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Abstract

Taehee Hong
Department of Mathematics Education
The Graduate School

Seoul National University

For a positive integer p, the p-competition graph of a digraph D is a graph
which has the same vertex set as D and an edge between distinct vertices
x and y if and only if z and y have at least p common out-neighbors in D.
A graph is said to be a p-competition graph if it is the p-competition graph
of a digraph. Given a graph G, we call the set of positive integers p such
that G is a p-competition the competition-realizer of a graph G. We denote
by G/~ the graph obtained from a graph G by identifying each pair of
adjacent vertices which share the same closed neighborhood. In this paper,
we introduce the notion of p-row graph of a matrix which generalizes the
existing notion of row graph. Using the notions of p-row graph and G/~ for
a graph GG, we study competition-realizers for various graphs to extend results
given by Kim et al. [p-competition graphs, Linear Algebra Appl. 217 (1995)
167-178]. Especially, we find all the elements in the competition-realizer for

each caterpillar.

Key words: p-competition graph; p-edge clique cover; competition-realizer;
p-row graph; G /~; caterpillar
Student Number: 201724021
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Chapter 1
Introduction

Given a digraph D = (V, A), the competition graph of D has the same vertex
set as D and has an edge uv if for some vertex = € V, the arcs (u,x) and
(v, ) are in D. The notion of competition graph is due to Cohen [1] and has
arisen from ecology. Competition graphs also have applications in coding,
radio transmission, and modelling of complex economic systems. (See [13]
and [14] for a summary of these applications and [4] for a sample paper on
the modelling application.) Since Cohen introduced the notion of competition
graph, various variations have been defined and studied by many authors (see
the survey articles by Kim [6] and Lundgren [11]). For recent work on this
topic, see [3,5,9,10,15].

Kim et al. [7] introduced p-competition graphs as a variant of competition
graph. For a positive integer p, the p-competition graph C,(D) corresponding
to a digraph D = (V, A) is defined to have vertex set V' with an edge between
two distinct vertices x and y if and only if, for some distinct ay,...,a, in V,
the pairs (z,a1), (y,a1), (x, a2), (y,a2), ..., (z,ap), (y,a,) are arcs. Note that
C1(D) is the ordinary competition graph, which implies that the notion of p-
competition graph generalizes that of competition graph. A graph G is called
a p-competition graph if there exists a digraph D such that G = C,(D). By

definition, it is obvious that if a nonempty graph G is a p-competition graph,



then p < |V(G)|.

Competition graphs are closely related to edge clique covers and the edge
clique cover numbers of graphs. A clique of a graph G is a subset of the vertex
set of G such that its induced subgraph of G is a complete graph. We regard
an empty set also as a clique of GG for convenience. An edge clique cover of a
graph G is a family of cliques of GG such that the end vertices of each edge of
G are contained in some clique in the family. The minimum size of an edge
clique cover of GG is called the edge clique cover number of the graph G, and
is denoted by 0.(G). Dutton and Brigham [2] characterized a competition

graph in terms of its edge clique cover number.

Theorem 1.1 ([2]). A graph G with n vertices is a competition graph if and
only if 0.(G) < n.

¢

A p-competition graph G can be characterized in terms of the “p-edge

clique cover number” of G. For a positive integer p, a p-edge clique cover (p-
ECC for short) of a graph G is defined to be a multifamily F = {Sy,...,S,}
of subsets of the vertex set of GG satisfying the following:

e For any J € ([;]), the set (¢, 55 is a clique of G;
e The collection {ﬂjej S;|J e ([;])} covers all the edges of G,

where ([;}) denotes the set of p-element subsets of the set {1,...,r}. The
minimum size r of a p-edge clique cover of G is called the p-edge clique cover
number of G, and is denoted by 6?(G). The following theorem characterizes

p-competition graphs and so generalizes Theorem 1.1.

