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Abstract

HymnTron: A DNN Based
Automatic Music Composer

Jinman Park

Department of Mathematical Sciences

The Graduate School

Seoul National University

With recent developments, there are many different applications for the

use of Deep Neural Networks. One of which is music composition. In this

thesis, we attempt to compose music that is indistinguishable from human

composition. We initialize the composition with a seed note. Next, we utilize

the long-short term memory network to compose numerous melodies from the

given seed note and the chord progression. Finally, we use a variety of scoring

functions to keep only a desired number of compositions through the beam

search algorithm. Human survey is conducted for quality testing.

Key words: Music composition, Beam search, Deep learning
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Chapter 1

Introduction

In 1950, Professor Alan Turing developed the reputable Turing test. It

is to test a machine’s ability to show intelligent behavior indistinguishable

from a human. His work was proven to be both highly influential and widely

criticized in the field of Artificial Intelligence. He believed that machines can

think. The goal of this paper is to follow the footsteps of Professor Turing,

and compose music using Deep Neural Networks that cannot be distinguished

from human composition. However, it is not our goal to rob the artist’s job of

composing music. It is to push the boundaries of Artificial Intelligence where

pattern does not exist as clearly as others, and possibly aid the artists with

composing music.

Although the history of automatic music composition using Deep Recur-

rent Neural Networks [1] [3] [4] does not stretch far, there have been other

attempts, such as Google’s Magenta [6] and a master’s dissertation, Bachbot

[7]. The basic framework behind these two works and this paper is similar in

that it quantizes the musical data into time series form. The differences lie

within the processing methods.

Music has a way of moving people’s emotions. It sets the mood for one

to be immersed in. However, With this great power comes such complexity

for one to work with that the genre must be narrowed down.

In this thesis, we aim to generate hymn music melody. The music data is

in the form of Musical Instrument Digital Interface, hereafter called “MIDI”.

It contains important information about a music piece such as key signature,
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time signature, note pitches and BPM. The MIDI data is converted into a

quantized sequence and trained based on a carefully structured model.

A common problem with mixing artificial intelligence and art is that

it can infringe on copyright. Since the model learns a specific style of music

through the training set, one can wonder if it will create music that is too sim-

ilar to the original songs. However, in this paper, a variety of scoring functions

will be used to ensure that the compositions display a similar compositional

distribution while being different from the original songs.

One of the main difficulties of evaluating music is that it cannot be

numerically scored. Judging whether a song is good or bad is very subjective.

Although one can score it by using the chain of conditional probability vectors

feeding out of the softmax layer, it does not necessarily correlate well with

human evaluation. Therefore, human survey will be conducted to imitate the

Turing test to judge if the neural network can compose music indistinguishable

from a human’s composition.
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Chapter 2

Data Processing

2.1 Transformation

Key signature is a set of sharps and flats that designates notes to be

played higher or lower than the corresponding natural notes until the end

of the piece or until another key signature appears. A song can be played

in different keys while sounding similar because the interval between each

note in a musical scale is identical regardless of the starting note. Therefore,

to simplify the encoding process, the notes and chord progressions of each

song must be transformed to the same key. Amongst the two, note sequence

transformations are relatively straightforward. It can be defined as follows:

Definition 2.1. Let K be a numeric representation of the current key sig-

nature so that K ∈ {0, 1, ..., 11}, where C major is 0. Then the relative key

difference between key X, and root key R can be defined as

4KX,R = KR −KX . (2.1)

Definition 2.2. Let Ni be a MIDI note pitch, where Ni ∈ {0, 1, ..., 127}.
Then, for some note sequence length l, the transformed note sequence from

key X to root key R becomes

NStrans = {N1 +4KX,R,N2 +4KX,R, ...,Nl +4KX,R}. (2.2)
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To transform a certain chord progression, one must understand the role of

chord progressions in a music piece. Chord progressions are the base feature on

which melody and rhythm are built. It restrains the melody from wandering

around and encourages the melody to follow a set of given notes.

Definition 2.3. Let Ci be a chord information expressed as a string data,

and let S : Ci → Cnum,i be a bijective string decoder function. Then, for some

note sequence length l, the transformed chord progression from key X to root

key R can be defined as

CPtrans = {S−1(S(C1)+4KX,R),S−1(S(C2)+4KX,R), ...,S−1(S(Cl)+4KX,R)}.
(2.3)

2.2 Quantization

A melody track contains events with time information. It proceeds in a

two step process repeating note on and note off. The time stamp on the “note

on” events represent a jump. It indicates when to play the next note relative

to the previous event. Similarly, note off events instruct when to stop playing

the previous playing note. To convert these events into a time series sequence,

the cumulative time stamps are quantized into desired steps.

