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Abstract

Functionality Assessment of the

Seismic-Damaged Lifeline Systems

under Cascading Failures

Seulbi Lee

Department of Architecture & Architectural Engineering

The Graduate School

Seoul National University

Lifeline system is a highly complex network consisting of diverse 

components that are spatially distributed and interconnected each other. As 

such, during an earthquake, it is common that the system encountered 

problems in maintaining reliable operation. Moreover, damage at a single-site 

component readily propagates to other interdependent components in same 

and different lifeline systems. In this context, many researchers have 

continued their efforts to offer useful indices to measure the degraded 

performance and to ensure the constant service supply of the lifeline systems.

The essential research perspective, thus, shifts to understanding the secondary 

disruptions in the lifeline systems and how malfunctions arise. However, 

complex inter-dependency is still made challenges in estimating the lifeline

system performance under abnormal conditions.
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Therefore, this research develops a comprehensive framework for 

functionality assessment of the seismic-damaged lifeline systems to solve the 

problems: (a) destruction due to ground shaking, (b) reduction of inflow due 

to internal/external dependency, and (c) demand fluctuation due to 

environment changes. In detail, target of estimation is divided into ground 

motion at particular site, common-cause failure, cascading failure (in terms of 

internal and external dependency), and escalating failure. In particular, this 

research use inoperability input-output model incorporating Bayesian network

(BN) and System dynamics (SD). To be specific, BN can facilitate prediction 

of the probability of the unknown event base on the input information or 

spatial path analysis in situations of data scarcity. On the other hand, SD can 

be handled demand fluctuation during an earthquake. Due to the inherent 

uncertainty in earthquake occurrences, this research conducts scenario-based 

performance assessment using the data from the 2011 Tohoku earthquake and 

the 2016 Gyeongju earthquake. The analysis results show that the operational 

state of a component is even dependent through the availability of input 

inflow from adjacent components rather than its physical damage. Moreover, 

since the actions taken immediately following an earthquake can play a 

significant role on the extent of cascading failures, this research provides 

useful information for those with a concern in the community resilience 

maintaining.

Keywords: Lifeline System; Functionality; Earthquake; Common-cause 

Failure; Cascading Failure; Resilience; Robustness; Rapidity.

Student Number: 2012-23127
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Chapter 1. Introduction

1. Research Background

Civil infrastructure systems produce and provide public services such as 

electricity, potable water, and fuel to local residents. Since such infrastructures 

consist of diverse components that are spatially distributed and physically 

interconnected each other, the systems are often encountered problems in 

maintaining reliable operation (O'Rourke 2007; Whitson and Ramirez-

Marquez 2009). When an earthquake occurs, in particular, each of the

components can be regarded as multiple hazard sources (Dueñas-Osorio and 

Kwasinski 2012) and seismic-damaged infrastructures can cause functional 

losses such as blackout (Barker and Haimes 1994). Moreover, damage at a 

single-site component readily propagates to other interdependent components 

in same and different infrastructures (McDaniels et al. 2007; Johansson and 

Hassel 2010; Dobson 2012). For example, in the wake of the 2010 Chile 

earthquake, the electric power system which serves electricity to 93% of the 

Chilean population was significantly destroyed on part of its distribution 

substations. This event resulted in the power supply delay for a week and 

simultaneously shutdown of telecommunication networks and water treatment 

plants that depends heavily on electricity (De la Llera et al. 2017). As such, a 
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component-damage-induced system disturbance commonly happens in the 

infrastructures after earthquake events. In this context, the concept of the 

lifeline system has been proposed to evaluate the performance of critical 

infrastructures during a natural disaster (O'Rourke 2007). In general, lifelines 

are grouped into six primary systems: electric power supply, transportation, 

potable water supply, sewage disposal, gas supply, and telecommunication. As 

the name implies, all of these play a key role in maintaining the daily lives of 

residents in the communities that they served. Thus, this calls for a thorough 

understanding of the seismic-behavior of the lifeline systems, including how a 

damage of individual component would propagate and how to quantify its 

effect on the whole system performance.
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1.2 Problem Description

Lifeline services are supplied via several intermediate phase to end-user 

as shown in Fig. 1-1. For example, at the water treatment plant, raw-water is 

purified into a potable level and distributed to individual customers through a 

pumping station. In addition, because both a water treatment plant and a 

pumping station need electricity to operate their equipment, an electric power 

supply system is linked with a potable water system. In this case, terms in Fig. 

1-1 are matched as follows:

� Lifeline system A and lifeline system B: a potable water system and an 

electric power system.

� Component α and component β: a water treatment plant and a pumping 

station.

� Intermediary product, final product, and a material: raw-water, potable-

water, and electricity.

In the pre-disaster period, all components are in normal operation, thus 

demand for final product equals supply (i.e., delivered final product). 

However, under a post-disaster scenario, the equilibrium of demand and 

supply is a challenging task because of the following reasons:
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Figure 1-1. Lifeline system supply chain in normal operation
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(a) Destruction due to ground shaking – each component may sustain 

different levels of damage when subjected to the same earthquake 

event according to its spatial and structural heterogeneity (Adachi and 

Ellingwood 2008; Zio and Golea 2012).

(b) Reduction of inflow due to internal/external dependency – Since 

resources for the operation of a component come through another 

interdependent component, failures of lifeline systems are not 

instantaneous, but take place in a cascade until the systems get restored 

(Barker and Haimes 2009). In other words, the ability of the system to 

withstand an earthquake have to assess as the time-varying 

performance indicator (Saydam and Dan 2011).

(c) Demand fluctuation due to environment changes – A demand for 

lifeline services varies (e.g., electricity demand increase due to the 

excessive usage of construction machinery for recovery, and 

simultaneously electricity demand decrease due to mandatory 

restriction) compared under normal conditions (Mori and Wakiyama 

2012; Egawa et al. 2013).
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Figure 1-2. Lifeline system supply chain in case of an earthquake
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In this context, many researchers have continued their efforts to estimate

the degraded performance and to ensure the constant service supply of the 

lifeline systems in the post-earthquake phase. Fragility analysis of the 

structures given ground motion is typical methods to describe the probability 

of exceeding certain damage states (American Lifelines Alliance 2001; 

Federal Emergency Management Agency 2003; Korea atomic energy research 

institute 2008). Even though these works have contributed to predict the 

component seismic behavior, in reality, cascading failure plays a decisive role 

on the system performance (Nojima and Sugito 2000).

In this regard, the research perspective shifts from physical destruction to 

the secondary functional disruptions in the lifeline systems. For example,

some researchers (Nedic et al. 2006; Qi et al. 2015) studied the patterns of 

cascading blackout in line with the electricity load growth. The standard 

procedure of these approaches are as follows: (a) particular components are 

intentionally removed in a power system, (b) once there is no power flow 

through the removed component, then a second component take over its tasks, 

(c) the power flow is self-re-routed to bypass overloads, and (d) performance 

of the system after the re-routed is evaluated. However, during an earthquake 

event, it is difficult to determine power flow directions that because multiple 

components at different origins go out of service concurrently (Dobson et al. 
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2008).

Furthermore, an operation mode of a component cannot represent binary 

state: success (100% operate) or complete failure (0% operate). Therefore, 

assessing the performance of complex lifeline system under seismic 

conditions needs to consider multiple failure states (e.g., slight, moderate, 

extensive, and complete suggested by the FEMA).

To summarize, a real-world lifeline system does not operate as an 

isolated facility and most of them are multi-state. Thus, performance 

estimation researches in the aftermath of an earthquake face the need to solve 

various uncertainty problems that come from component differences of 

structural behavior, vulnerability, and its impact on the whole system. In 

addition, certain cascade failure can be fed back into the initiating system in a 

form of the reduced inflow of production materials or demand fluctuation.
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1.3 Research Objectives and Scope

To address the above-mentioned problems, the goal of this research is to

examine how failures in the lifeline system propagate and what should be 

considered for maintaining the system performance. In particular, this 

research develops a comprehensive framework for functionality assessment of 

the seismic-damaged lifeline systems. The framework includes:

(a) Seismic ground motion prediction of a structurally specified 

component at single-site and estimation of its functionality degradation 

due to the physical destruction (i.e., common-cause failure).

(b) Internal (1st) cascading failure analysis caused by common-cause 

failures of certain components within the same lifeline system.

(c) External (2nd) cascading failure analysis caused by common-cause and 

internal cascading failures between different lifeline systems.

(d) Assessing the impact of the demand-side response that refers to the 

changes in lifeline services usage on the system performance.

Fig. 1-3 shows lifeline systems performance after an earthquake where 

F0 is the original system performance, F1 is the system performance withstand 

a given level of earthquake, t0 is the time at an earthquake occurred, t1 is the 
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time to start restoration, and t2 is the time at a new equilibrium state. In 

general, resilience of a systems (hatched area in Fig. 1-3) can be measured in 

terms of the robustness (F1 in Fig. 1-3) defined the ability to withstand a given 

level of stress without loss of performance at certain time (Norris et al. 2008) 

and the rapidity (t2 - t1 in Fig. 1-3) defined the ability to rapidly recover with 

adequate resources in a timely manner (Orabi et al. 2010). Because it is both 

important to sustain less damage and to recover in the shortest possible time, 

this research pays attention to the estimation of the robustness and the 

comparison restoration strategies effect on the rapidity. In addition, due to the 

inherent uncertainty in earthquake occurrences, this research conducts 

scenario-based damage assessment with a given magnitude and epicenter 

location.
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Figure 1-3. The concept of resilience, robustness, and rapidity

Meanwhile, some empirical researches (Krimgold et al. 2006; Holguín-

Veras and Jaller 2011) demonstrated that the requirements of lifeline service 

after a disaster were frequent in the following order: transportation, electricity, 

and drink water. Because the transportation system is a link-oriented network 

that distance to epicenter may be ambiguous, the types of lifeline systems 

considered in this research are a power supply system and a potable water 

supply system.

This research also assumed that each of three types of components in 

power and potable water system can affect the public service supply process 

as described in Fig. 1-4. Regarding this figure, electricity is generated in a 
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power plant ((a) in Fig.1-4) and transformed to utilization voltage for final 

customers through a transmission substation ((b) in Fig.1-4) and a distribution 

substation ((c) in Fig.1-4) sequentially. On the other hand, since water from a 

reservoir such as a lake is purified to potable level in water treatment plant ((d) 

in Fig.1-4), storage tank ((e) in Fig. 1-4) and pumping station ((f) in Fig.1-4) 

just distributes potable water to customers. Thus, some pumping station is 

connected to a water treatment plant directly. In practice, it is necessary to 

analyze the additional components such as water pipeline and 

transmission/distribution lines; however, these will be used as supportive 

variables for determining the network topological attributes.

Figure 1-4. Schematic diagram to illustrate service supply chain

In addition, in case of the power supply system, there are two typical 

causes of flow problem that leads to system failure: (a) physical destruction 

attributed to the external forces and (b) power imbalance that occurs when 
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electric load exceeds the internal permissible limit (Dialynas et al. 1988; 

Mosleh 1991). However, the scope of system failure analysis in this research 

is limited to physical destruction; and the outage due to over/under load is not 

discussed here. Instead, the authors assume that the electric load of each node

must remain within their capacity to minimize load imbalance problem.
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1.4 Dissertation Outline

This dissertation is organized into seven chapters – including this chapter 

for the introduction – that deal with issues on the performance of the seismic-

damaged lifeline systems. A brief description of chapters in the rest of the 

dissertation is as follows:

Chapter 2, theoretical backgrounds, examines relevant issues of the 

lifeline systems including what types of failures occur after an earthquake and 

what kinds of metrics are used to measure its performance. In-depth reviews

on current researches focused interdependent lifeline systems is also 

conducted including economic theory based approaches, network based 

approaches, and simulation modeling based approaches.

Chapter 3, a configuration of the lifeline network, explains the definition 

and several attributes of the power and the potable water supply component

that discussed in this research. In sequence, the concept of the fragility of 

single component and dependencies between components is presented 

regarding both the functional and spatial relationship. 

Chapter 4, functionality assessment framework, introduces step-by-step 

procedures for: (a) the ground motion prediction at single-site component
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under earthquake scenarios and common-cause failure analysis for each 

lifeline component given ground motions; (b) internal cascading failure 

analysis caused by dependency within a lifeline system using inoperability 

input-output model; (c) external cascading failure analysis caused by 

dependency between two different lifeline systems using Bayesian network; 

(d) impact analysis depending on the changes of the final demand using 

system dynamics.

Chapter 5, case simulation and experiment, applies the proposed 

functionality assessment framework to real-world lifeline systems. The power 

network at Tohoku region in Japan and the power and the potable water 

network at Daegu in South Korea are selected as representative events for the 

high seismicity regions and low-moderate region respectively.

Chapter 6, applications for improved resilience, proposes expected uses 

of the research results with two applications related to maintain original 

performance. In particular, identifying a critical component for operation after 

an earthquake and suggestions for restoration management are discussed. 

Chapter 7, conclusions, summarizes the overall findings, implications for 

infrastructures safety management, contributions, and limitations of this

research and presents possible directions of the future works.
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Figure 1-5. Overview of the dissertation
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Chapter 2. Theoretical Backgrounds

Lifeline systems are interdependent in multiple ways, and thus many 

researchers took into account the identification, understanding, and 

assessment of the risk factors of system performance. In this chapter, three 

types of failures that commonly occur during an earthquake is addressed. In 

addition, this research presents the similarity and distinction of these failures 

based on examples of historical disaster events. On the basis of failure 

classifications, several system performance measurements are examined. In 

particular, this research describes the static functionality (e.g., reliability)

which is the immediately degraded performance in consequence of an 

earthquake and the dynamic functionality (e.g., robustness), the primary 

analysis target, which progressively deteriorates performance until the 

restoration phase. The last part of this chapter is literature reviews on both the

traditional theory and the recent advance methodologies. In detail, the 

outcome of previous research can be divided into three criteria: economic 

theory based approaches, network based approaches, and simulation/modeling 

based approaches. From comparing the viewpoint of such reviews, this 

research determines considerations and methodology for the functionality 

assessment regarding each type of failure.
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2.1 Types of Failures after an Earthquake

As the lifeline systems becoming more interdependent in modern society,

they have been vulnerable to human error, natural disaster, and intentional 

physical attack although operational efficiency has been improved (Ouyang 

2010; Johansson et al. 2013; Wu et al. 2016). The 2003 North American 

blackout, the 2005 Hurricane Katrina in New Orleans, the 2010 Chile 

earthquake, and the 2011 Tohoku earthquake in Japan are the example events

that demonstrated the vulnerability of lifeline systems (Araneda et al. 2010; 

Holguín-Veras and Jaller 2011; Cimellaro 2014). As such, the failures of 

components in the lifeline system generally have diverse aspects and can be 

exacerbated than the failures of isolated facilities. Therefore, from the 

perspective of a cause and development, the failures in seismic-damaged 

lifeline systems are classified into the following three types (Rinaldi et al. 

2001) and it also presented in Fig.2-1:

� A common-cause failure – it is defined as the concurrent primary 

disruptions of two or more components in lifeline systems at the same 

time because of the root problem such as an earthquake.

� A cascading failure – it is defined as the secondary disruptions of a 

component in certain lifeline system that immediately caused by the 

disruptions of another components in same or different lifeline system.
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� An escalating failure – it is defined as the secondary disruptions of a 

component in certain lifeline system that is aggravated by the 

prolonged disruptions of another components in same or different 

lifeline system.

Figure 2-1. Three types of failures in lifeline system

Destruction of the power plant through earthquake ground shaking is a 

typical common-cause failure and temporarily shutdown of power substations, 

water treatment plants, and telecommunication networks caused by electricity 

outage are cascading failures. On the other hand, escalating failures represent 

in the form of the delay in repair activities or the demand changes. Table 2-1 

presents the examples of above categorized failures when actual disaster event 

occurred. In any case, such failures are interdependent and make challenges to 

estimating lifeline system performance under abnormal conditions.
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Table 2-1. Examples of failures caused by actual disaster events

Failure Lifeline System Descriptions

Common-
cause failure

Power
� Meltdown of the Fukushima Daiichi 

nuclear power plant – 2011 Tohoku 
Earthquake (Kazama and Noda 2012).

Potable water
and wastewater

� Severe collapse of main water and 
sewage pipeline; and it took several 
weeks to re-establish services – 1985 
Mexico City Earthquake (Juarez Garcia 
2010).

Transportation
� Tilting of the bridge beam supports –

2011 Tohoku Earthquake (Kazama and 
Noda 2012).

Cascading 
failure

Power

� Shuttering of all 46 of Japan’s nuclear 
reactors due to the meltdown of the 
Fukushima Daiichi nuclear power plant 
– 2011 Tohoku Earthquake (Kazama 
and Noda 2012).

