

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Science in Engineering

Task-Oriented Design Through
Deep Reinforcement Learning

심층강화학습을이용한

과제기반의디자인방법론

February 2019

Graduate School of
Convergence Science and Technology

Seoul National University
Department of Transdisciplinary Studies

Junyoung Choi

Task-Oriented Design Through
Deep Reinforcement Learning

Nojun Kwak

Submitting a master’s thesis of Public
Administration
December 2018

Graduate School of
Convergence Science and Technology

Seoul National University
Department of Transdisciplinary Studies

Junyoung Choi

Confirming the master’s thesis written by
Junyoung Choi

February 2019

Chair (Seal)

Vice Chair (Seal)

Examiner (Seal)

Abstract

We propose a new low-cost machine-learning-based methodology which

assists designers in reducing the gap between the problem and the solution

in the design process. Our work applies reinforcement learning (RL) to find

the optimal task-oriented design solution through the construction of the

design action for each task. For this task-oriented design, the 3D design

process in product design is assigned to an action space in Deep RL, and a

desired 3D model is obtained by training each design action according to the

task. By showing that this method achieves satisfactory design even when

applied to a task pursuing multiple goals, we suggest the direction of how

machine learning can contribute in design process. Also, we have validated

with product designers that this methodology can assist the creative part in

the process of design.

Keyword : Task-oriented Design, Design Through Machine Learning, Re-

inforcement Learning, Deep Learning

Student Number : 2017-22087

i

Contents

1 Introduction 1

2 Related Works 4

2.1 Constructive Design . 4

2.2 Reinforcement Learning 4

3 Environment 7

3.1 Task Specification . 7

3.2 3D Simulation Environment 8

3.3 Reinforcement Learning Environment 9

4 Experiment 12

4.1 Pouring Environment . 12

4.1.1 Quantitative Analysis 13

4.1.2 Qualitative Analysis 14

4.2 Shaking Environment . 15

4.2.1 Quantitative Analysis 16

4.2.2 Qualitative Analysis 17

4.3 Hybrid-Learning . 18

4.3.1 Quantitative Analysis 19

4.3.2 Qualitative Analysis 20

4.4 Contribution in Design Process 20

ii

5 Conclusion 22

5.1 Conclusions . 22

Bibliography 24

Appendix 26

Abstract in Korean 29

iii

Chapter 1

Introduction

This paper suggests a methodology of helping designers to obtain mor-

phological insights with the use of deep reinforcement learning. Within the

constructive design process, design methodologies have evolved to find the

points of human inconvenience or the problems contained in the use of the

product [1]. In the problem solving process, a design solution for the de-

fined problem is searched for that can be applied to the actual design. Many

designers have suggested various methods to solve these design problems.

[2, 3]. However, since these methods usually require high cost in terms of

time and space, many researchers have difficulties in finding a good solu-

tion.

Meanwhile, the role of computer science in the design process has been

changed. Computer scientists collaborate not only in the development of

design tools that designers can use directly for designing products, but also

in various forms that help designers with computer simulation or machine

learning algorithms before the mock-up stage [4, 5, 6, 7, 8]. However, these

approaches only use computer science as a rule-based assistant, not a cre-

ative designing tool. Dreamsketch [9], on the other hand, suggested the

1

methodology to obtain multiple 3D design solutions based on the context

created from the sketch phase. But still, because it is applied only after all

the analysis has been done, rather than used for understanding the context of

design, it is of little help in the design process and does not directly address

the underlying problem solving. Pahn et al. [10] is another good example

that attempted to assist the design process using machine learning, but it is

very costly because it requires the process of dividing the product and the

corresponding design problem into small objects and assigns a role to each

object.

Different from the above mentioned methods, we have chosen algo-

rithms that can more directly understand the design process in order to sug-

gest a more direct and lower-cost methodology to designers at the problem-

solution bridge stage. The reinforcement learning algorithm, which is be-

coming a hot topic in computer science, is an algorithm that learns the best

action (to get the best reward) in a provided environment. Even if we do

not give detailed information about the intermediate process leading to the

best reward, we can learn to get the best action possible. Through this, we

devised a framework that can design based on a given task.