Figure 2.1: Sample Quantization.
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Unless the quantization steps are very small, it poses a problem. For

example, if the time stamps are quantized into 1/16 notes, some 1/32 notes

and triplet notes are bound to be missed. However, quantizing the time stamps

into a very fine interval brings up a more severe problem. The data becomes

so sparse, mostly with no events, that it becomes very difficult for the network

to train.

2.3 Refinement

A standard MIDI note pitch ranges from 0 to 127, inclusive, with 60

representing the middle ‘C’ note on the keyboard. If the note range is too

wide, it becomes too complex and sparse for the neural network to learn

patterns. As depicted in figure 2.2, the note pitches of the dataset ranges

about two octaves. Naturally, pitches 48 to 84, inclusive, were set to be the

minimum and maximum range for melodic note generation in this paper.

Figure 2.2: Note Pitch Histogram of Hymn Songs.

Long-short term memory networks, commonly known as “LSTM”, are

an important tool when modeling an architecture designed to train on time

series data. They feed on the information from the past to predict future

steps. However, it shows weakness when the time steps exceed a certain point.
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Therefore, if the quantized note sequence length reaches beyond a certain

threshold, it needs to be cropped into smaller sequences. On the other hand,

if the melody is too short, it is considered to be insignificant compared to a

musical phrase. Finally, a melody is considered to be whole until there is at

least a bar of rest with a new melody starting.

2.4 Encoding

Transforming musical data into encoded information to be trained through

a neural network can become a creative process. To put it simply, there is no

right or wrong way to do it. It goes without saying that what effects a musi-

cal composition varies from person to person, and genre to genre. In order to

understand the nature of hymn music, consulting with music professionals is

utterly necessary.

Although the encoding process can be creative, some aspects are funda-

mental. Previous note information along with chord information determines

the octave and mood of the piece. It restrains the predictions from being too

random. Other minor details such as an indicator for the duration of hold or

an indicator for a new bar are used for encoding.

Definition 2.4. Let Ei be an encoded note. It is defined as

Ei = append(Ni,enc,Ci,enc, Ii,bar, Ii,hold), (2.4)

where Ni,enc, Ci,enc, Ii,bar, Ii,hold are one-hot note pitch vector, one-hot chord

vector, binary new bar indicator and one-hot hold duration vector respectively.
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Chapter 3

Model Descriptions

3.1 Melody Sequential Model

3.1.1 Model Architecture

The final model architecture incorporated into HymnTron included 2-

layer LSTM networks, attention wrappers, dropout wrappers, and a softmax

layer. Each layer has a purpose suited to its strengths.

LSTM networks were first introduced in [2] by Hochreiter and Schmidhu-

ber. They work superbly well on a variety of problems and are now included

in most state-of-the-art models. Furthermore, they are explicitly designed to

solve the long-term dependency problem erected by simple recurrent neural

networks (RNNs).

The attention wrapper is a trainable weight vector that signals which

time step to focus on based on the input. It saves computational cost by

learning which past time step is important to determine the outcome of the

future step. Since note sequences are mostly comprised of no events, if given

the signal to create a new event, it makes sense intuitively to not look at all

the time steps in the past.

To recall, the goal of this paper is to compose automatic music that is

indistinguishable from a human’s composition. However, the machine made

music loses credibility if it starts composing music too similar to the orig-

inal training set. In the field of deep learning, this is commonly known as
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overfitting. If the model is overfitted on the training set, creating new music

will become immensely difficult. Dropout wrapper from [5] is a fitting way

to generalize the learning process. Depending on the hyperparameter of the

dropout layer, the wrapper keeps only a certain percentage of the neurons

and the connecting weights during the training phase, making it harder to

learn. With this wrapper, the model is generalized well and can branch into

new musical compositions.

The final layer of the model, softmax, converts an m dimensional time

step into a probability vector. It is defined as follows:

Definition 3.1. Let x be a time series encoded note sequence with length n.

Then,

x = {E1, E2, ..., En−1}. (3.1)

In addition, let the final logits of the model with m features at time step i be

flogits,i(x) = (f1,i, f2,i, ..., fm,i). (3.2)

Then, the softmax layer corresponding to the final logits layer is

σ(flogits,i(x))j =
efj,i∑K
k=1 e

fk,i
, where j is the index of the labels. (3.3)

At time step i, the softmax layer returns a probability vector displaying the

likelihood of a specific label for the next time step. The outputs of this layer

can be capitalized during the generation phase for statistical analysis and

constraints.