Theorem 1.2 ([7]). A graph G with n vertices is a p-competition graph if
and only if 6?(G)

<n.
In chapter 2, we introduce the notion of p-row graph of a matrix which
generalizes the existing notion of row graph, and the notion of competition-

realizer. Using the notions of p-row graph and G/~ for a graph G, we study

2



competition-realizers for various graphs to extend results given by Kim et
al. [7]. In chapter 3, we study the competition-realizers for trees. Especially,

we find all the elements in the competition-realizer for each caterpillar.



Chapter 2

p-row graphs and

competition-realizers

In this chapter, we introduce the notion of p-row graph of a matrix which
generalize the notion of row graph of a matrix and the notion of competition-
realizer for a graph. Then we study competition-realizers for various graphs
in terms of p-row graphs and G/~ for a graph G. Particularly, we identify
the graphs with n vertices the competition-realizers for which contain n and

n — 1, respectively.

Definition 2.1. Given a positive integer p and a (0, 1)-matrix A, a graph
G is called the p-row graph of A if the vertices of G are the rows of A, and
two vertices are adjacent in G if and only if their corresponding rows have

common nonzero entries in at least p columns of A.

If p =1, then G is called the row graph of A, which was introduced by
Greenberg et al. [4].

Suppose that a graph G is a p-competition graph with the vertex set
{v1,...,v,}. Then there exists a p-ECC F = {F},..., F,,} of G for a non-

negative integer m < n by Theorem 1.2. Now we define a square matrix



A = (a;) of order n by

1 ifv; € Fj;
Qi; = ! (21)
0 otherwise.

By the definition of p-ECC, it is easy to see that G is isomorphic to the p-row
graph of A. Conversely, suppose that a graph G with n vertices is isomorphic

to the p-row graph of a square (0, 1)-matrix A of order n. Let
Fj = {Ui | Q5 = ]_}

and let F = {F},..., F,}. By the definition of p-row graph, a vertex vy and
a vertex v; are adjacent if and only if the sth row and the ¢th row of A
have common nonzero entries in at least p columns, which is equivalent to
the statement that v, and v, are contained in the sets in F corresponding to
those columns. Then, by Theorem 1.2, G is a p-competition graph.

Now we have shown the following statement:

Theorem 2.2. A graph G with n vertices is a p-competition graph if and
only if G is isomorphic to the p-row graph of a square (0, 1)-matriz of order
n.

For simplicity’s sake, we denote .J,,,,, for the (0, 1)-matrix of size m by n
such that every entry is 1, ,, for the identity matrix of order n, and O,,, for
the zero matrix of size m by n.

For a graph G with n vertices, we denote the set
{p € [n] | G is a p-competition graph}

by T(G) and call it the competition-realizer for G.

We make the following simple but useful observations.

Proposition 2.3. Let G be a graph with n vertices. If G is empty or complete,
then Y(G) = [n].



Proof. 1f G is empty, then G is a p-row graph of O,, , and so, by Theorem 2.2,
is a p-competition graph for any p € [n]. If G is complete, then G is a p-row
graph of J,,, and so, by the same theorem, is a p-competition graph for any
p € [n]. O

Proposition 2.4. Given a graph G with n vertices, suppose that G is a p-
row graph of a matriz of size n by m for positive integers p and m < n. Then
T(G)D{p+ilie[n—m]u{0}}.

Proof. Let M be an n X m matrix whose p-row graph is G. For each ¢ €
[n —m] U {0}, we add i all-one columns and n —m — ¢ all-zero columns to

M to obtain a square matrix of order n whose (p + ¢)-row graph is G. [

Proposition 2.5. Let G be a graph and G’ be a graph obtained from G by
adding k isolated vertices. Then Y(G') D {p+i|pe Y(G), i e [k]U{0}}.

Proof. Let |V(G)| = n and take p € T(G). By Theorem 2.2, G is a p-row
graph of a square (0, 1)-matrix M of order n. Fix i € [k]U{0}. We define the

square (0, 1)-matrix M; of order n + k as follows:

Obviously, the (p+i)-row graph of M; is G together with k isolated vertices.
[

For a p-row graph G of a matrix M and a vertex u of G, we let
Apsr(u) = {i | the ith component of the row corresponding to w in M is 1}.