In this paper, we apply the reinforcement learning algorithm to product

design and present a link that enables the computer to directly find the task-

oriented solution through the problem. The whole proposed methodology is

shown in Figure 1. When problems from design research is given, we de-

fine tasks, 3D simulation environments and reinforcement learning environ-

ments. Tasks and 3D simulation environments are processed in BLENDER

[11] and linked to the reinforcement learning algorithm. In the figure, this

2

Figure 1: The proposed method of task-oriented design through deep rein-
forcement learning in the product design precess. With task specification,
3D simulation and a reinforcement learning environment, our methodology
propose a methodology that directly assists creative part of the product de-
sign process.

paper deals with the processes denoted in the dashed-line box.

Zhu et al. [8] is also a good example of a deep learning algorithm

for product interpretation. However, we go one step further and present a

methodology that allows the computer to design itself based on the under-

standing of the product or task. More specifically, we have chosen to design

a pot with a couple of design objectives. By tackling this problem, we will

discuss how the reinforcement learning algorithm finds solutions in order to

achieve high scores in a given task. To enable this, we define the design pro-

cess as an action space that can be understood by the computer. We will also

cover how we can finally use the generated output by giving morphological

intuition to product designers.

3

Chapter 2

Related Works

2.1 Constructive Design

In various study of product design process [1, 12], the authors discuss

about the process of constructive design research which is initiated by for-

mulating a research question out of an existing theory or philosophy, then

investigate the question through a process of making and designing artifacts.

For constructive design, user research should be proceeded first. With

studying users and products, designers get several insights that should be ap-

plied to their final design. After studio work, constructive design researchers

develop designs, which begins with sketchy ideas and mock-ups. In this

stage, usually hundreds of mock-ups are made by designers, which costs a

lot of time and efforts.

2.2 Reinforcement Learning

Reinforcement learning is an algorithm that learns which actions to take

to maximize rewards in a given environment. In reinforcement learning, we

define and solve problems with the framework of Markov Decision Pro-

4

cesses (MDPs). MDPs consist of the environment and the agent. They in-

teract each other at every continual time index t = 0,1,2, · · · , and the agent

tries to achieve a given goal.

Specifically, the agent receives information about the state from the en-

vironment and takes action to obtain maximum rewards in the current state,

and the action is determined by the policy. The policy is defined as a proba-

bility distribution (π(a|s)) that is of available action outputs in a given state

[13]. The environment outputs rewards as a result of agent’s action and this

process repeats. In the end, trajectories such as s0,a0,r1,s1,a1,r2,s2,a2,r3, · · ·

can be obtained by the interaction of the agent and the environment. State

changes are determined by stationary transition dynamics distribution p(st+1|st ,at)=

p(st+1|s0,a0, · · · ,st ,at) which follows markov properties [14].

Deep Q-Network(DQN) has achieved surprising performance in the Atari2600

task learning environment, where the action-value function (q(st ,at); Q-

function) was approximated by deep neural network [15]. The Q-function

estimates the maximum achievable cumulative rewards for a current state st

with action at . In DQN, the output of the Q-function is an one-hot vector

form of the discrete action space, which prohibits DQN from being applied

to continuous action space environments.

Deep deterministic policy gradient (DDPG) [16] used the Actor-Critic

method [17] to overcome the disadvantages of DQN in the continuous ac-

tion space. Trust region policy optimization (TRPO) [18] then used the

Kullback-Leibler divergence [19] as a constraint to resolve the unstable re-

sult of policy update due from the fixed step size in DDPG. In addition,

proximal policy optimization algorithm (PPO) [20] proposes a clipped sur-

5

rogate objective function to alleviate the complex computational require-

ment in TRPO. In this experiment, we used PPO as a main algorithm to

solve the task-oriented optimization problem.

6

Chapter 3

Environment

3.1 Task Specification

In this study, to verify the effectiveness of RL in the design process, we

selected the cylindrical pot shown in Fig. 2 as a basic design for its sim-

ple but flexible form. Starting from a cylinder-shaped pot, the agent tries to

maximize the cumulative reward for a specific task by taking actions which

is defined as increasing or decreasing the diameter of the pot at different

heights. The first task we consider is pouring as much water as possible in

the pot into another cup according to the primary purpose of the pot. In

addition, we assumed a shaking situation as a second task. Here, the agent

tries to keep water from the shaking pot. We named each environment as

‘pouring environment’ and ‘shaking environment’, respectively. After train-

ing each task successfully, we also show that simultaneously training both

tasks is possible despite these two tasks have conflicting features.