Figure 3.1: Model Structure.
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3.1.2 Loss

Let f : X→ Y be a predictor. Our goal is to obtain a predictor which sat-

isfies f(x)=y by the learning algorithm. In order to monitor the learning pro-

cess, loss between the ground-truth label and the predicted label, L(f(x), y),

are measured in between epochs. Recall that x is a time series encoded note

sequence from 3.1 and y is the corresponding label. The corresponding label

and loss function can be defined as follows:

Definition 3.2. Let y be the corresponding label to (3.1), such that

y = {lab2, lab3, ..., labn} where labi = Ni,enc. (3.4)

Finally, the empirical loss Lemp, over M samples, is defined as

Lemp(f) = 1
M

∑M
i=1 L(f(xi), yi), where

L(f(x), y) = −
∑M

i=1 y log(f(x)).

(3.5)

Since the main concern of this work is not the choice of the loss function, nor

the optimization of the loss function, it will be left as a statement.
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Chapter 4

Generation

4.1 Beam Search

The motivation behind the application of beam search is to create diverse,

yet musically astounding, compositions. Beam search is a greedy search al-

gorithm that does not consider all the possible branches. It only extends its

branches from promising nodes. Although the number of search branches are

limited, it can save a lot of memory. As illustrated in figure 4.1, only the

Figure 4.1: A Simple Beam Search Example.

nodes with the highest conditional probability are kept. By applying this con-
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cept to music composition, the search algorithm must keep a limited number

of search routes at each time step and branch off from the final nodes in the

last step. Recall that the softmax layer represents the likelihood of each notes

at time t+ 1 given the encoded note sequences up to time t.

The question still remains on how one can effectively sample the branches

to ensure a diverse set of branches. To effectively sample the branches, K-

Means Clustering is utilized to group similar compositions. If the number

of total branches exceed the maximum keep parameter, the branches are

clustered into maximum keep parameter groups. The scoring functions in

the following subsections work with the clustering algorithm for the selection

process.

4.2 Temperature

Temperature is a variable that adjusts the softmax probability vector

after the training is completed from [6]. It divides the final logits vector

element-wise to increase or decrease the entropy. In other words, it either en-

sures or undermines the prediction. Since the accuracy during training phase

is determined by the argmax function of the softmax vector, the tempera-

ture parameter does not affect it. The relevance of the temperature setting

lies heavily with the beam search tree. If the probability vector is skewed to-

wards one label, being sure of the prediction, the diversity of routes that the

beam search tree can take becomes quite narrow. Therefore, we lower the en-

tropy level in order to sample diverse routes from the seed note. Temperature

infused softmax layer is defined as follows:

Definition 4.1. The temperature parameter p, infused into the softmax layer

from 3.3 is

Ti,j(p) = σ(
flogits,i(x)

p
)j, where p > 0. (4.1)

4.3 Scoring

The creators of Magenta [6], considering the difficulty of evaluating mu-

sic, decided to make use of the logarithm score to measure the quality of
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music. They agreed that it is not a reliable source of music quality mea-

surement as music quality is measured subjectively. Furthermore, the branch

from the beam search tree with the best logarithm score does not indicate the

“best” music. It represents a single composition closest to the original dataset.

However, recall that the goal is to create new music pieces different from

the training dataset. To achieve that goal, there must be additional metrics

to monitor the pattern. Specifically, perplexity scoring and difference scoring

algorithms are applied for monitoring.

Definition 4.2. Let Bk be a single branch from the beam search tree, and

let O be the set of original compositions from the training set. First, the

Logarithm Score of Bk in [6] is defined as

LS(Bk) =
n∑

i=2

log(σ(flogits,i(x))j). (4.2)

Second, the Perplexity Score of Bk is defined as

P(Bk) =

∑n
i=1 Ii
n

, where Ii =

{
0 if Bi,k = No event,

1 otherwise.
(4.3)

Third, the Difference Score of Bk is defined as

DS(Bk) =
∑n

i=1 INi∑n
i=1 IUi

, where

INi =

{
1 if Bi,k = Oi& both events,

0 otherwise.
and IUi =

{
1 if Bi,k or Oi = Event,

0 otherwise.

(4.4)

The main purpose of perplexity scoring is to prevent the branches from

choosing the “no event” node consecutively. It simply measures the ratio of

note events in the full sequence. Branches with mainly “no event” labels will

return low perplexity scores, and branches mainly with “event” labels will

display high perplexity scores. Discarding all branches with low perplexity

scores will guarantee that the final branches will not contain an overabun-

dance of “no event” labels. That being said, it all comes down to the user’s

choice of parameters. One chooses the minimum and the maximum perplexity

12



scores and only the branches within that score will be kept during the beam

search process. If one desires a composition with frequent event changes, a

higher minimum perplexity score is set. On the other hand, desiring a longer

note duration will mean setting the maximum perplexity score low.