Proposition 2.6. Let G be a p-row graph of a matrix M. Then, for a non-

isolated non-simplicial vertexr u, |Ap(u)| > p+ 1.



Proof. By the condition on u, u is adjacent to two nonadjacent vertices v
and w. Suppose that |Ay(u)] < p. Then

p<|Ap(u)NAy@)| <p and p<|Ay(u)NAy(w)| <p.

Thus |Ap(uw) N Ay (v)] = [Ap(u) N Ay (w)] = p and so Apr(u) N Ay (v) =
Apr(uw) N Apr(w) = Aps(u). Hence Apr(u) C Apr(v) N Ay (w) and so |Ap(v) N

Apr(w)| > p, which is a contradiction. O

The following proposition characterizes a graph G with n vertices and

n € T (G).

Proposition 2.7. Let G be a graph with n vertices. Then G is an n-competition
graph if and only of G = K, UZ,,_,, for some m, 0 <m < n.

Proof. By definition, G is an n-competition graph if and only if n € T(G).
To show the “if” part, suppose that G = K,,UZ,,_,, for some m, 0 < m < n.
By Proposition 2.3, m € T(K,,). By Proposition 2.5, m + (n — m) € T(G).
To show the “only if” part, suppose that G is an n-competition graph. Then
G is isomorphic to the n-row graph of a matrix M by Theorem 2.2. Take a
non-isolated vertex v in G. Then u is adjacent to a vertex v in G, so [Ay(u)N
Apr(v)] = n. Thus we may conclude that each row of M corresponding to
a non-isolated vertex is the all-one vector in R™. Thus the subgraph of G
induced by non-isolated vertices is a clique. Hence G = K,, UZ,_,,, where m

is the number of non-isolated vertices in G. O

Corollary 2.8. Suppose that a graph G with n vertices has no isolated ver-
tices. Then G is an n-competition graph if and only if G = K,,.

Corollary 2.9. Let G be a graph with n vertices. Then Y(G) = [n] if and
only if G = K,, UZ,_,, for some m, 0 <m <n.

Proof. The ‘only if’ part immediately follows by Proposition 2.7. To show
the ‘if” part, suppose that G = K,, UZ,_,, for some m, 0 < m < n. Let M

7



be a square (0, 1)-matrix of order n such that the first m rows are all-one
vector and the other n — m rows are all-zero vector. Then it is easy to check

that the p-row graph of M is isomorphic to G for each p € [n]. ]

The competition-realizer may be empty for some graph. For example, for
the complete bipartite graph K33, T(K33) = (0. To see why, we note that the
number of vertices of Kj3 is 6 and 0.(K33) = 9. Therefore 1 ¢ T(Kj33) by
Theorem 1.2. By Proposition 2.6, 5 ¢ YT(K33) and 6 ¢ YT (K33). Suppose that
K33 is a p-competition graph for some p € {2,3,4}. Then G is isomorphic
to the p-row graph of a square (0, 1)-matrix M, by Theorem 2.2.

Consider the case p = 4. Then each row of M, contains at least five 1s
by Proposition 2.6. This implies that any two rows of M4 have at least four
common 1s and so G is isomorphic to Kg, which is a contradiction. Thus
4¢ T (Ks3).

Now consider the case p = 3. Then each row of M3 contains at least four
1s by Proposition 2.6. This implies that any two rows of M3 have at least two
common 1s. If there is a row containing at least five 1s, then it shares at least
three common 1s with each of the other vertices, which is impossible. Thus
each row of M3 contains exactly four 1s. Since K33 has a partite set of size
3, we may assume that Mj contains the following submatrix by permuting

columns, if necessary:

111100
001111
110011

Now we take a vertex u in the other partite set. Then u is adjacent to the
vertex corresponding to each row of the above submatrix. To have u and the
vertex corresponding to the first row of the above submatrix be adjacent,
A, (w) N {1,2,3,4} is one of {1,2,3},{2,3,4},{1,2,4}, and {1, 3,4}. Then,
in case of {1,2,3} or {1,2,4}, u is not adjacent to the vertex corresponding to
the second row, while, in case of {1,3,4} or {2,3,4}, u is not adjacent to the

vertex corresponding to the third row. Therefore we reach a contradiction.