Potable water
and wastewater

� The closing of the 600 lift stations that 
pumped raw sewage in Orange County 
due to electricity distribution failure –
2004 Hurricane Charley (ALA 2006).

Telecommunica
tions

� Malfunctions of 285,000 telephone
subscribers’ lines due to loss of power 
at some telephone exchange centers –
1995 Kobe earthquake (Nojima and 
Kameda 1996).

Transportation
� Flickering of traffic signals due to the 

power outage – 1995 Kobe earthquake 
(Nojima and Kameda 1996).

Escalating 
failure

Power

� Coal-fired power plants in Florida 
stopped their operation after 7 days of 
the hurricane due to the shortage of 
coal supply in a timely manner – 2005 
Hurricane Katrina (ALA 2006).
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Potable water
and wastewater

� The SCADA system for operation of 
water treatment plants was cut off due 
to the loss of telephone services – 2010 
Chile Earthquake (Araneda et al. 
2010).

Telecommunica
tions

� Delay in telecommunication service 
repair due to the destruction of roads 
for carrying restoration crews – 2005 
Hurricane Katrina (ALA 2006).

Although all of them, common-cause, cascading and escalating failures, 

essentially have the same root-causes1, they have distinctive characteristics 

regarding initiation and mitigation (Xie et al. 2018). To be specific, the major 

initiating reason of common-cause failures are similar in several components 

(e.g., exceeding a threshold of displacement); while cascading and escalating 

failures have inconsistent reasons accordance with the components’ properties 

(e.g., overload, blackout, and shortage of production resources). For this 

reason, mitigation plans also have to establish with different considerations. 

Defense of common-cause failures, for example, is related to seismic 

reinforcement of each structure since the failures are direct consequences of a

ground shaking. However, cascading and escalating failures can be reduced 

by redundancy resolution such as adding substitutable elements, the capacity 

expansion of backup resources, and topological optimization.

                                                  
1 In this paper, the root cause is an earthquake.
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2.2 Lifeline System Performance Metric

2.2.1 Static Functionality

The set of measures which are constant or slowly varying with time are 

called static variables. In the previous literature on the lifeline systems, the 

general notion of static functionality refers to an inherent ability of a system 

to maintain performance immediately after a shock (Pant et al. 2013) and it is

in accordance with its structure types (Rose and Liao 2005).

Reliability (the opposite word of fragility or vulnerability) defined the 

ability to perform the desired function under given environments (Johansson 

et al. 2013), is primarily studied static concept in the research fields of system 

engineering. Since a reliability is interested in a structural behavior, it is 

estimated by seismic response analysis software such as HAZUS-MH (NIBS 

1999) and OpenSees (McKenna et al. 2000). In detail, a reliability measures 

the frequency of satisfaction that the system is considered as the normal state 

by counting the number of non-damaged components through a number of 

simulations with above software. Thus, a reliability is more appropriate for 

analyzing common-cause failure and reliability does not consider extreme 

events besides physical damage issues.
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Because the reliability for estimating the common-cause failure has been 

widely discussed in the literature, it can be relatively easier to obtain. In this 

research, fragility functions provided by Federal Emergency Management 

Agency (FEMA 2003) and Korea atomic energy research institute (KAERI 

2008) were considered. In particular, the functions of FEMA are developed 

based upon over 30 case studies of regional earthquake loss estimation in the 

United States. As is inherent to any estimation method, there are some 

uncertainties due to simplifications and geological characteristics; however, 

they have been calibrated by many researchers located in diverse regions such 

as Turkey (Ansal et al. 2008), China (Sai-ni et al. 2012) and Japan (Lai et al. 

2013). These functions have thus been widely used in seismic-damage 

assessment for pre-defined 6 different lifeline systems including potable water 

supply system. On the other hand, the functions of KAERI are specialized for 

the power system and modified for South Korea based on FEMA’s functions.

Detailed descriptions of two functions will be discussed in Chapter 3. 

2.2.2 Dynamic Functionality

The set of measures which are changes over time are called dynamic 

variables and the resilience is a representative of dynamic functionality for the 

lifeline systems. As described in Fig. 1-3, dimensions of the resilience can be 

divided into robustness and rapidity (Bruneau et al. 2003). 
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Robustness (the opposite word of inoperability) is referred the ability to 

withstand a given level of stress without loss of performance at certain time 

(Norris et al. 2008). Although, definitions of the reliability and the robustness 

seem to be similar, these two concepts are quite differently accepted to

researchers (Saydam and Dan 2011; Asefa et al. 2014). Firstly, unchanged 

control variables for estimation is distinguished; the former is operation 

conditions while the latter is disaster intensity. Secondly, the robustness-based 

performance measure is interested in a change of the final output not only 

structural displacement but also various supply chain uncertainty. For this 

reasons, whereas the reliability enables to measure degraded performance due 

to the common-cause failure, another two types of failures as mentioned 

above, cascading and escalating failure are the matter of the robustness.

Since the volatile characteristics of robustness, it is generally evaluated 

after the disaster with observation or statistical data (Tsuruta et al. 2008) 

despite the need of such information in the pre-disaster phase (Cats et al. 

2017). Although some of the literature (Maes et al. 2006; Koc et al. 3013) 

defined the system robustness as the minimum ratio of failure probability 

between under normal and abnormal conditions, little attention has been paid 

to quantifying the robustness with respect to cascading failures (Ferrario et al. 

2016).
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However, it is commonly seen in the literature that the robustness is a 

function of supply and demand. In this context, this research defined the 

robustness as follows: 

0

    ( )  
Robustness

F

f t
= (1)

where, 0F is original system performance level and ( )f t is system 

performance level at time t.

In case of the power supply system, for example, F0 means the amount of 

desired electricity generation to meet demand (MW/day) and ( )f t means the 

amount of available electricity distribution after a seismic event (MW/day). 

Thus, for the lifeline systems, the robustness may be the percentage of 

customers with water or electric power after an earthquake.



28

2.3 Researches on Interdependent Lifelines

2.3.1 Economic Theory based Approaches

In the early stage of an earthquake engineering, lifeline system damage

was determined in terms of repair cost (Rose et al. 1997). In this context, the

economic theory based approach was mainstream for evaluating the regional 

impact of a catastrophic disaster event. To simplify the modeling, the main 

focus of such methods is cascading failure emerge after an interruption to the 

lifeline service supply from adjacent components.

A notable researches in this field, for example, is inoperability input-

output model (IIM) proposed by Haimes and Jiang (2001). This IIM is based 

on the original Leontief input-output model (1951) that depicts how the output 

from one business sector becomes the input to another sector given that an 

economic system consists of several interconnected components. This IIM is 

based on Leontief’s input-output model (1951) that quantifies the 

interdependencies between different business sectors. The major assumptions

of the original Leontief’s model includes: (a) an economy system consist of 

several interconnected business sectors, (b) an output produced by a business 

sector transfers to another business sector as an input, and (c) the final output 

is consumed by end-users.
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In this regard, the formulation of the IIM of a system with n components 

as follows:

  { min(1, )}  ,i ij j j

j

x a x c i j= + Û = + "åx Ax C (2)

Assuming ( )-E A is nonsingular; Eq. 2 can be solved as follows:

1( )-= - ´x E A C (3)

where x is an inoperability (which is opposite to the robustness) matrix of a 

whole system, A is a component-by-component coefficient matrix, C is a 

common-cause failure matrix of the system, and E is a unit matrix.

In the Eq. 2 and 3, inoperability is expressed as a ratio of the reduced 

component’s output compared to its initially intended output (e.g., 0ix =

under normal conditions). In addition, component-by-component coefficients, 

the core concept of the IIM, is generally determined a ratio of the input from a 

component with respect to the total input requirements of another component. 

Such coefficients is generally required extensive data collecting derived from 

the historical earthquake records (McDaniels et al. 2007; Tsuruta et al. 2008), 

however, Haimes and Jiang also present guidelines for the determination of 

correlation between two components:

� Identify physical connections between the components. If there is no 

physical connections between them, then 0ji ija a= = .
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� If a complete failure of 
thj component plays a decisive role of a 

complete failure of 
thi component, then 1ija = . By the same way, if 

a complete failure of 
thj component lead to a half failure of 

thi

component, then 0.5ija = .

� If a correlation between two components has stochastic features, then 

all possible failure scenarios must be statistically analyzed. If the 

empirical data is not sufficient, a simulation approaches may be helpful.

With pointing out the last phrase, many types of research for estimating 

extreme events derived such as the September 11 attack on the United States 

(Haimes et al. 2005), Hurricanes Katrina and Rita (Hallegatte 2008) and the 

Chile Earthquake (Dueñas-Osorio and Kwasinski 2012). For example, 

Holguín-Veras and Jaller (2012) collected information about resources 

requirements through three months after Hurricane Katrina. Then, they 

grouped the requests by industrial sectors and finally gave the insight that 

only 40 commodities (e.g., electricity, potable water, medical supports, and 

clothing) have a majority in requests, and these are supplied by an even 

smaller number of critical infrastructures. This finding is an important

foundation of the impact of lifeline systems for maintaining the community 

resilience and a worthy example incorporating IIM with statistical analysis.

However, this modeling method lacks the capability to capture the time-

varying features such as how a temporal degradation affects the system and 
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how the system recovers.

To overcome such limitations, simulation methods have been integrated 

with IIM and these allow observing the complex changes within the system 

over time (Santos et al. 2009; Xu et al. 2012). Specifically, Agent-Based 

Model (ABM) has been successfully employed due to its ability to describe 

the topological, structural, and behavioral features of a component in a system 

as well as interactions among components, each of which is represented as an 

agent2 (Santos et al. 2007; Olivia et al. 2010). In this context, it is suitable for 

observing the system that involves various interacting components and 

enables the examination of how system patterns emerge from the behaviors of 

agents in their given environment (Bulleit and Drewek 2012). Nevertheless, 

due to the economic origin of IIM, it still needs the collection of statistical 

data that have been gathered from the government or corresponding 

organizations to quantify the IIM coefficients.

To summarize, IIM facilitates estimation of the extent of cascading 

failures after a disaster. However, its effect is maximized when there are 

sufficient databases. Thus, this research combines the IIM with the network-

based and the simulation-based approaches, will be discussed in the next 

                                                  
2 Autonomous decision-making entities called agents such people, companies, 
and facilities (Barton et al. 2000).
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section.

2.3.2 Network based Approaches

Lifeline system can be modeled can be modeled as a network G (V, E), 

where V represents the set of vertexes (also called nodes) and E represents the 

set of edges (also called links) (Zio and Piccinelli 2010). Each node is 

represented as a component that has several attributes, and each link is 

represented as a physical element to connect two components at different 

locations. In addition, such a link can be computed by Dijkstra’s shortest path 

algorithms (1959), and an adjacency matrix that is a square matrix to define 

the topological structure of the network:

1    and  is phyiscally connected

0   otherwise

i j
ij

v v
l

ì
ï
í=
ï
î

(4)

Graph-theory including an above adjacency matrix is a useful

background that helped understand topology of complex lifeline network. In 

particular, for the identifying the critical component to maintain system 

function, many researchers have been observed whether the system operates 

or fails, when certain node was disconnected from the system. For example, 

reliability block diagram (RBD) which create series and parallel 

configurations to show logical interactions between components is a basic 
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graphical analysis (Guo and Yang 2007). Fig. 2-2 is an example of RBD, in 

this case, both the elimination of “a4” and “c1” means complete failure of the 

sink node.

Figure 2-2. Reliability block diagram example

In general, such methods represent the system performance as a function 

of failure events that affect its overall state: success (100% operate) or 

complete failure. However, in the post-earthquake phase, it is obvious that 

lifeline systems’ components have multiple failure states (e.g., slight, 

moderate, extensive, and complete suggested by the FEMA) not a binary state. 

For this reason, RBD has been transformed to other stochastic approaches 

such as fault tree analysis (FTA) and Bayesian network (BN). FTA has been 

proposed to identify which component is the main source of damage 

propagation through the analysis of all possible outcomes resulting from 

failure events. However, in accordance with the comparison research by
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Khakzad et al. (2011), FTA is not suitable for handling redundant common-

cause failures because it is assumed that each failure event is independent.

In the meantime, BN is a solution to predict the probability of the 

unknown event or to update the probability of the evidence event through the 

consideration of failure propagation. In addition, BN is useful in situations of 

data scarcity like earthquake engineering areas that historical observed data 

are rarely available. Due to the ability of BN to express uncertainty using the 

rules of conditional probability and to examine the extent of cascading 

failures, it has been applied to quantify the seismic risk at major 

infrastructures such as transportation (Bensi et al. 2009), power transmission 

(Di Giorgio and Liberati 2012) and waterway system (Wang and Yang 2018).

In detail, BN is directed acyclic graphs in which the nodes denote set of 

state variables and the arcs denote dependencies between the connected nodes 

(Pearl 1988). In the system reliability research, each node is generally 

represented as a single-site facility (e.g., substation in power system) or an 

event causing its failure (e.g., physical destruction of substation). Dependency 

is referred to as a directional relationship through which the state of a certain 

component is correlated to the state of the others (Rinaldi 2004). The 

inference approach in BN can be classified into two types: (a) forward 

analysis that is the step of computing the posterior probability based on prior 



35

probabilities of the parent nodes and their conditional dependency; (b) 

backward analysis that is the step of computing the posterior probability based 

on observed evidence to find out the cause of an interest node.

This research firstly focuses on the forward analysis, thus, the 

conditional probability distribution of random variables 1 2{ , , }nV x x x= K is 

determined as follows (Bobbio et al. 2001):

P( ) P( Parent( ))i i

i

V x x=Õ (5)

As such, most of the node in the BN is a stochastic variable that is 

probabilistically conditioned on its parent nodes, while some node can be a 

deterministic variable if it is functionally dependent on its corresponding 

parent nodes (VanDerHorn and Mahadevan 2018). Furthermore, if the 

probability prediction of an unobserved node is obtained by Eq. 5, the 

backward analysis will be accomplished with comparative ease via 

information updating.

2.3.3 Simulation / Modeling based Approaches

Even though previous works have contributed to better understanding of 

the lifeline system behavior, they mainly dealt the problems in supplier side. 
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These focused approaches may prevent practical estimation of the system 

performance because final demand is an important variables for the robustness 

estimation (see the Eq. 1). For example, Santos and Haimes (2003) confirmed 

that the inoperability of air-transport system was reduced around 10% as the 

consequence of demand reduction (e.g., travel) after the September 11 attacks

in the United States. Thus, decision-making process for reliable operation of 

the lifeline system must include the systematic consideration of a demand-side 

response3 (Albadi and El-Saadany 2008).

Simulation modeling is a complementary tools for estimating impact of 

such demand changes on system performance. In addition, since the inherent 

uncertainty and the data-scarcity in earthquake loss estimation, simulation 

modeling based approaches have been widely performed. They generally have 

been developed based on other theoretical researches such as agent-based IIM

described above. Aspen Electricity Enhancement (ASPEN-EE) model

provided by Barton et al. (2000) to simulate the agents’ behavior (e.g., 

electricity usage of a household, commercial, and industry) given power 

outage scenarios is another example using ABM. However, this type of

methodology needed too many assumptions to predetermine the agent 

behavior, in particular, when the relevant data is not sufficient.
                                                  

3 In this paper, demand-side response refers to the changes in lifeline services 
usage by end-user from their normal consumption patterns in response to 
changes in the external environment conditions over time.
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Thus, this research use System dynamics (SD) specialized for capturing 

the evolutionary behavior of interconnected components by changes in supply 

and demand (Sterman 2000; Hwang et al. 2013; Hasan and Foliente 2015). In 

general, for the analysis of the lifeline systems, the stock represents quantities 

of the system output (e.g., electricity and potable water), flow represents the 

rate of productions and consumptions over time. In addition, causal-loop 

diagram (CLD) shows the cause-and-effect regarding the performance of 

lifeline system. Fig. 2-3 is a basic CLD including inoperability, functionality, 

production rate, demand, and amount of delivered as variables.

Figure 2-3. Basic CLD of lifeline system performance

Critical infrastructure protection decision support system (CIP/DSS) by 

Bush (2005) is widely known model using system dynamics to assist policy 

maker in comparing the effectiveness of alternative risk mitigation strategies. 
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However, since the model used too many variables (over 5000) related 

various infrastructures, feasibility is relatively low. In this context, this 

research develops SD model that re-establish the target subjects and levels of 

failure.