7

Figure 2: Initial state of pot design drawn in the BLENDER environment.

3.2 3D Simulation Environment

The existence of simulation environment has been one of the main rea-

sons for the success of deep reinforcement learning. Mnih et al. [15] was

able to find the optimal policy by training in the ATARI2600 game environ-

ment through Arcade Learning Environment [21]. The role of the simulation

is also important in our task. Without simulation, we have to repeat the in-

efficient process of designing the pot each time, outputting the product, and

experimenting.

We used an open-source 3D modeling tool, BLENDER, to construct a

reinforcement learning environment. The reason for using the BLENDER

is that it allows fluid simulation through embedded particle systems and

can control and output all the available information on the environment via

8

Figure 3: Initial step in the pouring environment (left). We simulate the pour-
ing operation by tilting the pot and filling the cup with water (right). The
amount of water in the cup is rewarded to the agent which further tries a
designing action of increasing or decreasing each diameter of the 11 control
points. Note that since the pot and the cup are located with some distance,
most of the water spill during pouring operation.

python scripts. The initial model of the pot implemented with the BLENDER

is shown in Figure 2.

3.3 Reinforcement Learning Environment

As described in the above section, to apply each modeling design to rein-

forcement learning, we need to define the state and action space. To define

the state and action, we assigned 11 control points along the z-axis of the

pot by dividing z-axis into 10 regions. And each cross sectional circle cor-

responding to each control point consists of 32 points with equal distances.

Now the pot consists of 352 (= 32× 11) points as we can see in Figure 2.

The action space is defined as an 11-dimensional vector that controls the

radii of 11 circle groups and the state is a vector of 1,056 (= 32× 11× 3)

dimension which corresponds to x,y,z coordinates of all points in the pot

9

Figure 4: Initial step in the shaking environment (left). We simulate the shak-
ing operation by abruptly tilting the pot from 70◦ to -70◦. The remaining
water in the pot acts as a reward in this environment.

design.

As we see in Figure 3, in the pouring environment, the environment

consists of a pot containing water and a cup to receive water. At first, the

agent takes an action to change the design of the pot from the initial state.

The environment simulates a step process and then measures a reward. The

step proceeds as follows. With a certain amount of water in the pot, tilt the

pot from zero to 130 degrees in the direction of x-axis for 2 seconds. At this

time, the amount of water in the cup is measured as a reward.

In the shaking environment shown in Figure 4, the environment only

consists of a pot containing water unlike the pouring environment. Most

of the step processes are similar to the pouring environment except for the

simulation step process. With a certain amount of water in the pot, the envi-

ronment shakes the pot for thirteen seconds from −70 to 70 degrees in the

direction of x-axis. At this time, the amount of water remaining in the pot is

measured as a reward.

10

Figure 5: The whole cycle of experiment. 3D model designed by blender
directly link to the PPO algorithm in python so that each simulation result
can be calculated and use while learning.

11

Chapter 4

Experiment

In this section, we will show that task-oriented design is possible through

experiments not only in the tasks mentioned in the previous section, but also

in a multi-task environment where the goal is a hybrid of the two tasks. And

then, we will analyze how the computer understands a task and designs a

model by examining i) the rewards during learning quantitatively and ii) the

result of the pot design qualitatively.

4.1 Pouring Environment

In the pouring environment, the pot performs a task of pouring water

into a narrow cup located a certain distance away as shown in Figure 3. If

the amount of water in the cup is ncup, and the total amount of water is np,

the reward is defined as

rewardpour = ncup/np. (4.1)

Through this, we designed an experiment to get the maximum amount of

water to the cup when tilting the pot. We used PPO as the reinforcement

12

Figure 6: Changes in the model during learning. The first row shows the
learning process in the pouring environment, and the second row shows the
learning process in shaking environment. The final image of each raw is
when the learning has reached its best performance.

learning algorithm. In general, millions to billions of steps are needed for

a reinforcement learning model to converge. In our experiment, however,

we only used 1,000 steps for training due to the computational bottleneck

of the BLENDER simulation. We separated the 1,000 steps into 5 episodes

and initialized the pot design every 200 steps to prevent sub-optimality that

might occur in reinforcement learning. Through this, we encouraged the

agent to make optimal modeling.