Thus 3 ¢ T(K33).

Now consider the case p = 2. Then each row of M, contains at least
three 1s. Suppose that there is a row r; containing at least four 1s. We may
assume that ry has 1s in the first component through the fourth component.
Let v; be the vertex corresponding to r; and v, and vs be the other vertices
in the partite set to which v; belongs. Since v; and vy are not adjacent, r;
has exactly four 1s and the row ry corresponding to vy has 1 in the fourth
component through the sixth component. Then the row corresponding to v
must share at least two 1s with r; or ry and we reach a contradiction. Thus
each row of M, contains exactly three 1s. If there are two vertices w; and
wy in a partite set W such that their corresponding rows do not share 1s,
then the row corresponding to the remaining vertex in W must share at least
two 1s with one of the rows corresponding to w; and ws, and we reach a
contradiction. Therefore the rows corresponding to two vertices in the same
partite set share exactly one 1. Thus we may assume that Ms contains the

following submatrix by permuting columns, if necessary:

111000
001110
100011

Now we take a vertex x in the other partite set X. Then x is adjacent to each
of the vertices corresponding to the rows of the above submatrix. Therefore
Ay, () = {1,3,5}. Since z is arbitrarily chosen, the rows corresponding
to the other two vertices in X also have the first, the third, and the fifth
component equal 1, which is impossible. Hence we have shown that T (K3 3) =
0.

Let G be a graph with n vertices. Two vertices u and v of G are said to be
homogeneous, denoted by u ~ v, if they have the same closed neighborhood.
Clearly ~ is an equivalence relation on V(G). We denote the equivalence

class containing a vertex u of G by [u]. Then we define a new graph G/~ for



Gl GQ

Figure 2.1: G = G/~ (in G, u ~ v)
G by
V(G/~)=A{[u] |ue V(G)} and E(G/~)={[u][v]|u,ve V(G)and wv € E(G)}.

See Figure 2.1 for an illustration.
We note the following: Two vertices u and v are adjacent in G < v €
Neg[ul
& v € Ngl[u/] for any ' € [u] & v € Ng[v] for any v’ € [u]
& u' € Ng'] for any ' € [u] and v € [v]
< v’ and v’ are adjacent in G for any v’ € [u] and v’ € [v].
Therefore G/~ is well-defined.

It is obvious that
(%) for each isolated vertex in G, its equivalence class is isolated in G//~.

The notion of row graph provides a way of getting information on the
competition-realizer for a graph G from the competition-realizer for a simpler

graph GG/~ as seen in the following results.

Proposition 2.10. A connected non-complete graph G and G/~ have the

same diameter.

Proof. By the definition of G /~, there exists an induced (z, y)-path of length

10



[ in G if and only if there exists an induced ([z], [y])-path of length [ in G/~
for some vertices x and y in G and an integer [ > 2.

Let m be the diameter of GG. Since G is not complete, m > 2. Then there
exists an induced (u,v)-path of length m for some vertices u and v. By the
above observation, there exists an induced ([u], [v])-path of length m and
there is no induced ([u], [v])-path of length [ for any 2 <[ < m in G/~. If
there exists a ([u], [v])-path of length 1, then u and v are adjacent, which
contradicts the choice of v and v so that dg(u,v) = m > 2. Therefore the
diameter of G/~ is greater than equal to m. By the symmetry of the above
observation, it is also true that the diameter of G/~ is less than equal to
m. [l

Proposition 2.11. A graph G is a p-competition graph if and only if there
exists a square matriz M such that G is a p-row graph of M and the rows

corresponding to two homogeneous vertices are identical.