Difference scoring compares the note signals between the chosen branch

Bk and the original compositions O. However, it does not consider the pitch

of the notes, since two compositions can sound very different with the same

sequence of notes but using different rhythms. Again, the user decides the

range of DS to keep in between searches. Choosing a higher score range will

keep the branches that are similar to the original rhythms and a lower range

will keep the branches that are different to the original rhythm.

4.4 Constraints

Figure 4.2: Repeat Histogram.

During the generation phase, some rudimentary music theory and prior

statistical analysis are applied to prevent the model from choosing the wrong

branch. Again, it will depend on the genre of music to determine the music

theory that should be applied for the constraints. Therefore, basic hymn theo-

ries will be reflected on the constraints. Since constructing complicated music

rules defeats the whole purpose of this work, only basic rules have been given.

For example, it is quite uncommon for a note to jump an interval greater than

13



a perfect fifth.

After conversing with professional composers, it became clear that repe-

tition was a problem with the earlier models of HymnTron. The final model

is given a “dice roll” which mimics the statistical behaviour of a repetition.

The number of repetition determines the success rate of the roll. If the roll is

successful, the model is given a token that allows repetition.

14



Chapter 5

Experiments

5.1 Experiment Premises

The survey is comprised of seven questions. To distinguish the candidates

that are either professionals in the field of music or experts on hymn music,

first two questions are addressed to indicate the level of musical background,

and familiarity with hymn music. The following five questions are set up so

that each question is given two options. One is a human made hymn music

melody, and the other is a machine generated hymn music melody. The partic-

ipants are asked to identify which one sounds most like hymn music. The sur-

vey will remain open at https://www.surveymonkey.com/r/YLNVJWZ and

is open to anyone who is interested in taking the survey.

5.2 Results

Just over a month of collecting participants for the survey, 49 people have

participated. The results that we expect to see, if we assume that we have

created hymn music that are indistinguishable from human composition, is

around 50%. Statistically speaking, it would mean that the participants have

guessed which one seems more suitable since they are given a choice to pick

between a machine generated piece and a human composed piece. Despite the

small number of participants, the final result of overall 53% accuracy is quite

notable.
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Hymn Level of Musical Background
Familiarity Beginner Intermediate Expert Total

Beginner
11 5 0 16

43.6% 44% NA 43.7%

Intermediate
10 17 3 30

58% 57.6% 46.7% 56.6%

Expert
0 0 3 3

NA NA 66.7% 66.7%

Total
21 22 6 49

50.5% 54.5% 56.7% 53.0%

Table 5.1: Results of the HymnTron survey. The two rows in each cell repre-
sent the number of participants and the mean accuracy respectively.
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Chapter 6

Conclusion

In this thesis, we created a constrained DNN based beam search gener-

ation model. Raw MIDI data was processed through transformation, quanti-

zation, refinement and encoding. A two layer LSTM network with attention

wrapper was used as the foundation of the generative model. This generative

model returns a vector of probability distribution, indicating which event is

most likely to occur in the next time step. Beam search is used hand-in-

hand with the generative model to create numerous branches. Each of these

branches represent a single musical composition. Constraints are placed on the

label vector so that musically indecent events are not chosen during the beam

search phase. Additionally, scoring algorithms are utilized during branch fil-

tering. Generated hymn music pieces are compared to the human composed

hymn music through human survey. Despite the low number of participants,

the result was satisfactory with overall accuracy of 53% .
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국문초록

최근의 개발로 인해, 딥 뉴럴 네트워크 (Deep Neural Networks)를 사용하

기위한 많은 어플리케이션이 존재한다. 그 중 하나는 음악 작곡이다. 이 논문

에서 우리는 인간 작곡과 구별 할 수없는 음악을 작곡하려고 시도한다. 시드

노트로작곡을시작한다.다음으로 LSTM을사용하여주어진시드노트와코드

진행에서 수많은 멜로디를 작곡한다. 마지막으로, 우리는 빔 검색 알고리즘을

통해원하는수의컴포지션만유지하기위해다양한스코어링알고리즘함수를

사용한다. 인간 조사는 품질 테스트를 위해 수행된다.

주요어휘: 음악 작곡, 빔 검색, 깊은 신경망

학번: 2016-22071
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