Figure 1.8. Carboxylation process in Calvin cycle.
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1.5 Scope of the thesis

From the natural photosynthesis, valuable lessons can be achieved in 

the aspect of material engineering and energy transformation. First, biological 

system utilizes elaborately structured protein as a main material to stabilize overall 

system and facilitate desired catalytic reactions. Light harvesting complex is one of 

the good example. The chlorophyll pigment molecules are precisely organized 

inside the protein scaffold to form effective conformation for energy transfer. This 

conformation is designed in few angstrom (Å) scale which in the intermolecular 

distance and alignment determines the efficiency of the energy transfer. Oxygen 

evolving complex (OEC) is another example where the water oxidation take place. 

The OEC is composed of manganese atoms and located inside the PSII.12 Its 

outstanding oxygen evolving activity has attracted numerous researchers studying 

water splitting catalysts. Until now, many works have been progressed in the basis 

of mimicking the structure of OEC to develop synthetic oxygen evolution reaction 

catalysts.

Next, sequential energy transformation processes occur during 

photosynthesis: Light to electrical energy, electrical energy to chemical energy and 

finally to hydrocarbon fuel synthesis. Each step is an excellent model for 

sustainable energy cycle which can be applied to artificial devices. Dye sensitized 

solar cell is one of the representative light-to-electron energy conversion system 

inspired from the light dependent reaction of photosynthesis.17 Moreover, the Z-

schematic electron transfer via photosystems enabled to develop artificial Z-

scheme for water splitting, CO2 reduction and chemical pollutant clarification.18
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However, although these fascinating features in natural photosynthesis 

can give inspirations, adopting the lessons to artificial device is still challenging. 

Whereas natural system is based on organic materials and aimed to precise 

metabolism reactions, we should develop practical and mass scale energy device 

using organic/inorganic materials. To overcome the differentials, new strategy in 

designing the system is necessary.

In the thesis, three energy harvesting/conversion system are developed 

inspired from the three energy harvesting/conversion process in natural 

photosynthesis. Prior to the main researches, in the following Chapter 2, previous 

works on the development of artificial photosynthetic systems are introduced. The 

trends in the respective area are organized along with the important issues in the 

aspect of material science and energy conversions. Then three main topics are 

presented: Light harvesting (Chapter 3), Z-scheme electron transfer (Chapter 4) 

and CO2 conversion (Chapter 5). Chapter 3 and 4 are on the basis of light 

dependent reaction and Chapter 5 is on the basis of dark reaction. Each part 

describes the important lessons adopted from the natural photosynthesis. Moreover, 

novel strategies in designing systems are developed using organic/inorganic hybrid 

materials which could overcome critical challenges of previous systems.
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Chapter 2. Artificial photosynthesis mimetic system 

2.1 Introduction

Natural photosynthesis have recently received attention as a model system 

for solar energy absorption and conversion systems. Many pioneering works have 

been intensively making progress in mimicking or reengineering natural 

photosynthesis and designing artificial systems for a sustainable energy supply. 

Each sequential energy conversion process from light to biomass inspired new 

energy collection, transport and conversion system. Notwithstanding the numerous 

lessons of nature that provide inspiration for new developments, the features of 

natural photosynthesis need to be reengineered to meet man’s demands.

Photosynthesis consists of various reaction stages carried over through 

several energetic and electronic interactions. Thus, each system that handles a 

specific reaction should be designed to collaborate inside the network. The 

photosystem is surrounded by a light harvesting complex in the thylakoid 

membrane to effectively accept absorbed light. Moreover, its electron-emitting 

direction is directed toward the stromal side to facilitate the direct use of the 

chemical product in the dark reaction in the stroma. Nature has also evolved to 

optimize its system to operate the reactions in the given condition. Photosynthesis 

is sensitively regulated by various conditions on earth, and the structure of the 

system is continually reconstructed. In this way, nature acquires a sophisticated 

design skill using the tools of biomaterials, mostly photosynthetic proteins, and 

provides significant lessons for various energy systems.
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Various approaches to mimic or modify natural photosynthesis have been 

developed. Protein is a desirable functional material as a catalyst or electron/energy 

carrier but requires particular handling. In photosynthesis mimetic research, 

developing a practical biomaterial based on a protein or peptide has been attempted. 

1 Furthermore, the materials should be integrated into an artificial system that is 

mostly constructed in the hybrid form of organic/inorganics.2, 3 The key lessons 

from photosynthesis are classified into three energy conversion steps: (1) light 

harvesting, (2) electron transfer, and (3) carbon fixation. In this chapter, novel 

strategies to realize a photosynthesis-inspired energy system are presented together 

with an introduction to recently demonstrated examples.
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2.2 Artificial antenna for light harvesting

Inspired by the photosynthetic antenna system, an artificial light 

harvesting system has been developed using various approaches. Among the 

interesting features discovered in nature, two strategies developed through 

evolution have incentivized the design of novel light harvesting systems: (1) tuning 

the optical properties of the antenna by organizing the chromophore molecules in a 

particular arrangement and (2) engineering the structure of the light harvesting 

complex to enable effective energy transfer toward the reaction center. The 

following are some previous works applying lessons from the natural antenna.

2.2.1 Chromophore assembly

In the design of the light harvesting complex, selecting a proper 

chromophore or combination of chromophores primarily determines the light 

absorption property. Porphyrin dye is the typical chromophore used in engineered 

light harvesting complexes in which chlorophyll is also included. It has a pyrrole 

subunit connected to a heterocyclic structure, usually with a metal ion inserted at 

the center of the ring. In addition to porphyrin, various chromophores are utilized 

according to the given situation, as the natural antenna uses some carotenoids to fill 

the green gap of chlorophylls. Then, to fabricate the net assembly as a light 

harvesting complex, an alternative to substitute for the protein support in nature is 

required. First, introducing a manufactured organic and/or inorganic template is a 

promising strategy to tighten the chromophores into the desired structure. The self-

assembly of chromophores can also be induced by providing particular conditions 
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without needing to actively introduce the molecule into the scaffold. The two 

methods can be synergized by appropriate simultaneous utilization.

A metal template can be a stable framework for the chromophores in 

artificial light harvesting systems. Furumaki et al. reported the formation of 

bacteriochlorophyll aggregates on gold nanorods in 2014.4 The bacterial 

chromophores could be finely aggregated by forming hydrogen bonds to the 

hydroxylated gold surface. The observed spectroscopic properties were similar to 

those of the natural bacterial light harvesting complex, despite the difference in the 

mesoscopic structure. In another approach, Grill et al. utilized a gold surface as an 

activation template throughout the chromophore assembly process.5 Herein, 

porphyrin formed a covalently bound molecular nanostructure on the gold surface 

that provides an essential support for the porphyrins to be connected.

An organic template including peptides, organic molecules, and polymers 

can also efficiently stabilize chromophores. In the artificial antenna, covalent 

bonding on the organic scaffold can be used to fix the chromophores in the desired 

arrangement, whereas the natural chromophores interact with protein residues 

mainly by dipole interactions or hydrogen bonds. In 2013, Kang et al. introduced a 

helical peptoid for the fine regulation of the porphyrin arrangement.6 On a peptoid 

scaffold, several porphyrins can be conjugated in a specific arrangement during the 

peptoid synthesis step. The intermolecular distance, orientation and number of 

porphyrins were easily controlled by arranging the desired sequence. This approach 

presents a practical method to regulate an elaborate structure on the molecular scale.

A metal-organic framework (MOF) is an organic/inorganic hybrid 
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platform that enables the organization of chromophores into a desired 

arrangement.7 Chromophores can be hierarchically integrated into a crystalline 

MOF scaffold, thereby facilitating the study of both short- and long-range energy 

interactions through crystallographic analysis. Recent works on MOF-based light 

harvesting structures have demonstrated their feasibility for energy transfer 

studies.8 Hupp and coworkers developed porphyrin-based MOF layers that show 

significant energy transfer.9, 10 In a 2013 report, a MOF constructed from zinc-

metalated porphyrins showed long-range and anisotropic energy migration (Figure

2.1 (a)). The authors attributed the remarkable energy transfer to enhanced pi 

conjugation in the MOF. Particularly, assigning directionality to the energy transfer 

is a significant issue in both natural and artificial light harvesting to effectively 

concentrate the photo-energy in the reaction center.

Inducing a self-assembled complex without the aid of a template has also 

been used in manufacturing an artificial chromophore assembly. In the case of 

metal-inserted chromophore molecules, the metal-ligand interaction can form 

highly stabilized supramolecules with structural integrity. A construction strategy 

using coordination chemistry for multi-chromophore supramolecular assemblies 

has been developed as a convenient method to control the intermolecular 

arrangement.11

Self-assembly has also received attention in the structural design of an 

entire antenna complex with a larger scope. For instance, a cyclic architecture of a 

chromophore assembly can be manufactured. In an approach using self-assembly, 

several reports have shown that porphyrins can be automatically organized into 

cyclic architectures of controllable size.12 Because the cyclic structure of the light 
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harvesting antenna complex has been considered a key for efficient energy transfer 

in purple bacteria, the effective energy transfer mechanism on highly symmetric 

cyclic structures has been studied in several examples. One unique structure of a 

self-assembled supramolecule is the nanorod-shaped antenna of metal chlorides, 

first reported by Wurthner and coworkers in 2005.13 Recently, Shoji et al. reported 

nanotube-structured supramolecules of metal chlorophyll derivatives.14 In this work, 

magnesium, zinc, and cadmium chlorophyll derivatives synthesized from natural 

chlorophyll a were self-assembled from a hydrophobic solution into nanotubes 5 

nm in diameter (Figure 2.1 (b)). 
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Figure 2.1. Schematic representation for artificial antenna. (a) Porphyrin based 

MOFs. (b) Nanotube constructed by synthetic metal chlorophyll derivatives.

ba
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2.2.2 Antenna-reaction center hybridized light harvesting complex

The absorbed photon energy from the antenna should be collected at the 

reaction center for the following electrochemical energy conversion. Thus, the net 

light harvesting system is constructed as an integrated hybrid form of an antenna 

and a reaction center to facilitate cooperative interaction. The configuration of the 

energy donor and acceptor is the essential factor to drive excitons in the preferred 

direction. The design of light harvesting complex can be engineered by using 

various scaffolds and bridging methods to integrate the energy donor and acceptor.

At the molecular scale, linking molecules covalently stretched from the 

primary donor to the final acceptor can form an energy bridge. The size and shape 

of the antenna-reaction center supramolecule can vary from a dyad of a 

chromophore and an acceptor molecule to a hierarchical dendrimer-shaped 

complex. Recent examples of light harvesting systems for excitation energy 

transfer and conversion are organized in several reviews.15-17

In more advanced light harvesting systems analogous to massive 

photosynthetic proteins, copious chromophores are integrated peripherally oriented 

to the reaction center. In 2016, Ning et al. reported a porphyrin-based nanohybrid 

light harvesting complex using a gold-porphyrin core-shell hybrid aligned on 

carbon nanotubes.18 The entire structural design was inspired from the antenna-

reaction center cooperated complex embedded within the thylakoid membrane 

(Figure 2.2 (a)). Woller et al., moreover, inserted the accepter into a lipid bilayer 

and attached donor dyes embedded in a DNA scaffold.19 In the hybrid system, the 

DNA-donor complex and acceptor porphyrin play the roles of the antenna and 
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reaction center, respectively, conceptually inspired from the natural light harvesting 

system (Figure 2.2 (b)). Likewise, massive light harvesting complexes have been 

developed by introducing diverse hybrid materials from biomaterials to inorganics.
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Figure 2.2. Schematic representation for artificial light harvesting complex. (a) 

Porphyrin-based nanohybrid light harvesting complex. (b) DNA-porphyrin 

assembly for light harvesting.

ba
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2.3 Artificial electron transfer system for energy conversion

The ultimate function of the light reaction of photosynthesis is to convert 

light energy into chemical energy that can be used in the metabolism of the 

organism. Following the photo-induced charge separation in the reaction center of 

the photosystems, the excited electrons move through the photosystem and 

generate a chemical reductant. The electron-to-chemical energy conversion model 

has inspired the development of various electrochemical energy devices adapted to 

man’s demand.

2.3.1 Utilization of photosynthetic protein in hybrid system

Photosynthetic proteins have recently received attention as biomaterials 

for solar energy absorption and conversion systems. In photosystems, the step of 

charge separation induced from absorbed photon exhibits ~100%. Such a high 

efficiency results from the collaborative reaction of light harvesting and light-

induced charge separation in these protein. To construct the protein, light-absorbing 

pigments and cofactors are three-dimensionally aligned in a favorable orientation 

and distance for electron transfer.

Many pioneering works have been intensively making progress in 

hybridizing photosynthetic proteins with synthetic materials to utilize the protein in 

photoelectric system. The synergistic combination of proteins and synthetic 

materials can provide new opportunities in the development of new hybrid 

materials. Especially, semiconductor/photosynthetic protein hybrid systems have 
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been recently developed. In the semiconductor/photosynthetic protein hybrid 

system, the tunable energy level of the semiconductor and flexible band bending at 

the interface with the protein allow for switchable and controllable electron and/or 

energy flow. Compared with metal, semiconductors have the advantage of 

tunability of their band structures, the ability to absorb light and the wide 

availability of the conjugation method. Thus, a biomolecular/semiconductor 

composite can nurture the strength over traditional semiconductor materials. 

In this hybrid system, the interaction occurs through two different 

communicating methods: (1) the electron transfer between semiconductor 

electrodes and photosynthetic protein and (2) the energy transfer between 

semiconductor quantum dots and photosynthetic protein. Here, the main issues in 

designing the system are the hybrid methods of proteins to inorganic surfaces at the 

nanoscale and relative energy band position of materials, which deeply affect the 

total efficiency of system and the direction of electron and/or energy flow. The 

simplified linking methods between the proteins and synthetic substrates are 

depicted in Figure 2.3. Through the electron/energy transfer at the interface of a 

semiconductor /photosynthetic protein hybrid complex, we envision potential 

applications such as photoelectrochemical cells, optical biosensors and 

nanostructured photoelectronic devices (Figure 2.4).

The main challenge in operating the constructed hybrid system is 

determining how to maintain the long-term stability of the protein. Remarkable 

advances in the performance of photosynthetic protein hybrid systems have been 

reported but are limited to demonstrating transient efficiencies of less than a few 

minutes. Long-term stability tests have yet to be addressed and require in-depth 
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understanding of the optimal conditions of the protein, including the surfactant or 

lipid membrane surrounding the protein, the hydrophobic interaction between 

materials, and the aligned orientation and density of the protein assembly. One 

excellent approach to address the challenging requirements of stabilization is to 

mimic the natural membrane system. . Possible concrete future progress being 

made towards the design of the optimized condition for proteins involves 

developing an artificial lipid membrane, encapsulating the bio-hybrid system into a 

gel and inducing self-assembly of proteins. Another challenge for practical 

application is to translate laboratory-scale studies into industrial applicable 

research. Thus, techniques in mass production and simplicity in fabrication should 

also be addressed in addition to stable and high performance. 
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Figure 2.3. The linking methods between proteins and synthetic substrates. (a) 

electrostatic adsorption, (b) affinity tag binding, (c) covalent binding and (d) 

plugging.
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Figure 2.4. Scheme of photosynthetic protein/semiconductor hybrid system.
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2.3.2 Photo-electrode for electrochemical reaction

Inspired by the electrochemical energy conversion in the photosystem, an 

artificial photo-electrode for the redox chemical reaction has been developed. In 

the artificial inorganic electrode, a semiconductor typically excites electrons up to 

its band gap in analogy to the photo-excitation of the photosystem. The 

semiconductor itself, or with the aid of cocatalysts, sequentially catalyzes the 

desired redox reaction, as the excited electron reduces NADP+ at the end of the 

photosystem. The typical semiconductor photo-electrode utilized in the artificial 

electrochemical cell includes silicon, hematite, and titanium dioxide. According to 

their specific energy band positions and catalytic properties, electrodes can be 

applied for water splitting,20-22 carbon dioxide reduction,23 and other chemical 

reactions. 

As a very direct approach to adapt photosynthetic electrochemical energy 

conversion, the photosystem protein itself can be used as an electrode material. The 

photosystem’s modified photo-electrode is promising due to its higher energy 

conversion efficiency (the charge separation efficiency of PSI is ~100% 24) and 

lower recombination rate compared to that of a semiconductor. However, 

challenges remain, such as the instability of the photosystems on the electrode and 

the inefficient transport of photo-electrons from the photosystem to the electrode. 

Many efforts have been focused on the development of a proper platform to trap 

the photosystem and transfer charges, and a conducting polymer is often proposed 

as an electrode material that can fulfill these requirements. Nafion, for example, 

has been reported for its ability to encapsulate a photosystem while permitting 

electron transfer.25 Attributed to its unique selective conductivity for cations, photo-
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excited electrons can be carried by positively charged electron transfer mediators, 

such as methyl viologen. On the other hand, a polyaniline-based photo-electrode 

has also been suggested.26 Polyaniline can be synthesized on the electrode surface 

in the form of a three-dimensional network, which can trap photosystems and 

directly transfer excited electrons through a chain-hopping mechanism.

Inspired by the directional electron transfer of the photosystem owing to 

its anisotropic nature, controlling the orientation of the photosystem has been of 

growing significance in enhancing the efficiency of the photo-electrode. While the 

electron-hole pair generation in semiconductors is isotropic, the photosystem 

possesses a precise site of electron emission. Thus, researchers have tried to utilize 

this feature by aligning photosystems to orient the excited electrons directly toward 

to the electrode. Kato et al. introduced carboxylic acid functionalized ITO as a 

supporting electrode for PSII to control the orientation of the protein alignment 

(Figure 2.5).27 As the functional group was negatively charged, the positively 

charged stromal side of PSII was selectively bound to the electrode by electrostatic 

interaction. This led to direct electron transfer from the electron donor site on the 

stromal side to the ITO electrode. The linkage was further stabilized by amide bond 

formation via EDC coupling, which resulted in a greatly enhanced photocurrent 

and stability of the electrode. 
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Figure 2.5. Immobilization of PSII on carboxylated ITO electrode via electrostatic 

immobilization (left) and covalent immobilization (right).
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2.3.3 Z-schematic fuel production system

Along with the development of artificial photoelectrodes inspired by 

photosystems, mimics of the full Z-scheme have also been demonstrated. In the 

artificial Z-scheme, semiconducting materials can replace two photosystems, or 

photosynthetic proteins can be directly utilized like in the case of photoelectrodes. 

The photoactive materials are selected based on the proper energy level for the 

desired redox reactions and integrated into one system that can facilitate the 

electron transfer between the reaction centers. For the stable connection of 

materials and smooth transfer of electrons, proper electron mediators between the 

two reaction centers are introduced in the most of cases. By developing step-wise 

excitation in Z-scheme, the required light energy can be reduced compared to the 

single excitation system. Thus, in case of water splitting, the wavelength of light 

can be shifted from UV to visible region when the photocatalytic system is 

designed in Z-scheme. The final design of the Z-scheme is typically classified into 

one of two types depending on the electron mediator materials: redox ion pairs and 

electron-conducting metals.

When redox ion pairs are applied as electron mediators in the artificial Z-

scheme, the two reaction centers are physically divided and interact via the redox 

reaction of the ions. Electron loss resulting from the unintended reverse reaction 

and the narrow pH window are typical drawbacks of the system that limit the 

electron transfer efficiency.28 The Rogner group selected an Os-based redox 

hydrogel as an electron mediator and designed a serially connected bio-

photovoltaic cell by using PSI and PSII as photoelectrodes (Figure 2.6).29 The 

system also mimicked the ATP synthesis process of the Z-scheme along with 
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electron transfer, generating light to electrical energy conversion driven by the 

potential difference in the Z-schematic electron flow. Furthermore, the photovoltaic 

properties, such as power output and energy conversion efficiency, can also be 

enhanced by tuning the redox potential of each electron mediator for the two 

photoelectrodes.30

Electron-conducting metals are also utilized as electron mediators, 

providing a direct electron pathway between the two reaction centers. In contrast to 

redox ion pairs, two reaction centers can be physically combined by ohmic contact 

to form an all-solid-state system with low contact resistance. Thus, the distance of 

electron transfer can be reduced compared to the non-contacting systems. 