Proof. The “if” part is obvious. To show the “only if” part, suppose that
a graph G is a p-competition graph for some positive integer p. Then, by
Theorem 2.2, there exists a square matrix M’ such that G is a p-row graph of
M'. If there are at least two rows corresponding to homogeneous vertices, then
we fix one row among them and replace the remaining rows with the fixed
row. We denote by M the matrix obtained by applying the above procedure.
It is easy to see that G is a p-row graph of M. O]

Proposition 2.12. Given a graph G with n vertices, suppose that G/~ is
a p-row graph of a matrix M satisfying the property that M has m columns

for a positive integer m < n and every row of M has at least p 1s. Then

T(G)D{p+il|ie[n—m]U{0}}.

Proof. Let n; be the size of equivalence class under ~ corresponding to the
jth row of M. We replace the jth row of M with n; copies of it to obtain
the matrix M* which contains M as a submatrix. We note that the size of

M* is n X m.

11



Take two vertices v and v in G and let r, and r, be the rows of M*
corresponding to u and v, respectively. If v and v are not homogenous, then
they belong to distinct equivalence classes under ~ and the following are

true:
Two vertices v and v are adjacent in G
< [u] and [v] are adjacent in G/~

< the row corresponding to [u] and the row corresponding to [v] have at

least p common 1s in M
< u and v are adjacent in the p-row graph of M*.

Suppose that u and v are homogenous. Then the rows r, and r, are identical.
By the hypothesis, every row of M has at least p 1s. Thus r, and r, have
at least p common 1s and so v and v are adjacent in the p-row graph of
M*. Hence G is p-row graph of M* and so, by Proposition 2.4, G is (p + 7)-
competition graph, that is, p +4 € T(G) for any i € [n —m]| U {0}. O

For a positive integer p and the p-row graph G of a matrix M, each non-
isolated vertex in G has at least p 1s in the row of M corresponding to it and

so the following corollary is immediately true by the above theorem.

Corollary 2.13. Given a graph G with n vertices, suppose that G/~ has no
1solated vertices and is a p-row graph of a matriz M having m columns for
a positive integer m < n. Then Y(G) D {p+i|i € [n—m]U{0}}.

Corollary 2.14. Given a graph G with n vertices, suppose that G/~ has m

vertices none of which is isolated for a positive integer m < n. Then
T(G) D {p+ilpeT(G/~), i€ n—m]U{0}}.
Proof. By Theorem 2.2, G/~ is a p-row graph of a matrix M having m

columns. Thus by Corollary 2.13, p+i € T(G) for any i € [n —m]U{0}. O

12



Remark 2.15. Even if G is a p-competition graph, G/~ may not be (p —1i)-
competition graph for some i € [n —m] U {0} where n = |V(G)| and m =
|V(G/~)]|. For example, the graph G5 in Figure 2.1 is a 2-competition graph.
For, Gy is a 2-competition graph by Theorem 2.2 since G is the 2-row graph

of the matrix

S O = O O =
_ == O O O
_— o O = O O
S = = O =
—_ = O Rk =) O

O O O ==

Since (7 is isomorphic to Gg/~, G5 is a 2-competition graph. Yet, G, which
is isomorphic to Ga/~, is not a l-competition graph by Theorem 1.1 since
|V(G1)| =6<7= |E(G1)| = Qe(Gl).

We denote a set of m isolated vertices by Z,,. Technically, we let Zy = ()
and Ky = 0.

A union GU H of two graphs G and H is the graph having its vertex set
V(G)UV(H) and edge set E(G)UE(H). In this paper, the union of G and H
means their disjoint union which has an additional condition V(G)NV (H) =
. A join GV H of two graphs G and H is the graph having its vertex set
V(G)UV(H) and edge set E(G)U E(H)U{uv |u e V(G),v e V(H)}.

For a positive integer n, a nonnegative integer £ < n, and the power set
P([n]) of [n], we denote by ¥, ; the graph with the vertex set P([n]) and the
edge set

{ST | S, T C[n],|SUT| < k}.