Table 2-2 summarizes the comparison of three types approaches used in 

this research regarding quantity of input data, quantification methods, target 

of analysis and time-varying features.

Table 2-2. Comparison of research approaches for lifeline system

Type
Quantity of 
input data

Quantification 
methods

Target of 
analysis

Time-
varying

Input-output 
inoperability model

Large Deterministic
Cascading 

failure
X

Bayesian network Medium Probabilistic
Cascading 

failure
O

System dynamics Medium
Semi-

quantification
Escalating 

failure
O
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2.4 Summary

In this chapter, this research classified failures into (a) a common cause 

failure is a concurrent primary disruption after an event; (b) a cascading 

failure is an instantaneous secondary disruption, and (c) an escalating failure 

is a prolonged secondary disruption. Although the essential root-cause of such 

three types of failures is an earthquake, they are different from the perspective 

of initiation and mitigation. In particular, a common-cause failure occurs 

when structural displacement exceeds a threshold, while cascading/escalating

failures happen when the upper-dependent component cannot operate 

adequately.

In this context, this research compared the current measurements for 

estimation of the lifeline system performance. In detail, the reliability is 

defined as the ability to perform the desired function immediately after an 

earthquake, and the robustness is defined as the ability to withstand a given 

level of stress without loss of performance until restoration starts. In other 

words, the reliability dealt with structural-behavior (i.e., common-cause 

failure) while the robustness is a matter of indirect and sequential damage (i.e., 

cascading and escalating failure). 

Lastly, in order to solve the uncertainty problems regarding the 
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robustness estimation, this research conducted a comprehensive review on the 

traditional and current research on interdependent lifeline systems. Although 

some implication can be drawn by previous research outcomes, it is still 

difficult to explain how a disturbance affects the system performance.

Specifically, internal dependency within a single infrastructure and the 

external dependency between two different infrastructures is generally 

evaluated after the disaster with empirical data or expert judgment despite the 

need for such information in the pre-disaster phase to prioritize decisions for 

inspection and replacements. In addition, as a result of reviews, it was noted 

that IIM is useful for analyzing how a common-cause failure at single-site

component occurs cascading failure at another component. However, the 

extent of cascading is depended on extensive data collected by field 

observations, and IIM cannot capture time-varying robustness.

Thus this research use IIM incorporates with other research methods, in 

particular, BN to overcome the former limitation and SD for the latter. To be 

specific, BN facilitates prediction of the probability of the unknown event

(e.g., cascading failure) base on the input information or spatial path analysis 

in situations of data scarcity. On the other hand, demand fluctuation during an 

earthquake is modeled based on SD, and it enables this research to understand 

truly by considering a consumer behavior as an important factor determining 

the lifeline system behavior.
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Chapter 3. Configuration of the Lifeline Network

A lifeline system can be modeled as a network consist of a set of nodes

and links. In Chapter 3, a definition and attributions of components (i.e. nodes) 

in a power supply system and a potable water supply system is defined. In 

particular, since the reliability of component is widely discussed in the 

previous literature and can be relatively easier to obtain, this chapter firstly 

presents common-cause failure estimation based fragility functions introduced 

by FEMA and KAERI. With such useful approach, this research assigns the 

operational state to each type of component to determine discrete functionality

(i.e. the ability to supply the intended output, range 0 to 100%). This value is 

transformed to continuous variables in Chapter 4.

Meanwhile, a link represents dependency between two interdependent 

components and it is also discussed in terms of functional relationship and 

spatial relationship to build up the lifeline network.
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3.1 Component Definitions

3.1.1 Power Supply System

As stated before, the components in the power supply system include

electricity generators (i.e., power plant) and deliverers (i.e., transmission and

distribution substation).

A power plant is the uppermost point of the whole electric power system 

and defined as facilities for the generation of electricity. From the viewpoint 

of seismic damage assessment, a power plant has its own static attributes such 

as types of fuels (i.e., fossil or nuclear), geographical coordinates (i.e., 

longitude and latitude) and connectivity (i.e., number of the connected 

transmission substations). As shown in Table 3-1, the “capacity” attribute 

value is also considered for the power generator in this research. This value 

indicates the maximum electric output that a power plant can produce under 

normal conditions; whereas the “generation” attribute value is the amount of 

electricity that a power plant produces over a specific period of time. In 

general, most power plants do not operate at their full capacity all the time. 

Moreover, in a post-earthquake situation, damaged power plants may 

completely shutdown for inspection and restoration (when the PGA value is 

over 0.1g in South Korea). In this context, this research assigned the 
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“operational states” of a power plant to the following four type: normal 

operation, emergency shutdown, emergency operation, and safety inspection. 

Table 3-2 shows the detailed descriptions of each state and how they match 

the states of fragility curves introduced by FEMA.

Table 3-1. Attributes of each component in power system 

Component Attributes
Units of Measure

(or Possible Values)
Static / 

Dynamic

Generator

Index given number for the node Static

Type fossil or nuclear Static

Coordinate (longitude, latitude) Static

Connectivity No. of connected nodes Static

Capacity MW Static

Generation MWh Dynamic

State See Figure 3-2 Dynamic

Deliverer

Index given number for the node Static
Type transmission or distribution Static

Coordinate (longitude, latitude) Static
Connectivity No. of connected nodes Static

Capacity No. of customer Static

Sales No. of customer Dynamic

Source Node one of the generators Dynamic

State See Figure 3-2 Dynamic

Customer

Type Residential Static

Coordinate (longitude, latitude) Static

Source Node one of the deliverer node Dynamic

State See Figure 3-2 Dynamic



45

Table 3-2. Description of each damage state for power plants

Damage 
State

Description
Functionality 

(%)

Normal 
operation

� PGA＜0.1g
� Slight damage in FEMA

100

Emergency 
shutdown

� PGA≥0.1g
� Slight/Moderate/Extensive/Complete

damage in FEMA
0

Emergency 
operation

� 0.1g≤PGA≤0.2g
� Moderate damage in FEMA

100

Safety 
inspection

� PGA≥0.2g
� Moderate/Extensive/Complete damage in 

FEMA
0

These states are determined by the extent of ground shaking (i.e., PGA); 

and the transition between certain states becomes enabled after the specified 

amount of time (i.e., inspection time or restoration time) elapses. In other 

words, a power plant’s generation capability varies depending on its 

operational states, thus this research assumed that a power plant in slight or 

moderate state can fully generate its intended output, while the functionality 

of other states is 0%. 

Power deliverers are facilities that play a role as intermediators between 

power generators and customers. Based on their functions, these can be 

classified into two types: transmission or distribution substations. 

Transmission substation takes electricity from generation plants, transform 
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and transfer it to the distribution substation; while distribution substation 

directly connects to the individual customers. These components also have 

several attribute values (details are described in Table 3-1) such as “source 

node.” This value matches one of the power generator that contains the

shortest path to the deliverers. However, this is important that the shortest 

path does not always mean minimum topological distance; rather, the lowest 

resistance. Thus, power deliverers take a source node as following steps.

(1) Find a generator which provides the shortest path.

(2) Check that following equation is satisfied for source node and sink 

node.

   i ij ix x u+ £å (6)

where, �� is present electricity transfer volume through a �th

node, ��� is present electricity transfer volume from a �th node 

to �th node, and �� is a capacity of �th node.

(3) If it is false, check the equation again with the next nearest generator.

Electricity transfer volume here is in accordance with the number of 

customers (or deliverer nodes) that are connected to the deliverer nodes (or 

generator nodes) under normal conditions, and it is called “sales” (or 

“generation”) value. The functionality of a deliverer, the ratio of “sales” to 

“capacity (which means intended sales)”, is assigned by its own “damage state” 
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and the operational state of its source node.

Figure 3-1. Fault tree of a transmission and distribution substation

For example, assuming that there is a low voltage (154kV) distribution 

substation in South Korea. In general, this type of substation consists of 4 

Bank systems connected 3 single-phase transformers as shown in Fig. 3-1.

Regarding this figure, if at least one of the transformers fails, a bank also fails 

(OR-gate); while since the relations of a substation and a bank is represented 

as AND-gate4, complete failure of a substation occurs when all transformers 

fail. In addition, the capacity of a bank is 45MVA at normal and 60MVA at 

max. Thus, although one of the banks failed due to an earthquake, a substation 

can operate with 100% functionality using the rest of three banks. However, 

the functionality is reduced to 67% when two banks failed; and a substation 

stop to operate when three or four banks failed. Detailed descriptions of each 
                                                  

4 OR-gate means logical disjunction of input events; while AND-gate means 
logical conjunction of input events in the fault-tree analysis.
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damage state for 4 bank system including 345kV and 154kV substations is 

presented in Table 3-3

Table 3-3. Description of each damage state for substations

Damage 
State

Description
Functionality 

(%)

Slight
� Failure of 1Bank or 
� Failure of min.1 max.4 transformers

100

Moderate
� Failure of 2Bank or
� Failure of min.2 max.6 transformers

100

Extensive
� Failure of 4Bank or
� Failure of min.4 max.11 transformers

67

Complete � Failure of all transformers 0

The last types of components, customers, represent the person or group 

of people who are the final users of electricity in the service area. In this 

research, customers are considered as non-vulnerable due to a lack of 

appropriate fragility curves related to their diverse building characteristics 

such as structures, materials, and height. Thus, a customer has only two states, 

in service or out of service; and these states are dependent on the damage state 

of its source node (one of the deliverer nodes) in their region.

Fig. 3-2 summarize the behavior of each component as described in this 

section. Power generators and deliverers are vulnerable to damage in the case 

of an earthquake, and they are in a certain state that can affect the customers’ 
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state. Thus, the number of customers in the normal condition state ultimately 

determine the functionality of the whole power supply system network.

Figure 3-2. Behavior of each component

3.1.2 Potable Water Supply System

Similar to the power supply system, the potable water supply system also 

divided three categories: service generator, deliverer, and customer. However, 

while deliverers in the power system transform the electricity from high-

voltage to low-voltage that can be used for customers, deliverers in the 

potable water supply system just let drinking water flows to customers.
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In detail, a water treatment plant is defined as facilities for improving the 

quality of the raw-water up to potable level. While a potable water supply 

system includes terminal reservoirs for the intake raw-water (e.g., lake or 

dam), this research assumed that a water treatment plant is a source node of 

the whole system. A “type” of water treatment plants is in accordance with a 

type of raw-water such as groundwater and surface water. In addition, since 

the operational state of a water treatment plant depends on the electricity for 

operation, it has unique attributes such as the “power source”, “power volume”

and “power availability”. The rest of attributes including “index”, 

“coordinate”, “connectivity”, and “capacity” are shown in Table 3-4; and 

“state” is assumed that same as power plant since there is little knowledge on 

seismic-behavior of water treatment plants.

Storage tanks are built of steel, concrete, or wood and they hold the 

potable water. In this context, the damage of storage tanks means that there is 

a leakage of content due to cracks in their body. Another deliverers, pumping 

stations, generally consist one or more pumps that boost water pressure for 

transmission and distribution to customers in hillsides. Thus, a damaged-

pumping station cannot supply the potable water to its point of destination.
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Table 3-4. Attributes of each component in potable water system 

Component Attributes
Units of Measure

(or Possible Values)
Static / 

Dynamic

Generator

Index given number for the node Static

Type ground water or surface water Static

Coordinate (longitude, latitude) Static

Connectivity No. of connected nodes Static

Capacity Mgd Static

Power source
index of connected power 

distribution substation
Static

Power volume kW Static

Power 
availability

kW Dynamic

Generation Mgd Dynamic

State See Figure 3-2 Dynamic

Deliverer

Index given number for the node Static
Type storage tank or pumping station Static

Coordinate (longitude, latitude) Static
Connectivity No. of connected nodes Static

Capacity No. of customer Static

Power source
index of connected power 

distribution substation
Static

Power volume kW Static

Power 
availability

kW Dynamic

Sales No. of customer Dynamic

Source Node one of the generators Dynamic

State See Figure 3-2 Dynamic

Customer

Type residential Static

Coordinate (longitude, latitude) Static

Source Node one of the deliverer node Dynamic

State See Figure 3-2 Dynamic
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In this research, the functionality of components in a potable water 

supply system was referred to the best estimate damage ratio introduced by 

FEMA (detail values are in Table 3-5).

Table 3-5. Description of each damage state for water system

Damage State
Water treatment

plat
Storage tank Pumping station

Slight 92% 80% 95%

Moderate 60% 60% 62%

Extensive 23% 20% 20%

Complete 0% 0% 0%
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3.2 Seismic Fragility of a Component

Before using the fragility functions, class of a component (e.g., building 

type and operation capacity), seismic design level (e.g., anchored / 

unanchored), and seismic response spectrum (e.g. Peak ground acceleration, 

PGA) must be determined. Table 3-6 describes the classification of lifeline 

components that analyzed in this research (as same as shown in Fig. 1-4). For 

example, water treatment plant in this paper refers to medium water treatment 

plant with capacity ranging from 50mgd to 200mgd (millions of gallons per 

day).

Table 3-6. Classification of the lifeline components

Lifeline Component Index Descriptions

Power Plant (PP) EPP3
� Medium/Large PP with anchored

(>100 MW)

Transmission 
Substation (TS)

ESS3
� Medium voltage TS with anchored 

(345kV)

Distribution 
Substation (DS)

ESS1
� Low voltage DS with anchored 

(154kV)

Water Treatment 
Plant (WTP)

PWT3
� Medium WTP with anchored

(50-200 mgd)

Storage Tank (ST) PST2 � On ground unanchored ST

Pumping Station 
(PS)

PPP1 � Small PS with anchored (<10 mgd)
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Meanwhile, each component has own damage state including normal 

(ds1), slight (ds2), moderate (ds3), extensive (ds4), and complete (ds5). The 

fragility curves represented lognormal distribution provides the probability of 

exceeding such damage states. Table 3-7 displays discrete damage state 

probabilities in the form of means and standard deviation of PGA (unit: g, 

acceleration of gravity, 9.8m/sec2) for each component types.

Table 3-7. Fragility functions for lifeline components

Index
Damage 

State

PGA (g)
Index

PGA (g)

Median β* Median β*

EPP3

Slight 0.1 0.6

PWT3

0.37 0.40 

Moderate 0.25 0.6 0.52 0.40 

Extensive 0.52 0.55 0.73 0.50 

Complete 0.92 0.55 1.28 0.50 

ESS3

Slight 0.20 0.60 

PST2

0.18 0.60 

Moderate 0.28 0.50 0.42 0.70 

Extensive 0.39 0.40 0.70 0.55 

Complete 0.71 0.40 1.04 0.60 

ESS1

Slight 0.31 0.70 

PPP1

0.15 0.75 

Moderate 0.37 0.55 0.36 0.65 

Extensive 0.46 0.45 0.66 0.65 

Complete 0.92 0.45 1.50 0.80 

* β is the lognormal standard deviation
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According to Table 3-7, all of the components are vulnerable to 

earthquake, for example, if the PGA equals 0.28g, transmission substations

may be in the moderate state with high probability. However, some definitions 

of damage states in FEMA and KAERI are rather ambiguous (e.g., slight 

damage means a short time malfunction for water treatment plant). Thus, this 

research will be assigned the functionality (range 0 to 100%) to each state and 

convert the graphs, as shown through Fig.3-3 to Fig. 3-8, to functionality 

curves in the next chapter. In addition, the prediction approaches of PGA, the 

value of x-axis in the graphs, will be also proposed in Chapter 4.

Figure 3-3. Fragility curves for the power plant (KAERI 2008)
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Figure 3-4. Fragility curves for the transmission substation (KAERI 2008)

Figure 3-5. Fragility curves for the distribution substation (KAERI 2008)
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Figure 3-6. Fragility curves for the water treatment plant (FEMA 2003)

Figure 3-7. Fragility curves for the storage tank (FEMA 2003)
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Figure 3-8. Fragility curves for the pumping station (FEMA 2003)
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3.3 Dependency between the Components

Even if only a part of the lifeline system is damaged, its impact on the 

whole system can be catastrophic because the performance of the system 

depends not only on the physical damage of each component but also on the 

interactions among interdependent components (Frangopol and Saydam 2011).

As such, the dependency that causes cascading failures is mathematically 

defined whether there is a physical connections between components (i.e., if a 

link exists then 1, otherwise 0). However, in this research, the dependency 

between components is referred to as a directional functional relationship 

through which the state of a certain component is correlated to the state of the 

others (Rinaldi 2004). In detail, the dependency of a component ((B) in Fig. 3-

9) to another component ((A) in Fig. 3-9) in lifeline network V is determined

as a ratio of the input from (A) with respect to the total input requirements of 

(B).