Moreover, the electron loss from the reverse reaction can be hampered, and a wide 

pH window can be achieved.28 All-solid-state has been typically applied in 

designing the Z-scheme of two semiconductors. The first example of all-solid-state 

Z-scheme was TiO2-Au-CdS system which was reported in 2006.31 The 

photocatalytic activity was enhanced than two-component systems because the Au 

mediator promoted the separation of generated charge carriers from two 

semiconductors. Ag nanoparticles are also used as efficient mediator due to its 

surface plasmon resonance (SPR) effect.32, 33 This enabled to utilize visible light 

effectively in Z-scheme systems. 
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Figure 2.6. Electron transfer pathway of artificial Z-schematic system using redox 

ion pairs as a mediator.
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2.4 Electrochemical carbon dioxide fixation

Carbon fuel is the ultimate practical energy source for both living 

organisms and machine engines. Nature utilizes CO2 from the atmosphere as an 

infinite carbon source and produces sugar such as glucose and sucrose via the 

photosynthetic dark reaction. The products from photosynthesis become the 

foundation of the hydrocarbon source on the ground which is essential building 

block for organisms. Furthermore, after sedimentation underneath the ground, the 

hydrocarbons are converted into valuable coal. On the other hand, the amount of 

the coal has been rapidly depleted after industrialization and is expected to lead to a 

drastic carbon energy deficiency soon. At this stage, a novel carbon storage 

pathway inspired by carbon fixation in photosynthesis can be a smart solution to 

secure a stable route for energy production.

Inspired by natural photosynthesis, many studies have been conducted on 

utilizing carbon dioxide in fuels.34-36 One of the main approaches is to replace 

rubisco with other efficient catalysts. By substituting the enzyme with artificially 

designed catalysts, the overall efficiency of the carbon fixation can be largely 

improved. 

2.4.1 Direct electrochemical reduction reaction of carbon dioxide

Recently, the electrochemical conversion of carbon dioxide has gained 

much attention as an artificially developed carbon fixation system.35, 37, 38 This is 

because it can be operated by renewable energy in moderate conditions such as at 
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room temperature and easily manipulated for scale-up in industry. In the 

electrochemical reduction of carbon dioxide, the gas dissolved in the electrolyte 

reacts with protons and electrons under an electrical potential and is converted into 

products such as carbon monoxide, formate, and methanol. This method operates in 

a similar manner to photosynthesis, as both of them require applied energy, protons 

and catalysts in moderate conditions. Therefore, this section will focus mainly on 

the electrochemical conversion of carbon dioxide into other carbon fuels.

One approach is to electrochemically reduce carbon dioxide using a 

homogeneous catalyst. Homogeneous catalysts refer to catalytically active 

molecules homogeneously dissolved in an electrolyte. A great deal of molecules 

have been explored as electrocatalysts for carbon fixation.39-44 Most of them 

involve transition metals such as Pd,40, 41 Ru42 and Re39, 43, 44 which are too 

expensive to be used frequently. Additionally, these systems exhibit low reactivity 

and a short lifetime due to their chemically unstable nature. 

There have been a number of studies performed to overcome these 

disadvantages of homogeneous catalysts. The Kubiak group studied the 

homogeneous catalysis of carbon dioxide using bipyridine carbonyl catalysts with 

metal ions.43, 45, 46 When they substituted for the rhenium in a Re(bpy-R)(CO)3X 

scaffold with manganese (Figure 2.7 (a)), which is more abundant, their new 

catalysts exhibited activity toward carbon dioxide reduction with the addition of 

Brönsted acids.46 Mn(bpy-tBu)(CO)3Br operated at a lower overpotential compared 

to Re catalysts with great Faradaic efficiency to produce carbon monoxide. The Mn 

catalysts did not show catalytic activity without weak Brönsted acids, which may 

be attributed to the protonation of a M-CO2 adduct and the eventual activation of 
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the reduction process.

Savéant and co-workers investigated catalysts based on 

metalloporphyrins.37, 47 They focused on iron(0) tetraphenylporphyrins with various 

functional groups as shown in Fig. 6a. Similar to the above-mentioned observation 

by the Kubiak group, the Savéant group also revealed that a local proton source 

enhances the catalytic activity of iron(0) porphyrins.47 Additionally, they 

discovered that the presence of phenolic OH groups accelerates the catalytic 

reaction because of the resulting high local concentration of protons.

Another approach is to design heterogeneous catalysts that are active for 

the reduction of carbon dioxide. Heterogeneous catalysts include not only 

electrodes with catalytic molecules deposited on them but also electrodes 

themselves. Generally, transition metals that are known to reduce carbon dioxide, 

such as Au,48, 49 Ag 50, 51 or Cu,52-54 have been used as electrodes. Despite their 

natural ability to catalyze the carbon dioxide reduction, a large number of studies 

have been devoted to improving their reactivity. 

Recently, Nam and co-workers demonstrated that Au nanoparticles with a 

concave rhombic dodecahedral (concave RD) shape can show superior 

electrocatalytic activity for the conversion of carbon dioxide to carbon monoxide 

(Figure 2.7 (b)).55 Nanoparticles were synthesized by using 4-aminothiophenol as a 

shape modifier and were drop-casted on carbon paper for the evaluation of their 

electrochemical performance. HRTEM images showed that the Au nanoparticles 

contained various high-index facets such as (331), (221), and (553). The prepared 

electrode exhibited improved reactivity and selectivity toward the electroreduction 
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of carbon dioxide compared to typical polycrystalline Au electrodes, a known 

catalyst for the production of carbon monoxide from carbon dioxide. Thus, it has 

been proposed that the high activity of the concave RD was achieved by the higher-

index facets on its surface.

The Kanan group introduced oxide-derived metal electrodes, which have 

a high catalytic ability for the reduction of carbon dioxide.56, 57 In 2012, they first 

reported an oxide-derived Au electrode that was fabricated by electrochemically 

reducing a previously oxidized Au electrode.57 The resulting electrode showed the 

formation of Au nanoparticles and a highly selective activity to reduce carbon 

dioxide into carbon monoxide with a very low overpotential. Although the group 

proposed that the oxide-derived Au electrode stabilizes CO2
·- better than 

polycrystalline Au, a clear mechanistic understanding is still not available (Figure 

2.7 (c)). 
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Figure 2.7. (a) Homogeneous catalysts for the reduction of carbon dioxide. (left) 

Mn(bpy-tBu)(CO)3Br and (right) Iron 5,10,15,20-tetrakis(2’,6’-dihydroxylphenyl)-

porphyrin. (b) Morphology of concave RD nanoparticles. SEM image (left) and the 

corresponding model (right). (c) Mechanistic model for the reduction of carbon 

dioxide to carbon monoxide on polycrystalline Au and oxide-derived Au.

a b

c
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2.4.2 Carboxylation reaction using carbon dioxide

Despite the recent development of various catalysts, the current 

technologies of the carbon dioxide electrochemical reduction have unresolved 

challenges. Among them, one of the most difference compared to the carbon 

fixation in Calvin cycle of photosynthesis is that the final product is limited to low-

carbon fuels as C1 and C2. In natural photosynthesis, carboxylation on C5 substrate 

forms C6 products. However, most of the artificial electrocatalysts for carbon 

dioxide conversion are not suitable for C-C coupling between C1 products. 

Therefore, carboxylation reaction of hydrocarbon feedstocks using carbon dioxide 

as a one-carbon building block is an attractive route for the synthesis of high-

carbon fuels.

In natural carbon cycle, CO2 fixation occurs by carboxylation of 

hydrocarbon substrate catalyzed by Rubisco.58, 59 Recently, the strategy of CO2

insertion to the hydrocarbon feedstocks has been adopted in the organic synthesis

such as production of carboxylic acids,60-68 (poly)carbonates69-78 and alcohols. In 

Figure 2.8, representative examples of artificial CO2 insertion reactions for organic 

synthesis are shown.79 Some of these protocols have been industrialized for the 

practical applications. 

However, the utilization of CO2 is still challenging and the reactions are 

limited to only few examples because the gas is thermodynamically and kinetically 

inert.79 Consequently, most of studies on CO2 insertion rely on the chemical 

carboxylation using highly reactive organometallic nucleophiles in severe 

condition which includes high temperature, high pressure and strong reductants. 
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Electrochemical approaches have also reported which can avoid the use of 

chemical reductants. These method can be considered as practical strategy due to 

its fast and massive scale reaction compared to the chemical reactions. However, it 

has been received less attention yet because the process has lack of site-selectivity 

controllability of the products.

Despite the challenging steps for CO2 activations, using CO2 as a one-

carbon building block for the synthesis of hydrocarbon fuel is very attractive 

strategy in the aspect of both sustainable energy cycle and practical chemical 

industry. Researchers envision that the virtual artificial photosynthesis can be 

achieved as shown in Figure 2.9.
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Figure 2.8. Artificial CO2 insertion reactions for organic synthesis.
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Figure 2.9. Possible CO2 insertion reactions.
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Chapter 3. Porphyrin decorated gold nanoparticle antenna 

complex

3.1 Introduction

In the photosynthetic antenna complexes, the net absorbance and the 

energy transfer efficiency of the antenna complex are determined by the 

combination of chlorophylls and several accessory pigments. In detail, the overall 

property of the integrated complex varies as a function of the mutual arrangement 

and distance in angstrom between the pigment molecules within the complex. 

Principles that govern the natural arrangement of chlorophylls in antenna 

complexes impact the net optical property of the complex and are subjects of great 

research interest.1 The ability to mimic the natural arrangement of chlorophylls in 

vitro can inspire designing of artificial antenna complexes for light-based systems 

such as photosensitizers, photoelectrodes, and light emitting devices.

Recently, various photosynthetic antenna mimetic complexes have been 

developed, with particular emphasis on the controlled arrangement of pigment 

molecules. Herein, the porphyrin chromophore has been used as it is the primary 

pigment of chlorophylls in the natural antenna. The ability to manipulate their 

spatial alignment, such as precisely controlling the distance between the molecules 

and their orientation, is a major bottleneck in the system.2, 3 In natural antenna 

complexes, chlorophylls are fixed to the designated position by the surrounding 

helical peptide scaffolds and are assembled into the protein structure. Similarly, 
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porphyrins can be immobilized in the desired alignment with the support of 

artificially manufactured scaffolds. So far, various scaffolding materials have been 

developed for artificial antenna complexes such as metal frameworks,4, 5 polymer 

materials,6, 7 and biomaterials like peptides8, 9 or DNA10, 11. 

Based on the use of peptides as natural scaffolds, peptoids were recently 

developed as peptidomimetic templates. Peptoids are bioinspired heteropolymers 

that are structurally different from peptides due to the presence of nitrogen-bonded 

side chains instead of the usual α-carbon bonded side chains.12 Previously, 

porphyrin decorated peptoid helices were demonstrated as a mimicry of the 

pigment-peptide scaffold in photosynthetic antenna.13 Use of peptoids as functional 

scaffold molecules enables convenient management of the net sequence and 

decoration of side chains with functional components. This is achieved by use of 

post-functionalized monomers as building blocks in the submonomer method, 

which arranges the net sequence by step-wise monomer addition.14 Thus, 

porphyrins are accurately conjugated to the desired position of peptoid helices and 

porphyrin-peptoid conjugates (PPCs) are formed. The distance and angle between 

the porphyrins are fixed on the peptoid template, which has a helical twist of 120° 

(3 monomers per turn) and a pitch length of 6 Å. Considering that the average 

distance between pigments in the natural antenna is ~10 Å,15 success in achieving 

precise alignment of chromophores in a peptoid scaffold in high resolution is 

remarkable. 

In bulk solutions, PPC exhibited both intramolecular and intermolecular 

porphyrin interactions via excitonic coupling and π-π stacking.13 Since these 

interactions have a cumulative effect on the overall optical properties, it is difficult 
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to decouple and analyze the effects of intra- and inter-molecular interactions 

individually. Moreover, intermolecular coupling is affected by solvent 

concentration and dielectric constants. These hinder the ability to exclusively 

analyze the effect of molecular alignments on optical properties of peptoids. 

Particularly, concentration-dependent alterations in absorption spectra are 

commonly observed in bulk PPCs. For example, there is intermolecular π-π 

stacking in self-assembled molecules, which induces formation of porphyrin J-

aggregates.16 Intramolecular coupling in these systems is determined by exciton-

coupled circular dichroism, which, however, provides limited and indirect evidence 

of excitonic couplings as the signals are affected by intermolecular interactions. 

Therefore, to comprehend the relationship between porphyrin configuration and the 

net optical property of the scaffolds without interference from intra- and inter-

molecular interactions, better templates should be generated. 

Here, we developed a novel porphyrin-peptoid hybridized metal 

nanoparticle as a platform for the study of porphyrin-based antenna. Inspired from 

the natural protein, we succeeded to manage molecular configuration of porphyrins 

in few angstrom range by conjugating them on the peptoid scaffold. Furthermore, 

to prevent the intermolecular aggregation, we fixed PPCs on the nanoparticle 

template. Therefore, our hybrid template enabled porphyrins to maintain designated 

molecular configuration and simultaneously immobilized into the antenna assembly. 

This resembles the role of protein scaffolds in natural antennae—prevention of 

concentration-dependent quenching of chlorophylls and maintenance of intrinsic 

efficiency at dense pigment concentrations.

For the practical investigation of optical property, we introduced 
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plasmonic metal as a core of the nanoparticle. Under the effect of plasmon, both 

excitation and emission of fluorescence spectra was significantly altered. Here 

surprisingly, distinctive change of fluorescence was observed among porphyrin 

molecules having different configurations. In detail, we showed two factors in 

designing the porphyrin arrangement indeed affect the fluorescence signal: (1) the 

conjugating orientation of porphyrin on the nanoparticle surface, and (2) the inter-

porphyrin distance on peptoid branch. Particularly, the porphyrin sample having its 

inter-porphyrin distance of 6 angstrom on a peptoid showed the most distorted 

fluorescence emission. The amplified inter-porphyrin interaction at very close 

distance can be understand in the same context of efficient energy transfer between 

closely located chlorophyll pairs in the photosynthetic antennas. 

Moreover, the plasmon-modified fluorescence showed significantly 

distinctive feature when the plasmon resonance wavelength of gold core was 

changed. This demonstrates that plasmon effect can be not only used as a sensing 

tool, but also utilized as a powerful technique for mechanistic study on 

intermolecular interaction. In this thesis, based on the overall tendency in 

fluorescence modifications, we proposed possible mechanism for the fluorescence 

results in the aspect of energy interaction between porphyrin-metal or/and 

porphyrin-porphyrin. Because our template has versatility at constructing various 

designated conditions in porphyrin alignment and plamon effect, we believe the 

strategy can be applied to further profound studies on material design in porphyrin-

based antenna.
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3.2 Experimental and analysis

3.2.1 Materials

L-Arginine (99%) and ethylene glycol (99.5%) were purchased from 

Junsei Chemical. Tetraethyl orthosilicate (TEOS, 99%), 

poly(diallyldimethylammonium chloride) solution (pDADMAC, 20wt% in water), 

tetrachloroauric (III) trihydrate (HAuCl4·3H2O, 99.9%), sodium silicate solution 

(27 wt%) and N,N-diisopropylethylamine (DIEA, 99.5%) were purchased from 

Sigma-Aldrich. Succinic anhydride (99%) and 3-aminopropyltriethoxysilane (99%) 

were purchased from Acros Organics. Isopropyl alcohol (99.9%), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC, 98%) and N-hydroxysuccinimide (NHS, 

98%) were purchased from Tokyo Chemical Industry. Cyclohexane (99.5%), 

ethanol (anhydrous, 99.5%), N,N-dimethylformamide (DMF, 99.5%), ammonia 

solution (28%) and hydrochloric acid (HCl, 35%) were purchased from Deajung 

Chemicals. High purity deionized water (18.2 MWcm-1) was used in the procedures.

3.2.2 PPC synthesis

Peptoid sequences were synthesized using a microwave-assisted solid-

phase submonomer synthesis method14 with a CEM MARS multimodal microwave 

reactor equipped with a fiber-optics temperature probe and a magnetic stirrer (CEM 

Corp., Matthews, NC, USA). Prepared reaction mixture in a cartridge was stirred 

and irradiated at different reaction conditions under atmospheric pressure while the 
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temperature probe positioning in the cartridge. An Fmoc-Rink amide MBHA resin 

(0.59 mmol/g, Novabiochem, San Diego, CA, USA) was used to obtain C-terminal 

amide peptoids. To begin with, resin (0.42 g, 0.25 mmol) was swelled in DMF for 

20 minutes and then Fmoc deprotection was conducted by treating 20% (v/v) 

piperidine in DMF (10 ml) two times for 5 and 20 minutes, respectively. After 

Fmoc was removed, each monomer for target peptoid was sequentially added by a 

series of bromoacetylation and displacement of bromide by a primary amine, which 

was repeated until the desired peptoid sequence was obtained. In our case, (S)-N-

(1-phenylethyl)glycine (Nspe) was mainly used as a primary amine to achieve a 

right-handed helical structure which is generated and well-maintained when steric 

and electronic interactions between the backbone amides and α-chiral aromatic side 

chain exist.[2] For conjugating porphyrin, mono-Mmt protected 1,4-diaminobutane 

(NLys(Mmt)) was added at the position of porphyrin incorporation. 

Bromoacetylation was performed with bromoacetic acid (4.18 ml of 1.2 M 

bromoacetic acid in DMF stock solution, 5 mmol) and N,N'-

diisopropylcarbodiimide (0.63 g, 0.78 ml, 5 mmol), stirred and irradiated at 35 °C 

(microwave, 400 W 15% power, ramp 0.5 minutes) for 2 minutes. For the 

displacement step, Nspe (5 ml of 2.0 M in NMP stock solution, 10 mmol) or 

NLys(Mmt) (5 ml of 1.0 M in NMP stock solution, 5 mmol) was added according 

to desired peptoid sequence, and stirred and irradiated at 80 °C (microwave, 400 W 

75% power, ramp 2 minutes) for 1.5 minutes. The resin was completely washed 

with DMF and DCM between each step

To resin-bound peptoid (0.16 mmol) was added a solution of Fmoc-Gly-

OH (0.19 g, 0.64 mmol) and HBTU (0.30 g, 0.8 mmol) dissolved in DMF (2 ml) 
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each, followed by adding DIEA (0.28 ml, 1.6 mmol) dropwise. The reaction 

mixture was stirred and kept for 2 hours at room temperature, and then the resin 

was thoroughly washed using DCM, DMF and MeOH. The coupling reaction was 

repeated for 2 hours and overnight to obtain higher yield. 

Mmt deprotection was firstly performed on resin-bound peptoid with 0.75% 

TFA solution (DCM : TFA : TIS = 94.25 : 0.75 : 5). The TFA solution (6 ml) was 

treated for 2 minutes at room temperature and the resin was washed with DCM 

after draining orange colored solution. These steps were repeated more than 5 times 

until the drained solution became colorless. Porphyrin conjugation was achieved by 

NHS ester coupling reaction with TPP-NHS ester which was prepared by reported 

method.[3] After washing the resin-bound peptoid with the solution of DCM (4 ml) 

and DIEA (0.15 ml) for 1 minute to remove residual TFA, TPP-NHS ester (150 mg, 

0.20 mmol) in DCM (7 ml) was added to the resin followed by the addition of 

DIEA (0.07 ml, 0.40 mmol). The reaction mixture was sealed and stirred for 

overnight under N2 atmosphere. The resin was thoroughly washed and then treated 

with 20% (v/v) piperidine in DMF (10 ml) twice for 5 and 20 minutes to remove N-

terminal Fmoc. After Fmoc deprotection, peptoids were cleaved from resin using 

95 % TFA solution (DCM : TFA = 5 : 95), stirred for 10 minutes. Obtained crude 

solution was filtered by solid-phase extraction (SPE) cartridge with 20μ 

hydrophobic polyethylene frits (Applied separations, Allentown, PA, USA) and 

was lyophilized. Peptoids with >98% purity were obtained after chromatography 

purification, and were analyzed by analytical high performance liquid 

chromatography (HPLC) and electrospray ionization mass spectrometer (ESI-MS). 

The HPLC and ESI-MS results are shown in Figure 3.1 and Table 3.1 respectively.
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Figure 3.1. HPLC chromatogram of PPCs monitored at 220 nm.
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Table 3.1. ESI-MS data of PPCs

Compounds Mass calculated Mass observeda

PPC0 2131.04
2132.12 (H+), 2154.10 

(Na+)

PPC1 2738.28
2739.28 (H+), 2761.26 

(Na+)

PPC2b 3221.53
1611.83 (2H+), 1074.89 

(3H+)

a Observed in ESI-MS. b Singly charged species were not observed due to the 

mass range of instrument (up to m/z 3000). Observed masses are not fragments, 

doubly (2H+) and triply (3H+) charged peaks.
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3.2.3 Synthesis of silica nanoparticles 

Silica nanoparticles were synthesized as previously reported with minor 

modifications.17 First, very uniform silica seeds of 24 nm were synthesized. Briefly, 

9.1 mg of L-arginine was put in 6.9 ml water and 0.45 ml cyclohexane was added. 