4.1.1 Quantitative Analysis

Figure 7 shows the overall reward rise during the training. At the initial

state, the reward is quite low due to the distance gap in the x-direction be-

tween the tip of the pot and the center of the cup. As the training proceeds,

the reward increases. The valley for each episode in Figure 7 (at 1, 201, 401,

601, and 801 steps) shows that it starts again from the initial state so that it

13

Figure 7: Reward Graph in Pouring Environment. Each shadow on the
graph means the full episode of this experiments. In every start point of
the episode(200, 400, · · ·), pot design is initialized so that the network can
get exploration effect with trained gradient. Each red points on the graph
represent steps that shown in the first row of Figure 6.

deviates from the sub-optimality and shows a slight improvement in reward

as the learning progresses. Compared to 23% of water in the cup in the ini-

tial state, we can see the improvement in performance by containing 53% of

water at the end of the training. The final image in the pouring environment

of Figure 6 is what the pot design would look like when it got a reward 0.53

at episode 4 step 107.

4.1.2 Qualitative Analysis

If you look at the models created by the deep reinforcement learning

algorithm, you can see which tasks the agent want to perform in each step.

14

Table 1: Rewards Table in Tilting Environment. The final reward in the table
represent best score in learning. In this case, the best reward was 0.53 in
episode 4 step 107.

Episode Steps Rewards

1 1 0.23
2 72 0.30
3 57 0.38
4 46 0.46
4 107 0.53

In Figure 6, the first row shows how the model trained from the pouring

environment changes. In the initial state, it inevitably fails to aim correctly

since the distance from the pot to the cup is far as can be seen in Figure 3.

Our agent solve this problem by shaping pot design such that the center is

narrow and the head and the bottom are wide, which controls the accelera-

tion of the fluid. After this, the algorithm passes through exploration steps to

maximize the reward Eq (4.1). Also, we can see that the head area is resized

to maximize the reward.

4.2 Shaking Environment

In the shaking environment, the pot is designed to shed as little water

as possible in the environment of shaking the pot. If the initial amount of

water in the pot is np, and the final amount of water after shaking is npot , the

reward is defined as

rewardshake = npot/np. (4.2)

15

Through this, we trained the pot to conserve the maximum amount of water

in the pot. We used the PPO algorithm like the pouring environment and

trained the model for 5 episodes of 200 steps each.

Table 2: Rewards Table in Shaking Environment. The final reward in the
table represent best score in learning. In this case, the best reward was 0.86
in episode 4 step 147.

Episode Steps Rewards

1 1 0.41
2 17 0.52
3 39 0.63
4 93 0.74
4 147 0.86

4.2.1 Quantitative Analysis

Figure 8 shows the trend of reward as the learning progresses in the

shaking environment. The reward tends to decrease slightly after reaching a

saturation level in the first three episodes, which indicates that the agent has

stuck in the local minimum during training. However, by solving the local

minimum problem after episode 4 through exploration, the maximal reward

increases. As a result, compared to the initial state which saves only 41% of

the water, at the end of the training, the resultant pot is able to keep 86% of

the water. The bottom right image of the shaking environment in Figure 6 is

when the algorithm gets a reward of 0.86, as recorded in episode 4 step 147.

16

Figure 8: Reward Graph in Shaking Environment. Each shadow on the graph
means the full episode of this experiments. Each red points on the graph
represent steps that shown in the second row of Figure 6.

4.2.2 Qualitative Analysis

Looking at the changes in the models generated by the reinforcement

learning, you can see how the network is trained to protect water. As you

can see from the bottom row of Figure 6, the bottom part of the pot becomes

larger and larger to keep as much water as possible, and the structure is

good for storing water. As training proceeds, it was difficult to store water

in the lower part, and the training progressed with a double tube structure.

Commonly, there is a barrier structure in the upper part to prevent the pot

from splashing by water shaking. Consequentially, we were able to confirm

that when the simulation was carried out, it was trained to keep the bouncing

water as much as possible in the pot from the large swing of ±70 degrees.