BA 
Input from A

Dependency =   ( )
Input from 

i

i V
i

Î
å

(7)
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Figure 3-9. Comparison of internal and external dependency

Figure 3-10. Example network for determining the dependency

For example, this research assumed that there is a power network 

consists of six components (A to F in Fig. 3-10). To be specific, A/C generates 

60kW/ 30kW electricity per day respectively and it transmits to F through B, 
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D, and E. In this example network, the mathematical dependency can be 

presented as following an adjacency matrix:

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 1 1 0 0

0 0 0 0 1 0

A

æ ö
ç ÷
ç ÷
ç ÷

= ç ÷
ç ÷
ç ÷
ç ÷ç ÷
è ø

(8)

Such an adjacency matrix is useful for construct the network topology 

and calculating the paths, however, it cannot represent which one is the most 

important subject to components with multiple paths.

On the other hand, the functional dependency based on Eq. 7, can 

prioritize the impact of connected components:

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0.17 0 0.33 0.5 0 0

0 0 0 0 1 0

A

æ ö
ç ÷
ç ÷
ç ÷

= ç ÷
ç ÷
ç ÷
ç ÷ç ÷
è ø

(9)
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Therefore, it is expected that the operational state of component E in 

above example network is highly influenced by that of component D rather 

than others. However, in most real-world network case, the data sets of input 

and output are not published to the public for security reasons. This research, 

thus, proposed following equations based on Dijkstra’s shortest path 

algorithms (1959):

(1/ ( ))

  ,  
(1 / )

ki

k
ij

ki

k

d j

a i j
d

= "
å

å
(10)

where, ��� denotes the length of the shortest path from source node � and 
sink node �, ���(�) denotes the length of the shortest path from source node 
� and sink node � which contains intermediate node �.

In Equation 6, a dependency corresponds with the path distance and 

connectivity between components in a network, and this value is determined 

to be a continuous variable ranged from 0 to 1. This statement is based on the 

following assumptions: (a) a sink node can take all paths in the network; 

however, the majority will take the path of the least resistance in a normal 

situation; (b) resistance is in inverse proportion to the length of the path 

between nodes; (c) a sink node can change their path when a source node 

suffers overload or a cascade outage is triggered.

For example, by using the original shortest path algorithm, the following 
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three link sets {1, 7, 4}, {2, 9, 6, 7, 4}, and {3, 11, 6, 7, 4} are identified for 

the component 4 as described in Fig. 3-11; and this research assumed that the 

path length of each link set is about 86,145m, 187,186m, and 220,394m 

respectively. Then, component 4 is more likely to take the path from source 

node 1 because this path, {1, 7, 4}, is shorter than the other two paths.

However, if a cascading failure is triggered by the shutdown of component 1, 

it may change the route to sub-optimal path, {2, 9, 6, 7, and 4}. At the same 

time, destruction of the component 7 will lead to a complete malfunction of 

the component 4 because all of three paths from source nodes contain 

component 7. Thus, from the definitions of dependency, the correlation 

coefficients from component 7 to component 4 equals one (��� = 1).

Figure 3-11. Shortest link sets in the second example network
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3.4 Summary

In this chapter, this research described the component in a power supply 

system and a potable water supply system. There were two types of 

components, generators defined the service generation facilities, and 

deliverers defined service transforming or transferring facilities. In detail, a 

power plant is the uppermost point of power supply chain, and “generation” 

was considered key attributes of this type of component [Mwh]. It refers to 

the amount of electricity that can be produced by a power plant. Therefore, 

“generation” can be zero when a power plant stop to operate. Regarding the 

“generation”, this research divided “operational states” of a power plant such 

as normal operation (F =100%), emergency shutdown (F=0%), emergency 

operation (F=100%), and safety inspection (F=0%).

Another generator is water treatment plant for improving the quality of 

raw-water up to potable level. Although terminal reservoirs to intake raw-

water are, this research assumed that a water treatment plant is a source node 

of a potable water supply system. In this context, it also has “generation” 

attributes [Mgd] and the same behavior as that of a power plant. Whereas 

since a water plant needs electricity for operation, “power availability” was 

assigned and it can also affect “operational states.” Meanwhile, this research 
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assumed that transmission and distribution substation, two power deliverers, 

take their source node regarding low resistance and capacity. In addition, 

electricity “sales” was assumed the number of customers in service and this 

value in accordance with “damage state” including slight (F=100%), moderate 

(F=100%), extensive (F=67%), and complete (F=0%). Storage tanks and 

pumping stations also assigned this “damage state”; while the functionality 

value of each state is some different.

Furthermore, this research develops common-cause failure estimation 

method based on the six fragility functions – for the medium/ large power 

plants, the medium voltage transmission substations, the low voltage 

distribution substations, the medium water treatment plant, on ground 

unanchored storage tank, and the small pumping stations – introduced by 

FEMA and KAERI (details in Chapter 4). A dependency that causes cascading 

failure in the lifeline systems was also discussed in this chapter. Firstly, the 

dependency between component A and B ( BAD ) was defined as the ratio of 

the input from A with respect to the total input requirements of B. In particular, 

for the real-world lifeline network that the input data is not published, this 

research proposed the dependency calculation equation based on spatial path 

analysis. With several network examples, this research also examined the 

process of damage propagation.
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Chapter 4. Functionality Assessment Framework

Determining an actual performance compared to desire level is uncertain

because various problems, such as physical destruction, disruptions of a 

supply chain, and demand fluctuation, can arise. In this chapter, a step-by-step 

procedures for constructing the functionality assessment framework of 

seismic-damaged lifeline system is introduced. To be specific, this framework 

includes four sub-models: (a) the ground motion prediction at single-site 

component under earthquake scenarios and common-cause failure analysis for 

each lifeline component given ground motions; (b) internal cascading failure 

analysis caused by dependency within a lifeline system using inoperability 

input-output model; (c) external cascading failure analysis caused by 

dependency between two different lifeline systems using Bayesian network; 

and (d) impact analysis depending on the changes of the final demand using 

system dynamics.



69

4.1 Common-cause Failure Estimation

4.1.1 Ground Motion Prediction

Ground motions recorded at particular sites increases with earthquake 

intensity and is usually attenuated accordance with a distance from the 

epicenter. Site conditions also affect the seismic wave amplification (e.g., 

motions on the soil are greater than on the rock). Therefore, a basic ground 

motion (Y) prediction equation as follows (Boore and Atkinson 2008):

   S30ln Y = (M) + (R, M) + (V , R, M)M D Sf f f (11)

where, ��, ��, �� represented the magnitude scaling, distance attenuation 
and site amplification function, respectively. M is moment magnitude, R is the 
epicentral distance, and the VS30 is the inverse of the average shear-wave 
velocity from surface to a depth of 30m.

As stated above, this research conducts the deterministic calculations of 

ground shaking based on earthquake scenario given magnitude. In addition, 

this scenario also contains the information of a location of the epicenter and 

focal depth; and they used for determining epicenter distance as described Eq. 

12 to Eq. 13. 

 = lat latlat E PD - (12)

 = long longlong E PD - (13)
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2 2sin cos( ) cos( ) sin
2 2

lat lat

lat long
a P E

D Dæ ö æ ö
= + ´ ´ç ÷ ç ÷

è ø è ø (14)

( )12 tan 1X R a a-= ´ ¸ - (15)

where Elat = the latitude of epicenter [degree]; Elong = the longitude of 
epicenter [degree]; Plat = the latitude of observation point [degree]; Plat = 

longitude of observation point [degree]; R = radius of the earth 

[approximately 6,370 km]; and X = epicentral distance [km]

In terms of ground motions (Y), there are various measures such as 

spectral acceleration (SA), peak ground velocity, (PGV), peak ground 

acceleration (PGA), and permanent Ground Deformation (PGD). Among 

these response spectrum, this research focused PGA of the single-site 

components. In order to assess the PGA value, many ground motion 

prediction equations have been provided for the high seismicity regions such 

as Japan, Western America, and Italy. The regression equation by Kanno et al. 

(2006) also for such regions and it can be expressed as follows:

( ) ( )1

1 1 1 1 1log log 10  (D > 30km)we M
wPGA a M b X X d c e= + - + × + + (16)

( ) ( )2 2 2 2log log   (D 30km)wPGA a M b X X c e= + - + + ³ (17)

where PGA= predicted peak ground acceleration [cm/sec2]; wM = moment 

magnitude; D = focal depth [km]; 1a = 0.56; 1b = -0.0031; 1c = 0.26; 1d = 

0.0055; 1e = 0.37; 1e = 0.5; 2a = 0.41; 2b = -0.0039; 2c = 1.56; and 2e = 

0.40.
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For the low to moderate seismic regions, however, this equation may not 

represent the ground motions because the available strong earthquake records 

are very limited (Han and Choi 2007). Thus, in this research considered 

several ground motion prediction equations as described in Table 4-1, 

specially developed for low to moderate seismic regions such as Eastern 

North America (Campbell 2003; Shahjouei and Pezeshk 2016) and South 

Korea (Park et al. 2001; Jo and Bagg 2003; Yun et al. 2009; Emolo et al. 

2015).

Some equations include, R, hypo-central distance and it is derived from

epicentral distance:

* 2 2R X D= + (18)

where X = epicentral distance [km]; D = focal depth [km].
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Figure 4-1. Hypocentral and epicentral distance

Table 4-1. Ground predictions for the low-moderate seismic region

Researcher Equations

Campbell
(2003)

2 *
1 2 3 4 5 6Y (8.5 ) ln +( )w w wc c M c M c R c c M R= + + - + +

8* 2 2
7( )wc MR R c e= +

where Y = ln( )PGA [g]; wM = moment magnitude; R = 

hypocentral distance [km]; 1c = 0.907; 2c =0.983; 3c = -0.066; 4c =

-2.7; 5c = 0.159; 6c = -2.8; 7c = 0.212; 8c = -0.301.

Emolo et al. 
(2015)

*Y log +wa bM c R dX e= + + +

* 2 2R X h= +

where Y = log( )PGA [cm/sec2]; wM = moment magnitude; X = 

epicentral distance [km]; a = -3.07; b =0.73; c = -0.76; d = -

0.0029; e = 0.3260; h = 1.7.
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Park et al.
(2001)

0 1Y logc c R R= + -

2 3
0 00 01 02 03+ ( 6)+ ( 6) + ( 6)w w wc c c M c M c M= - - -

2 3
1 10 11 12 13+ ( 6)+ ( 6) + ( 6)w w wc c c M c M c M= - - -

where Y = ln( )PGA [gal]; wM = moment magnitude; R = 

hypocentral distance [km]; 00c = 3.391; 01c =0.3601; 02c = -0.0362; 

03c = 0.0064; 10c = -0.0037; 11c = 0.0013; 12c = -0.0001; 13c = -

0.000027.

Jo and Bagg 
(2003)

* **
0 1 2Y ln ln 0.5 lnc c R c R R R= + + - - ´

* min( ,100)R R=

** max( ,100)R R=

2 3
0 00 01 02 03+ ( 6)+ ( 6) + ( 6)w w wc c c M c M c M= - - -

2 3
1 10 11 12 13+ ( 6)+ ( 6) + ( 6)w w wc c c M c M c M= - - -

2 3
2 20 21 22 23+ ( 6)+ ( 6) + ( 6)w w wc c c M c M c M= - - -

where Y = ln( )PGA [gal]; wM = moment magnitude; R = 

hypocentral distance [km]; 00c = 10.7383; 01c =0.5909; 02c = -

0.0562; 03c = 0.0214; 10c = -0.0024; 11c = 0.0002; 12c = -0.00002; 

13c = 0.00004; 20c = -0.2437; 21c = 0.095; 22c = -030088; 23c = -

0.0033.
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Shahjouei and 
Pezeshk
(2016)

2 *
11 2 3 4 5

* * *
2 3 106 7 8 9

Y +( ) ( )

       +( ) ( ) ( ) ( )

w w w

w w

c c M c M c c M f R

c c M f R c c M f R c R

= + + +

+ + + +

* 2 2
11R X c= +

* *
1( ) min(log , log 60)f R R=

* *
2( ) max[min{log( / 60), log(120 / 60)},0]f R R=

* *
3( ) max{log( /120),0}f R R=

where Y = log( )PGA [g]; wM = moment magnitude; R = 

hypocentral distance [km]; 1c = -0.3002; 2c =0.5066; 3c = -0.0453; 

4c = -3.224; 5c = 0.2998; 6c = -1.283; 7c = 0.1045; 8c = -3.0856; 

9c = 0.2778; 10c = -0.0008; 11c = 3.81.

Yun et al.
(2009)

2
11 2 3 4 6

2 37 8

Y ( ) ( )+ ( 6)

      ( ) ( )

ww wc c M c c M f X c M

c f R c f R

= + + + -

+ +

5
1( ) ln( )cf X X e= +

2( ) ln{min( ,50)}f X R=

3( ) ln{max( ,50)}f X R=

where Y = ln( )PGA [g]; wM = moment magnitude; X = epicentral 

distance [km]; R = hypo-central distance [km]; 1c = 35.768; 2c =-

2.357; 3c = -6.884; 4c = 0.579; 5c = 5.237; 6c = -0.139; 7c = -

1.1218; 8c = -0.488.
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Figure 4-2. Peak ground accelerations for Magnitude 5.4

In order to examine the fitness of proposed prediction equations, this 

research compared the observed PGA data recorded when 2016 Gyeongju 

earthquake (detailed in Chapter 5.2) – moment magnitude 5.4, focal depth 

13km and epicenter location (129.216E, 35.781N) – occurred in South Korea 

(Korea Meteorological Administration 2016; Lee 2017) and estimated PGA 

with the same conditions. Specifically, this research used the average of PGA 

(g) estimated from above equations as an index of how strongly the ground 

where power and water system components are located shakes.
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Figure 4-2 and Table 4-2 shows the comparison result of observed data 

and estimated data. Because the objective of PGA prediction is to compute the 

probability of components’ seismic destructions in fragility functions that will 

be discussed in next section, these results are regarded as acceptable 

representations of the real world. Hence, the authors used an equation 

highlighted in Fig. 4-2 across the research.



77

Table 4-2. Comparisons between observed and estimated PGA

Station code
Epicentral 

distance [km]
Observed 
PGA [g]

Estimated 
PGA [g]

Error rate [%]

MKL 5.9 0.291 0.279 4.0%

USN 8.2 0.396 0.222 43.9%

DKJ 22.2 0.090 0.084 6.8%

KNWA 28.0 0.098 0.064 34.6%

KNKA 51.0 0.054 0.032 40.4%

KNUA 148.0 0.006 0.009 55.0%

KNYA 254.0 0.005 0.005 11.7%

DAG2 26.5 0.105 0.068 34.7%

MIYA 50.1 0.057 0.033 42.1%

PHA2 50.8 0.040 0.032 20.3%

CHR 67.5 0.044 0.023 47.5%

4.1.2 Functionality of a Component

In Chapter 2, the author discussed the fragility functions by FEMA and 

KAERI (through Table 2-2 and Fig. 2-2 to 2-7). Then, in Chapter 3, each 

damage state (i.e., normal (ds1), slight (ds2), moderate (ds3), extensive (ds4), 

and complete (ds5)) was re-defined regarding own characteristics. 

Furthermore, these state was proposed in the form of the functionality. For 

example, if there is a low voltage distribution substation (same as described in 

Chapter 3.1) and the observed PGA at the place is 0.15g, the probability of 

each damage state is based on Table 2-2:
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S

S

S

S

S

P( D =ds1  PGA= 0.15  )=0.50

P( D =ds2  PGA= 0.15  )=0.35

P( D =ds3  PGA= 0.15  )=0.13

P( D =ds4  PGA= 0.15  )=0.02

P( D =ds5  PGA= 0.15  )=0.00

g

g

g

g

g

(19)

In this example, the functionality would be:

Functionality = 0.5 100% + 0.35 100% 0.13 67% = 93.71%´ ´ + ´ (20)

Therefore, the functionality for the single-site component is estimated by 

the weighted combination:

DS {P(D = ds )  Functionality at ds}   i i
i

i´ "å (21)

Functionality of all other components was obtained the same approach 

and Fig. 4-3 summarize such functionality curves over PGA.
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Figure 4-3. Functionality curves of lifeline system components
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4.2 Internal Cascading Failure Estimation

4.2.1 Dependency in a Single Lifeline

The key challenge in seismic risk assessment of lifeline systems is 

dealing with the failure propagation emerge after an interruption of adjacent 

components. In this context, IIM examine the extent of cascading failure as 

the result of common-cause failures considering dependencies. In particular, 

this research herein focused internal dependency on a single system. Based on 

Eq. 3, component-by-component matrix is generally determined a ratio of the 

input from �th component with respect to the total input requirements of �th

component. In detail, this research introduced the following probabilistic 

approach for the quantification of correlation coefficients between two 

connected nodes. This is a square matrix, where n equals the total number of 

nodes in the lifeline network and this is in accordance with Eq. 10.