The mixture was heated to 60 °C under mild stirring, 0.55 ml TEOS was added and 

the reaction mixture was stirred continuously for 20 h maintaining the temperature 

at 60 °C. To regrow the silica seeds to 40 nm size, 2 ml of the prepared seed 

solution was mixed with 14.4 ml water, 2.2 ml cyclohexane, and 2 ml TEOS. The 

mixture was stirred mildly for 30 h at 60 °C. Finally, the silica nanoparticles were 

regrown to 130 nm by mixing 0.7 ml of as-prepared solution with 3.5 ml water, 2.8 

ml ammonia solution (28%), and 11.7 ml ethanol. To this solution, 1 ml TEOS was 

added with a syringe pump at a rate of 0.6 ml/h. Finally, the particles were washed 

thrice with ethanol and dried in a 50 °C oven overnight and stored at room 

temperature.

3.2.4 Synthesis of AuNPs

Octahedral AuNPs were synthesized as previously reported with minor 

modifications.[18] For a pot, 0.6 ml pDADMAC, 0.3 ml HCl 12.5 % (v/v), and 30 μl 

of 0.5 M HAuCl4·3H2O were mixed with 30 ml ethylene glycol in a 100 ml glass 

vial and stirred vigorously for 20 min. The vial was sealed and put in an oil bath 

and heated up to 192 °C or 194 °C for Au(590) or Au(650) synthesis, respectively, 

without stirring. The mixture was allowed to react for 35 min and cooled at room 

temperature for 2 h. To wash the synthesized gold, 60 ml of ethanol was added to 
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the solution, and the particles settled after centrifugation at 3900 rpm for 30 min. 

The particles were further washed thrice with ethanol and finally, with water. Based 

on the amount of HAuCl4·3H2O precursor in a pot (15 μmol) and final size of 

octahedral AuNPs, calculated amount of final AuNPs in a pot was approximately 

~1011 particles. 

3.2.5 Silica coating on AuNPs

Silica coating was performed in two sequential steps, by using sodium 

silicate18 and TEOS,19 respectively, as precursors. First, 66.5 μl of sodium silicate 

solution (27 % wt) was mixed with 25 ml water, and as-synthesized AuNPs were 

dispersed in the silicate solution. The mixture was heated to 90 °C in a water bath 

and allowed to react for 1.5 h under vigorous stirring. For 2 nm thick silica layer, 

the Au@SiO2 solution was washed in ethanol in this stage. After completion of the 

reaction, the solution was cooled to room temperature and washed 3 times with 

water and finally with ethanol. For further coating with TEOS, silicate-coated 

AuNPs were dispersed in a mixture containing 14 ml ethanol, 5 ml water, 6 ml 

isopropyl alcohol, and 0.24 ml ammonia solution (28%). Then, 1 μl TEOS diluted 

to 10 % (v/v) in ethanol was dissolved in the solution and allowed to react for 20 h 

in a shaker. Au@SiO2 particles showed 11 nm thick silica layer after the process. 

To further increase the silica thickness, 1 μl TEOS diluted to 10 % (v/v) in ethanol 

was additionally dissolved in the solution after 2 h from the first injection of TEOS 

and allowed to react for 20 h in a shaker. Au@SiO2s were washed thrice with 

ethanol and directly used in the dye-linking process.
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3.2.6 Carboxylation on silica surface

The surface of the silica particles was functionalized with carboxylic acid 

groups, as described previously.20 Briefly, carboxylic acid silane was synthesized 

by dissolving 450 mg of succinic anhydride into the mixture of 0.5 ml DMF, 1ml 

ethanol, and 1.05 ml APTES. The solution was incubated in a shaker and used after 

20 h. Usually, 1011 nanoparticles were used in one pot which corresponds to 0.57 

mg of dried silica nanoparticles or the amount of a pot in AuNPs synthesis. The 

particles were dissolved in a mixture of 8 ml ethanol and 2 ml water, to which 1.5 

ml carboxylic acid silane solution was added. The solution was allowed to react for 

2 h under mild stirring at room temperature, and further in a 50 °C water bath for 1 

h. The functionalized particles were washed twice with ethanol and finally with 

DMF.

3.2.7 EDC/NHS coupling

The carboxylated nanoparticles (~1011 particles) were dispersed in 30 μl 

DMF. EDC and NHS solutions were prepared by dissolving 2 mg EDC and 1.5 mg 

NHS in 90 μl and 7.5 μl DMF, respectively. The EDC solution was mixed with the 

particles and NHS solution was added after 5 min. The mixture was shaken 

vigorously for 2 h at room temperature and washed thrice with DMF and dispersed 

in 20 μl DMF. For TPP linking, 0.15 μl DIEA and 0.15 μl of 5 mM TPP stock in 

DMF was applied in the particle solution. For PPC linking, 0.75 μl DIEA and 0.75 
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μl of 5 mM PPC stock in DMF was put in the particle solution, and finally all the 

mixtures were vigorously shaken overnight. The final dye-linked particles were 

washed thrice in DMF before the characterizations.

3.2.8 Analytical methods

The TEM micrographs were observed using a JEM 2100F (JEOL, Tokyo, 

Japan) microscope, operating at 200 kV. Samples were prepared by dropping the 

particle solutions onto carbon supported film grids and dried in air. For the FESEM 

micrographs, a Zeiss SUPRA 55VP (Zeiss, Oberkochen, Germany) was used 

operating at 2 kV. The samples were prepared by dropping the particle solutions 

onto washed silicon wafers and dried in air. 

The UV/Visible absorption spectra of samples were measured using a 

NanoDropTM2000c and a spectroscopic cuvette. The samples were dissolved in 

their final solution, generally DMF, and placed in a 1 ml quartz cuvette for analysis. 

The fluorescence was measured using a PTI QuantaMasterTM spectrofluorometer, 

QM4 (Photon Technology International, Birmingham, NJ) at room temperature. 

The samples were dissolved in DMF and placed in a quartz cuvette. Typically, 

excitation spectra was taken with a 715 nm emission, a scan range of 370-670 nm 

and a step size of 1 nm. Also, emission spectra was taken with a 418 nm excitation, 

a scan range of 600-800 nm and a step size of 1 nm.
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3.3 Results and discussion

3.3.1 Silica nanoparticle linked PPCs

We used tetraphenylporphyrin (TPP), a metal-free heterocyclic porphyrin 

(inset in Figure 3.2), as the target porphyrin molecule. Absorption and 

fluorescence emissions were measured and the spectra were plotted (Figure 3.3). 

In the absorption spectra, a large Soret band at 418 nm and four Q-bands (Q1, Q2, 

Q3, and Q4) at 513 nm, 550 nm, 590 nm, and 645 nm were observed.21 In the 

fluorescence spectra, two emission peaks at 650 nm and 715 nm were detected and 

marked as E650 and E715, respectively. To clearly indicate which energy level 

transition corresponds to the absorptions and emissions, each absorption and 

emission process was illustrated in the energy level diagram of TPP (Figure 3.4). 

As depicted in figure 1c, the Soret and Q-bands respectively originate from the S0 

à S2 and S0 à S1 electronic transitions, and the fluorescence emissions arise 

from S1 à S0 energy relaxation.21

Three PPCs decorated with TPP were synthesized by the previously 

reported submonomer method.14 At the N-terminal of peptoids, glycine was linked 

to utilize the amino group in the conjugation processes. Figure 3.2 shows a 

schematic representation of each PPC and their chemical structures. To investigate 

the effect of neighboring porphyrins, one TPP-conjugated peptoid (PPC0) and two 

TPP-conjugated peptoids (PPC1, PPC2) were constructed. PPC1 and PPC2 were 

designed to have their inter-porphyrin distance as one pitch (6 Å) and two pitches 

(12 Å) of the peptoid helix, respectively. Thus, the intramolecular alignment of 
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TPPs in the two PPCs ensured a parallel face-to-face orientation and permitted 

distinction in their distance. The products were analyzed by high performance 

liquid chromatography and electrospray ionization mass spectrometer as discussed 

in experimental part. 

According to our previous observation, TPP and PPCs exhibit differences 

in absorption in bulk solution.13 Compared to TPP, the absorption of PPCs showed 

a broader Soret band and a bathochromic shift. Another important observation was 

that the occurrence of the bathochromic shift depended on the nature and 

concentration of the PPCs. For example, PPC1 showed a noticeable color change 

from bright purple to green when the concentration increased from 0.2 mM to 1.0 

mM. This indicated that the molecules assembled into J-aggregates in the bulk 

solvent. Therefore, prior to investigating the effect of SPR, we immobilized TPP 

and PPCs on solid templates to prevent intermolecular aggregation and retain the

original optical property of the porphyrin. Among solid templates, silica was 

chosen because it is optically inert and easy to synthesize.

Silica nanoparticles were synthesized by the modified Stöber method17

and functionalized with carboxylic acid groups. Then, TPP and PPCs were 

conjugated to the silica nanoparticles via EDC/NHS coupling that created amide 

bonds between the carboxyl group of silica and the amine groups of TPP and PPCs. 

The overall procedure is schematically represented in Figure 3.5. Finally, TPP- and 

PPC-linked silica nanoparticles were rinsed in fresh dimethylformamide to remove 

unlinked porphyrins. The size and shape of the silica nanoparticles were 

investigated by FESEM as shown in Figure 3.6. The final particles were uniformly 

spherical in shape with a diameter of 130 nm. In addition, the approximate number 
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of linked porphyrins on the silica nanoparticles was calculated by subtracting the 

number of unlinked porphyrins from that of the original reactants. By controlling 

the final activation time of EDC/NHS coupling, all TPP- and PPCs-linked silica 

nanoparticles were synthesized to have same amount of porphyrins on a silica 

nanoparticle. Approximately, 1400 porphyrin molecules were linked on a particle, 

which equals 1400 molecules of TPP or PPC0, and 700 molecules of PPC1 or 

PPC2. Considering the surface area of 130 nm silica sphere, the porphyrin density 

corresponds to an intermolecular distance of ~15 nm for TPP or PPC0, and ~21 nm 

for PPC1 or PPC2. In case of PPCs, since their full length is approximately 2 nm, 

the calculated intermolecular distance is presumed to be long enough to prevent 

aggregation.

The absorption spectra of the synthesized samples were compared with 

that of free TPP as shown in Figure 3.7 (a). As expected, the peaks in the 

absorption spectra from TPP-silica and PPC-silica nanoparticles had identical 

position and intensities as that of free TPP. The result shows that the silica template 

successfully prevented intermolecular aggregation which is observed in free 

porphyrins. We found that slight increments in the spectral baseline resulted from 

reflection of the incident radiation from silica. The fluorescence emission of TPP-

and PPC-silica nanoparticles also matched with that of free TPP (Figure 3.7 (b)). 

Therefore, we concluded that TPP and PPCs on silica nanoparticle can be a good 

platform to study the effect of intramolecular alignment of porphyrin.
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Figure 3.2. Schematic representations and chemical structures of the porphyrin 

samples—TPPs and PPCs—used in the study. 
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Figure 3.3. Absorption (black) and fluorescence emission (red) spectra of TPP. 

One Soret and four Q-bands in the absorption spectra, and two emission peaks in 

the fluorescence spectra, respectively, are marked. 
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Figure 3.4. Schematic energy diagram of TPP. Red arrows depict the electronic 

transitions during absorption and green arrows depict the energy relaxation during 

fluorescence.
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Figure 3.5. Schematic showing the procedure for synthesizing TPP- and PPC-

linked silica nanoparticles. 



86

Figure 3.6. SEM image of silica nanoparticles. Scale bar = 200 nm.
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Figure 3.7 (a) Absorption spectra and (b) Fluorescence emission spectra of TPP 

and PPC1-linked silica nanoparticles (λex = 418 nm, Soret band).

a b
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3.3.2 Silica coated gold nanoparticle linked PPCs

Based on the successful development of porphyrin-linked silica, we next 

introduced AuNPs into the nanoparticle template. After the synthesis of Au@SiO2, 

next process of linking porphyrins to silica surface followed analogous procedure 

to that of porphyrin-linked silica nanoparticles. The detailed experimental protocol 

is summarized schematically in Figure 3.8. Core AuNPs were synthesized by a 

previously reported method with modifications22 and observed under FESEM 

(Figure 3.9 (a)) and TEM (Figure 3.9 (b)). The core particles were octahedral-

shaped with a height of 100 to 110 nm. Absorption of the sample was also 

measured at regular intervals during synthesis to monitor the procedure. Figure

3.10 shows measured absorption spectra of AuNPs which have their SPR peak at 

650 nm. The as-synthesized AuNPs showed a large absorption peak that 

corresponded to its SPR wavelength. After application of the silica coating, the 

absorption peak broadened and the baseline increased, particularly at longer 

wavelengths. Finally, in TPP-linked Au@SiO2, a new absorption peak at 418 nm 

emerged in the spectrum, which corresponds to the Soret absorption of TPP.

We firstly analyzed the effect of metal-dye distance on plasmon enhanced 

fluorescence by controlling silica thickness. Since direct linking of the dye to the 

plasmon metal can induce energy quenching, the dye and metal should be 

maintained at moderate distances.23, 24 Previous studies have demonstrated that the 

optimal metal-dye distance required to obtain maximum plasmon-induced emission 

ranges between 8 and 20 nm.25-27 Here, we coated silica layer on AuNPs (SPR 

position = 650 nm) with three different thicknesses of 2 nm, 11 nm and 20 nm to 

screen optimal dye-metal distance in our template. Figure 3.11 (a) is TEM image 
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of each Au@SiO2 which clearly shows homogeneous silica layer coated on the 

core AuNPs. We finally linked TPP to the silica surface and measured fluorescence 

excitation at an emission wavelength of 715 nm (Figure 3.11 (b)). Compared to the 

spectrum of free TPP excitation, the excitation peaks corresponding to the 

wavelengths of one Soret and four Q-bands were clearly observed for TPP-linked 

Au@SiO2, and the peak intensities increased due to plasmon effect from the 

AuNPs. The relative enhancement to free TPP gradually increased as the 

wavelength of Q-band gets closer to Q4. This indicates that plasmon-enhanced 

fluorescence in our template is maximized near the SPR wavelength of AuNPs 

(650 nm) as previous studies on dye-metal system also showed same trend in 

fluorescence enhancements.25, 28 We also observed differences in increment 

tendency between three Au@SiO2 templates. Au@SiO2 with a 11 nm thick layer of 

silica exhibited the most enhanced fluorescence at all Q-band positions. In case of 

the thicker silica layer of 20 nm, the increment significantly reduced. Thus, we 

fixed the silica thickness to 11 nm for the following studies on plasmon enhanced 

fluorescence. 

To investigate the effect of SPR wavelength, we synthesized two AuNPs 

with SPR at 590 nm and 650 nm, and designated as Au(590) and Au(650). Finally, 

each core AuNPs were coated with a 11 nm thick silica layer and designated as 

Au(590)@SiO2 and Au(650)@SiO2. The TEM images of Au(590)@SiO2 (Figure 

3.12 (a)) and Au(650)@SiO2 (Figure 3.12 (b)) show size difference between two 

core AuNPs, which exhibit their average height of ~95 nm and ~110 nm, 

respectively. The SPR of Au(590)@SiO2 corresponded to Q3 absorption, which is 

expected to modify the excitation pathway at Q3. On the other hand, SPR of 
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Au(650)@SiO2 encompassed both Q4 absorption and E650 emissions, which 

placed the excitation and emission under the influence of SPR simultaneously. The 

absorption spectra of TPP-linked Au(590)@SiO2 and Au(650)@SiO2 are shown in 

Figure 3.12 (c), where the absorption and emission wavelengths of TPP are 

highlighted on the spectra. Based on the above observations, the trends in SPR-

induced fluorescence modifications as a function of SPR positions were 

subsequently analyzed.

The fluorescence excitations of TPP- and PPC-Au(590)@SiO2, and TPP-

and PPC-Au(650)@SiO2 were investigated (Figure 3.13). The spectra were 

scanned from 370 nm to 670 nm at an emission wavelength of 715 nm and the 

excitation baseline of bare Au@SiO2s were subtracted from the raw spectra. For 

direct comparison, numerical enhancement factors (EF) for each TPP- and PPC-

Au@SiO2 were calculated and plotted against that of free TPP (Figure 3.14). In 

every sample, Q-band excitations were significantly enhanced and the EF values 

gradually increased with increase in the excitation wavelength. We also observed 

differences in increment tendency between porphyrins on Au(590)@SiO2 and 

Au(650)@SiO2. In detail, all samples exhibited comparable EFs around 1.9 at Q1. 

At Q2, TPP-Au(590)@SiO2 showed the largest EF of 9.0, and the rest showed 

comparable value around 5.0. Notable results were observed at Q3 and Q4 which 

respectively corresponds to the SPR wavelength of Au(590)@SiO2 and 

Au(650)@SiO2. In case of Q3, porphyrins on Au(590)@SiO2 exhibited 

significantly large EFs compared to that on Au(650)@SiO2 (EF of TPP- and PPC-

Au(590)@SiO2 : 18 and 13; EF of TPP- and PPC-Au(650)@SiO2 : 13 and 11). In 

contrast, Au(650)@SiO2 exhibited larger EF at Q4 (EF of TPP- and PPC-
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Au(590)@SiO2 : 19 and 17; EF of TPP- and PPC-Au(650)@SiO2 : 24 and 21).  

This result clearly indicated that enhanced fluorescence excitations were induced 

by the plasmon effect. Indeed, according to previous studies, the plasmon-enahnced 

excitation is maximized when absorption wavelengths of fluorophores coincide 

with the SPR position.25, 28 Such enhancements are generally explained by an 

increase in the excitation rate via plasmon-enhanced local electric field.29-32

Next, we analyzed the effect of porphyrin configuration on fluorescence 

excitation by using TPPs and PPCs. When SPRs of the core AuNPs were identical, 

larger fluorescence excitation enhancement was observed in TPP-Au@SiO2 (red 

line in Figure 3.13) than in PPC-Au@SiO2. Meanwhile, differences in excitation 

among PPCs were not detected. The EF values of TPP-Au@SiO2 were greater by 

21% than the EF values of PPC-Au@SiO2 at each Q-band (Figure 3.14). 

Considering that absorption was identical for all samples on the nanoparticle 

template, the modest increase in excitation observed with TPP-Au@SiO2 could not 

be easily explained. Although the exact reason is not clear at this stage, we believe 

that differences in the orientation of porphyrin conjugation on the nanoparticle 

surface may cause the variation in efficiency of excitation enhancement. While 

porphyrins in TPP-Au@SiO2 stand directly and vertically on the nanoparticle 

surface, porphyrins in PPC-Au@SiO2, which are decorated on the peptoid branches, 

can be more unconstrained in their orientation ranging from tilted to horizontal. 

Previous studies have demonstrated that relative dipole orientations between 

fluorophore molecules and plasmonic metal can affect both excitation and emission 

modifications.33, 34 Thus, differences in the relative orientation of porphyrin and 

nanoparticle surface between TPP- and PPC-Au@SiO2 can induce distinct dipole 
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interactions and result in differential fluorescence enhancement. Measuring the 

fluorescence spectra after regulating the precise angle of porphyrin-Au@SiO2 can 

additionally support the proposed explanation. We are currently designing 

experiments for addressing this aspect by regulating the sequence of the peptoid 

scaffold. 

Next, we analyzed the fluorescence emission property of all samples. The 

aim of the analysis was to understand how the optical signals of conjugated 

porphyrins are affected by their configuration and plasmon effect. The spectra were 

scanned from 600 nm to 800 nm at the excitation of 418 nm, which exhibits the 

strongest absorption. Figure 3.15 depict the spectra from TPP- and PPC-

Au(590)@SiO2, and TPP- and PPC-Au(650)@SiO2, respectively. From the original 

spectra, the emission of each bare Au@SiO2 were subtracted and the intensities 

were normalized. As shown in absorption spectra of TPP-Au@SiO2 (Figure 3.10), 

the pure absorbance from attached porphyrin is difficult to be quantified due to the 

broad absorbance from AuNPs. Therefore, we normalized the emission spectra by 

the Soret excitation intensity as an alternative to absorbance-based normalization. 