Theorem 2.16. Let G be a connected graph with n vertices and k be a
nonnegative integer less than or equal to n. Then G is an (n— k)-competition

graph if and only if G/~ is isomorphic to an induced subgraph of U, .

Proof. To show the “only if” part, suppose that G is an (n — k)-competition
graph. Then, by Proposition 2.11, there exists a matrix M such that G is

13



an (n — k)-row graph of M and the rows corresponding to two homogeneous
vertices are identical. Let M’ be a submatrix of M obtained by taking all
the distinct rows of M. Then obviously G/~ is an (n — k)-row graph of M’
Therefore [z] and [y] are adjacent in G/~ if and only if |App ([2]) VAN ([y])] >
n — k if and only if [([n] \ Ax([z])) U ([n] \ Axr([y]))] < k if and only if
(] \ Aar([z]) and [n] \ Aar([y]) are adjacent in ¥, ;. Hence we have shown
that G/~ is isomorphic to an induced subgraph of W, .

To show the “if” part, suppose that GG/~ is isomorphic to an induced
subgraph of W, . Then each vertex [v] of G/~ is assigned a subset S, so
that [v] and [w] are adjacent in G/~ if and only if |S, U S,| < k. If G/~
is empty, then Y(G) = [n] by Proposition 2.3 and Corollary 2.14. Since G
is connected, G/ ~ is connected and so |S,| < k. We denote by M’ the
matrix with each row corresponds to a vertex of G/~ in such a way that
[n] \ Anr([v]) = S,. Then it is easy to see that G/~ is an (n — k)-row graph
of M'. By Corollary 2.14, we can conclude that n — k € T(G). O

Lemma 2.17. The star graph K, is an n-competition graph.

Proof. 1t is obvious that K, is the n-row graph of the following square

matrix of order n + 1:

11 111
011 111
Y 0% 111
111 011
111 0 1)

]

The following proposition characterizes a graph G with n vertices and
n—1¢€T(G).

14



Proposition 2.18. Let G be a graph with n vertices. Then G is an (n —1)-
competition graph if and only if G = (K, V (K,, U--- UK, )) UL, for some

nonnegative integers k,ng,nq, ..., Nk, and m satisfying m -+ Zi:o n; = n.

Proof. We show the “if” part. If G is empty, then, by Proposition 2.3, G
is a (n — 1)-competition graph. Now suppose that G is a nonempty graph.
Let G’ be the subgraph of G resulting from deleting all the isolated vertices
in G. It is easy to check that G’/ ~ is an empty graph or a star graph.
Thus, by Proposition 2.3 and Lemma 2.17, |V(G'/~)| —1 € T(G'/~). Then
V(G")| —1 € Y(G') by Corollary 2.14. By Proposition 2.5, G is an (n — 1)-
competition graph.

Now we show the “only if” part. Suppose that G is an (n—1)-competition
graph. Then G is isomorphic to the (n—1)-row graph of a matrix M. Suppose
that there exists a row, say r, of M such that r contains at most n — 2 1s.
Then the vertex in G corresponding to r is an isolated vertex, so G is still the
(n — 1)-row graph of the matrix resulting from replacing r with all-zero row.

Therefore we may assume that M contains the rows of exactly three types:
1. the row with n 1s;
2. the row with n — 1 1s;
3. the row with 0 1s.

Obviously, the vertex corresponding to a row of Type 1 is a vertex which is
adjacent to each of other non-isolated vertices and the vertex corresponding
to a row of Type 3 is an isolated vertex. We note that two rows of Type
2 are identical if their corresponding vertices are adjacent in . Therefore
the vertex corresponding to a row of Type 2 is a simplicial vertex, that is,
a vertex whose neighbors form a clique. Now the vertex set V' of G can be
partitioned into three subsets Vi, V5, and V3 such that V; is the set of vertices
corresponding to rows of Type i for i = 1,2,3. Let ny = |V3| and m = |V3].
If Vo =0, then G & K,,, UZ,, by Proposition 2.7. Now suppose that V5 # ().