(failure of node failure of node )ija P i j= (22)

Furthermore, to determine which components offer a greater contribution 

to the system performance, this research defines the damage propagation in a 

system as follows:
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(1 - ) {1 - ( )}i i i i i

i

CCF S CCF CF S

S

´ - + ´å å
å

(23)

where iCCF is the common-cause failure of a thi node [0 to 1]; iCF is the 

cascading failure of a thi node, iS is the amount of intended services of thi
node in the normal operation.

Thus, the value of damage propagation in a component equals its 

cascading failure when iS is constant; and this research assumed that 

dynamic functionality commonly falls short of the average static functionality 

in the lifeline system because the ability of each (i.e. 0CCF > ).

4.2.2 Sub-Model using Inoperability Input-Output Model

Figure 4-4. A set of example networks – line, star, tree, and mesh
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For the ease of demonstrating the model applicability to quantifying 

internal dependency, this research proposes a set of example networks with 

respect to network topologies and arrangements of components. As shown in 

Fig. 4-4, there are four types of network and their component-by-component 

coefficient matrices are presented below the figure.

These topologies are detailed as follows: (1) line — all nodes are 

arranged in a line; (2) star — all nodes are connected to a central node; (3) 

tree — a root node connects to two or more sub-level nodes, forming a tree 

structure; and (4) mesh — each node is connected some or all the other nodes.

An indexed number of a node indicates the rank of direction, and the service 

is delivered in only one direction from high to low (i.e., 1 is the highest and 6 

is the lowest).

In addition, this research assumed all of the path lengths between two 

directly connected nodes are same in line, star, and tree type network; while 

the path (1→5→6) is longer than the path (1→4→6) in the ratio of 7: 3 in the 

mesh type network. As stated earlier, since IIM assumed the input/output data 

is deterministic variables observed at discrete-time, it is needed to integrate 

the approaches that can repetitively simulates the calculation process. 

Therefore, this research used AnyLogic 7.3.6 Personal Learning Edition, a 
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software that imports the network topological data from excel file and 

quantifies cascading failures. Fig. 4-5 shows the matrix function code for 

example networks based Eq. 23.

Figure 4-5. Matrix function code for example networks

For example, this research assumed that all of the nodes sustain damage 

after an earthquake and their functionality to be reduced by 10%, (i.e., c1 to c5 

= 0.1). Then, using the matrix function, the in operability vector (x) after the 

disruption can be determined as presented in Table 4-3.

Table 4-3. Inoperability with 10% degraded functionality

Type Line Star Tree Mesh
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Inoperability 35% 18% 23% 20%

Figure 4-6. Inoperability considering the network topologies

On the basis of the inoperability with a scenario corresponding to a 

reduction of 10% in the functionality of all nodes, it can say that the network 

is vulnerable to the following order: line-type, tree-type, mesh-type, and star-

type. This statement coincides with the results when the value of functionality 

reduction by 10% increments until all nodes are complete failures (i.e., c1 to 

c5 = 1.0) as can be seen in Fig. 4-6. This is because when a system has several 
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orders of nodes such as line-type network; the nodes have more chance to be 

propagated damage from upper-rank nodes. While a star-type network does 

not trigger the damage propagation except when the central node fails because 

each node is separately. However, since the central node is involved all other 

nodes operating in the star-type network, this is not appropriate for the system 

that has too many nodes. In this context, mesh type networks that some nodes 

have two or more paths are widely used for configuration of real-world 

lifeline system.

Thus, this research also design four kinds of mesh-type networks to 

analyze the effect of the network arrangements on the system performance.

Fig. 4-8 display the example networks and simulation results using the IIM. 

For example, the inoperability of the first network (Mesh-1 in Fig. 4-7) is 60% 

when average common-cause failure is 20%; in contrast, that of second 

network (Mesh-2 in Fig. 4-7) is 47% at same conditions. Such results indicate 

that relocation of components, particularly for start node is helpful to manage 

and mitigate the lifeline system vulnerability in the post-earthquake phase.
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Figure 4-7. Inoperability considering the network arrangement
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4.3 External Cascading Failure Estimation

4.3.1 Dependency between Different Lifelines

The aims of this BN model is to determine possible events driving 

uncertainty in cascading failures. In particular, this research assumed the 

dependency can exist between two sub-sectors from different lifeline system 

(Adachi and Ellingwood 2008). For example, electricity supply from 

distribution substation influencing the operation of the connected water 

treatment plant. Subsequently, a power plant may have to shut down if 

delivery of fuel is temporarily interrupted by transportation delays. In this 

regard, BN allows the prediction of the impact of possible failure event on the 

whole lifeline system performance.

The primary features of this BN model is that it integrates the IIM for 

compiling the conditional probability table (CPT). In addition, for the PGA-

based damage assessment of a single-site component, lognormal fragility 

functions for the each component is applied. Then, based on the criteria of 

such functions, this research classified the scale of evidence variables at each 

failure state and transformed it to the functionality (i.e., the ability to supply 

the intended output). Details was already described in above section.



88

4.3.2 Sub-Model using Baeysian Network

BN variables and their sequences

In order to construct the BN diagram, the author firstly identified 

variables. In this research, the variables refer to the event causing seismic 

failure in power and potable water supply system including the following two 

types: a common-cause failure and a cascading failure. When an earthquake 

occurs, each component cannot perform their desired function by own 

destruction. For example, a power plant may not generate the required amount 

of electricity according to its original capacity or transmission substation may 

not transform the high-voltage electricity to lower level that can be used. 

Moreover, since each component needs diverse inputs to produce its objective 

output, they commonly suffer from cascading failure by a prolonged outage of 

input (e.g., power, water inflow from the upstream nodes and power 

distribution for operation). Thus, this research assumed that power and water 

supply system will fail if either the destruction of a component itself or the 

reduction of input for a component operation trigger. To summarize, in 

consequence of an earthquake, total 16 events given in Table 4-4 were 

identified as BN variables. Each variable has own state such as normal, slight, 

moderate, extensive and complete damage (detailed description in Table 4-5

and Chapter 3).
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Table 4-4. Description and state of the BN variables

Variables Description State Symbol

Earthquake intensity Earthquake moment magnitude

Minor

EMMajor

Critical

Power
Supply

Common-
cause 
failure

Destruction of power plant ds1 to ds5 DPP

Destruction of transmission 
substation

ds1 to ds5 DTS

Destruction of distribution 
substation

ds1 to ds5 DDS

Cascading 
failure

Reduction of power inflow to 
transmission substation

True
RPITS

False

Reduction of power inflow to
distribution substation

True
RPIDS

False

Final
failure
event

Power distribution disruption
True

PDD
False

Potable
Water 
Supply

Common-
cause 
failure

Destruction of water treatment 
plant

ds1 to ds5 DWTP

Destruction of storage tank ds1 to ds5 DST

Destruction of pumping station ds1 to ds5 DPS

Cascading 
failure

Reduction of water inflow to 
storage tank

True
RWIST

False

Reduction of water inflow to 
pumping station

True
RWIPS

False

Reduction of power distribution for 
water treatment plant operation

True
RPOWTP

False

Reduction of power distribution for 
storage tank operation

True
RPOST

False

Reduction of power distribution for 
pumping station operation

True
RPOPS

False

Final
failure
event

Water distribution disruption
True

WDD
False
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Table 4-5. Scale and functionality of the evidence variables

Variables State
Median 

(g)
β Scale Functionality

DPP

Slight 0.15 0.75 DPP < 0.15 100%

Moderate 0.36 0.65 0.15 ≤ DPP < 0.4 100%

Extensive 0.77 0.65 0.4 ≤ DPP < 0.8 0%

Complete 1.5 0.8 0.8 ≤ DPP 0%

DTS

Slight 0.2 0.6 DTS < 0.33 100%

Moderate 0.28 0.5 0.33 ≤ DTS < 0.67 67%

Extensive 0.39 0.4 0.67 ≤ DTS < 1 0%

Complete 0.71 0.4 DTS = 1 0%

DDS

Slight 0.31 0.7 DDS < 0.33 100%

Moderate 0.37 0.55 0.33 ≤ DDS < 0.67 67%

Extensive 0.46 0.45 0.67 ≤ DDS < 1 0%

Complete 0.92 0.45 DDS = 1 0%

DWTP

Slight 0.37 0.4 DWTP < 0.08 92%

Moderate 0.52 0.4 0.08 ≤ DWTP < 0.4 60%

Extensive 0.73 0.5 0.4 ≤ DWTP < 0.77 23%

Complete 1.28 0.5 0.77 ≤ DWTP 0%

DST

Slight 0.18 0.6 DST < 0.2 80%

Moderate 0.42 0.7 0.2 ≤ DST < 0.4 60%

Extensive 0.7 0.55 0.4 ≤ DST < 0.8 20%

Complete 1.04 0.6 0.8 ≤ DST P 0%

DPS

Slight 0.15 0.75 DPS < 0.05 95%

Moderate 0.36 0.65 0.05 ≤ DPS < 0.38 62%

Extensive 0.66 0.65 0.38 ≤ DPS < 0.8 20%

Complete 1.5 0.8 0.8 ≤ DPS 0%



91

Figure 4-8. BN diagram of the power and water system failure

Fig. 4-8 shows a graphical diagram of the BN variables for this research. 

As mentioned above, an earthquake is an initiating event causing components’ 

destruction (i.e., DPP to DPS). Such common-cause failure events become 

parent nodes of reduction of power or water inflow except the uppermost node 

of two systems (i.e., RPITS, RPIDS, RWIST, and RWIPS). In particular, 

destruction of some distribution node (i.e. DDS, DST, and DPS) can affect not 

only reduction of power inflow interconnected node (i.e., RPIDS, and RWIPS) 

but also service distribution disruption (i.e. PDD, and WDD). Power 

distribution disruption induces power shortage in water component operations. 

As this sequence, final water service disruptions depend on the state of six 
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different failure events.



93

4.4 Impact of Demand on the Lifelines’ Performance

4.4.1 Demand Fluctuation due to Environmental Changes

Some researcher confirmed the effect of fear factors (Santos and Haimes 

2003) that means psychological-induced irrational demand such as stocking 

up heavily food after disaster events. However, since the electricity and the 

potable water is not commodity, this research assumed that it cannot be stored 

for individual use. The proposed SD model is used to solve two main 

questions: (a) what kinds of failures occur during an earthquake? And how 

they propagate to a whole lifeline system? and (b) if each component

reliability improves, can supply of the system meet demand? If not, how can a 

decision maker manage the imbalance between supply and demand?

4.4.2 Sub-Model using System Dynamics

Supply chain of lifeline system

To analyze the supply chain disruptions, this research considered two 

types of stocks: “intermediary product” and “final product”. An intermediary 

product is the output from a component becoming the input to another 

component, while the final product is the last output of single lifeline system 

for delivering to end-user. One of the important variables in this model is 

“common-cause failure”. 
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In the pre-disaster phase, the common-cause failure of all components 

equal zero (normal operation). In turn, since each component can operate 

properly to meet its designed capacity, there is the balance of expected output 

in supplier-side and usable output for customer-side (i.e., robustness also 

equals one). When an earthquake occurs, however, each component may have 

different common-cause failure as discussed in Chapter 4.1, the probability of 

exceeding thresholds for maintaining functions according to its location and 

structural properties. For this reasons, each component has a different level of 

available capacity, the amount of electricity generated (in power plant) or 

transmitted to lower-voltage (in transmission and distribution substation). This 

value is equal to the product of functionality (range 0 to 1) and designed 

capacity (megawatt per day). Moreover, if a component needs intermediate 

output from upper supply chain as its input, amount of delivery evaluates the 

production rate. For example, in the system consisting of two components A 

and B as shown in Fig. 4-9, the production rates in component B depends on 

its available capacity and delivery from component A. Thus, although the 

available capacity of component B is 50 unit per day, total daily production is 

lower than 50 unit if delivery from component A is not sufficient.
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Figure 4-9. Supply chain of power system during an earthquake
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Another two issues can arise in abnormal conditions is “resource inflow 

reduction” and change of “demand for final output.” Resource inflow 

reduction is defined as the level of decrease in the number of materials for the 

system operation compared to normal condition with full resources. Since 

these materials come through others lifeline systems, this value is related to 

cascading failure. On the other hand, demand for final output is defined as the 

amount of service that would be used by customers. In general, lifeline service 

demand after an earthquake can be increased as a result of repair activities and 

decreased as a result of mandatory energy-saving policies. Thus it can be 

assured that this value relates to escalating failure. This paper assumes that 

there are full resources for normal operation and demand within the region is 

constant under pre-earthquake scenario.

Major causal loop diagrams

Before constructing an entire model for analyzing the robustness of 

seismic-damaged lifeline system, this research conducted a brief overview of 

two factors driving uncertainty robustness. Causal loop diagrams as shown in 

Fig. 4-10 and 4-11 show how they bring changes regarding the system 

behavior in the affected region.
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(1) Resource inflow reduction

Each component needs diverse materials to produce its objective output. 

For example, thermal power plant produces electricity throughout burning a 

fossil fuel such as coal. In addition, since the plant converts heat energy into 

mechanical energy, cooling water that absorbs heat from the steam turbine is 

essential to maintain functions. Therefore, if the blackout during an 

earthquake event is prolonged, shortage of production factors may occur 

because such coal and cooling water are attained in consequence of the 

operation of other infrastructure systems and they required electricity to 

produce again (Krimgold et al. 2006). Moreover, despite a sufficient of coal 

and/or cooling water, delivery issues from transportation delays can lead 

power robustness decrease. In sum, reduction of the power robustness leads to 

malfunction of other infrastructure systems, and then it leads to an inability of 

supply for electricity production (reinforcing loop, “R1” in Fig. 4-10).
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Figure 4-10. Loop for cascading failure in a power system
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(2) Demand for final output

In the aftermath of an earthquake, repair activities are needed to restore 

the damaged lifeline systems including electric power system (Orabi et al. 

2010). Subsequently, needs for the public services are provided by essential 

facilities for the safety of human lives such as medical station are commonly 

increased. In turn, much electronic equipment use and this will trigger an 

increase in the daily electricity usage (reinforcing loop, “R2” in Fig. 4-11). 

However, the link between needs for repair and actual restoration actions 

is difficult to occur immediately because such works easily face resource 

constraints during a disaster phase. Meanwhile, in accordance with the Chida 

et al.’s works (2015), the daily maximum demand was reduced to a greater 

degree after 2011 Tohoku earthquake (e.g., average electricity usage during 

pre-earthquake phase is 14 GW while the after-earthquake phase is 12 GW).

This is because, when a reduction of supply enters into long-term 

problems, government implement power conservation policy at the public 

facilities. In Tohoku case, electric power company used rolling black-out 

strategy during two weeks in order to mitigate the imbalance between supply 

and demand. In addition, the campaign of “Setsuden” which is mandatory 
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energy saving movement at individual facilities to overcome power shortage 

leads to a decrease of daily electricity usage (balancing loops, “B1” in Fig. 4-

11).

Figure 4-11. Loops for escalating failure in a power system
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Figure 4-12. Entire SD model for seismic-damaged power system
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4.5 Summary

In this chapter, this research developed robust estimation framework for 

the seismic-damaged lifeline system. Target of estimation was divided into 

ground motion, common-cause failure, cascading failure (in terms of internal 

and external dependency), and escalating failure. Table 4-6 summarized the 

consideration and methodologies for such estimating target.

Table 4-6. Target of estimation, consideration, and methodology

Target of estimation Consideration Methodology

Ground motion
� Attenuation according to 

distance Empirical Model based 
on regression analysis of 
the historical earthquake

(adaptation from 
previous research)Common-cause 

failure
� Component type
� Seismic fragility

Cascading failure

� Internal dependency within a 
single lifeline system

Input-Output
Inoperability Model

� External dependency 
between different lifeline 
systems

Bayesian Network 
Model

Demand effect � Supply chain of systems
System Dynamics 

Model
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For example, ground motions recorded at particular site increases with 

earthquake intensity and is usually attenuated accordance with a distance from 

the epicenter. On the basis of these assumptions, this research selected the 

regression equation by Kanno et al (2006) as for the high seismicity regions 

such as Japan and Western America. Furthermore, for the low to moderate 

seismic regions including South Korea, this research presented the PGA 

estimation curves by averaging predicted data (Campbell 2003; Shahjouei and 

Pezeshk 2016; Park et al. 2001; Jo and Bagg 2003; Yun et al. 2009; Emolo et 

al. 2015). Then, this research applied the weight combination equation to 

transform the discrete functionality of each state as described in Chapter 3 to 

continuous variables. As a result, expected common-cause failure given PGA 

can be determined by functionality curves.