The normalized shapes of emission spectra from each samples showed excellent 

reproducibility regardless of the orginal emission intensity. To quantitatively 

compare the degree of spectral changes between each sample, we defined the E650 

to E715 intensity ratio as RE650. The RE650 from all samples are summarized in 

Table 3.2, where the relative values based on the free TPP (RE650 = 3.2) are also 

indicated. In the most cases, the emission spectra were modified to reduce RE650. 

In case of Au(590)@SiO2, the RE650s of all linked PPCs were decreased by 5% 

compared to that of free TPP. More significant modification was observed in case 
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of Au(650)@SiO2, where linked TPP showed a 19% decrease in RE650, and linked 

PPC0, PPC1 and PPC2 showed 27%, 33%, and 28% decrease in RE650 

respectively. The change of fluorescence emission was undetected in the previous 

cases of bulk porphyrins and silica-linked porphyrins. Thus, the spectral change 

can be explained by plasmon-enhanced fluorescence emission. 

In plasmon/dye-conjugated systems, both radiative and non-radiative 

decay can be modified in the plasmon-coupled photonic state, and are maximized 

when the emission wavelength coincides with SPR.29-32 Increase in radiative decay 

contributes to enhancement of fluorescence, while increase in non-radiative decay 

results in quenching of fluorescence. In this result, E650 was relatively quenched 

compared to that of E715, and the phenomena was remarkable especially when the 

core metal has its SPR at 650 nm (Au(650)@SiO2). Thus, plasmon-enhanced 

fluorescence quenching at 650 nm can be an appropriate mechanism to describe the 

reduction of RE650 in fluorescence spectra. Moreover, in addtion to the 

dependency of SPR wavelength, the modification of emission spactra is dependent 

on the porphyrin configurations. The spectra showed clear difference bewteen TPP 

and PPCs, and also among PPCs. In detail, among the PPCs on Au(650)@SiO2, 

PPC1 (inter-porphyrin distance of 6 Å) showed a 1.2 fold reduction in RE650 than 

PPC0 (one TPP on a peptoid); RE650 of PPC2 (inter-porphyrin distance of 12 Å) 

was comparable to that of PPC0. This highlights that strong inter-porphyrin 

interactions within PPC1 are generated by the SPR effect. In the previous studies 

on multiple fluorophores/plasmon metal conjugated systems, plasmon-enhanced 

excitonic energy transfer between fluorophores was observed when the SPR 

wavelength peak is positioned between the donor emission and the acceptor 
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absorption wavelengths.35, 36 As a result, the fluorescence of the net systems were 

altered in the direction of reduced emission in donor and enhanced emission at 

acceptor. Moreover, since the rate of the energy transfer is determined by 

intermolecular distance,37, 38 the optimal alignment of the multiple fluorophores is 

the key contributing factor to effective energy interaction. Thus, we suppose that 

our platform amplified inter-porphyrin interactions under the effect of SPR and 

even enable to directly observe as spectral variations, especially when inter-

porphyrin alignment and SPR wavelength are optimized. In our case, the SPR 

wavelength of Au(650)@SiO2 encompasses both Q4 absorption and E650, thus, 

may provide good condition to facilitate plasmon-enhanced energy interactions. In 

summary, the spectral modifications of fluorescence on our platform can be 

attributed from the selective plasmon-enhanced fluorescence quenching at E650 

and inter-porphyrin energy interaction. Consequently, distinct fluorescence signals 

depending on the SPR wavelength and the porphyrin conjugation were detected. To 

further understand the energy dynamics of the system, investigations of its kinetic 

properties using time-resolved spectroscopy are underway. In detail, study on the 

fluorescence lifetime are in progress to verify the origin of plasmon-enhanced 

fluorescence and presence of plasmon-induced intermolecular energy transfer.

Our result can be also viewed in the context of studies on energy transfer 

between chlorophyll molecules in photosynthetic antenna. Pioneering work in 

photosynthetic antenna have pointed out that the distance in angstroms between 

chlorophyll molecules determines the overall efficiency of energy transfer.1 For 

example, recent structural analysis of plant photosystem I (PSI) - light harvesting 

complex I (LHCI) supercomplex has revealed that adjacent chlorophyll a pairs 
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located at the gap between PSI and LHCI enable the supercomplex to exhibit ~100% 

EET efficiency.39, 40 Here, we demonstrated that emission spectra can be changed 

by solely manipulating inter-porphyrin distances at angstrom ranges. This 

underlines the importance of correct spatial configuration of porphyrins and their 

involvement in energy transfer. Therefore, we envision that our platform can serve 

as a systematic model for understanding material design in antenna complexes.
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Figure 3.8. Schematic showing the procedure for synthesizing TPP- and PPC-

linked Au@SiO2.
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Figure 3.9. (a) FESEM and (b) TEM image of sytnehsized octahedral AuNPs.

100nm200nm

a b
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Figure 3.10. Absorption spectra of AuNPs, Au@SiO2, and TPP-Au@SiO2.
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Figure 3.11. (a) TEM images of Au@SiO2 with silica coating thickness of2 nm 

(left), 11 nm (middle), and 20 nm (right). Scale bar is 50 nm. (b) Fluorescence 

excitation spectra (λem = 715 nm) of TPP-Au@SiO2 with different silica coating 

thicknesses.

a

b
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Figure 3.12. TEM image of (a) Au(590)@SiO2 and (b) Au(590)@SiO2 (scale bar = 

100 nm). (c) Absorption spectra of TPP-Au(590)@SiO2 and TPP-Au(650)@SiO2. 

The absorption and fluorescence emission wavelengths of free TPP are marked in 

the background.

a b

c
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Figure 3.13. Fluorescence excitation spectra (λem = 715 nm) of (a) TPP- and 

PPCs-Au(590)@SiO2, and (b) TPP- and PPCs-Au(650)@SiO2. 

a

b



102

Figure 3.14. Graph showing variation in numerical enhancement factor of 

fluorescence excitation (versus free TPP) as a function of absorption wavelength.
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Figure 3.15. Fluorescence emission spectra (λex = 418 nm, Soret band) of (a) TPP-

and PPC-Au(590)@SiO2 and (b) TPP- and PPC-Au(650)@SiO2.
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Table 3.2. RE650 (E650:E715 intensity ratio) value of each porphyrin-linked 

Au@SiO2. Releative RE650 based on free TPP (RE650 = 3.2) is expressed in 

parenthesis.

Porphyrin

Core AuNPs

Au(590) Au(650)

TPP 3.27 (1.02) 2.59 (0.81)

PPC0 3.05 (0.94) 2.35 (0.73)

PPC1 3.04 (0.95) 2.15 (0.67)

PPC2 3.05 (0.94) 2.31 (0.72)
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3.4 Conclusion

In conclusion, we fabricated a platform that consists of porphyrin-peptoids 

hybridized to Au@SiO2 nanoparticles to analyze the effects of molecular 

configuration on optical properties of porphyrin-based antenna complexes. The 

porphyrin molecules were fixed on the nanoparticle template by peptoid branches, 

which enabled study of the effects of molecular arrangements on optical properties 

of the platform without any influence of the aggregation among porphyrins. The 

role of nanoparticles as a structural support for porphyrins was first verified by 

using silica nanoparticles. Then, we incorporated AuNPs in the nanoparticles to 

apply SPR effect on porphyrins and measure the modified signals. Indeed, both 

fluorescence excitations and emissions were significantly changed according to the 

SPR peak of core AuNPs. In the excitation spectra, the intensity was enhanced up 

to 24 fold when the SPR peak overlapped with the absorption peak. We also found 

that the emission spectra were modified in the direction of decreasing RE650, 

especially on Au(650)@SiO2. The modification was expected to arise from 

plasmon-enhanced fluorescence quenching at E650. Moreover, we found that inter-

porphyrin distance within PPCs can affect the degree of emission alterations. In 

case of PPC1, which has an inter-porphyrin distance of 6 Å, the RE650 was 

decreased by 33%, which was the most reduced value obtained. Considering that 

the intermolecular distance of photosynthetic chlorophylls is 10 Å, the distinctive 

spectral feature of PPC1 underscores the impact of pigment configuration on 

optical properties of the system. By using this platform, additional conditions can 

be screened by modulating the sequence of peptoid-porphyrin scaffolds or/and 

changing the AuNPs to incorporate specific SPR wavelengths. Similar to the 
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proteins in the antenna complex that possess the dual function of a supporting 

template and functional material, the peptoid decorated Au@SiO2 also functions as 

a support for the porphyrin molecules and a generator of SPR. In conclusion, the 

newly developed platform can be a practical model for understanding the 

mechanisms of material design in natural antenna systems.
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Chapter 4. Hybrid Z-scheme of photosystem I and BiVO4 for 

hydrogen evolution

4.1 Introduction

In this chapter, Z-scheme of light reaction was chosen as a model system 

for the development of hybrid Z-scheme for hydrogen production. In the developed 

system, hydrogen was successfully produced from water under visible light without 

any chemical nor electrical reducing power, as nature effectively produces NADPH 

from water under sunlight.

In natural photosynthesis, the two-step photo-induced charge separation in 

photosystem II (PSII) and photosystem I (PSI) and an electron chain between the 

two photosystems follows a Z-scheme. First, a hole is generated from the charge 

separation step in the PSII that oxidizes two water molecules into an oxygen and 

four protons, and the excited electron moves to the PSI through the electron 

transport chain. The electron is finally excited in the PSI and gains sufficient 

potential energy (-0.58 V vs. NHE, pH 7) to reduce NADP+.1, 2 The step-wise 

charge transfer reaction provides the efficient light-to-chemical energy conversion 

from only water and visible light (Scheme 1a). Generally, approximately 28.2% of 

the total sunlight is converted into chemical energy as ATP and NADPH  in the 

light reaction of natural photosynthesis.3 The simplified structural model and 

energy diagram of natural Z-scheme is presented in Figure 4.1 (up).

This natural Z-scheme has inspired an artificial Z-scheme, which has been 
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used in photocatalytic fuel production. In recent years, hydrogen fuel production 

from non-sacrificial water splitting has been studied by combining half-reactions 

that produce H2 and O2. In 1979, Bard introduced photosynthesis as a model 

system for water splitting using dual semiconductors.4 This novel approach enabled 

H2 production from water using only visible light. Numerous studies on material 

development and system design have since been conducted to exploit solar light to 

the greatest extent possible. Generally, metal oxides5-7 metal (oxy)nitrides8, 9 and 

metal sulfides10 have been utilized as charge separating photocatalysts, and proper 

co-catalysts have been loaded to catalyze H2 and O2 production.11 For H2 evolving 

part, Pt,8 Ru,5, 12 and Ni-based10 co-catalysts have been studied to enhance the 

photocatalytic activity. To obtain an optimal band position, some photocatalysts 

were further engineered with dopants13 or treated to form solid solutions.14, 15

Another interesting approach to modeling natural photosynthesis is a 

direct utilization of photosystems for a H2-evolving photocatalyst. The PSI is a 

naturally existing photocatalyst that possesses solar light-active chlorophyll dyes 

that have an optimal structure for efficient energy transfer. The P700 reaction 

center at the center of the PSI has a charge separation efficiency near unity and a 

low excitation energy of 1.77 eV (l = 700 nm).1, 2 Therefore, the PSI itself is very 

attractive photocatalyst that can be used in natural environments. Recently, PSI 

hybrid systems have been fabricated by conjugating artificial or biological co-

catalysts. Generally, the PSI has been platinized to deposit platinum nanoclusters 

on the electron emitting stromal side of a protein by the photo-reductive deposition 

reaction, [PtCl6]
2- + 4e- + hv → Pt + 6Cl-.16-18 Similarly, a co-catalyst has been 

conjugated using a chemical linker. Recently, Pt or Au nanoparticles19, 20 and 
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hydrogenases21-25 have been covalently linked to the PSI to dramatically enhance 

its H2 evolution activity. However, to position a chemical linker at the desired 

position, the PSI was reconstituted mostly by engineering cysteine (Cys) residues 

for use in dithiol molecular wire. The most recent studies have reported the self-

assembly of molecular catalysts, such as a Ni catalyst26 and cobaloxime27. However, 

all of these systems only mimic the one-step photo-reduction in the PSI, which 

requires that a chemical donor, such as ascorbic acid, be mixed into the reaction 

solution. In this study, we implemented a full Z-scheme for the H2 evolution from 

water using platinized PSI (PtPSI). This is the first report of the use of a protein-

photocatalyst system for H2 production from water without the use of an additional 

reducing additive, which we call a “hybrid Z-scheme”. The synthesized 

semiconductor particle both participated in the oxidation of the photocatalyst and 

served as an electron supply for the PSI.

Two types of structural design are generally used in a Z-scheme, 

depending on the mediating role between the two reaction centers. First, when the 

electron mediator is a redox couple in the form of ion pairs, the two reaction 

centers are physically separated. However, the redox pair can induce an undesirable 

back reaction and dissipate the electrons and holes that participate in the intended 

pathway. Moreover, it is often difficult to operate a redox couple mediated system 

over a wide pH range.28 In the second design, a conducting material can be 

employed as a mediator to transfer electrons directly between the reaction centers. 

The two reaction centers are thus physically linked via a conductor to form an “all-

solid-state”. The integration of two reaction centers with a conductor between the 

centers creates an ohmic contact and reduces the distance for electron transfer. 
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Thus, the back reaction is prevented, and the working conditions are expanded to a 

wide pH range and even to the gas-phase.28 Recently, a reduced graphene oxide 

was used as a solid electron mediator for all-solid-state water splitting using BiVO4

and Ru/SrTiO3:Rh photocatalysts,12 and innovative developments in H2-evolution 

systems have been realized by designing various all-solid-state Z-schemes using 

conducting mediators.13, 29-31 Our hybrid Z-scheme was also constructed in an all-

solid state by attaching metal particles onto a semiconductor to form a chemical 

linker between the metal and the PSI. The metal-deposited semiconductor served 

both as a stable support and a direct electron supplier for the PSI. In a natural 

thylakoid membrane, photosynthetic proteins are stably inserted into the lipid 

membrane, resulting in a fluid structure where the proteins are arranged in a fixed 

position and orientation. Immobilizing a PSI on the metal should be analogous to 

inserting a PSI in the thylakoid membrane. In this study, we compared a linked 

system and an unlinked but mixed system and analyzed the positive effects of the 

all-linked system.12

In the designed system, BiVO4 was selected as the semiconductor 

component. BiVO4 has both a suitable valence band for water oxidation (2.75 V vs. 

NHE) and a low band gap for visible light absorption (2.43 eV).32 Gold (Au) or 

silver (Ag) nanoparticles were deposited on the surface. The work functions of 

these nanoparticles (-5.1 eV for Au and -4.7 eV for Ag)33 are both located between 

the conduction band of BiVO4 and the redox potential of the PSI reaction center 

(P700, 0.47 V vs. NHE, pH 8)34, such that these nanoparticles can serve as a 

conducting mediator between two components. Figure 4.1 (down) presents the 

structural model and the energy diagram of the hybrid Z-scheme with an Au 
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mediator. In terms of its light absorption properties, the PSI harvests solar light 

through chlorophylls that efficiently absorb red (≃700 nm) and blue (≃450 nm) 

light, and BiVO4 absorbs light with wavelengths below 510 nm. Therefore, the 

absorption range in the hybrid Z-scheme encompasses the entire visible light range. 

Metal particles were carboxyl-functionalized for covalently conjugation with the 

PtPSI via EDC/Sulfo-NHS coupling. The metal-deposited BiVO4 (mt-BiVO4) and 

the PtPSI constituted a hybrid Z-scheme in an all-solid-state form, which 

successfully evolved H2 from water under visible light.
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Figure 4.1. Natural Z-scheme (up) and Hybrid Z-scheme developed in this study 

(down).

Natural Z-scheme

Hybrid Z-scheme of PSI and semiconductor (BiVO
4
)
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4.2 Experimental and analysis

4.2.1 Materials

Sodium ascorbate (Asc, 98%), 2,6-dichloroindophenolate hydrate (Dc, 

90%), sodium hexachloroplatinate(IV) hexahydrate (Na2[PtCl6], 98%), gold(III) 

chloride trihydrate (HAuCl4•3H2O, 99.9%), silver nitrate (AgNO3, 99.0%) and 3-

mercaptopropionic acid (MPA, 99%) were purchased from Sigma-Aldrich, and 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, 98%) and N-

hydroxysulfosuccinimide (sulfo-NHS, 98%) were purchased from Tokyo Chemical 

Industry. High purity deionized water (18.2 MW cm-1) was used in all of the 

procedures.

4.2.2 Isolation of PSI

The PSI protein was isolated by the established method with minor 

modifications.35 Spinach (Spinacia oleracea L.) was purchased from a local market. 

Two hundred grams of green spinach leaves were ground using a blender with 600 

ml of washing buffer (0.3 M sucrose, 30 mM Tris-HCl, 15 mM NaCl, pH 7.8) for 

30 s. The obtained homogenate was filtered through 2 layers of Miracloth (with a 

pore size of 22-25 mm, CalBiochem) and centrifuged at 2,000 g for 7 min. The 

light green supernatant was discarded, and the pallet was resuspended in a 

hypotonic buffer (5 mM EDTA, 5 mM Tris-HCl, pH 7.8). The solution was 

sonicated for 2 min and centrifuged at 10,000 g for 15 min. The pallet was adjusted 
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to 2.5 mgChl ml-1 using a basic buffer (0.3 M sucrose, 30 mM Tris-HCl, pH 7.8) 

and 1.7% triton X-100 (w/v) was added. After gentle stirring for 30 min in the dark 

at 4 °C, the solution was centrifuged at 35,000 g for 30 min, and the supernatant 

was collected. The solution was adjusted to 2.0 mgChl ml-1 using a basic buffer, 

and dodecyl-b-D-maltoside (DDM) was added to produce a final concentration of 

2.0% (w/v). After gentle stirring for 20 min in the dark at 4 °C, 9 ml of the solution 

was loaded onto a 24 ml 0.1-1.0 M sucrose gradient (containing the basic buffer 

and 0.05% DDM) with a 5 ml cushion of 2 M sucrose. After ultracentrifugation at 

26,800 rpm for 17 h in a SW-32 rotor (Beckman), the lowest dark green band was 

collected with a syringe and frozen at -80 °C using 20% glycerol (v/v).

4.2.3 Characterization of PSI

The protein concentration was adjusted via the chlorophyll concentration. 

The chlorophyll concentration was determined after extraction in 80% acetone 

using a method that was developed by Arnon.36 The proteins were analyzed using 

SDS-PAGE and a Coomassie blue staining step. The SDS-PAGE was carried out 

using 15% acrylamide resolving gels. Briefly, 10 μl of the samples and pre-stained 

protein size markers were loaded onto each well, and electrophoresis was 

performed at 100 V for 100 min. After the electrophoresis step, the gel was washed 

in distilled water for 10 min and rinsed with a fixation solution (containing 30% 

methanol and 10% acetic acid) for 30 min. After fixation, EzWayTM Protein-Quick 

Blue solution (Koma Biotech) was added and stained for 2 h.
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4.2.4 Platinization of PSI

The extracted PSI was dialyzed in a 20 mM sodium phosphate buffer with 

a pH of 7.2 (reaction buffer) for 24 h before platinization. The PtPSI was prepared 

by photo-deposition using 30 mM Asc and 0.2 mM Dc as a sacrificial electron 

donor. The reaction proceeded in the reaction buffer with 0.05 mgChl ml-1 PSI, 0.4 

mM Na2[PtCl6] and an Asc/Dc couple (for a total volume of 10 ml). A continuous 

white light emitting diode (LED) bulb light illuminated the sample under vigorous 

stirring for 20 h. The PtPSI was washed with the reaction buffer before linking with 

the oxidation component to remove the remaining Na2[PtCl6] and Asc/Dc.

4.2.5 Synthesis of BiVO4

The hydrothermal method was used as previously reported.37 Typically, 

36.0 mmol of NH4VO3 (99%) and 36.0 mmol of Bi(NO3)3•5H2O (98%) were 

dissolved in 220 and 80 ml of 2.0 M nitric acid solutions, respectively. The two 

solutions were mixed, and a yellow homogeneous solution was formed under 

stirring. The pH value of the solution was then adjusted to 2.0 using an ammonia 

solution under vigorous stirring until an orange precipitate was obtained. After 

further stirring for 0.5 h, the precipitate was aged for 2 h, and 70 ml of the subsided 

precipitate was transferred to a Teflon-lined stainless steel autoclave (100 ml) and 

hydrothermally heated to 473 K, which was held for 24 h. The resulting yellow 

powder was filtered following natural cooling to room temperature and dried in air 

at 60 °C.
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4.2.6 Photo-deposition of metal on BiVO4

The metals (Au and Ag) were photo-deposited onto the as-synthesized 

BiVO4. HAuCl4 and AgNO3 were used as precursors for the Au and Ag deposition. 