17

Figure 9: Final models in cross-learning environment. Each images repre-
sent the best performance in five weight parameter with 0.2 difference from
0.1 to 0.9. When the weight parameter is close to 0, the learning is focused
on solving shaking environment. On the contrary, the higher weight param-
eter means that the result of learning will be similar to the solution of the
pouring environment.

4.3 Hybrid-Learning

In hybrid-learning, we examined the possibility of pot design that can

perform both contradictory tasks. To do this, we defined a new reward which

is a weighted sum of the reward in the pouring environment and the reward

in the shaking environment as follows:

rewardhybrid = w · rewardpour +(1−w) · rewardshake (4.3)

In this equation, w is a weight parameter between 0 and 1. We experi-

mented how the algorithm interprets each task according to five w values

in {0.1,0.3,0.5,0.7,0.9}.

18

Table 3: Maximum Rewards in Hybrid-Learning. The hybrid reward is cal-
culated as shown in Eq.4.3. Each rewards are best rewards in chosen weight.

Weight Episode Step Pour Shake Hybrid

0.1 4 146 0.32 0.87 0.82
0.3 5 69 0.43 0.83 0.71
0.5 5 51 0.48 0.80 0.64
0.7 4 107 0.55 0.71 0.60
0.9 4 107 0.53 0.71 0.55

4.3.1 Quantitative Analysis

Table 3 indicates how much reward is obtained for different weight pa-

rameters. Each episode and step indicates the time when the maximum hy-

brid reward was achieved for the corresponding weight, and the three re-

wards (pouring, shaking, and hybrid) are the corresponding rewards at the

time. When w is 0.1, according to Eq (4.3), we can see that the shaking

environment has more weight on training. As w increases, training is more

focused on the pouring environment. As can be seen in Table 3, in the pour-

ing environment, a pouring reward of 0.32 was achieved at the point where

the hybrid reward was largest when w was 0.1. As w increased to 0.9, the

pouring reward increased to 0.53, which is the best score of the single pour-

ing environment, because the algorithm gave more weight to the pouring

environment. Conversely, in the shaking environment, the shaking reward

was 0.87 when w was 0.1 and the reward decreased to 0.71 when w was 0.9.

In this way, we showed the deep RL algorithm combining the two opposite

tasks can train a model that satisfies both tasks.

19

4.3.2 Qualitative Analysis

Figure 9 shows how the model appears based on the change in the weight

parameter w. When the value of w is 0.1, there is a water trap structure at

lower position, a narrow entrance, and a barrier structure below the entrance

like the model designed in the pure shaking environment. This shows that

the training is focused on the shaking environment and trained to maximize

water in the pot. On the other hand, when w is 0.9, we can see that the model

has trained to create a smooth line in the middle like the model designed in

the pouring environment and flows the water as easily as possible. In the

case of the third model of w = 0.5, which performs the two tasks in the

most balanced way, we can see that the model design maintains all of these

features. Though there exists a storage part in the middle influenced by the

shaking environment, it has a tendency to minimize the water remaining in

the pot through the narrowing structure from the bottom to the top which

resembles the design of the pouring environment.

4.4 Contribution in Design Process

Since the computer-designed products from this experiment does not

consider either usability or aesthetics other than the given objectives, it will

be necessary to design a creative part based on the generated form. There-

fore, in order to verify the validity of the current methodology, we invited a

product designer to sketch designs through the computer-generated design.

The tester chose the main design concept as a Chinese pot. He sketched the

new Chinese pot using the characteristics of the generated form. The design

20

Figure 10: The sketch of a pot based on the computer-generated form. The
main concept of design was Chinese pot. While designing, the product de-
signer get a reference about the morphological concept which is applied to
his actual product design concept.

sketch result is shown in Figure 10.

After sketching session, we had a short interview with the product de-

signer to get pros and cons about this methodological concept. The designer

commented that ‘this methodology is highly useful when designers should

make a product from a task-based concept’. Also, he found out that the out-

put form is quite similar to the common sense of the pot designed for similar

tasks. As so, he believes that the results of this study will be a good refer-

ence as a task-based study, which will increase the reliability of the results

produced by the designer. However, he has worried that significant features

of the output can be lost because of the extreme morphological tendency of

the computer-generated design.