Dependency in a single system was regarded as the cause of internal

cascading failure and was estimated using IIM. Specifically, a probabilistic 

approach for the quantification of correlation coefficients between two 

connected nodes was used. Furthermore, to determine which components 

offer a greater contribution to system performance, this research assumed the 

damage propagation in a system is same as the extent of internal cascading 
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failure5.

A set of example networks with respect to network topologies: (a) line, 

(b) star, (c) tree, and (d) mesh was also analyzed and the results derived the 

network is vulnerable to the following order: (a)-(c)-(d)-(b). This is because a 

sequentially connected line network have more chance to damage propagation

from upper-rank nodes. While a star network does not interconnect except the 

central node. However, since the star network is generally not used for the 

lifeline system, this research concludes that a mesh network is the most 

appropriate for configuration topologies. Moreover, this research also 

confirmed that relocation of components is helpful to manage and mitigate the 

lifeline system vulnerability in this chapter.

On the other hand, external dependency between two different systems 

was regarded as the cause of external cascading failure and was estimated 

using BN. In order to construct the BN diagram, this research assumed that 

power and water supply system will fail if either the destruction of a 

component itself or the reduction of input for a component operation trigger. 

Through the assumptions, total 16 events – (1) earthquake magnitude, (2) to 

(7) destruction of a component, (8) and (9) reduction of power inflow in a 

power supply system , (10) and (11) reduction of water inflow, (12) to (14) 
                                                  

5 In general, this value is greater than zero after an earthquake.
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reduction of power inflow in a water supply system, (15) power distribution 

disruption, and lastly (16) water distribution disruption. – were identified as 

BN variables.

In the final parts of this chapter, this research construct the SD model to 

analyze the impact of physical destruction, resource inflow reduction and, 

demand changes. For example, regarding the last variables, there were two 

types of CLD such as excessive demand (power system robustness reduction 

→ requirements for supply growth → existing power system restoration →

usage electronic equipment for recovery work → hourly electricity demand 

increasing → power system robustness reduction) and mandatory restriction 

(power system robustness reduction → necessity of demand reduction →

mandatory electricity restriction → hourly electricity demand decreasing →

power system robustness recovery).

The overall functionality assessment framework proposed in this 

research summarize in Fig. 4-13.
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Figure 4-13. Summary of the functionality assessment framework
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Chapter 5. Case Simulations

In order to examine the developed model’s applicability in the real world 

setting, two historical events is selected as case networks: (a) the 2011 Tohoku 

earthquake in Japan for the high seismicity regions, and (b) the 2016 

Gyeongju earthquake in South Korea for the low-moderate region. In this 

chapter, the comparison between the actual observed data and simulation 

results is conducted for validations of the proposed estimation approaches in 

Chapter 4.

Then, additional experiments are simulated for analyzing how the system 

withstands disruptions and how perturbation cascade to dependent 

components. In addition, from a perspective of the robustness, critical 

component indicates: (a) a component that highly covers supply itself or (b) a 

component that causes combinations of failures. The latter one, in particular, 

emerges when many components that complexly interdependent compose a 

network. Based on such assertions, this research identifies a critical 

component to maintain the original performance. In this chapter, analysis of 

demand changes is also discussed based on two cases.
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5.1 Power Network at Tohoku in Japan

5.1.1 Case Outline

Description of the System

The electric power system in Tohoku region (Aomori, Akita and Iwate 

prefectures) in Japan is owned and managed by Tohoku electric power 

company (Tohoku-EPCO).

Figure 5-1. Simplified Tohoku electric power network

As shown in Fig. 5-1, this network, simplified from the Tohoku-EPCO 

annual report (2011), has 3 fossil power plants (indexed 1 to 3 in Fig.5-1). In 

addition, since the data of all substations in case region was cannot acquired, 
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this research handles only major 11 substations (indexed 4 to 14 in Fig.5-1) 

connected by 24 bidirectional or one-way transmission lines and assumes that 

some of the substation can transmit and distribute, while others can only 

perform distribution activities. Additional descriptions of the attribute values 

of the nodes and links in the network components are present in Table 5-1 and 

Table 5-2.

Table 5-1. Nodes in the Tohoku electric network

Index Node Type Capacity
Coordinate

Longitude Latitude

1
Power 

Generator
EPP3

1100MW 141.49 40.71

2 1200MW 139.99 40.19

3 1600MW 140.05 39.79

4

Power 
Deliverer

ESS3

270 households 141.19 41.31

5 150 households 140.14 40.78

6 245 households 140.71 40.77

7 165 households 141.17 40.78

8 210 households 141.36 40.53

9 210 households 140.04 40.20

10 225 households 141.18 39.90

11 115 households 140.08 39.81

12 230 households 141.88 39.62

13 265 households 140.53 39.21

14 250 households 141.14 39.14

* Each generator operates 7 hours a day
** Electricity use of a household is randomly distributed with mean value 
10kWh/day
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Table 5-2. Links in the Tohoku electric network

Link 
ID

Node
Length (m)

Link 
ID

Node
Length (m)

Start Finish Start Finish

a 1 7 27,922 m 8 7 32,317

b 1 8 23,144 n 8 10 71,020

c 1 10 93,452 o 9 6 85,942

d 2 9 4,063 p 9 11 42,885

e 3 11 3,815 q 10 8 71,020

f 6 5 48,103 r 10 11 93,768

g 6 7 38,879 s 10 12 67,587

h 6 9 85,942 t 10 14 85,131

i 6 11 119,511 u 11 6 119,511

j 7 4 58,234 v 11 9 42,885

k 7 6 38,879 w 11 10 93,768

l 7 8 32,317 x 11 13 76,875

5.1.2 Comparison with the Simulation Result

Test of the Input-Output Inoperability Model

This research was considered the 2011 M 9.0 earthquake that occurred 

offshore on the Sanriku coast (142.37E, 38.82N), the coastal areas along the 

Tohoku region. When the simulation began on March 11, the model triggered 

a single seismic event with magnitude 9.0 and depth of earthquake center 

about 24km. Then operational/damage states of power generators and 

deliverers were immediately determined by the PGA value of the region 

where they reside under the earthquake scenario. Consequently, customers’ 
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blackout started in the Iwate prefecture near the epicenter and rippled across 

the region to the part of the Tohoku region.

Tohoku-EPCO reported that about 2.04 million households (89.0% of 

total households) in Aomori, Akita and Iwate prefectures suffered from a 

temporary power blackout; and the electricity sector in these regions were 

restored within 7 days after the disaster event (97% restored) (Kazama and 

Noda 2012). To examine how well proposed IIM fits such reported data, this 

research compares estimated simulation results and actual observed data 

focused on the number of power outage households. Detailed model test 

results are summarized as schematic diagrams (a circle highlighted in red 

represents about 5,000 blackout households) in Fig. 5-2 and a comparison 

graph in Fig. 5-3. Due to the uncertainty from input data and the natural 

hazard itself, it is challenging to predict an exact amount of affected 

households for a given situation. However, general behavior patterns of a 

power outage ratio (calculated as the ratio of blackout households to total 

households) and restoration progress correspond to actual data patterns. For 

example, there are approximately 1.92 million households (82.3% of total 

households) subjected to blackout the day after earthquake, and the number of 

affected households decreased up to 0.304 million (87% restored) by three 

days after the earthquake and to 0.047 million (98% restored) by 8 days after 

the earthquake. Although these results are not perfect, this is an acceptable 
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representation of the real world from the perspective of the intended use of the 

model (i.e., component identification, system performance quantification, and 

damage propagation analysis).

Figure 5-2. Schematic diagrams of blackout households

Figure 5-3. Comparative analysis of simulation results. 
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5.1.3 Additional Experiment

Robustness Estimation

Table 5-3 reports an estimated PGA and both the component and system 

level functionality of each component after the 2011 Tohoku Earthquake. In 

the case of a studied network, three of generator nodes automatically stopped 

operation right after the earthquake and restarted soon with about half of their 

original functionality.

Table 5-3. Functionality after the 2011 Tohoku earthquake

Node 
Index

PGA (g)
Static Functionality 

(%)
Dynamic

Functionality (%)
State

1 0.144 56.1 56.1 Emergency Operation

2 0.125 62.7 62.7 Emergency Operation

3 0.171 48.4 48.4 Emergency Operation

4 0.075 93.3 12.9 Extensive Damage

5 0.085 90.7 0 Complete Damage

6 0.108 83.6 4.6 Extensive Damage

7 0.124 77.9 19.6 Extensive Damage

8 0.168 62.6 2.9 Extensive Damage

9 0.128 76.5 33.4 Moderate Damage

10 0.288 30.4 0 Complete Damage

11 0.172 60.9 6.3 Extensive Damage

12 0.487 9.9 0 Complete Damage

13 0.339 22.0 0 Complete Damage

14 0.547 7.5 0 Complete Damage

It should be noted that component and system level functionality of a 

generator node are the same values, while, regarding deliver nodes (indexed 4 
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to 14), system level functionality falls short of static functionality. This 

statement means that damage propagation occurs at several subordinated 

nodes. In particular, fifth node has a great deal of difference between two 

types of functionality. This is because: (a) it is far from the epicenter and thus 

its structural destruction is slight, however (b) supply reduction from upper-

connected node (e.g., indexed 1, 7 and 6) simultaneously accumulate since it 

is located at the end of the network.

Then, this research quantifies the damage propagation in a case 

earthquake scenario through Eq. 23; and same quantification assessment is 

conducted at all ranges of static functionality as described in Fig. 5-4. This 

figure examines the relationship between two types of functionality in Tohoku 

network and the solid lines indicate the control group, which assumes that 

there is no damage propagation. In the control group, for example, 40% of the 

average Static functionality means 40% of that of the Dynamic. Thus, a 

difference of y-axis values between the control group and Tohoku region 

means correlation coefficients induced damage propagation. This gap 

gradually increases until the Static functionality reaches about 50% and then 

begins to decrease. In particular, there is 23.3% of unforeseen damage 

propagation in the whole network after the case earthquake (the average static

functionality is about 53.9%, whereas the average dynamic functionality is 

about 30.6%).
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These findings are useful information that the person (e.g., homeowner, 

service staff of the power station, and emergency management officer) who 

has a concern on the Tohoku electricity sector have to expect over 20% 

additional functional loss when the average component functionality shows 

from 40% to 66% (See the difference bar at bottom of Fig. 5-4).

Figure 5-4. Relationship between two types of functionality
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Impact of Demand Changes

Another feature that of the model presented here is its ability to observe 

the demand effect on network performance. In particular, to determine the 

impact of changes in electricity usage, this research considers the concept of 

“Setsuden” which is mandatory energy saving movement to overcome power 

shortage after the 2011 Tohoku earthquake. More specifically, the authors 

assume that daily electricity usage in Iwate region is reduced 10%, 25%, and 

50% respectively when compared to original scenario (see Table 5-4). This, in 

turn, leads to change in the expression pattern of damage propagation at 

certain components that are in Iwate region (node 10, 12, 14) or near the 

region (node 8, 13).

Table 5-4. Changes in electricity usage

Simulation Cases
Electricity usage in a day (kWh)

Aomori Akita Iwate Total

Original Scenario 8900 6700 7750 23,350

Setsuden 10% 8900 6700 6980 22,580

Setsuden 25% 8900 6700 5810 21,410

Setsuden 50% 8900 6700 3880 19,480
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Figure 5-5 offers the result of sensitivity analysis to evaluate how 

reduced demand affect the damage propagation regarding two agents. The fact 

that the maximum value in each graph remains approximately constant 

indicates that degree of damage propagation varies over supply-side (e.g., 

network topological structure) not demand-side. On the other hand, initial 

points of propagation occurrence in two example node move to the right side 

as the Setsuden rate increase. This pattern change is more clarified in node 10 

because it generally covers electricity demand in Iwate region and thus there 

is a surplus that can be used for the preparation of supply malfunction. 

Therefore, through the results of this sensitivity analysis, it is confirmed that 

the demand-side efforts to conserve electricity usage can be regarded as 

reinforcement of network robustness in post-disaster case.
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Figure 5-5. Changes in the expression of damage propagation
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5.2 Power and Water Network at Daegu in South Korea

5.2.1 Case Outline

Description of the System

This research took the power and potable water supply system located 

Daegu city in South Korea as case network. Since the power system discussed 

here do not include power plants, this research assumed that four source nodes 

(transmission substations, namely P1 to P4 in Fig. 5-6) receive electricity 

from power plants at outside the city and transmit it to the rest 29 nodes 

(distribution substations, namely P5 to P33 in Fig. 5-6). Therefore, DPP and 

RPITS in Fig.4-8 equal zero.

Analogously, the potable water system consist of 4 source nodes (water 

treatment plants, namely W1 to W4 in Fig. 5-6) and 20 distribution nodes 

(storage tanks and pumping stations, namely W5 to W24). This research also 

assumed that reduction of power inflow from adjacent distribution substations 

only influences the state of four water treatment plants, not other two types of 

components with relatively low electricity usage. In this regard, RPOST and 

RPOPS in Fig.4-9 also equal zero. Details of the nodes in the power and 

potable water supply network are present in Table 5-5 and Table 5-6.
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Figure 5-6. Layout of the case lifeline systems in Daegu city
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Table 5-5. Nodes in the Daegu electric network

Index Node Type
Capacity

(households)
Coordinate

Longitude Latitude

1

Power 
Deliverer

ESS3

409,400 128.5741 35.9561 

2 181,800 128.4049 35.7355 

3 252,900 128.6889 35.7311 

4 149,900 128.7387 35.8283 

5 35,000 128.5419 35.9424 

6

ESS1

47,000 128.5359 35.8806 

7 28,000 128.4958 35.8607 

8 16,000 128.4252 35.8703 

9 24,000 128.5324 35.8586 

10 19,000 128.5689 35.8694 

11 19,000 128.5586 35.8540 

12 52,000 128.5751 35.9454 

13 49,000 128.6107 35.9141 

14 11,000 128.6086 35.9034 

15 6,000 128.5913 35.8925 

16 15,000 128.5839 35.8869 

17 20,000 128.6014 35.8728 

18 21,000 128.6208 35.8617 

19 26,000 128.7411 35.8717 

20 36,000 128.6871 35.8747 

21 29,000 128.6416 35.8751 

22 14,000 128.3894 35.7883 

23 46,000 128.4734 35.8452 

24 38,000 128.4935 35.8312 

25

Power 
Deliverer

ESS1

43,000 128.5105 35.8102 

26 30,000 128.4626 35.7296 

27 21,000 128.4532 35.6582 

28 81,000 128.5404 35.8141 

29 44,000 128.5177 35.8299 

30 70,000 128.5950 35.8369 

31 75,000 128.6497 35.8203 

32 47,000 128.6975 35.8367 

33 32,000 128.7007 35.8519 

Total 994,000 - -
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Table 5-6. Nodes in the Daegu potable-water network

Index Node Type
Capacity

(households)

Coordinate

Longitude Latitude

1

Water 
Generator

PWT3

37,300 128.6042 35.9016 

2 138,000 128.4249 35.8554 

3 538,600 128.4503 35.8587 

4 280,100 128.6968 35.8309 

5

Water 
Deliverer

PPP1

45,600 128.5688 35.9390 

6 66,800 128.5611 35.8540 

7 63,600 128.6483 35.8566 

8 49,500 128.6253 35.8244 

9 60,700 128.6313 35.8613 

10 45,700 128.5998 35.8414 

11 60,000 128.6081 35.8288 

12 106,700 128.5447 35.8184 

13 75,000 128.5490 35.8305 

14 16,900 128.7172 35.8830 

15 69,100 128.5698 35.8385 

16 28,300 128.4739 35.7884 

17 44,500 128.5476 35.9340 

18

PST2

29,500 128.5396 35.8312 

19 108,500 128.4506 35.8731 

20 92,100 128.5320 35.8649 

21 PPP1 18,400 128.5917 35.9148 

22 PST2 29,400 128.6985 35.8782 

23 PPP1 28,300 128.4497 35.7815 

24 PST2 26,600 128.5011 35.8608 

Total 994,000 - -
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5.2.2 Comparison with the Simulation Result

Test of the Bayesian Network Model

In the case of the 2016 Gyeongju earthquake, there was not much 

seismic-damage in terms of common-cause failure. For this reason, this 

research considered an earthquake that occurred at the right side of the case 

region (128.882E, 35.78N) with magnitude 6.0 (minor), 6.4 (major) and 6.8 

(critical). Then, to verify whether the behavior of the proposed BN model is 

consistent and intended, a set of test given two extreme-condition is 

conducted. First set of extreme-condition is “PDD=TRUE” and 

“WDD=TRUE” for representing the power-outage and the potable-water 

outage. On the other hand second set of extreme-condition is “PDD=FALSE” 

and “WDD=FALSE” for analysis of restoration efficiency.   