Generally, 0.2 g of the as-synthesized BiVO4 and 10 wt% of the metal precursor 

(by calculation) were stirred together in 100 ml of deionized water under 

irradiation by a 300-W Xe lamp (420-nm cut) for 3 h. The metal-deposited BiVO4

(mt-BiVO4) was washed with deionized water 3 times to remove the unreacted 

metal precursor before further chemical treatment and SEM analysis.

4.2.7 EDC/Sulfo-NHS coupling

Finally, covalent linking between PtPSI and mt-BiVO4 was carried out via 

EDC/sulfo-NHS coupling. First, 0.1 g of mt-BiVO4 was immersed in ethanolic 10 

mM MPA to carboxylate the metal particles. After gently stirring the solution for 

24 h, the MPA treated mt-BiVO4 was rinsed with deionized water and finally 

diluted in 5 ml of 10 mM MES buffer (pH 5.5). Then, 30 mg of EDC and 30 mg of 

sulfo-NHS were added, stirred for 2 h and washed with the reaction buffer. Finally, 

l ml of 0.5 mgChl ml-1 of the prepared PtPSI was added to the total solution volume 

and gently stirred for 24 h. The all-linked samples were washed twice with the 

reaction buffer to remove unlinked proteins. For reference, we added 1 ml of 0.5 

mgChl ml-1 of the PtPSI to 0.1 g of the carboxylated mt-BiVO4 and stirred the 

resulting mixture for 24 h.
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4.2.8 Analytical methods

The irradiance of the light source was measured using a spectrum analyzer 

(International Light Technologies, ILT950). The UV/Visible absorption spectra 

were measured using a NanoDropTM 2000c and a spectroscopic cuvette. The 

samples were dispersed in the reaction buffer, which was then place in a 1-ml 

cuvette for analysis. The UV/Visible reflectance spectra were obtained using a UV-

Vis-NIR spectrometer (Agilent Technologies, Cary 5000).

The FESEM micrographs were obtained using a Zeiss, SUPRA 55VP 

operating at 2 kV. The FESEM samples were prepared by dropping the sample 

containing solutions onto silicon wafers and drying in air. 

The phase composition of the synthesized powder was determined using 

X-ray powder diffraction (XRD, Bruker, AXS D8 Advance) with CuKα radiation. 

The XRD patterns were recorded in a 2θ range of 10°-60°. The step size and the 

counting time were 0.02° and 0.25 s, respectively. The XRD patterns were 

analyzed using an EVA software package (Bruker AXS) to identify the phases 

present. 

The PL spectra were taken using a PTI QuantaMasterTM 

spectrofluorometer, QM4 (Photon Technology International, Birmingham, NJ) with 

an excitation wavelength of 340 nm, a scan range of 450-660 nm and a step size of 

1 nm. Each sample was placed in a cuvette and stirred vigorously to disperse the 

particles. Typically, 1 mg of sample was put into 3 ml of the reaction buffer. When 
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the mt-BiVO4 was mixed or linked with PtPSI, the additional washing step for the 

removal of the unlinked protein was skipped.

The quantitative detection of hydrogen was performed by gas 

chromatography (GC, PerkinElmer, NARL8502 Model 4003). Typically, 0.05 g of 

the PtPSI-mt-BiVO4 in 20 ml of the reaction buffer was placed in a tightly capped 

vial and stirred vigorously during the photo-reaction. One milliliter of the final gas 

was ejected into the gas chromatograph by a syringe at the designated time. The 

GC measured the molar proportion of the hydrogen gas relative to the total ejected 

gas, and the exact amount of gas was calculated by multiplying by the empty space 

in the vial reactor. 
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4.3 Results and discussion

4.3.1 Synthesis of Pt-PSI

PSI was extracted from spinach and characterized by SDS-PAGE. The 

isolated thylakoid membrane fragments were distributed into three layers via a 

sucrose density gradient (Figure 4.2 (a)). The thick upper layer consisted of a light 

harvesting complex II (LHCII) and other protein fragments, and the middle and 

lower layers consisted of monomeric and aggregated PSI, respectively. Each 

protein layer was injected using a syringe and analyzed by SDS-PAGE (Figure 4.2 

(b)). The PSI was identified by a significant band that was assigned to PsaA and 

PsaB polypeptides and other minor polypeptide bands that are not marked in the 

figure.35 Two bands also appeared that corresponded to the light harvesting 

complex I (LHCI). In a plant thylakoid, the LHCI surrounds a PSI core to collect 

light and transfer the photo-energy to the PSI core. Previous studies on bacterial 

photosynthetic proteins have demonstrated that a light harvesting antenna-reaction 

center core complex exhibits higher photo-activity than a bare reaction center core 

in vitro.38 Thus, we expected the LHCI to serve as an extra light collector in our 

LHCI-PSI complex and used as this form for the remaining procedures. The 

polypeptides from the PSI bands virtually disappeared in the LHCII-rich band, 

which showed that the PSI was well-isolated from the thylakoid membrane.

The H2 evolution efficiency of the platinized PSI was measured by gas 

chromatography before the PtPSI was linked to the BiVO4-metal complex. During 

the 20 h of the photo-reduction process, ≃1 mmol H2 mgChl-1 of H2 was generated. 
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Detectable H2 (< ≃0.01 mmol H2 mgChl-1) was produced after 6 h, which 

corresponded to the platinization stage of the PSI. After the initial platinization 

stage, the H2 production rate increased dramatically. The maximum activity was 

reasonable compared to previous reports for platinized PSI systems, as shown in 

Table 4.1. Typically, PSI extracted from thermophilic bacteria exhibits higher 

photo-activity and stability. However, we used spinach as a source material to 

simplify the extraction method and mass produce the final protein.
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Figure 4.2 (a) Sucrose density gradient resulting in three separate layers: LHCII-

rich thylakoid, monomer PSI (MPSI) and aggregated PSI (APSI); (b) SDS-PAGE 

of thylakoid before ultracentrifugation (Thy), LHCII-rich thylakoid fragment 

(LHCII, upper layer in (a)), and PSI (PSI, middle and bottom layer in (a)). 

Identified main bands are marked with the name of component.
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Table 4.1. H2 evolution activity in PtPSI. The extracted PSIs are all wild type and 

are not rebuilt.

Year Source of PSI Electron donor, 

mediator

Maximum 

activity

(mmol H2 h-1

mgChl-1)

Light source

This 

study

Spinach Asc, Dc 0.08 White LED

(2001)17 Spinach Asc, PC 2 LED (660 nm)

(2004)18 Spinach Asc, Corss-

linked PC

0.09

(0.03 without 

PC)

150-W halogen 

lamp 

(< 600 nm)

(2010)16 Thermophilic 

bacteria

Asc, Cyt c6 5.5 150-W halogen 

lamp

(< 590 nm)
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4.3.2 Synthesis of metal deposited BiVO4

To selectively extract electrons, single crystal monoclinic BiVO4 was 

synthesized by a hydrothermal method. The synthesized particles were then 

characterized by XRD (Figure 4.3) and FESEM (Figure 4.4). The XRD pattern 

was well-matched with that of monoclinic BiVO4, which corresponds to the 

standard card #14-0688. The decahedral shape and fine crystallinity of BiVO4 was 

observed in the FESEM images. The two square exposed facets corresponded to 

the {010} facet, which was the electron-accumulated facet, and the isosceles 

trapezoidal facets at the other sides corresponded to the {110} facet, which was the 

hole-accumulated facet.39 Thus, the Au and Ag particles were selectively deposited 

on the {010} facet of BiVO4 by accepting electrons on the surface. 

The photo-deposition of Au and Ag was carried out using HAuCl4 and 

AgNO3 metal precursors in water, respectively, which functioned as hole 

scavengers. A large number of small-sized metal particles can be used to extend the 

contact surface between the materials and reduce the electron migration distance. 

In the experimental process, the initial precursor concentration was optimized to 10 

wt%, because a further increase in the precursor did not significantly improve the 

deposited area. The number of deposited particles saturated in ≃3 h, and further 

reaction only enlarged the particle size. 

The mt-BiVO4 particles that were synthesized by the optimized procedure 

were observed using FESEM (Figure 4.5). The diameters of both the Au and Ag 

particles were distributed between 100 and 200 nm, which was approximately 7-

fold larger than the size of the monomeric PSI. We integrated the area of the 
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exposed {010} facet and the metal-deposited partial area using the FESEM images. 

The resulting average ratio of the area of the metal-deposited surface to that of the 

{010} facet was approximately 11% for Au-BiVO4 and 30% for Ag-BiVO4. 

Assuming that the area of {010} facet of a BiVO4 particle was 10 mm2 and that PSI 

was densely bound to the flat metal surface as monolayer, 6,400 (for the Au-

deposited particles) and 17,000 (for the Ag-deposited particles) monomeric PSI 

should have been conjugated to a single BiVO4 particle. Conversion to the 

macroscopic scale showed that 0.016 mgChl (for the Au-deposited particles) and 

0.043 mgChl (for the Ag-deposited particles) of PSI were the equivalent binding 

amounts for 1 g of BiVO4. 
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Figure 4.3. XRD pattern of monoclinic BiVO4 (JCPD #14-0688). 



131

Figure 4.4. FESEM image of BiVO4. Scale bar: 4 μm.
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Figure 4.5. FESEM image of (a) Au-BiVO4 and (b) Ag-BiVO4. Scale bar: 1 μm.

ba
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4.3.3 Optical property analysis

The optical properties of the two photocatalysts were investigated by 

UV/Visible absorption. The absorption spectra were recorded for isolated PSI 

(which is shown as a green solid line in Figure 4.6), which exhibited two primary 

peaks at 436 nm and 678 nm. The minor peak at 471 nm that was observed in the 

spectra corresponded to the light harvesting complex I (LHCI) that surrounded the 

PSI core.35 The diffuse reflectance of BiVO4 was measured, and the spectra is 

presented as a blue dotted line in figure 3. Our BiVO4 absorbed light effectively 

below 510 nm.

In this study, we used a white LED bulb, which is a commonly used 

indoor light, as a light source to provide the full spectrum of visible light with an 

intensity near the light saturation point of the PSI (190 mE m-2 s-1 with a 660-nm 

LED).17 Our light source had an intensity of 186 mE m-2 s-1 between 650 nm and 

700 nm and of 91 mE m-2 s-1 below 510 nm. The mild intensity of the light source 

prevented a temperature rise in the reactor and unnecessary energy dissipation. 

Figure 3 shows the irradiance intensity spectra for different wavelengths, which are 

fitted with a black line.
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Figure 4.6. Absorption spectra of PSI (green line) and BiVO4 (line with blue circle) 

and irradiance spectra of LED light used in this study (black line). 
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4.3.4 Synthesis of hybrid Z-scheme

The as-prepared PtPSI and mt-BiVO4 was integrated into the hybrid 

system. To carboxylate the metal surface, the synthesized mt-BiVO4 was treated 

with an MPA ethanolic solution. An amide bond was then formed between the 

carboxyl group on the metal and the amine group on the PSI by EDC/Sulfo-NHS 

coupling. Generally, the primary amine in the lysine (Lys) residue has the highest 

activity; thus, most of the amide bond was expected to be formed on the Lys of the 

protein surface. The Lys was densely located on both the lumen and stromal side of 

the PSI, which are shown as magenta spheres in Figure 4.7. In platinization, the 

reduction of Pt occurred primarily at the stromal side of the electron emitting site, 

such that the Pt nanoclusters were expected to cover the electron emitting site of 

the PSI (which is shown as orange spheres in Figure 4.7). Therefore, some of the 

exposed active residues in stromal side may have been blocked. However, the 

active residues on the lumen side were exposed without obstruction and could 

freely form an amide bond. The amide bond at the lumen side provided a favorable 

pathway for the acceptance of electrons from mt-BiVO4.

As mt-BiVO4 is a micro-particle, it sinks into a solution within a few 

minutes (see Au-B and Ag-B in Figure 4.8). However, after coupling to the PtPSI, 

some of the particles were still dispersed in solution after 1-h holding time (see Au-

B-PtPSI and Ag-B-PtPSI in Figure 4.8). The upper greenish section contained both 

unlinked PtPSI and all-linked particles. The absorption spectra of the upper 

dispersed particles were removed for the absorption measurements. In Figure 4.8 

(a), the broad absorption spectra over the entire wavelength range corresponded to 

the BiVO4 particles that were dispersed in solution, and the observable peaks at the 
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wavelengths of red and blue light corresponded to the PtPSI. To calculate the 

amount of the linked PtPSI, the micro-particles were removed by gentle 

centrifugation, and the concentration of the remaining PtPSI particles was 

measured from the absorbance spectra. Thus, 0.08 ± 0.03 mgChl and 0.16 ±

0.05 mgChl of the PtPSI decreased in the solution after coupling with 1 g of Au-

BiVO4 and Ag-BiVO4, respectively. The differing amounts that were bound on Au 

and Ag resulted primarily from the different deposited areas of the metal particles. 
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Figure 4.7. Molecular structure of PtPSI showing emphasized Lys, which are the 

primary targets in EDC/sulfo-NHS coupling. Pt nanoclusters and Lys are shown as 

orange and magenta spheres. The electron pathway from lumen side to stromal side 

is shown with arrows (PDB entry 2WSC).
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Figure 4.8. (a) Absorption spectra of PtPSI (line with blue circle), dispersed PtPSI 

linked with Au-BiVO4 (red) and Ag-BiVO4 (black); (b) image of synthesized 

samples after 1-h holding time at room temperature. B denotes BiVO4.
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4.3.5 Electron transfer study in the hybrid system by PL analysis

We evaluated the electron motion in the hybrid system by PL analysis 

(Figure 4.9). The PL spectra were observed for 4 different samples, BiVO4, mt-

BiVO4, mt-BiVO4 with PtPSI, which was simply mixed together (Mixed) and 

covalently all-linked by EDC coupling (Linked). In monoclinic BiVO4, UV 

excitation generates holes in the O2p band, and the electrons in the V3d band and the 

excitation energy can be relaxed by recombination at Bi6s.
40 Our BiVO4 exhibited a 

PL peak at approximately 540 nm in agreement with previous reports.41 We first 

observed the PL quenching effect by metal deposition. The metal particle covering 

the electron emitting facet can accept electrons from the V3d conduction band of 

BiVO4 and decreases recombination. The PL intensity at 540 nm for Au-BiVO4 and 

Ag-BiVO4 was 93% and 62% of that of pure BiVO4. This result suggests that Ag 

offers an advantage over Au in electron extraction. Structurally, the deposited area 

of Ag is approximately 3-fold that of Au, which can result in more effective 

quenching. Besides, plasmonic metal can increase or decrease PL in various ways 

including local electric field enhancement, radiative/non-radiative decay 

enhancement, and energy quenching inducement. The PL quenching observed in 

this study may be the result of these coupled effects. In our system, transfer of 

excited electron to metal and plasmon driven PL enhancement occurred 

simultaneously.

To observe additional electron transfer to the protein, the mt-BiVO4 was 

combined with the PtPSI. The use of the protein resulted in electron transfer from 

the metal toP700 and induced extra quenching. In the analysis, 0.5 mgChl of the 

PtPSI was mixed with and linked to 1 mg of the mt-BiVO4. In both the Au-BiVO4
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and Ag-BiVO4, the PL of the covalently linked system was quenched more than 

that of the simply mixed system. This result supported the hypothesis that chemical 

bonding between metal and protein facilitated efficient electron transfer from the 

BiVO4 conduction band to the PSI. The amount of the PtPSI was then reduced to 

0.05 mgChl, which was comparable to the theoretical equivalent binding amount of 

the PSI on Ag-BiVO4. Herein, the linked system exhibited noticeable quenching, 

whereas there was nearly negligible quenching in the mixed system. Thus, the 

quenching effect resulted primarily from only the linked PtPSI. Interestingly, the 

PL quenching in the linked system with 0.05 mgChl PtPSI was comparable to that 

in the mixed system with 0.5 mgChl of the PtPSI. 
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Figure 4.9. (a) PL spectra of Au-BiVO4 with 10 equivalent PtPSI; (b) PL spectra of 

Au-BiVO4 with one equivalent PtPSI; (c) PL spectra of Ag-BiVO4 with 10 

equivalent PtPSI; (d) PL spectra of Au-BiVO4 with one equivalent PtPSI.
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4.3.6 H2 evolution measurement by GC analysis

The H2 evolution rate was measured by GC. The hybrid Z-scheme using 

Au and Ag mediators exhibited an H2 evolution activity of 34 nmol h-1 and 15 nmol 

h-1, respectively (Figure 4.10). To our knowledge, this result is the first observation 

of H2 evolution from a protein-photocatalyst system in which only water was used 

as an electron source. The calculated external quantum efficiency of the system 

was approximately 10-5. Such a low quantum efficiency resulted primarily from the 

inefficient hybrid ratio of the reduction component of the PtPSI to the oxidation 

component, BiVO4. The oxygen evolution activity of monoclinic BiVO4 with a 

NaIO3 sacrificial agent has been previously reported to be approximately 100 mmol 

h-1 g-1.37 Considering that 4 electrons from the oxidation step immediately move to 

PSI via the metal mediator in the Z-scheme, 400 mmol h-1 of electrons can be 

supplied to the PSI from 1 g of BiVO4. However, considering that the maximum 

amount of the PtPSI was conjugated on BiVO4, the activity of the photo-reduction 

from the equivalently bound protein lagged far behind (at approximately 1/160,000 

(for Au-deposited particles) and 1/58,000 (for Ag-deposited particles)) the photo-

oxidation in the semiconductor component of the hybrid system. The imbalance 

between the oxidation and reduction rates was the primary limitation of the hybrid 

system in terms of the efficiency. To overcome the imbalance in the combination 

ratio, nano-scale semiconductor particles should be used to increase the surface 

area for protein binding. The photoreaction proceeded for 72 h, and H2 was 

collected every 24 h. Figure 4.11 shows the measured amount of H2 from our Z-

scheme using Au and Ag mediators. The initial H2 evolution activity lasted steadily 

for 72 h and even slightly increased in some cases. In this regard, we expect that 
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the unlinked, but attached PSIs in the vicinity of activated metal formed new amide 

bonds during the photo-reaction, followed by providing additional linked Z-scheme.

When the PtPSI and mt-BiVO4 components were mixed without covalent 

conjugation to serve as a reference, the H2 evolution activity was lowered to 

approximately 1 nmol h-1. In order to clarify the pathway of H2 evolution, several 

mt-BiVO4 samples also have been investigated by GC analysis. As a result, all the 

contrast samples including Au-BiVO4, Ag-BiVO4, Pt-BiVO4 and pure BiVO4

showed no H2 evolution activity when the deposited metal was either activated 

with EDC/Sulfo-NHS or inactivated.

When the H2 evolution activity was recalculated considering the bound 

PtPSI, 0.42±0.20 mmol h-1 mgChl-1 and 0.091±0.044 mmol h-1 mgChl-1 of H2

were produced in the Au- and Ag-mediated systems. The activity was much higher 

(for the Au-deposited particles) or analogous (for the Ag-deposited particles) to the 

activity that was measured during the platinization step using an Asc/Dc electron 

donor couple. In platinization, the PSI receives an electron from the Asc/Dc 

reductant couple that is dissolved in solution, whereas the PSI in our hybrid Z-

scheme received an electron from the directly linked metal. Similarly, in nature, the 

bound mediator PC transfers an electron directly to the lumen side of the PSI. [32]

Thus, we hypothesized that our all-linked system effectively realized an electron 

transfer chain and exhibited enhanced or comparable activity for the PSI relative to 

the half-reaction system with a chemical electron donor. In addition, we expect that 

the linker could be designed to significantly enhance the activity even further.