21

Chapter 5

Conclusion

5.1 Conclusions

Through this study, we have shown that task-oriented design using deep

reinforcement learning is possible for a specific task whose objective can

be well defined. It is shown that the task objective function of the modi-

fied design through the deep reinforcement learning is significantly higher

than that of the basic form, which indicates that the computer succeeded

in designing the task-oriented model. By using this methodology, designers

and researchers will be able to apply task-based form research before they

move to creative parts of product design process. In addition, the proposed

methodology is highly efficient, because it is possible to study morphology

within 20 hours at low-cost, achieving a high understanding of the task.

However, in the present learning, since an action space is used in which

a radius of each point layer is simply changed, there is a limit to an aesthetic

or complex design that can be used in real life as an output. Also, since the

reward function for the task is simply designed, the limit is shown when the

performance reaches a certain level. For this reason, we will need to design

22

a more delicate action space as well as a reward function in future works.

23

Bibliography

[1] Ilpo Koskinen, John Zimmerman, T.B.J.R.S.W.: Design Research

through Practice from the lab, field and showroom. Morgan Kaufmann

(2011)

[2] Dorst, K., Cross, N.: Creativity in the design process: co-evolution of

problem–solution. Design Studies 22 (2001) 425–437

[3] Ullman, D.G.: The Mechanical Design Process. McGraw-Hill Educa-

tion, New York (1991)

[4] Aish, R., Stam, J., Glueck, M., Khan, A.: Physics-based generative

design. CAAD Futures Conference 14 (2009) 231–244

[5] Du, T., Schulz, A., Zhu, B., Bickel, B., Matusik, W.: Computational

multicopter design. ACM Transactions on Graphics 35(227) (2016)

[6] Parish, Y.I.H., Müller, P.: Procedural modeling of cities. SIGGRAPH

8 (2001)

[7] Umentani, N., Igarashi, T., Mitra, N.J.: Guided exploration of physi-

cally valid shapes for furniture design. ACM Transactions on Graphics

31(86) (2012)

[8] Zhu, Y., Zhao, Y., Zhu, S.C.: Understanding tools: Task-oriented ob-

ject modeling, learning and recognition. CVPR 10 (2015)

[9] Kazi, R.H., Grossman, T., Cheong, H., Hashemi, A., Fitzmaurice, G.:

Dreamsketch: Early stage 3d design explorations with sketching and

generative design. UIST 14 (2017) 401–414

[10] Pahn, F., Senin, N., Wallace, D.: Distribution modeling and evaluation

of product design problems. Computer-Aided Design 30 (1998) 411–

423

24

[11] Blender Online Community: Blender - a 3D modelling and rendering

package. Blender Foundation, Blender Institute, Amsterdam. (2018)

[12] Bang, A.L., Krogh, P.G., Ludvigsen, M., Markussen, T.: The role of

hypothesis in constructive design research. The Art of Research IV 11
(2012)

[13] Sutton, R., Barto, A.: Reinforcement learning: An introduction, (com-

plete draft) (2017)

[14] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller,

M.: Deterministic policy gradient algorithms. In: ICML. (2014)

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602 (2013)

[16] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,

Silver, D., Wierstra, D.: Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971 (2015)

[17] Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7-9)

(2008) 1180–1190

[18] Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust

region policy optimization. In: International Conference on Machine

Learning. (2015) 1889–1897

[19] Kullback, S., Leibler, R.A.: On information and sufficiency. The an-

nals of mathematical statistics 22(1) (1951) 79–86

[20] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Prox-

imal policy optimization algorithms. arXiv preprint arXiv:1707.06347

(2017)

[21] Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade

learning environment: An evaluation platform for general agents. Jour-

nal of Artificial Intelligence Research 47 (2013) 253–279

25

Appendix

Experiment Result Details

In this section, we’ll show the detailed rendering view of our experiment

in section 4. With blender, we could simulate and render the result as video

files, which can directly and intuitively see how our model works in given

tasks.

As we see in figure 11, initial state of pouring environments spills a lot

of fluid because of the distance between cup and the pot. In the other hand,

(B) in figure 11 shows that the designed pot have inner structure that can can

accelerate the fluid velocity so that it can spill less water compared to the

(A). In (C) and (D) in figure 12, we can see massive improvement on shaking

task. Compared to the (C), which is initial state on shaking environment, the

inner structure of (D) effectively keep water in the pot.

Figure 12 represent the result of hybrid learning shown in section 4.3.