Table 5-7 indicates that the consequence of entirely power-outage, most 

of the nodes also fails except the “RPIDS =TRUE” that located the upper level 

of PDD. However, the probability of “RPIDS =TRUE” increased, and it can be 

assured that distribution substations in extensive damage state. Whereas, the 

fully recover of water distribution lead to the probability of all other nodes to 

be zero, because WDD is an end node of the BN model.
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Table 5-7. Extreme condition test of the BN model

Nodes
(TRUE)

Extreme 1 Extreme 2

PDD=TRUE WDD=TRUE PDD=FALSE WDD=FALSE

RPIDS 74.3 53.6 0 0

RWIST 100 75.8 3.83 0

RWIPS 100 90.1 18.4 0

RPOWTP 100 72 0 0

PDD 100 72 0 0

WDD 100 100 24.2 0

Table 5-7 indicates that the consequence of entirely power-outage, most 

of the nodes also fails except the “RPIDS =TRUE” that located the upper level 

of PDD. However, the probability of “RPIDS =TRUE” increased, and it can be 

assured that distribution substations in extensive damage state. Whereas, the 

fully recover of water distribution lead to the probability of all other nodes to 

be zero, because WDD is an end node of the BN model.
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5.2.3 Additional Experiment

Common-cause failure and dependency

Fig. 5-7 shows the average common-cause failure of five types of 

components (DTS, DDS, DWTP, DST and DPS in Fig. 4-9) for the simulated 

earthquake scenarios. Such average value was determined by each 

components’ functionality (described in Eq. 19) and demand distribution. 

Regarding this result, there is around 10% physical destruction except 

transmission substations that includes P4 nearest the epicenter. However, as 

mentioned earlier, a destruction of transmission substations can trigger 

cascading failure of other components in both the power and the water system. 

In addition, the extent of cascading varies with the dependency between 

components. For example, as shown in Fig. 5-7, some components in the 

power system such as P8, P18, P21, P25 and P31 has two or more different 

electricity supply path from source nodes. In detail, P21 has two paths, 

PATH1-21 = {1, 12, 19, 20, 21} and PATH4-21 = {4, 32, 21}, that shortest length 

is 27,221km and 10,433km respectively. Thus, a malfunction of the P4 plays a 

vital role rather than other 3 source nodes in terms of the reduction of power 

inflow (RPIDS in Fig. 4-9) to the P21. In the same way, because electricity for 

operation of W4 also depends P4, series of failure propagation P4 to W4 

(RPOWTP in Fig. 4-9) and W4 to its connected components (RWIST and RWIPS

in Fig. 4-9) can occur in the water system.



128

Figure 5-7. Common-cause failure of each component types

As such, the authors quantified the conditional probability of each BN 

variables given common-cause failure using IIM. Table 5-8, one of the 

example CPT, reports the probability distribution of WDD considered the 

states of RWIST, RWIPS, DST and DPS, {True, False} or {None, Slight, 

Moderate, Extensive, Complete}. This CPT for the multistate variables has 

total 100 rows. Firstly, if “RWIST = RWIPS = TRUE”, there is no water 

inflow to storage tanks and pumping stations due to power outage at WTP or 

physical damage issues of water components. Thus, the probability of WDD is 

100% regardless of the state of DST and DPS. In the case of “RWIST = 

TRUE” and “RWIPS = FALSE”, all of storage tanks (e.g., W18 to W20, W22, 

W24 in Fig. 5-6) and some of pumping stations that is connected a storage 

tank (e.g., W5, W12, W13, W17, W21 in Fig. 5-6) cannot supply potable 
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water. For this reasons, the minimum value of WDD is 50.81% (the ratio of 

supply from the rest of 10 water distribution components) only for “DPS = 

NONE”. On the other hand, if “RWIST = FALSE” and “RWIPS = TRUE”, 

the minimum value of WDD is 78.38% (the ratio of supply from the storage 

tanks) only for “DST = NONE” because all of pumping stations are in trouble. 

When the last combinations, “RWIST = RWIPS = False”, conditional 

probability of WDD varies 0% to 100% depending on the common-cause 

failure of storage tanks and pumping stations.

Table 5-8. Conditional probability table for the childe node WDD

RWIST RWIPS DST DPS

WDD

True False

True True None None 100 0

True True None Slight 100 0

True True None Moderate 100 0

True True None Extensive 100 0

True True None Complete 100 0

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

True False None None 50.81 49.19

True False None Slight 53.27 46.73

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

False True None None 78.38 21.62

False True None Slight 78.38 21.62

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

False False None None 0 100
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⁞ ⁞ ⁞ ⁞ ⁞ ⁞

False False Complete Complete 100 0

Robustness Estimation

After the determining the probability distribution of parent nodes and 

CPT, the probability of power and water distribution disruptions can be 

derived as follows:

M TS DS DS

TS M DS M DS TS , DS

(PDD) = (E , D , D , RPI ) 

               = (D E ) (D E ) (RPI D D )

P P

P P P´ ´
(24)

M WTP ST PS WTP ST PS

WTP M ST M PS M

WTP ST WTP WTP

PS WTP ST PS ST

(WDD) = (E , D , D , D , RPO ,RWI , RWI ) 

                = (D E ) (D E ) (D E )

                 (RPO PDD)  (RWI D , RPO )

                 (RWI D , D , D , RWI , RPO

P P

P P P

P P

P

´ ´

´ ´

´ WTP )

   (25)

For the sake of convenience of calculations, the authors have been run 

the BN model in NETICA software and Fig. 5-8 presents the prior probability 

distribution of the BN variables for the case systems. As shown in the figure, 

transmission substations and pumping stations are relatively vulnerable to the 

earthquake. These results also demonstrate that the operational state of WTP 

in the Daegu city was impacted by the availability of electricity rather than its 

physical damage. In addition, with respect to the performance of the water 
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system, the reduction of water inflow to pumping stations is key variables.
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Figure 5-8. The prior probability distribution of the BN model
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Fig. 5-9 summarizes the relationship between the common-cause failures 

and the final service distribution disruptions incorporating cascading failures 

with the earthquake of magnitude 6.0 to 7.0. For example, when the 

magnitude 6.4 earthquake occurred, power system expected functionality was 

about 90.3% if only considering destruction; however more practical 

functionality was 72.7% because the reduction of power inflow arouses. 

Similarly, water system functionality reduced up to 56.1% from 86.5% by the 

effect of the reduction of water inflow and reduction of power distribution. In 

other words, hatched areas in Fig. 5-9 indicated the extent of the cascading 

failure (in particular, (a) and (b) for the major intensity earthquake.)

Figure 5-9. The extent of cascading failure
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Impact of Demand Changes

Since the earthquake occurrence aspects are totally random, this research 

used an earthquake with maximum PGA (e.g., “ground shaking” in SD model) 

is 0.22g and recurrence period is 2400 year described on Korea Building Code 

(KBC 2016). Additional information for conducting case simulation is 

summarized as follows: (a) time step: 1 day, (b) original generation 

(transmission, distribution) capacity: 10,944 MW/day, (c) reliability of power 

plant: 1, (d) reliability of transmission substation: 0.75, (e) reliability of 

distribution substation: 0.86, (f) reliability of other system (water treatment 

plant in this case): 0.96.
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(1) What kinds of failures occur during an earthquake? And how they 

propagate to a whole electric power system?

Figure 5-10. Comparison of three types of failures effects on robustness
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Throughout the proposed causal loop diagrams, the authors examine the 

progress of failure in power system. Then, in this section, simulations are 

conducted under three different constraints: (a) electricity generation rate in 

power plant is evaluated by just reliability of power plant. In turn, there are 

common-cause failures only (no loop); (b) the rate is evaluated by reliability 

and shortage rate of production factors. In our case region, shortage of 

production comes from other lifeline system’s degradation means water 

treatment plants malfunctions (R1 only); (c) the last one includes the 

precedence conditions and also reflects an increase of daily electricity usage 

(R1 and R2). Fig. 5-10 shows the comparison of such three types of failures 

effects on system robustness. Due to the structural destruction while 

earthquake, power system illustrated in Fig. 5-10 loses its function about 25%. 

Moreover, it is expected that 32% of the extra loss from cascading failures can 

arise, and if restoration works do not perform, electricity eventually has run 

dry.



137

(2) If each sub-sector reliability improves, can supply of the system meet 

demand? If not, how can a decision maker manage the imbalance 

between supply and demand?

Figure 5-11. Comparison of two mitigation strategies
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In order to mitigate adverse impacts from power blackout and enhance 

the robustness, following two strategies are discussed: (d) one is an increase 

of designed generation capacity; and (e) another is a decrease of daily 

electricity usage. More specifically, in the first case, when the level of 

transformed 22.9kV 30% decreases, power generation capacity increases up 

to 10% and it brings a result that the robustness maintains a range of 0.7 to 0.8. 

On the other hand, 3% of electricity usage decrease by energy saving 

strategies, balancing loops in the proposed model, can lead to recover the 

robustness gradually.

This research also conducts the sensitivity analysis with two main 

uncertain supply and demand-side variables, shortage of production factors 

and mandatory energy savings, to how their change affects the system 

robustness. In this analysis, each variable follows random uniform function 

(min= 0, max= 0.3). The simulation result in Fig. 5-12 displays that an effort 

for solving imbalance problems from supplier-side guarantees immediate 

effect in the expected range. However, it is hard to expect steady recovery

without additional supply resources input. While it is confirmed that the 

customer-side efforts to conserve electricity usage can be significantly 

regarded as reinforcement of system robustness despite it tend to tend to be 

short-term strategies.
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Figure 5-12. Sensitivity analysis with customer and supplier-side
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5.3 Summary

In this chapter, this research examined the degraded performance of two 

real-world lifeline system subjected the 2011 Tohoku earthquake and the 2016 

Gyeongju earthquake respectively.  Major facilities (i.e., 3 power plants and 

11 substations) were considered in Tohoku case. On the other hand, since 

there are no power plants in Daegu, transmission substations are located near 

the city boundary are counted as gate stations are provided electricity from 

outside regions. In addition, this research assumed that only 4 water treatment 

plants within Daegu city depend on the electricity from the power system.

With the information of network topologies and earthquake scenario of 

the 2011 Tohoku case, this research firstly compared estimated simulation 

results and actual observed data focused on the number of power outage 

households to examine how well proposed IIM fits such reported data. As a 

result, general behavior patterns of a power outage ratio was similar to actual 

data patterns and this research argued that it is more appropriate 

representation of the real world compared the analysis that just dealt with 

common-cause failure. Another feature that of the model presented here was 

its ability to observe the demand effect on network robustness. In particular, 

this research considered the concept of “Setsuden” which is mandatory energy 
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saving movement to overcome power shortage. Through the results of this 

analysis, this research found that although the maximum value of damage 

propagation remains constant, initial points of occurrence move to the right 

side (i.e., reinforcement of system robustness) as the Setsuden rate increase.

In the case of the 2016 Gyeongju earthquake, there was not much 

seismic-damage in terms of common-cause failure. For this reason, this 

research considered an virtual earthquake that occurred at the right side of the 

case region (128.882E, 35.78N) with magnitude 6.0 (minor), 6.4 (major) and 

6.8 (critical). For example, there was around 10.6% expected physical 

destruction in water supply system, however, the final water supply 

distribution disruptions incorporating cascading failures was around 43.9%. 

Finally, this research conducted several experiments using proposed SD 

model with respect to demand changes. To be specific, there were three 

different constraints: common-cause failures only, cascading failures occurs, 

and escalating failure occurs. Through the causal loop diagrams and 

simulation results, the progress of failure was examined with quantitative 

descriptions.
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Table 5-9. Summary of two case studies

Attributes
Power network

in Tohoku
Power and water network

in Daegu

Region
� Japan – high seismicity 

regions

� South Korea – low and 
moderate seismicity 
region

Earthquake
Information

� 14:46 on March 11, 2011
� Magnitude 9.0
� Epicenter (143.37, 38.82)
� Focal depth 24km

� 20:32 on September 12, 
2016

� Magnitude 5.4
� Epicenter (129.22, 35.78)
� Focal depth 13km

Network 
Information

� 3 power plants
� 11 transmission substations

� 4 transmission substations
� 29 distribution substations

� 4 water treatment plants
� 15 pumping stations
� 5 storage tanks

Number of 
customers

� 2.3 million households � 994,000 households

Static 
Performance 

after an 
earthquake

� 53.9%

� 92.2%

� 89.4%

Dynamic 
Performance 

after an 
earthquake

� 30.6%

� 72.7%

� 56.1%
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Chapter 6. Applications for Improved Resilience

For improved resilience against an earthquake, it is required that 

information to assist decision-making about which lifeline components should 

be the object of reinforcement. In this chapter, several applications are 

proposed based on the case simulation results. The first one is identifying a 

critical component for sustainable operation after an earthquake. In detail, this 

research determines the component importance in two assumptions: (a) only a 

node will be completely damage (performance 0%) while that of all others in 

normal, (b) only a node will be restored (performance 100%) while that of all 

others in damage. In addition, because restoration resources are generally not 

sufficient in reality, the second application is comparing restoration plan with 

different restoration standards: (a) no priority, (b) priority according to the 

common-cause failure, and (c) priority according to the component 

importance that defined in the first experiments.
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6.1 Identifying a Critical Component

Regarding the term, criticality, previous research works (Nicholson et al. 

2016; Whitson and Ramirez-Marquez 2009) have proposed different 

definitions. In this research, a component criticality is defined as a measure of 

how much the whole system performance will degrade by a component’s 

failure.

Table 6-1. Correlation matrix of Tohoku electric network

����� 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0.44 0 0.32 0 0.24 0 0 0

7 0.72 0 0 0 0 0.28 0 0 0 0 0 0 0 0

8 0.78 0 0 0 0 0 0.11 0 0 0.11 0 0 0 0

9 0 0.92 0 0 0 0 0 0 0 0 0.08 0 0 0

10 0.38 0 0 0 0 0 0 0 0 0 0.62 0 0 0

11 0 0 0.92 0 0 0 0 0 0.08 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0

14 0 0 0 0 0 0 0 0 0 1 0 0 0 0

For example, in Tohoku electric network case (same as in Chapter 5.1), 

component-by-component coefficients of all nodes can be quantified based Eq. 

7 and Eq. 10. Table 6-1 shows the results of calculations, and if ��� > 0, it 
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can say that at least node j is critical to node i. In addition, if a node has a 

strong possibility of spreading its initial damage to the other nodes, it means 

that the node is an important component for the whole network resiliency.

Thus a component criticality for node j can be measured by the value of 

damage propagation when assuming that only the node j is completely 

damaged (static functionality of node j equals 0%, while that of all others 

equal 100%) among its network.

Table 6-2. Damage propagation of a first node

Node 
Index

Dynamic 
Functionality (%)

Generation or Sales

In normal 
(households)

After earthquake
(households)

1 0 645 0

2 100 605 820

3 100 1,085 840

4 26.2 270 63

5 84.9 150 124

6 84.9 245 203

7 26.2 165 38

8 16.2 210 24

9 99.7 210 209

10 82.6 225 181

11 99.7 115 115

12 82.6 230 185

13 99.7 265 264

14 82.6 250 202

Total 4,670 3,268

Table 6-2 describes the example of damage propagation when the first 
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power generator node stops producing electricity entirely. In this case, other 

nodes with no physical damage issues (such as node 4 to 14) may drop their 

supply of electricity than in the normal because they derive it from the first 

power generator. Consequently, the average generation and sale of electricity 

are about 30% lower than in the normal. In this way, this research ranks

component criticality of all the 14 nodes, and these are listed in Table 6-3.