The Au mediator more than doubled the H2 evolution activity over that of 
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the Ag mediator. Considering the improved quenching of PL in the Ag-mediated Z-

scheme over the Au-mediated Z-scheme, it was interesting that the Au mediator 

showed significantly higher H2 evolution activity. We hypothesize that the Au 

provided a moderate metal-to-BiVO4 potential barrier that prevented electron back 

transfer, whereas the small potential barrier in Ag-BiVO4 could easily have induced 

the back transfer of electrons. Figure 4.12 illustrates the energy band position of 

the semiconductor and metal part. We also expect that a suitable surface plasmon 

resonance of Au could contribute to enhanced photo-activity.42 Ag also exhibits a 

considerable plasmon effect; however, the resonance wavelength of Ag is located at 

the edge of our light source spectrum.43 Recently, light absorption enhancement has 

been demonstrated by the plasmon effect of Ag nanoparticles in an all-solid-state 

Z-scheme.44-46 We expect that the Au nanoparticles in the hybrid Z-scheme could 

also provide extra absorption and enhance the electron supply to the PSI. In 

addition, other roles of Au nanoparticle as a hot electron source or a hole scavenger 

should be considered in order to comprehensively understand the electron 

mediating pathway through Au nanoparticle.47

In this study, we have successfully demonstrated the first hybrid Z-scheme 

for H2 evolution. The final scheme of the Z-scheme mediated by Au metal are 

shown in Figure 4.13. Our hybrid Z-scheme was designed to split water and evolve 

H2 as a final product at PtPSI. Thus, we expected that O2 would evolve on the 

semiconductor side as a water oxidation product, but we also considered the 

possibility of the evolution of reactive oxygen species, such as hydroxyl and 

superoxide anion radicals. These radicals are commonly reported to be detected in 

metal(oxide)-doped semiconductors in competition with O2 and H2.
48, 49 In the 
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current study, we did not perform quantitative measurements of all of the oxygen 

species from the Z-scheme, and we are currently investigating the use of isotope 

labeled H2O
18 as a reactant to categorize and quantify the direct products. Despite 

the insufficient analysis of the oxygen reaction products, we were still able to 

verify the successful operation of the hybrid Z-scheme by measuring the target 

product, H2. First, the use of the hybrid Z-scheme was successful in realizing the 

protein-photocatalyst system for the evolution of water-sacrificed, visible light-

driven H2. Moreover, we demonstrated the effects of a directly linked structure and 

plasmonic nanoparticle mediators on the activity of the system. Thus, the issues 

that were explored in this study can open new avenues in the development of other 

protein hybrid systems for various applications.
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Figure 4.10. Hydrogen evolution activity measured by GC (for 1 g of sample). The 

average hydrogen evolution activity for 48 h.
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Figure 4.11. The hydrogen evolution activity as a function of operation time. The 

produced hydrogen was measured every 24 h from the same sample.
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Figure 4.12. Energy band diagrams of various semiconductors (left) and metals 

(right).
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Figure 4.13. The all-solid-state hybrid Z-scheme composed of BiVO4, Au and PSI.
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4.4 Conclusion

We developed a hybrid Z-scheme for H2 evolution by integrating BiVO4

and a PtPSI in an all-solid-state. Under visible light, our system showed the ability 

to evolve hydrogen from water without the use of additional sacrificial agents or 

redox mediators for the first time. The water-sacrificed H2 evolution was a 

successful demonstration of the utility of a PSI as a photocatalytic material. In 

designing this structure, we constructed an all-linked hybrid system using Au and 

Ag nanoparticle conductors. The positive effect of direct linking between a protein 

and a metal mediator was revealed by effective PL quenching and enhanced H2

evolution activity. We demonstrated the enhanced activity of PSI over that of a 

solvent-based sacrificial reaction and found that the plasmon effect of the metal 

could further amplify the electron supply. 

Various proteins, including enzymes, photosynthetic proteins and 

immunoproteins, have the intrinsic capability to be used as desirable and functional 

materials. However, one of the remaining challenges in the practical application of 

proteins is the hybridization of proteins with artificially constructed systems. In our 

hybrid system, both a hybridized semiconductor and a photosystem participated in 

the key photo-electrochemical reaction. This hybrid system provides a new means 

of using a photosynthetic protein as a practical material in the design of a 

photocatalytic energy producing system. Thus, we fully and simultaneously 

exploited the functionality of these synthetic and biological materials, going 

beyond using these materials simply as a support for another material. 

Our hybrid system can serve as a novel and interesting model for 
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constructing protein-hybrid systems. This study can also help to understand the 

communication mechanism in biohybrid systems and develop manufacturing 

technologies for optimized systems at the molecular scale.
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Chapter 5. Electrochemical carboxylation of unsaturated 

hydrocarbons using CO2

5.1 Introduction

Carbon dioxide (CO2) fixation in natural photosynthesis (e.g. RuBisCO) 

occurs by carboxylation of unsaturated carbon bond in enediolate intermediates.1,2

Recently, a similar mechanism of CO2 insertion at the unsaturated carbon bond has 

been adopted in the synthesis of carboxylic acids employing alkynes,3-6 α-olefins7,8

and internal alkenes as substrates.9-12 These methods enabled CO2 to be harnessed 

as a renewable one-carbon building block; however, the valorization of CO2 is still 

challenging because the gas is thermodynamically and kinetically stable.13

Consequently, numerous advances in chemical carboxylation using CO2 have relied 

on highly reactive organometallic nucleophiles to facilitate the reaction.13,14 Recent 

reports have demonstrated that the elaborate design of organometallic nucleophiles 

is the primary requisite for modulation of site-selectivity and extension of 

substrates in carboxylation.14-16 In addition, because the reduction step is necessary 

to utilize the completely oxidized carbon atom of CO2, chemical reductants are 

typically used.14,16 Recently, Martin and coworkers developed an elegant protocol 

for site-selectivity tunable carboxylation via nickel hydride or nickelalactone 

formation using manganese as a reductant for the extensive scope of unsaturated 

hydrocarbons, such as styrenes, alkenes and alkynes.17 As an alternative approach, 

heterogeneously catalyzed carboxylation using electrochemistry has gained 

increasing attention. These carboxylation reactions are mainly driven by reductive 



160

electrical potential on a cathode electrode.18-20 Among the unsaturated hydrocarbon 

feedstocks, this study focused on the electrochemical carboxylation of styrene as a 

representative model. 

In the carboxylation of styrene using CO2, hydrocarboxylation of the α- or 

β-position and dicarboxylation at both positions are feasible. Vianello and 

coworkers first pioneered the electrochemical dicarboxylation of styrene to 2-

phenylsuccinic acid (1).21 Since then, several succeeding works on the 

electrochemical carboxylation of styrene have reported dicarboxylation as a 

primary reaction both in the presence22,23 and absence24-26 of homogeneous 

catalysts. These studies proposed the electrochemical formation of β-carboxylate 

radical anions as a key intermediate, followed by additional CO2 insertion to the 

benzylic position.24,26 However, it has been hypothesized that the electrochemical 

carboxylation of styrene is mostly carried out by the dicarboxylaion pathway.

In contrast, chemical carboxylation of styrene has been actively studied, 

ranging from dicarboxylation to hydrocarboxylation either with Markovnikov or 

anti-Markovnikov regioselectivity. Notably, pioneering works have progressed to 

modulate site-selectivity by developing novel chemical protocols,27,28 metal 

catalysts,29-31 and catalyst ligands.29,30,32,33 Most of the works using metal catalysts 

reported α-hydrocarboxylation as a major reaction due to the preference for 

forming stable η3 benzylic metal species.29-31,34 This process facilitates 

Markovnikov hydrocarboxylation where the proton of the metal hydride first binds 

to the β-position and then CO2 later binds to the benzylic position. In the case of β-

hydrocarboxylation, CO2 insertion at the β-position occurs prior to protonation 

which is the reverse order to that for α-hydrocarboxylation as noted recently by the 
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Jamison group28 and the König group.32 Both works achieved high selectivity for 

the β-position by activating CO2 in the initial process of hydrocarboxylation using 

photocatalysts. Additionally, König demonstrated that different intermediates 

resulting from employed ligands determine site selectivity between α- and β-

hydrocarboxylation.32

Inspired by these predictive selectivities in chemical carboxylation, we 

envisioned that electrochemical carboxylation would be extended to site-selective 

hydrocarboxylation by controlling the protonation process. Because β-carboxylate 

is the key intermediate during electrical reduction, we thought that intentional 

protonation might suppress successive CO2 insertion to form 1 (Figure 5.1, top) 

and result in β-hydrocarboxylation to form hydrocinnamic acid (2) (Figure 5.1, 

bottom). We employed water as a clean and abundant proton source and precisely 

explored the effect on the yield and selectivity of products. Surprisingly, this new 

β-hydrocarboxylation reaction appeared to exhibit selectivity of 96% towards 2

which has never been reported. A mechanistic investigation of electrochemical β-

hydrocarboxylation was also conducted in this study. For the ongoing work, we 

also extended the substrate to aliphatic α-olefins using the electrochemical platform.
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Figure 5.1. Electrochemical carboxylation of styrene with CO2. *Faradaic 

efficiency.
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5.2 Experimental and analysis

5.2.1 Materials 

Hydrocinnamic acid, 2-phenylsuccinic acid, styrene, all styrene 

derivatives, tetrabutylammonium tetrafluoroborate (TBABF4) and 

tetramethylsilane (TMS) were purchased from TCI chemicals (Tokyo, Japan). 

Chloroform-d (CDCl3) and dimethyl sulfoxide-d6 (DMSO-d6) were purchased 

from Acros Organics (Geel, Belgium). Iodomethane and magnesium sulfate 

(MgSO4) were purchased from Sigma-Aldrich (Milwaukee, WI, USA). Acetic acid, 

acetonitrile, tert-butanol, N,N-dimethylformamide (DMF), diethyl ether, 

hydrochloric acid (HCl), methanol, phenol, potassium carbonate (K2CO3) and 

sodium hydroxide (NaOH) were purchased from Daejung chemicals (Gyenonggido, 

Korea). DMF was dried with 4 Å molecular sieve, and all other chemicals were 

used as received. Purified deionized water (18.2 MΩcm-1) was used in the 

procedures. Nickel foil (Ni, 0.1 mm thick), titanium foil (Ti, 0.127 mm thick), 

platinum foil (Pt, 0.025 mm thick) and magnesium foil (Mg, 0.25 mm thick) were 

purchased from Alfa Aesar (MA, USA). 

5.2.2 Electrochemical analysis

An undivided three-electrode cell equipped with a gas line was used in all 

voltammetric measurements and electrolysis. Ni, Ti, and Pt with surface 

dimensions of 1 cm × 2.5 cm and Mg with surface dimensions of 1 cm × 3 cm were

used as the working electrode and counter electrode, respectively. Prior to use, the 
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metal foils were polished with sandpaper, cleaned with diluted HCl (aq.) and rinsed 

with distilled water. The reference electrode was Ag/Ag+ (0.01 M)/TBABF4 (0.1 M) 

in acetonitrile. For the electrolyte, TBABF4 (0.1 M) was put in dried DMF and 

saturated with CO2 by purging the gas for 1 h. Then, 4 mL of the solution was put 

into the reactor cell at a volume of 50 mL. The reactants were injected into the 

electrolyte, and the headspace of the cell was ventilated with CO2 gas for 0.5 h and 

closed tightly under CO2 at atmospheric pressure. All reactions were performed at 

room temperature under vigorous stirring of the electrolyte. After electrolysis, 1 

mL of headspace gas was transferred by syringe for gas chromatography (GC) 

analysis. The solutions in the reactor cell were acidified with HCl (2 M, aq.) for 3 h 

and extracted with diethyl ether (3 × 20 mL). The organic layer was washed with 

distilled water, dried over MgSO4 and evaporated. The isolated products were 

dissolved in deuterated solvents for nuclear magnetic resonance (NMR) analysis or 

diethyl ether for gas chromatography-mass spectrometry (GC-MS) analysis.

5.2.3 Analytical methods

NMR spectra were recorded on a JEOL 400 MHz NMR spectrometer 

(JeolJMN-LA400) or Bruker 600 MHz NMR spectrometer (Bruker Avance 600) at 

room temperature. Chemical shifts were reported in parts per million (ppm) 

downfield of TMS (d = 0.00 ppm). Products were dissolved into 0.7 mL of DMSO-

d6 or CDCl3. A potentiostat (CHI 760E, CH Instruments) was used for 

voltammetric measurements and bulk electrolysis. All potentials were controlled 

against the reference electrode and recorded after IR compensation. The 
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quantitative measurement of the gas phase from the headspace of the 

electrochemical cell was performed by GC (PerkinElmer, NARL8502 Model 4003). 

Liquid- and solid-phase products dissolved in the organic solvents were detected by 

GC-MS (Agilent 5977) using an automatic liquid sampler.
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5.3 Results and discussion

5.3.1 Electrochemical carboxylation of styrene

We first performed the electrochemical carboxylation of styrene using 

CO2 without any proton source. Three electrode systems with a Ni cathode, Mg 

anode and Ag/Ag+ (0.01 M)/ tetrabutylammonium tetrafluoroborate (TBABF4, 0.1 

M) reference electrode were used in N,N-dimethylformamide (DMF) and TBABF4

(0.1 M) electrolyte. To investigate voltammetric behavior of styrene, linear sweep 

voltammetry scans were recorded at a 20 mV s-1 scan rate with IR compensation 

(Figure 5.2). As shown in the enlarged scans shown in Figure 5.3, observed onset 

potential of CO2 (saturated in the electrolyte) and styrene (0.1 M, in Ar-saturated 

electrolyte) are -2.6 V and -2.7 V (vs Ag/Ag+), respectively. Then, various 

concentration of styrene up to 0.2 M were added to the CO2-saturated electrolyte. 

As a result, current density gradually enhanced with the addition of styrene, while 

all the onset potentials appeared at the range between the onset potential of CO2

and styrene. This observation indicates simultaneous electrical reduction of both 

CO2 and styrene above the onset potential as was surmised in previous reports.24,26

However, the increase of current density reached saturation in the case of styrene 

concentration above 0.1 M, which may originate from saturated active sites on the 

surface in the presence of abundant styrene. Therefore, the concentration of styrene 

was fixed to 0.1 M in the following analysis. 

The effect of protons on styrene carboxylation was investigated by adding 

various concentrations of water. First, linear sweep voltammetry scans were 

recorded by enhancing the water concentrations up to 0.4 M at a 20 mV s-1 scan 
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rate with IR compensation as shown in Figure. 5.4. The onset potential was 

observed at identical potential until the water concentration increased to 0.05 M 

and shifted to positive direction at higher water concentrations above 0.1 M. Also, 

as shown in the enlarged cyclic voltammetry scan with 0.1 M H2O (Figure 5.5), 

new reduction current of ~0.2 mA cm-2 was observed from the applied potential of 

-1.7 V (vs Ag/Ag+). These results indicate the occurrence of a new reduction 

reaction in the presence of water which turned out to be a hydrogen evolution 

reaction (HER), as will be discussed later. Moreover, enhanced charging current 

was observed in the case of adding 0.1 M H2O, but the current level was still 

smaller than 0.4 mA cm-2 before the onset potential. This shows possible double 

layer effect of proton source in the electrolyte while the effectiveness may not 

significant considering the small current level. To determine the rate-determining 

step (RDS), Tafel slopes were measured for the cases of 0, 0.05 and 0.1 M water, 

where a negligible shift of the onset potentials was observed (Figure 5.6). The 

currents were obtained from the partial current density of carboxylation reaction 

calculated by faradaic efficiency of carboxylic acid products. The measured slope 

value was between 113 and 120 mV dec-1, which suggests that one electron is 

involved in the RDS.35 As a result, we thought that the formation of CO2
•- or 

[Styrene]•- could correspond to the RDS.

For the electrochemical electrolysis, 20 C of charge was passed under 

constant negative potential. The current density of 10 mA cm-2 was stably 

maintained during electrolysis for ~2000 s, as shown in Figure 5.7. The 

carboxylate products were acidified with HCl (2 M), extracted with ether and 

isolated after solvent distillation. The final carboxylic acids were characterized 
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using proton nuclear magnetic resonance spectroscopy (1H NMR, 400 MHz, 

DMSO-d6). The 1H NMR spectra clearly showed the change in peak intensity of 1

and 2 by adding water (Figure 5.8). The observed 1H NMR spectra of electrolyte 

also showed the peak of residual styrene, DMSO-d6, DMF and water, but no other 

peaks of by products such as polymerized or reduced styrenes are detected. Along 

with the carboxylic acids in the electrolyte, the gas products from the headspace of 

the reactor, such as hydrogen, carbon monoxide and methane, were analyzed by 

gas chromatography (GC).

Based on the 1H NMR and GC results, the yields of each product from the 

styrene carboxylation were obtained based on faradaic efficiency (FE) in the 

presence of different amounts of water (Figure 5.9 and Table 5.1). Among acid 

products, the selectivity of 2 to 1 dramatically increased from 3% to 96% as the 

water concentration increased from 0 M (Table 5.1, entry 1) to 1 M (Table 5.1, 

entry 11). This result clearly shows a change in the carboxylation pathway from 

dicarboxylation to β-hydrocarboxylation. However, in terms of product yield, the 

maximum FE of 2 was obtained at 0.1 M water which is 1 equivalent relative to 

styrene (65%, Table 5.1, entry 5) and gradually decreased to 47% when water was 

added up to 1 M (Table 5.1, entry 11). This decline in β-hydrocarboxylation can be 

explained by the increasing gas production. In particular, FE of hydrogen 

significantly increased from 3.2% to 15% as the water concentration increased 

from 0.1 M to 0.2 M (Table 5.1, entries 5 and 7) and even increased up to 44% at 1 

M water (Table 5.1, entry 11). Among the CO2 reduction reactions, the production 

of CH4 gradually increased, exhibiting a maximum FE of 6.7% in 0.3 M water 

(Table 5.1, entry 8). The result indicates that excess water above 0.1 M (1 
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equivalent relative to styrene) in the electrolyte is used mostly in the HER and 

partially in CH4 production. This increase in gas production also corresponds to the 

positive shift of the onset potential in voltammetry scans at water concentrations 

above 0.1 M. Consequently, it is clearly evident that the amount of water present in 

the reaction system is crucial in controlling both the selectivity and reactivity in the 

carboxylation of styrene.

In addition, the effect of water acidity on the product selectivity was 

investigated by using diluted HCl. In detail, the equivalent amount of 2 M HCl in 

terms of protons was used instead of 0.05 M and 0.1 M neutral water, which was 

expected to enhance the free proton concentrations to pH 2.74 and 2.44, 

respectively (Table. 5.1, entries 4 and 6). The selectivity of 2 was slightly 

enhanced in both cases using HCl, which were comparable to the cases that used a 

twofold amount of neutral water. 

The effect of electrode catalyst was investigated by using Ti and Pt as 

cathode. For the electrochemical analysis, linear sweep voltammetry scans were 

recorded with 0, 0.05 M, 0.1 M and 0.4 M water at a 20 mV s-1 scan rate in CO2-

saturated DMF and TBABF4 (0.1 M) electrolyte under an atmosphere of CO2

(Figure 5.10 (a) and (b)). In both cases, the onset potentials shifted positively by 

adding water. Especially, on a Pt electrode, current from HER at -1.7 V (vs Ag/Ag+) 

was largely appeared compared to Ti and Ni electrodes. The acids and gas products 

from the styrene carboxylation using Ti and Pt electrode were also detected under 

the same electrolysis condition which was used in the case of Ni electrode in Fig.3. 

The calculated FE values of products using Ti and Pt electrode are shown in Figure 

5.10 (c) and (d). In both cases, the change tendency of products under 0 M to 0.4 
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M water was analogous to the case of Ni electrode, where the yield of 1 decreased 

while that of 2 and HER increased by adding water. However, compared to a Ni 

electrode, both cases showed smaller yield of 2 in the presence of water, due to the 

rapid enhancement of HER and slower shift of selectivity towards 2 to 1. As also 

observed in the voltammetry scan, Pt electrode showed the highest activity for 

HER where the FE of hydrogen reached to 38% and 61% at 0.1 M and 0.4 M water 

while the maximum yield of 2 was only 29% at 0.4 M water. On a Ti electrode, the 

HER were observed by FE of 18% and 40% at 0.1 M and 0.4 M water and 

maximum yield of 2 was 44% at 0.1 M water. Consequently, Ni electrode turned 

out to be the best catalyst for β-hydrocarboxylation of styrene among these metals.

Various protic solvents with increasing pKa value were also used instead 

of water to explore the effect of proton sources on the selectivity towards 2 (Table 

5.2). Based on the result that high concentration and acidity of water enhanced 

selectivity towards 2, we employed various alcohols and carboxylic acids to 

investigate the effect of acidity of protic solvents on product selectivity. However, 

regardless of the pKa value, all the protic solvents resulted in reduced selectivity 

towards 2 compared to the case using same amount of water. Moreover, the trend 

of carboxylation selectivity showed no clear correlation to the proton donating 

ability of protic solvents. Whereas, in the presence of strong proton donor such as 

acetic acid and phenol (Table 5.2, entry 1 and 2), yield of HER increased 

significantly compared to the case using water. Because this reaction occurs on 

heterogeneously catalyzed condition, we think that intrinsic proton donating ability 

of protic solvent does not determine the overall selectivity during the reaction. 