Each form of pot contains the key feature of pots designed in each environ-

ment. When coefficient is 0.1m, as shown in (A) and (D), pot spills a lot of

water on pouring environment, but is very good at keeping water in shaking

environment. In the other hand, (C) and (F) shows the opposite tendency.

(B) and (E) shows the balanced design for both environment. As we render

this images, we can analyze the movement of fluid and the form of designed

pot.

26

Figure 11: Rendered image of pouring and shaking environment on Section
4.1, 4.2. (A) and (B) shows the result on pouring environment. While (A)
shows the initial state of learning which spilled a lot of waters on the outside
of the cup, (B), the highest score on pouring environment, shows pretty good
result on pouring task compared to (A). Also, (C) and (D) shows the result
on shaking environments. On initial state, cup spilled nearly 60% of water,
but after the learning process, it kept 86% of water.

27

Figure 12: Rendered image of pouring and shaking environment on Section
4.1, 4.2. (A) and (B) shows the result on pouring environment. While (A)
shows the initial state of learning which spilled a lot of waters on the outside
of the cup, (B), the highest score on pouring environment, shows pretty good
result on pouring task compared to (A). Also, (C) and (D) shows the result
on shaking environments. On initial state, cup spilled nearly 60% of water,
but after the learning process, it kept 86% of water.

28

요약

심층강화학습을이용한

과제기반의디자인방법론

본논문에서는디자이너가디자인프로세스에서문제와솔루션간의

갭을 줄이는데 도움이 되는 새로운 저비용 강화학습 기반의 새로운 방법

론을 제시한다. 우리의 작업은 강화 학습 (RL)을 적용하여 각 과제(task)

에 대한 디자인적 액션 공간(action space)을 구성하여 최적의 과제 중심

설계솔루션을찾는다.이과제중심설계에서는제품설계의 3D설계프

로세스가Deep RL의액션공간에할당되고과제에따라각디자인작업을

학습하여 각 과제에 알맞는 3D 디자인을 얻어낸다. 본 논문을 통해 제시

되는방법론은또한,여러가지과제를동시에수행해야하는경우에도두

개의 과제에 대해 만족스러운 결과를 내는 디자인을 얻어냄으로써 강화

학습이 디자인 과정에 어떻게 기여할 수 있는지에 대한 지침을 제시한다

다.또한제품디자이너와의협업을통해본방법론이디자인과정에서의

창의적인부분에서도움을줄수있을것이라확인하였다.

주요어 : 과제기반의디자인,머신러닝을이용한디자인,강화학습,딥러

닝

학번 : 2017-22087

29

	1 Introduction
	2 RelatedWorks
	2.1 Constructive Design .
	2.2 Reinforcement Learning

	3 Environment
	3.1 Task Specification .
	3.2 3D Simulation Environment
	3.3 Reinforcement Learning Environment

	4 Experiment
	4.1 Pouring Environment .
	4.1.1 Quantitative Analysis
	4.1.2 Qualitative Analysis

	4.2 Shaking Environment .
	4.2.1 Quantitative Analysis
	4.2.2 Qualitative Analysis

	4.3 Hybrid-Learning .
	4.3.1 Quantitative Analysis
	4.3.2 Qualitative Analysis

	4.4 Contribution in Design Process

	5 Conclusion
	5.1 Conclusions .

	Bibliography
	Appendix
	Abstract in Korean

<startpage>7
1 Introduction 1
2 RelatedWorks 4
 2.1 Constructive Design . 4
 2.2 Reinforcement Learning 4
3 Environment 7
 3.1 Task Specification . 7
 3.2 3D Simulation Environment 8
 3.3 Reinforcement Learning Environment 9
4 Experiment 12
 4.1 Pouring Environment . 12
 4.1.1 Quantitative Analysis 13
 4.1.2 Qualitative Analysis 14
 4.2 Shaking Environment . 15
 4.2.1 Quantitative Analysis 16
 4.2.2 Qualitative Analysis 17
 4.3 Hybrid-Learning . 18
 4.3.1 Quantitative Analysis 19
 4.3.2 Qualitative Analysis 20
 4.4 Contribution in Design Process 20
5 Conclusion 22
 5.1 Conclusions . 22
Bibliography 24
Appendix 26
Abstract in Korean 29
</body>