Table 6-3. Damage propagation and component criticality

Node 
Index

Static 
Functionality (%)

Dynamic 
Functionality (%)

Damage 
Propagation (%)

Criticality 
Rank

1 86.2 70.6 15.6 3

2 87.0 76.5 10.6 5

3 76.8 52.9 23.9 1

4 94.2 94.2 0 9

5 96.8 96.8 0 9

6 94.8 88.4 6.3 8

7 96.5 88.1 8.3 6

8 95.5 95.5 0 9

9 95.5 88.3 7.2 7

10 95.2 84.2 11.0 4

11 97.5 73.9 23.7 2

12 95.1 95.1 0 9

13 94.3 94.3 0 9

14 94.6 94.6 0 9

Average 92.9 85.2 7.7

From the network performance-impact perspective, the most important 

component is third generator node that covers the most number of households. 
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Deliverer nodes that have several sub-deliverer nodes (indexed 11) and first 

generator node are also identified as a critical component to supply the 

electric power. On the other hand, nodes in the end of the electric path 

(indexed 4, 5, 12, 13, and 14) cannot spread damage to the network.

On the other hand, component importance can be determined by 

assuming that only the damaged node j will be restored (static functionality of 

node j equals 100%, while that of all others lower than 100%). In detail, 

several days after an earthquake, for example, some information (e.g., 

earthquake intensity and destruction of components) are observed and can be 

used as the evidence to update target estimation (i.e., power and water 

distribution disruption).

In this context, this research tested the Daegu case, for figure out how a 

recovery of damaged component impacts on whole system performance. 

Table 6-4 listed the posterior probability of PDD and WDD given some 

evidence. Scenario 0 is an original case as described in Bayesian network 

model (Fig.5-8), while others assumed the restoration of damaged-

components. Through the scenario 1 to 5, it should be noted that even though 

a transmission substation is not included in the potable water system, the 

change on its damage state has a significant impact on the performance of 

water distribution. Therefore, when needed to determine restoration priorities, 
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damaged-transmission substation has the highest priority (scenario 1) and 

damaged-pumping station is the next (scenario 9) in the case of presented 

Daegu case networks.
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Table 6-4. The posterior probability given evidence

Scenario Evidence PDD (%) WDD (%)

0 - 27.3 43.9

1 P (DTS=None) 7.77 28.8

2 P (DDS=None) 21.6 39.5

3 P (DWTP=None) 27.3 41.3

4 P (DST=None) 27.3 39.5

5 P (DPS=None) 27.3 36.4

6 P (DTS= None, DDS=None) 0 21.6

7 P (DTS= None, DWTP=None) 7.77 25.5

8 P (DTS= None, DST=None) 7.77 23.2

9 P (DTS= None, DPS=None) 7.77 19.3

Such test results can extend to component-level for identifying a 

component that contributes to the robustness of the system. To be specific, if 

the state of certain component changes, its impact can be measured in terms of 

a probability change in PDD and WDD. For example, P (PDD = True) 

increase up to 0.53 when the damage state of the first component turns “None” 

to “Complete”. From the graphs in Fig. 6-1, it is confirmed that the important 

components to be handled during an earthquake are P1, P12, and P3 for power 

system and W3, P2, and P22 for potable water system.
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Figure 6-1. Identifying a critical component for power and water
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6.2 Suggestions of Restoration Management

As mentioned above, it is important that seismic-damaged lifelines return 

to normal condition as soon as possible. Thus, this research discusses 

restoration functions that were also introduced by FEMA (2003). As presented 

in Table 6-5, there are two types of restoration functions: (a) linear functions 

with means and standard deviations of restoration days; and (b) approximate 

discrete functions expressed in terms of functionality. In our case, discrete 

functions are used because measuring a day-to-day functionality change is the 

main concern.

Table 6-5. Restoration functions for lifeline components

Type
Damage

state

Restoration Days Functionality (%)

mean β*
after 
1day

after 
3days

after 
7days

after 
30days

after 
90days

EPP3

ds2 0.5 0.1 100 100 100 100 100

ds3 3.6 3.6 24 44 83 100 100

ds4 22 21 16 19 24 65 100

ds5 65 30 2 2 3 13 80

ESS1
/

ESS3

ds2 1 0.5 50 100 100 100 100

ds3 3 1.5 9 50 100 100 100

ds4 7 3.5 4 13 50 100 100

ds5 30 15 3 4 7 50 100

* β is the lognormal standard deviation
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For example, if there are sufficient crews and resources to conduct 

restoration in the area, a medium voltage electric substation in “moderate” 

damage state will recover their function up to 44% of the declined 

functionality on the third day after the starting restoration, and total 

restoration time will be between 7 days and 30 days. As such, components’ 

common-cause failure is continuously updated with the restoration process. 

Furthermore, this research compares some restoration priorities to

confirm the importance of restoration management to mitigate the damage 

propagation. For example, in the Tohoku case, when the restoration begins on 

the next day of an earthquake (March-12, 2011) and ends when the system

performance recovers up to 90%. The simulation results with three different 

priority standards: (a) first plan is that all components are uniformly assigned 

restoration resource a day (“plan 1” in Fig. 6-2), (b) second plan is that 

resource distributed according to common-cause failure (“static functionality” 

in Table 5-3 and “plan 2” in Fig. 6-2), and (c) third plan is that resource 

distributed according to the component importance (“criticality rank” in Table 

6-3 and “plan 3” in Fig. 6-2). For example, when the simulation model runs 

with the second restoration plan, the component with the lowest static

functionality (e.g., 14 node in this case) is firstly and intensively assigned 

resources. Despite the fact that each plan has different resource priorities, it is 

noted that the total amount of resource usage during a simulation are set equal.
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Figure 6-2. Comparison of restoration plan

Simulation results, as described in Fig. 6-2, show that the first and third 

plan are aligned with the actual data from Tohoku-EPCO, while the second 

plan is not. This is because the functional recovery of components with high 

resource priority in the second plan (i.e., node 14, 12, and 13) do little to 

improve system performance. Thus, such results show that the inefficient 

utilization of resources can lead to a delay in community resilience. In 

contrast, the third plan (resource priority is given to node 3,11, 1 and others in 

order) is effective in reducing the number of households in a blackout after an 
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earthquake; and this result demonstrates the importance of identifying critical 

component with a consideration of damage propagation to mitigate cascade 

outage effect.

In summary, two types of functionality assessment (static and dynamic)

presented in this research ensure an appropriate restoration plan that helps to 

minimize the total restoration time.
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6.3 Summary

In this chapter, this research proposed two applications for maintaining 

the resilience of seismic-damaged lifeline systems based on Tohoku and 

Daegu network case. In particular, the proposed model can be used for 

identifying a critical component to maintain sustainable operation. In general, 

with consideration of a sing lifeline, a generator that covers the most demand 

(e.g., node 3 in Tohoku case) and a deliverer that have several sub-deliverer

(e.g., node 11 in Tohoku case) were essential to maintain the system 

robustness.

Furthermore, the results of this research can be extended by determining 

restoration priority with considerations the external interdependency. Through 

the experiments, it was confirmed that even though a certain component is not 

included in the managing target lifeline system (e.g., transmission substation 

and potable water supply system in Daegu case), it can be assigned the highest 

priority because of its significant impact on the reduction inflow of 

operational materials. In both cases, components at the end of the supply 

chain cannot elapse cascading failure to the system as expected.
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Chapter 7. Conclusions

The objective of this research is to develop a comprehensive framework 

for the functionality assessment of the seismic-damaged lifeline systems to 

solve the problems: (a) destruction due to ground shaking, (b) reduction of 

inflow due to internal/external dependency, and (c) demand fluctuation due to 

environment changes. In this chapter, essential findings derived from the 

results of this research is described. Then, the expected contribution both in 

academic and in practical is discussed. Finally, the last section concludes with 

the limitation that will be handled in future works. 

7.1 Research Results

The question addressed in this paper is how the damage of individual 

component would propagate and how to quantify its effect on the whole 

system performance. To achieve the solution, a common-cause failure, a 

cascading failure, and an escalating failure were firstly defined. Then, this 

research argued that although the reliability and the robustness seem to be 

similar, they are quite differently accepted since the former is a static variable; 

while the latter is dynamic variable. Based on such theoretical backgrounds, 

the functionality assessment framework for the seismic-damaged lifeline 
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system was proposed including – (a) a computational approach to estimate the 

functionality of a single component that spatially distributed and structurally 

specified using ground motion prediction equations and fragility functions, (b) 

an inoperability input-output model with a component-by-component 

coefficient matrix that based upon spatial path analysis to analyze the effect of 

internal dependency within a single lifeline system, (c) a Bayesian network

model in terms of lifeline service distribution disruptions to analyze the effect 

of external-dependency between two lifeline systems, and (d) a system 

dynamics model to determine the possible factors driving uncertainty and 

assess the impact of demand change on the system robustness.

In addition, to demonstrate test the damage propagation effect, case 

simulations using the data from the 2011 Tohoku earthquake were conducted. 

From the simulation results, the following conclusions can be drawn:

(1) The impact of seismic damage in a network is generally underestimated 

when predicted without considering damage propagation due to 

topological and functional interdependencies between components. 

These findings are useful information that the person who has a 

concern in the electricity sector have to expect the additional functional 

loss.
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(2) As the electricity usage decreased, the initiation of damage propagation 

occurred at high magnitude earthquake. It means that the demand-side 

efforts can be regarded as reinforcement of network robustness.

(3) When the restoration conducted in accordance with the criticality rank 

presented this research, it minimized the time required to ensure 

community resilience. It provides useful information for risk

assessment and management.

On the other hand, for the functionality assessment of the 2011 Gyeongju 

earthquake, earthquake that occurred with magnitude 6.0 (minor), 6.4 (major) 

and 6.8 (critical) was considered. By setting up different state combinations of 

parent nodes, the posterior probability of power and potable water distribution 

disruption are estimated, and the major findings are: 

(1) The operational state of a component is even dependent through the 

availability of input inflow from adjacent components rather than its 

physical damage.

(2) In particular, with respect to the reliability of the water system, 

destruction of transmission substations and the reduction of water inflow 

to pumping stations are key variables.
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(3) Sometimes, solving the problem in different system (e.g., destruction of 

transmission substation in the case system) can be quite effective on 

improving a system reliability (e.g., potable water distribution disruption

in the case system).
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7.2 Research Contributions

The main academic contribution is that this research introduces two-

types of functionality (e.g., static and dynamic) and allows to quantify the 

influence of three types of uncertainty (e.g., physical destruction, reduction 

inflow, and demand change) on the system performance in a probabilistic 

manner. Although the methodology specifically applied to the Tohoku and 

Gyeongju earthquake, this research assured that other disaster case can be 

implemented while still using the same analytical approach.

Since the actions taken immediately following an earthquake can play a 

significant role on the extent of cascading failures, this research can contribute 

to solve practical-issues for those with a concern in the community resilience 

maintaining. In particular, time-varying features of the functionality 

assessment model can be helpful for risk management organization that 

operates lifeline system to prioritize which components were restored first for 

maintaining system resilience and reducing the number of blackout 

households under seismic hazards.
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7.3 Furutre Research

There are still a lot of uncertainty for the functionality assessment

regarding on the other types of lifeline components such as transmission lines 

and water pipe. Generally, such lines outage can spread the following steps: (1) 

there is no power flow through a damaged line; (2) power grid breaking into a 

number of disconnected islands; and (3) some islands are heavily overloaded 

and more line outages trigger. In other words, cascade failure in the line is the 

matter of electricity load imbalance, and thus most modeling approaches have 

focused on line programming and grid analysis. This is one of the reasons that 

transmission and distribution line outages fall outside the scope of our study. 

And fortunately, according to disaster reports published after Chile earthquake 

and Tohoku earthquake, adverse impacts on the whole power system due to 

line outage were quite low, as shown in the table below.

Table 7-1. System failure rate caused by link outage

Historical event Total line
Damaged 

line
Rate Reference

The 2010 Chile 
earthquake

7,280km 1.6km 0.02%
Araneda, J. C. et al.

(2010)

2011 Tohoku 
earthquake

14,809km 22km 0.15%
Tohoku Electric Power 

Company. (2011)
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Another uncertainty factors such as ramp-down time due to resource 

delivery delay. For example, electricity output is zero when the generator in 

emergency shutdown or safety inspection phase. Likewise, three of power 

plants discussed in this research automatically stopped operation after the 

earthquake (PGA value of all of them is more than 0.1g but less than 0.2g). 

However, according to the damage report from Tohoku-EPCO, they restarted 

operations within a day after the event. In addition, power plants are required 

to carry out regular inspections and it can be conducted when part of the plant 

is shutdown. In this case, other power sources are ready to increase their 

generations and electrical paths are restructured before shutdown. Thus, 

scheduled maintenance is not disruptions, but the correlation matrix 

(conditional probability) that expresses the relationships between nodes in 

normal condition may be changed. On the other hand, if unscheduled 

maintenance means no preparations for supply reduction, it is no longer in 

normal, but in disasters; and system functionality at that time can be 

determined through this research.

Therefore, future research might be focused on coping the challenge 

regarding validation derived from the lack of adequately observation data in 

earthquake-induced damage assessment.
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國 文 抄 錄

지진으로 손상된 라이프라인 시스템의 성능을

연쇄피해를 고려하여 예측하는 방안

전력, 가스, 상하수도 등 사회기반시설 가운데 광범위한 지역에

분산된 네트워크적 특성을 갖고 있는 라이프라인 시스템(Lifeline 

System)의 피해 진단을 위해서는 구조물이 얼마나 무너졌는가의

물리적 손상이 아닌, 시스템이 본래 의도로 했던 서비스를 제공할

수 있는 능력(Functionality)이 얼마나 감소되었는가의 기능적

저하로의 접근이 필요하다. 이러한 배경에서 정해진 설계 기간 동안

임의의 규모를 갖는 지진에 의하여 구조물이 붕괴 방지 수준을

초과할 확률을 추정하는 개념인 지진취약도가 등장했다. 그러나

이때의 지진취약도는 구조물이 단독으로 기능을 수행한다 가정하고

있기 때문에 여러 개의 구조물(예: 발전소, 변전소 등)이 하나의

목적을 갖고 전체 시스템(예: 전력계통)의 부분으로써 역할을 하는

라이프라인 시스템의 경우 같은 네트워크 안에 있는 구조물들과의

상호의존성에 대한 고려가 필요하다. 뿐만 아니라 전력 계통이 가동

중지되는 경우 그로부터 전력을 공급받는 하위 구조물을 다수

보유한 시스템(예: 상수도시설)으로 피해가 전이될 수 있기 때문에

서로 다른 네트워크 간 상호의존성 또한 반영이 요구된다.

따라서 본 연구는 라이프라인 시스템 기능 유지 관점에서 피해를

다음의 세 가지 - (a) 공통원인피해: 지반 거동으로 인한 라이프라인

구성 요소의 물리적 파괴, (b) 연쇄피해: 라이프라인 구성요소 간

상호 의존으로 인한 서비스 흐름 감소, (c) 증폭피해: 외부 환경

변화로 인한 서비스 수요 변화 - 로 분류하고, 지진으로 손상된

라이프라인 시스템의 성능을 예측하는 방안을 제시하였다.



188

구체적으로 공통원인피해는 지진동 감쇠함수로써 추정되는 최대

지반가속도에 따라 단일 시설물이 각 손상단계에 위치할 확률로

제시되었으며, 이로 인해 야기되는 연쇄피해의 파급 정도를 정량화

하기 위하여 투입-산출 불능(Inoperability Input-Output) 모형과

베이지안(Bayesian) 네트워크가 적용되었다. 이를 통해 최종적으로

라이프 라인 시스템의 성능은 지진 발생 직후 특정 시점에서

서비스를 받고 있는 수요자의 함수로 표현되며, 시스템 다이나믹스

(System Dynamics)를 활용하여 수요의 변화가 라이프라인 시스템

성능에 미치는 영향을 분석하였다.

더하여 제안한 모형을 2011년 동일본 대지진 사례와 2016년 경주

지진 사례에 적용하여 타당성을 검증하였으며, 시뮬레이션 분석을

바탕으로 지진 이후 지역사회의 회복탄력성(Resilience)을 높이기

위한 대책을 비교하였다. 본 연구 결과는 지진 이전에 라이프라인

시스템의 성능 저하를 예측 가능하게 함으로써 연쇄피해가 급격하게

전개되는 지진의 규모를 특정하거나, 현재 네트워크에서 가장 핵심이

되는 중요 구성요소를 식별하여 선제적으로 보완할 수 있도록 한다. 

또한 지진 이후에 라이프라인 구성요소의 물리적 피해가 계측되면, 

네트워크 분석을 통해 어떤 구성요소를 먼저 복구하는 것이 전체

시스템의 성능을 회복하는데 가장 효과적인지 비교할 수 있도록

지원한다.

주요어: 라이프라인 시스템; 성능; 지진; 공통원인피해; 연쇄피해; 

탄력성; 견고성; 신속성.

학번: 2012-23127
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