Instead, binding affinity to electrode may influence the reaction pathway, as we 
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proved the effect of metal electrodes on the carboxylation selectivity. Consequently, 

among the protic solvents examined here, it was confirmed that water was the most 

favorable proton source for the β-hydrocarboxylation of styrene under these 

synthetic conditions. 

The influence of current density was also investigated by applying various 

overpotentials (η) during the electrolysis (Table 5.3). To evaluate β-

hydrocarboxylation activity, the turnover frequency (TOF) was calculated. When 

the current density was below 5 mA cm-2, the HER was mainly observed because 

of the insufficient overpotentials for carboxylation to be favored dominantly over 

the HER. When overpotential was increased to 220 mV, a dramatic enhancement of 

the acid products was observed, yielding 91% along with a high TOF of 10 s-1

(Table 5.3, entry 3). The TOF further reached 38 s-1 at a 660 mV overpotential 

(Table 5.3, entry 5) along with the negligible change in the selectivity between 1

and 2.

After optimizing the reaction condition for the β-hydrocarboxylation of 

styrene, the substrate generality of this electrochemical protocol was investigated. 

The condition that exhibited maximum yield of 2 using 1 equivalent water was 

utilized for the reactions. First, cathodic linear sweep voltammetry was measured at 

50 mV s-1 to evaluate reduction activities as shown in Figure 5.11. Compared to 

styrene, electron-donating substituents such as methoxy group on styrene induced 

positively shifted onset potential while electron-neutral and electron-withdrawing 

styrenes possessed comparable or positively shifted onset potentials. Basis on the 

electrochemical analysis, we conducted electrochemical carboxylation of styrene 

derivatives with 0.1 M water (Figure 5.12). The β-hydrocarboxylation reaction 
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tolerated electron-donating (2a) and electron-neutral (2b) styrenes in good yields, 

and halogen-substituted styrene (2c-e) with moderate yields. Notably, in case of 2e

and 2f, 4-vinylbenzoic acid (3) was synthesized as a result of substitution of 

chlorine or trifluoromethyl group with CO2, as was also reported in previous study 

on electrochemical carboxylation.26 This may be due to the preferable reduction 

activity of the substituents to the vinyl group. Basis on the investigations, we think 

that the strong electron withdrawing group attached with benzene ring is easily 

substituted by CO2 instead of CO2 insertion on the vinyl group, while electron-

donating and electron-neutral group provides moderate to good yields towards β-

hydrocarboxylation.

To verify whether the proton used in β-hydrocarboxylation comes from 

water, a deuterium labeling experiment was conducted by fully replacing water 

with deuterium oxide (D2O). In the 1H NMR spectra, D-labeled 2 was observed 

with 80% deuterium incorporation at the benzylic carbon site as shown in Figure 

5.13. Moreover, carboxylic acid products were methylated and observed in gas 

chromatography-mass spectrometry (GC-MS). In the mass spectrum, the ion peak 

(M+) of D-labeled methyl-3-phenylpropanoate showed a mass shift of 1 from m/z 

164 to 165, which corresponds to labeling with one deuterium atom (Figure 5.14). 

Also, four molecular fragments of D-labeled methyl-3-phenylpropanoate (m/z 78, 

92, 105 and 134) showed a mass shift of 1. The only carbon position that these four 

fragments commonly contain is the benzylic carbon which indicates that deuterium 

labeling has been carried out at this site. Therefore, basis on the result from both 1H 

NMR and GC-MS, we clearly verified that the protonation occurs at a benzylic 

position by using a proton of water. 
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After verifying the proton participation in this β-hydrocarboxylation, 

electrokinetic study was investigated by using D2O as a proton source. In particular, 

the influence of the protonation step on the overall electrochemical carboxylation 

of styrene was explored in terms of kinetics. First we recorded cyclic voltammetry 

scans of the electrochemical carboxylation of styrene (0.1 M) with 0.025 M and 0.1 

M D2O or H2O. At these proton source concentrations, the selectivity of 

carboxylation over gas production was above 94%, which could avoid the 

contribution of other unwanted proton-involved reactions such as the HER. As 

shown in Figure 5.15, no difference was observed in the voltammetric curves 

between the cases using H2O and D2O. This result indicates that a protonation step 

has no effect on electrokinetics of the carboxylation and proton is not involved in 

the RDS of this electrochemical carboxylation. In addition, we calculated the yield 

of acid products from the carboxylation and found out that total FE of acids (1 + 2) 

were only slightly changed from 88% to 85% (entry 2, Table 5.4) and 91% to 86% 

(entry 4, Table 5.4). This correlates with the result of cyclic voltammetry scan 

which shows the overall carboxylation is kinetically independent to H/D exchange. 

However, at the same time, the selectivity of β-hydrocarboxylation towards 

dicarboxylation significantly decreased when D2O was used. As a result, the FE of 

2 were reduced in the D-labeled cases, from 33% to 20% (entry 2, Table 5.4) and 

65% to 44% (entry 4, Table 5.4), respectively. This result implies that these two

carboxylation pathways are in competition with each other and that the capability 

of protonation largely contributes to tuning the selectivity between pathways.

Based on our collective results, we proposed a reaction pathway for 

electrochemical β-hydrocarboxylation of styrene in the presence of small amount 
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of water as illustrated in Figure 5.16. First, styrene and CO2 form a β-carboxylate 

radical intermediate by accepting one electron. This electrical reduction step is the 

RDS as confirmed by the Tafel analysis and electrokinetic study. From the result 

that the reduction current has gradually increased by adding reactants, it can be 

presumed that styrene and CO2 simultaneously undergo reduction reaction at the 

applied potential. In terms of onset potential, CO2 reduction reaction showed more 

positive onset potential (-2.6 V vs Ag/Ag+) compared to the styrene reduction 

reaction (-2.7 V vs Ag/Ag+) by 100 mV. However, under the reaction condition 

used here which applies at least 220 mV overpotential, it is still ambiguous to 

decide the dominant pathway between these two reactions. Because the reduction 

potential of benzylic radicals are positioned at more positive range than the onset 

potential (between -1.82 to -0.71 V vs SCE, in acetonitrile),39 the β-carboxylate 

radical intermediate could be reduced to β-carboxylate anion. This would avoid 

unwanted reaction among styrene radicals and result in the absence of polymerized 

or reduced styrenes during the reaction. Next, protonation takes place at a benzylic 

position by using a proton, as proved by deuterium labeling analysis, and this 

protonation leads the reaction to produce 2 via the β-hydrocarboxylation pathway. 

The dicarboxylation pathway can be explained by the additional incorporation of 

CO2 into the benzylic position of the β-carboxylate anion intermediate.

Consequently, the competition between the protonation and CO2 incorporation on 

the benzylic position determines the final selectivity of this electrochemical 

carboxylation.
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Figure 5.2. Cathodic linear sweep voltammetry data of different concentrations of 

styrene (0 to 0.2 M) at 20 mV s-1. The measurements were conducted on a Ni 

electrode in CO2-saturated DMF and TBABF4 (0.1 M) electrolyte at room 

temperature and 1 atm CO2. 
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Figure 5.3. Cathodic linear sweep voltammetry data of CO2-saturated electrolyte 

under 1 atm CO2 and 0.1 M styrene in Ar-saturated electrolyte under 1 atm Ar at 20 

mV s-1. The measurements were conducted on a Ni electrode in DMF and TBABF4

(0.1 M) electrolyte at room temperature.
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Figure 5.4. Cathodic linear sweep voltammetry data of 0.1 M styrene with various 

concentrations of H2O (0 to 0.4 M) at 20 mV s-1. The measurements were 

conducted on a Ni electrode in CO2-saturated DMF and TBABF4 (0.1 M) 

electrolyte at room temperature and 1 atm CO2. 
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Figure 5.5. Cyclic voltammetry data of 0.1 M styrene without and with 0.1 M H2O 

in CO2-saturated electrolyte under 1 atm CO2 at 20 mV s-1. The measurements were 

conducted on a Ni electrode in DMF and TBABF4 (0.1 M) electrolyte at room 

temperature.
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Figure 5.6. Tafel plots from voltammetric measurements of 0.1 M styrene in the 

presence of 0, 0.05 and 0.1 M H2O. Current densities are calculated from the partial 

current densities of carboxylation of styrene.
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Figure 5.7. Bulk electrolysis of styrene (0.1 M) with different amounts of water. 

The electrolysis was conducted on the Ni electrode in CO2-saturated DMF and 

TBABF4 (0.1 M) electrolyte at room temperature and under 1 atm CO2. The current 

density was 10 mA cm-2, and the total charge of 20 C was passed for approximately 

2000 s. 
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Figure 5.8. 1H NMR spectra of acid products 1 and 2 from the electrolyte after 

electrochemical carboxylation (400 MHz, DMSO-d6). Peaks depicted as H1a, H1b

and H1c refer to protons of 1 and H2a and H2b refer to protons of 2. Residual solvent 

peaks from water, DMF and DMSO-d6 were also detected. The electrochemical 

carboxylation of styrene (0.1 M) was conducted on Ni electrode in CO2 saturated 

DMF and TBABF4 (0.1 M) electrolyte with j = 10 mA cm-2, charge passed = 20 C, 

room temperature and 1 atm CO2 in the presence of (a) 0.025 M (b) 0.05 M and (c) 

0.1 M H2O. 
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Figure 5.9. Faradaic efficiency (%) of products from electrochemical 

carboxylation of styrene. Electrolysis was conducted with 0.1 M electrolyte were 

acidified with HCl (2 M) and extracted with ether for 1H NMR detection (1 and 2). 

The gas products (H2, CO and CH4) in the reactor headspace were detected by gas 

chromatography.
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Table 5.1. Product yields from the electrochemical carboxylation of styrene*.

entry
Proton additive 

(equiv.)

FE of acids (%)
†

1 : 2

FE of gas products  

(%)
‡

1 2 H
2 CO CH

4

1 - 89 3.2 97 : 3 0.5 0.8 0.2

2 H
2
O (0.25) 55 33 62 : 38 2.6 0.8 1.3

3 H
2
O (0.5) 28 59 35 : 65 2.4 0.1 0.6

4 2 M HCl (0.5) 27 61 31 : 69 2.7 0.3 0.4

5 H
2
O (1) 26 65 29 : 71 3.2 0.4 0.4

6 2 M HCl (1) 20 68 23 : 77 4.5 0.3 0.6

7 H
2
O (2) 15 61 20 : 80 15 0.3 2.0

8 H
2
O (3) 9.5 61 14 : 86 17 0.7 6.7

9 H
2
O (4) 11 52 17 : 83 30 0.5 3.2

10 H
2
O (6) 3.5 58 6 : 94 28 0.6 4.8

11 H
2
O (10) 1.8 47 4 : 96 44 0.9 0.3

*Reaction conditions : Styrene (0.1 M) in DMF and TBABF4 (0.1 M), Ni cathode, 

Mg anode, j = 10 mA cm-2, charge passed = 20 C, room temperature and PCO2 = 1 

atm. 

†Yields were determined by 1H NMR after acidification with HCl (2 M) and ether 

extraction. 

‡Yields were determined by gas chromatography after electrolysis.

FE, Faradaic efficiency; 1, 2-phenylsuccinic acid; 2, hydrocinnamic acid.
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Figure 5.10. Effect of cathode electrodes. The electrochemical measurements and 

electrolysis were conducted in CO2-saturated DMF and TBABF4 (0.1 M) 

electrolyte with various concentrations of H2O (0 to 0.4 M) at room temperature 

and 1 atm CO2. Cathodic linear sweep voltammetry data of 0.1 M styrene at 20 mV 

s-1 on (a) Ti electrode and (b) Pt electrode. Faradaic efficiency (%) of products 

from electrochemical carboxylation of 0.1 M styrene on (c) Ti electrode and (d) Pt 

electrode. Electrolysis was conducted with j = 10 mA cm-2 and charge passed = 20 

C.
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Table 5.2. Effect of proton source type on the electrochemical carboxylation of 

styrene*.

entry
Proton

additive (R-)
pKa

†

FE of acids 

(%)‡
1 : 2

FE of gas 

products (%)§

1 2 H2 CO CH4

1
Acetic acid 

(CH3CO-)
12.6 36 1 0.3 77 : 23 70 0.9 1.1

2
Phenol

(C6H5-)
16.47 37 40 19 67 : 33 17 1.2 0.2

3
Methanol

(CH3-)
29.0 38 68 5 93 : 7 1 0.9 0.1

4
tert-Butanol 

((CH3)3C-)
32.2 38 53 23 69 : 31 4 0.7 0.4

*Reaction conditions : Styrene (0.1 M) with proton additives (R-OH, 0.1 M) in 

DMF and TBABF4 (0.1 M), Ni cathode, Mg anode, j = 10 mA cm-2, charge passed 

= 20 C, room temperature and PCO2 = 1 atm. 

†pKa values in dimethyl sulfoxide are given based on the referred literature.

‡Yields were determined by 1H NMR after acidification with HCl (2 M) and ether 

extraction. 

§Yields were determined by gas chromatography after electrolysis.

FE, Faradaic efficiency; 1, 2-phenylsuccinic acid; 2, hydrocinnamic acid.
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Table 5.3. Influence of current density on electrochemical carboxylation of 

styrene*.

entry

j

(mA 

cm
-2

)

η

(mV)

TOF
†

(s
-1

)

FE of 

acids (%)‡
1 : 2

FE of gas 

products (%)§

1 2 H2 CO CH4

1 2 100 0.018 0.3 0.6 31 : 69 37 1.4 0.5

2 5 170 0.85 9 11 46 : 54 36 1 0.3

3 10 220 10 26 65 29 : 71 3 0.4 0.1

4 35 450 34 22 63 26 : 74 5 1.2 0.3

5 50 660 38 19 50 28 : 72 3 0.6 0.2

*Reaction conditions : Styrene (0.1 M) with H2O (0.1 M) DMF and TBABF4 (0.1 

M), Ni cathode, Mg anode, charge passed = 20 C, room temperature and PCO2 = 1 

atm. 

†TOF of β-hydrocarboxylation based on the FE of 2

‡ Yields were determined by 1H NMR after acidification with HCl (2 M) and ether 

extraction.

§ Yields were determined by gas chromatography after electrolysis.

TOF, turnover frequency; FE, faradaic efficiency; 1, 2-phenylsuccinic acid; 2, 

hydrocinnamic acid.
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Figure 5.11. Cathodic linear sweep voltammetry data of 0.1 M styrene derivatives 

with 0.1 M H2O at 50 mV s-1. The electrochemical carboxylation of styrene 

derivatives (0.1 M) was conducted on Ni electrode in CO2 saturated DMF and 

TBABF4 (0.1 M) electrolyte, room temperature and PCO2 = 1 atm in the presence of 

0.1 M H2O. 
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Figure 5.12. Scope of styrene derivatives for electrochemical β-

hydrocarboxylation. The electrochemical carboxylation of styrene derivatives (0.1 

M) was conducted on Ni electrode in CO2 saturated DMF and TBABF4 (0.1 M) 

electrolyte with j = 10 mA cm-2, charge passed = 20 C, room temperature and PCO2

= 1 atm in the presence of 0.1 M H2O.
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Figure 5.13. NMR results of the deuterium-labeled hydrocinnamic acid (400 MHz, 

CDCl3). 
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Figure 5.14. Gas chromatography-mass spectrometry (GC-MS) results from 

deuterium labeling experiments using D2O. The mass spectra of (a) deuterium 

labeled methyl-3-phenylpropanoate obtained from the case using D2O and (b) 

methyl-3-phenylpropanoate from the case using H2O are shown. Electrochemical 

carboxylation of styrene (0.1 M) was conducted on a Ni electrode in CO2-saturated 

DMF and TBABF4 (0.1 M) electrolyte with j = 10 mA cm-2, charge passed = 20 C, 

room temperature and PCO2 = 1 atm. The molecular ion peaks ([M+]) of deuterium 

labeled methyl-3-phenylpropanoate and methyl-3-phenylpropanoate were observed 

at m/z 165 and 164, respectively.
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Figure 5.15. Cyclic voltammetry scans of styrene (0.1 M) at 0.1 V s-1 with H2O 

(0.1 M) / D2O (0.1 M) / H2O (0.025 M) / D2O (0.025 M). The electrolysis was 

conducted on a Ni electrode in CO2-saturated DMF and TBABF4 (0.1 M) 

electrolyte at room temperature and under 1 atm CO2.
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Table 5.4. Effect of deuterium labeled proton source on the product yield of the 

electrochemical carboxylation of styrene*.

entry
Proton additive

(equiv.)

FE of acids (%)†

1 : 2

FE of Gas Products 

(%)‡

1 2 H2 CO CH4

1
0.025 M H2O 

(0.25)
55 33 62 : 38 2.6 0.8 1.3

2
0.025 M D2O 

(0.25)
65 20 76 : 24 3.7 0.8 0.3

3 0.1 M H2O (1) 26 65 29 : 71 3.2 0.4 0.3

4 0.1 M D2O (1) 42 44 49 : 51 4.4 0.9 0.4

*Reaction conditions : Styrene (0.1 M) with proton additives (H2O or D2O) in 

DMF and TBABF4 (0.1 M), Ni cathode, Mg anode, j = 10 mA cm-2, charge passed 

= 20 C, room temperature and PCO2 = 1 atm. 

†Yields were determined by 1H NMR after acidification with HCl (2 M) and ether 

extraction. 

‡Yields were determined by gas chromatography after electrolysis.

equiv., equivalent; FE, Faradaic efficiency; 1, 2-phenylsuccinic acid; 2, 

hydrocinnamic acid.
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Figure 5.16. Proposed mechanism of the electrochemical carboxylation of styrene.
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For the product characterization, we observed each products by using 

NMR and GC-MS. Reaction conditions were as follows. Electrolysis of reactant 

styrenes (0.1 M) with water (0.1 M) in 4 mL of CO2-saturated DMF and TBABF4

(0.1 M) electrolyte was conducted on a Ni cathode-Mg anode for total charge of 20 

C at room temperature and under atmospheric pressure of CO2. Then, reactants 

were treated with HCl (2 M, aq) for 3 h and extracted with diethyl ether (3 × 20 

mL). The organic layer was washed with distilled water and evaporated. The 

obtained products were re-dissolved in diethyl ether (10 mL) and extracted with of 

1 M NaOH (3 × 20 mL). The aqueous solution was washed with diethyl ether, 

acidified with HCl (2 M, aq) and extracted with diethyl ether (3 × 20 mL). The 

organic layer was washed with distilled water, dried with MgSO4, and evaporated 

to give the final product.

The resulted 1H NMR and 13C NMR spectra of 2-Phenylsuccinic acid (1), 

Hydrocinnamic acid (2), 3-(4-Methoxyphenyl)propanoic acid (2a), 3-(p-

Tolyl)propanoic acid (2b), 3-(4-Fluorophenyl)propanoic acid (2c), 3-(3-

Fluorophenyl)propanoic acid (2d), 3-(4-Chlorophenyl)propanoic acid (2e) and 4-

Vinylbenzoic acid (3) are shown in Figure 5.17 – 24.
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Figure 5.17. NMR spectra of 2-Phenylsuccinic acid.
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Figure 5.18. NMR spectra of Hydrocinnamic acid.
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Figure 5.19. NMR spectra of 3-(4-Methoxyphenyl)propanoic acid.
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Figure 5.20. NMR spectra of 3-(p-Tolyl)propanoic acid.
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Figure 5.21. NMR spectra of 3-(4-Fluorophenyl)propanoic acid.

COOH

F
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Figure 5.22. NMR spectra of 3-(3-Fluorophenyl)propanoic acid.
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Figure 5.23. NMR spectra of 3-(4-Chlorophenyl)propanoic acid.
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Figure 5.24. NMR spectra of 4-Vinylbenzoic acid.
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5.3.2 Electrochemical carboxylation of aliphatic α-olefins

After the successful demonstration of electrochemical carboxylation for 

styrene, we extended the substrate to aliphatic α-olefins. First, electrochemical 

carboxylation of aliphatic dienes were conducted. Similar as the case of styrene, 

previous studies on the electrochemical carboxylation of dienes without proton 

source reported dicarboxylation as the major pathway. Because the carbon diene 

bond exists in both substrates, we expected that the carboxylation pathway may be 

also similar in both cases as illustrated in Figure 5.25. Thus, we investigated the 

effect of water on the product selectivity.

We selected isoprene as the target substrate due to its liquid phase and 

simple chemical structure. (Figure 5.26) As we conducted electrochemical 

carboxylation on Ni foil in CO2-saturated DMF and TBABF4 (0.1 M) electrolyte, 

dicarboxylation mainly occurred by FE of 64%. Then by adding 0.1 M water, the 

selectivity of hydrocarboxylation towards dicarboxylation increased from 7% to 

35%. Basis on the result of styrene, the change of selectivity can also be explained 

by additional protonation step from water molecule. Furthermore, we also 

employed Ni foam as an electrode which is expected to have larger surface area. 

Surprisingly, the foam electrode exhibited enhanced yield of carboxylation for both 

hydrocarboxylation and dicarboxylation. When Ni foam was used, the total yield of 

carboxylation in the presence of 0.1 M water enhanced from 55% to 89%, while 

the selectivity towards hydrocarboxylation slighty reduced from 35% to 28%. The 

result indicates the foam shape of the electrode facilitates the activation of isoprene 

which may due to the large surface area that can interact with substrate.
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We additionally extended the substrate to general aliphatic α-olefins. In 

the case of styrene and diene, the substrate can be easily reduced due to the stable 

radical anion intermediate on the other unsaturated carbon site. However, in the 

case of α-olefins in the absent of diene structure, the radical anion is comparably 

unstable. 

First, 1-octene was selected as the target substrate. We conducted 

electrochemical carboxylation in CO2-saturated DMF and TBABF4 (0.1 M) 

electrolyte on Ni, Ti and Pt electrodes (Figure 5.27). As a result, we observed two 

main product, non-3-enoic acid and 2-hexylsuccinic acid. These carboxylic acids 

can be produced through the pathway illustrated in Figure 5.28. While 2-

hexylsuccinic acid is the product from dicarboxylation that occurred in the case of 

styrene and diene, reaction pathway for non-3-enoic acid is different from the 

hydrocarboxylation. During the reaction, alkene bond moved to the adjacent carbon 

and remained its form without reduction. To accomplish the shift of alkene bond, 

proton extraction step should be involved during the reaction. In the result of 

electrode screening, Ti showed the best yield towards the carboxylation while Pt 

exhibited the lowest yield. We think that the high binding energy of Ti facilitated 

the proton extraction from 1-octene and resulted in high activity. On the other hand, 

Pt has the weakest binding energy to proton, which may resulted in low selectivity 

towards the carboxylation. 

We also tested Ni foam electrode to investigate the effect of electrode 

shape. As a result, we observed increased yield of overall carboxylation reaction, 

which was also detected in the case of isoprene. This indicates clear effect of foam 

shape on the increase of carboxylation yield. Furthermore, we observed few 
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amounts of heptadecenoic acids and heptadecanoic acids in GC-MS analysis which 

may be produced from the conjugation between 1-octene and non-3-enoic acid. 

This implies that the tangled structure and large surface area of foam electrode 

enabled effective binding of hydrocarbon substrates or intermediates on the 

electrode surface so that can facilitated to undergo carboxylation and even 

conjugation between hydrocarbons with high yield (Figure 5.29). Moreover, on the 

basis of these results, we think that the reduction reaction of the hydrocarbon 

substrate on the electrode surface is necessarily required in this electrochemical 

carboxylation platform.

To further explore the effect of proton source on the carboxylation of 1-

octene, we added 0.1 M water. However, the overall yield of carboxylation 

decreased, especially for the carboxylation towards non-3-enoic acid. This 

additionally supports the claim that the carboxylation requires proton extraction 

step rather than proton insertion. 
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Figure 5.25. Proposed reaction pathway of electrochemical carboxylation of 

isoprene.
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Figure 5.26. Electrochemical carboxylation of isoprene on Ni electrode in CO2-

saturated DMF and TBABF4 (0.1 M) electrolyte.
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Figure 5.27. Electrochemical carboxylation of 1-octene on Ti, Ni and Pt electrode 

in CO2-saturated DMF and TBABF4 (0.1 M) electrolyte.
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Figure 5.28. Proposed reaction pathway of electrochemical carboxylation of 

aliphatic α-olefins.
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Figure 5.29. The scheme of carboxylation reaction on the foam electrode (left) and 

foil electrode (right). The foam structure facilitates to bind hydrocarbon substrates 

more effectively compared to the foil structure.
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5.4 Conclusion

In summary, a new electrochemical carboxylation of unsaturated 

hydrocarbon with CO2 was demonstrated. First we focused on styrene to build up 

the electrochemical platform. In the present work, β-hydrocarboxylation of styrene 

using an electrochemical platform was first demonstrated, and this process 

exhibited a superior faradaic efficiency of 65% with atmospheric CO2 and a small 

amount of water. Solely because of the addition of water, without any other 

reagents or catalysts, the reaction selectivity of styrene towards this pathway was 

enhanced up to 96%. Furthermore, from the deuterium labeling experiments, we 

revealed that a proton from water is directly used in the protonation at the benzylic 

position of styrene. In this context, we thought that providing a suitable proton 

source would change the reaction pathway of carboxylation in the desired direction 

using electrochemical methods.

To precisely explore the pathways of electrochemical reactions, the 

selectivity of products from styrene carboxylation was investigated under various 

proton source conditions. Interestingly, we discovered that dicarboxylation, β-

hydrocarboxylation and gas production reactions such as hydrogen, carbon 

monoxide and methane production are carried out competitively depending on the 

proton source. The major reaction dramatically changed from dicarboxylation to β-

hydrocarboxylation as the water concentration increased, and hydrogen production 

was notably favored over the carboxylation reaction in the presence of excess water. 

The trend in the change of selectivity also affected by electrode catalysts. Among 

the used metals, Ni electrode showed the highest selectivity towards β-

hydrocarboxylation while Pt electrode exhibited high activity for hydrogen 
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production instead of carboxylation reaction. In the case of Ni electrode, the 

maximum yield of β-hydrocarboxylation was observed when we used 1 equivalent 

of water relative to styrene. In addition to the amount, the type and acidity of 

proton sources also influenced the control of the reaction selectivity. This result 

clearly shows a pivotal role of the proton source in tuning the reaction pathway. We 

revealed that the water molecule is directly consumed as a proton source in β-

hydrocarboxylation by deuterium labeling experiments. Moreover, on the basis of 

the kinetic study, we suggested that the protonation and incorporation of CO2 on 

the benzylic position of styrene competitively occurs after the formation of the β-

carboxylate intermediate.

We also extended the substrate to aliphatic olefins to apply the 

electrochemical platform to general hydrocarbons. In the case of dienes, the site 

selectivity could be controlled between dicarboxylation and hydrocarboxylation by 

inducing protonation using water. The trend of selectivity change correlates with 

the case of styrene. While the styrene and aliphatic diene exhibited analogical 

tendency in the control of selectivity, electrochemical carboxylation of aliphatic α-

olefins occurred in different pathway. The major product was alk-3-ene-carboxylic 

acid where the selectivity enhanced in the absence of proton source. Because the 

overall reaction requires proton extraction for the intermediate step, electrodes 

having high binding energy with proton such as Ti electrode exhibited excellent 

yield for the carboxylation reaction.

We believe this study provides valuable strategies for achieving 

controllable selectivity in heterogeneously catalyzed electrochemical reactions and 

provides opportunities to use this platform in a wide range of organic syntheses.
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Furthermore, we envision that this method can be used in hybridizing the 

electrochemical reduction of CO2 and carbon fixation to long-chain hydrocarbons 

as photosynthetic carbon cycle.40, 41
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Chapter 6. Concluding remarks

In this thesis, we developed new energy harvesting and conversion 

pathway for sustainable carbon cycle. The fundamental design of system was 

inspired by natural photosynthesis, which is the only existing natural carbon 

storage pathway from the atmosphere to the ground. Through the natural pathway, 

gaseous CO2 and water molecules are converted into hydrocarbon fuel where the 

reaction is mainly driven by solar light. We developed three artificial energy 

conversion systems inspired from the discrete process during the natural 

photosynthesis: light harvesting complex, hybrid Z-scheme and electrochemical 

carboxylation platform.

The initial step of photosynthesis occurs by harvesting solar light. Here, 

photosystem proteins absorb the light and transfer the energy to the reaction center. 

Thus, the elaborate construction of light harvesting complex of photosystem 

determines the light absorption and energy transfer ability. Inspired from the 

structure of photosystem protein where the chlorophyll dye molecules are aligned 

on the peptide backbone, new artificial light harvesting complex was developed. 

First, the porphyrin molecules were conjugated on synthetic peptoid scaffold with 

precisely controlled intermolecular distance. Then, the dyes were additionally 

decorated on the gold nanoparticle template to be stably fixed on support and 

suppress the aggregation among dyes. The gold nanoparticle template also facilitate 

to analyze the energy transfer ability between dyes by amplifying the fluorescence 

of dyes due to the plasmon effect. This enabled to enhance both excitation and 
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emission of light harvesting complex and to directly measure the intramolecular 

light-energy interaction. Consequently, we succeeded to observe efficient energy 

transfer between porphyrin dyes aligned by 6Å, which is in the same range of 

intermolecular chlorophyll distance in photosystem protein.

Followed by light harvesting, electron transfer via Z-scheme takes place 

crossing over photosystem proteins. In detail, the collected light energy consumed 

in the electron excitation at the reaction center and the produced electron-hole pair 

respectively participate in NADP reduction and water oxidation reactions. The 

natural Z-scheme is composed of two photosystem proteins, PSI and PSII. The 

sequential excitation of electron through two photosystem enables to excite 

electron to high energy by using only visible light. To apply this Z-schematic 

pathway in the production of hydrogen, new hybrid Z-scheme between PSI and 

semiconductor BiVO4 were constructed. Metal particle such as Au and Ag were 

introduced to physically integrate protein and semiconductor part and facilitate the 

electron transfer between them. Each materials were selected based on the optimal 

energy level for the oxidation and reduction reaction. As a result, hydrogen was

produced from water in our hybrid Z-scheme without any redox chemical under 

visible light. Our hybrid Z-scheme exhibited 5 times higher hydrogen evolution 

efficiency compared to the previous hydrogen evolution system that used PSI and 

chemical reductant. Furthermore, the photo-reaction stably maintained its high 

efficiency over 72 h although the degradation of photo-activity of PSI is often 

reported. We believe that these exceeding activity and stability is resulted from the 

hybridized structure between the protein and semiconductor. 

The final goal of photosynthesis is to produce valuable hydrocarbon fuel. 
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This reaction is mainly driven by electrochemical power obtained from the light 

reaction and CO2 as a one-carbon building block. In the analogous manner, we 

demonstrated electrochemical carboxylation of unsaturated hydrocarbons using 

CO2 and water. The idea of CO2 insertion into unsaturated carbon bond of substrate 

was inspired from the carbon fixation process in Calvin cycle of dark reaction. In 

one circulation, one CO2 molecule binds to enediolate intermediate via 

carboxylation and form carboxylic acid group to add carbon to the substrate. This 

carboxylation reaction using CO2 has been also adopted in organic synthesis to 

make carboxylate and carboxylic acid products from hydrocarbon feedstocks. 

Previously, electrochemical carboxylation platform has received less attention than 

homogeneously catalyzed system due to the lack of strategy to control the site-

selectivity of the reaction. In this study, we firstly introduced water as proton 

source in the electrochemical reaction to induce new protonation pathway. As a 

result, we virtually observed shift of site-selectivity of styrene carboxylation from 

dicarboxylation to β-hydrocarbonxylation. The overall carboxylation resembles the 

natural carbon fixation in Calvin cycle which also uses water and CO2 as proton 

and carbon source for the production of glucose. We discovered that the water 

molecule is used as proton source during the protonation process in β-

hydrocarbonxylation by using deuterium exchange experiment. On the basis of the 

successful demonstration of electrochemical carboxylation platform using styrene, 

we extended the substrate to aliphatic α-olefins. In the case of diene, the change of 

reaction pathway was changed from dicarboxylation to hydrocarboxylation by 

adding water which is similar trend with the case of styrene. However, α-olefins 

without diene bond exhibited different carboxylation pathway where alk-3-enoic 



223

acids were mainly produced. Furthermore, we investigated the effect of electrode 

structure by using foam electrode instead of foil electrode. As a result, higher yield 

towards carboxylation was observed on foam electrode. This indicates that the 

tangled structure and large surface area of the foam structure can enable to bind 

hydrocarbons on the surface strongly so that can undergo further reaction 

effectively for long-hydrocarbons. We envision that this work will aid to practically 

use electrochemical platform in carboxylation reaction to produce valuable long-

hydrocarbon fuels.

In conclusion, we demonstrated energy harvesting and conversion 

pathway from solar energy to hydrocarbon fuel. The demonstrated artificial 

systems were respectively inspired from the sequential energy conversion steps in 

natural photosynthesis. We envision that new sustainable carbon cycle can be 

finally realized by integrating the light-catalytic part and electrochemical CO2

conversion part into one successive system.
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국문 초록

자연계의 모든 자유에너지들은 태양에너지로부터 얻어지며 이는

광합성을 통해 흡수된다. 매년 4.2×1017 kJ 의 에너지가 광합성을 통해

흡수되며 이는 물과 이산화탄소를 산소와 포도당으로 전환하는데

사용된다. 이러한 과정을 통해 대기중의 이산화탄소는 지상에서

탄소화합물을 형성하는 구성 요소로 사용되며, 이로 인해 지구상의 탄소

순환이 그 균형을 유지할 수 있다. 그러나 인류의 산업 시대 이후

무분별한 화석 연료의 사용은 대기 중으로 과량의 탄소를 배출시켰으며

이는 지구 탄소 순환을 깨뜨리는 결과를 야기하였다. 따라서 이를

해소하기 위해서는 새로운 인공적인 탄소 고정 경로가 개발되어야 한다. 

본 학위 연구에서는 자연계의 광합성을 모델로 한 인공 에너지 전환

시스템을 개발하였다. 각각의 시스템은 광합성에서 연속적으로 일어나는

에너지 전환 과정들, 빛 에너지의 흡수 / 전자 전달 / 탄소의 고정, 을

모사하였다.

자연계가 이미 정교한 디자인과 훌륭한 기능들을 보유하고

있음에도 불구하고, 이를 인공 장치에 적용하기 위해서는 개선이

필요하다. 먼저 단백질과 같이 안정성이 떨어지는 생체 재료들을

보완하기 위해 안정한 합성 물질들을 추가적인 지지체 혹은 대체제로

사용해야 한다. 또한 광합성 반응에 의해 생성된 에너지 혹은 연료는
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유기물의 신진대사가 아닌 엔진을 작동시키는데 사용될 수 있어야 한다.

본 학위 연구에서는 이들을 해결하기 위한 새로운 전략을 세우기 위해

먼저 인공광합성 개발에 대한 선행 연구들을 조사하였다. Chapter 2 

에서는 지금까지 연구되었던 인공적인 광합성 시스템들인 인공

집광복합체 개발, 인공 전자전달계 개발, 전기화학적 이산화탄소 고정에

대해 다루었다. 선행 연구들로부터 얻은 교훈을 발판 삼아 본 학위

연구에서는 유용한 연료 개발을 위한 세 가지의 에너지 전환 경로를

개발하였다. 

광합성은 광활성 단백질인 광계가 태양빛을 흡수하며 그 반응이

개시된다. 광계는 집광복합체와 반응중심체로 그 구조가 이루어지며, 

집광복합체는 태양빛을 흡수하고 흡수된 광 에너지를 반응중심체로

전달하는 역할을 수행한다. 이때, 색소 분자들의 효율적인 배열이 전체

집광복합체의 광-흡수, 광-에너지 전달 특성을 좌우하게 된다. 본 학위

연구에서는 이러한 광계 내의 정교한 색소 분자 배열을 모사하여

포르피린 색소 분자를 기반으로 하고 금 나노입자를 지지체로 사용한

인공 집광복합체를 개발하였다. 이때 색소 분자들 간의 배열을 정밀하게

조절하기 위해 펩토이드를 사용하여 나노 입자의 가지 지지체로

사용하였다. 포르피린 분자들 간의 거리는 6 Å 에서 12 Å 으로

조절하였으며 이는 실제 광계 단백질에서 엽록소 분자들이 배열되어

있는 거리와 같은 범위이다. 더불어 금 나노입자의 플라즈몬 효과로

인해 색소 분자의 형광을 증폭시킬 수 있다. 그 결과, 색소의 형광



226

신호가 최대 20배까지 증가하였으며 이로써 집광복합체의 광특성을 더욱

정밀하게 분석할 수 있었다. 구체적으로, 서로 다른 색소 분자의

배열로부터 구분되는 형광 스펙트럼이 얻어졌다. 이는 본 연구에서

개발된 집광복합체가 색소 집합체의 분자간 에너지 전달 특성을 조사할

수 있는 플랫폼으로 사용될 수 있음을 보여준다.

빛 흡수에 의해 모아진 광-에너지는 반응 중심체에서 전자를

여기시키는 과정에 사용된다. 여기된 전자는 두 개의 광계로 이루어진

Z-체계의 전자전달계로 전달되어 광계II 에서의 물 산화반응과 광계I 

에서의 NADP 환원 반응에 참여한다. 두 번의 연속적인 전자 여기를

통해 전체 산화 환원 과정은 가시광선-적외선 영역의 작은 에너지만을

이용해 이루어진다. 인공적인 Z-체계에서는 광계를 대신하여 광활성

반응체의 역할을 대체할 수 있는 반도체 물질을 사용한다. 반도체

물질은 구현하고자 하는 산화 환원 반응과 최적 전자 전달 효율을

달성할 수 있는 에너지 준위를 고려하여 선정되고 제작된다. 본 학위

연구에서는 광계I 과 반도체 물질을 결합한 새로운 하이브리드 Z-체계를

개발하였다. 본 시스템에서는 광계I과 반도체가 금 또는 은 금속 중간체

물질로 직접 연결되어 합쳐진 구조를 이루고 있으며, 가시광선 영역의

빛을 받아 물로부터 수소를 생산한다. 이때 수소 발생 반응의 효율과

안정성은 광계I을 화학 환원제를 사용하여 수소를 생산한 경우에 비하여

모두 증가하였다. 이러한 뛰어난 활성은 안정한 반도체 물질과 단백질의

하이브리드 구조에서 기인한 것으로 보여진다.
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자연계의 광합성에서는 광반응으로부터 생산된 전기화학

에너지를 이용하여 최종적으로 이산화탄소로부터 포도당을 합성한다. 

인공적인 전기화학 장치에서 이산화탄소는 가해준 전위에 의해 환원된다. 

이로 인해, 이산화탄소는 고부가가치의 연료로 직접 전환될 수 있으며

또는 카르복실화 반응을 통해 탄화수소 반응물에 삽입 될 수 있다. 본

연구에서는 자연계의 탄소 고정 과정에서 영감을 받아 불포화 결합이

있는 탄화수소물질에 이산화탄소를 카르복실화 시키는 전기화학적

플랫폼을 새롭게 개발하였다. 본 플랫폼에서는 광합성에서 환원을 위해

화학 환원제인 NADPH를 사용하는 것을 대체하여 직접 전기에너지를

가해 환원 반응을 진행시키고자 하였으며 이를 통해 빠르고 안정적으로

대량의 연료를 생산하고자 하였다. 결론적으로 스타이렌, 다이엔, 알파

올레핀과 같은 불포화 탄화수소 원료로부터 이산화탄소와 물을 사용하여

카르복실산 연료를 생산하였다. 이러한 전기화학 플랫폼을 통해 유용한

탄화수소 연료를 이산화탄소와 물로부터 생산하는 새로운 탄소 고정

경로를 열어줄 수 있을 것으로 기대된다.

본 학위 연구에서는 지속가능한 탄소 순환을 위해 하이브리드

형태의 에너지 전환/전달 시스템을 개발하였다. 시스템의 디자인은

자연계의 광합성에 기반하였으나, 실제 구조는 생체 유기재료와 합성

재료들을 적절히 배합한 하이브리드 구조체를 사용하여 개선된 형태로

제작하였다. 이를 통해 자연계에 비해 향상된 특성과 안정성을 가지는

시너지 효과를 확인하였다. 본 연구는 광합성을 재료과학의 관점에서
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깊이 이해할 뿐 아니라 이를 유용한 연료 생산 과정에 적용할 수 있는

방향을 제시하고 있다. 더 나아가 본 연구를 기반으로 광반응과

암반응을 결합한 진정한 인공 광합성을 개발할 수 있을 것으로 기대한다.

주요어: 인공광합성, 광합성, 물분해, 이산화탄소 전환, 탄소 순환,

전기화학

학번: 2013-20587
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