15



Then the subgraph of G induced by V5 is a disjoint union of cliques. Let
Wy, Wy, ..., W be the vertex sets of those cliques and let |W;| = n; for
1 <17 < k. Then m + Zf:o n; = n. Since every vertex in V) is adjacent to
each of other non-isolated vertices and every vertex in V3 is isolated in G,
G=(KyV(KyU---UK,,))UZ,. O

Theorem 2.19. Let G be a graph with n vertices. Then Y(G) = [n — 1] if
and only if G = H UZ,, for some integer m, 0 < m < n and some graph H
for which H/~ is an induced subgraph of a star graph with more than one

vertex.

Proof. To show the “if” part, suppose that G = H UZ,, for some integer m,
0 < m < n and some graph H for which H/~ is an induced subgraph of a
star graph () with more than one vertex. We denote the number of vertices
in H/~ by t. Take p € [t — 1]. We construct a square (0, 1)-matrix M of
order ¢ in the following way. If H/~ contains a center of ), then the row of
M corresponding to it is the all-one vector. The rows of M corresponding
to the vertices in H/~ which are not a center of @) are mutually distinct,
and the number of 1s in each of them is p. Such a matrix M exists since
(;) > t. It is easy to check that H/~ is isomorphic to the p-row graph of
M. Thus [t — 1] C Y(H/~). By Proposition 2.12, [n —m — 1] C T(H). Now,
by Proposition 2.5, [n — 1] C T(G). By Proposition 2.7, n ¢ T(G) and so
T(G)=[n—1].

To show the “only if” part, suppose that Y(G) = [n — 1]. Then, by
Proposition 2.18, G = (K,, V (K,, U---U K, )) UZ,, for some nonnegative
integers k,ng,nq,...,n, and m satisfying m + Zf:o n; = n. If there is at
most one nonzero integer among ny, ng, ..., ng, then G = K; UZ,,_; for some
[, 0 <1 <n and so, by Corollary 2.9, T(G) = [n], which is a contradiction.
Therefore there are at least two nonzero integers among nq,no, ..., n; and
so H =K,V (K, U---UK,,) is an induced subgraph of G. It is easy to
check that H/~ is an induced subgraph of a star graph with more than one

vertex. O
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\

Figure 2.2: Paths uwvw and zyz given in the proof of Proposition 2.20. The
dotted line between two vertices means that they are not adjacent.

For p =n or n — 1, a p-competition graph is a chordal graph by Proposi-
tions 2.7 and 2.18. As a matter of fact, an (n — 2)-competition graph is also
chordal.

An induced path of a graph means a path as an induced subgraph of the
graph.

Proposition 2.20. If a graph G with n vertices contains two internally

disjoint induced paths of length 2 whose internal vertices are nonadjacent,
then Y(G) C [n — 3]

Proof. Let G be a graph with n vertices containing two internally disjoint
induced paths uvw and xyz of length 2 with v and y nonadjacent (see Fig-
ure 2.2). Then, by Propositions 2.7 and 2.18, T(G) C [n — 2]. Suppose,
to the contrary, that n — 2 € T(G). By Theorem 2.2, G is isomorphic to
(n — 2)-row graph of a square matrix M of order n. If |Ay(v)] > n —1
and |Ap(y)] > n — 1, then |Apy(v) N Ay (y)| > n — 2 and so v and y are
adjacent, which is impossible. Thus |Ap(v)] < n —2 or [Ayp(y)] < n — 2.
Without loss of generality, we may assume that |[Ay(v)|] < n — 2. Since
v is non-isolated, |Ay(v)] = n — 2. Since u and v (resp. w and v) are
adjacent, |Apr(u) N Ay (v)] > n — 2 (resp. [Ap(w) N Ay (v)] > n — 2).
Since |Ap(v)] = n — 2, Ay(v) C Ap(u) and Ap(v) C Apr(w). Therefore
Apr(v) C Apr(uw) M Ay (w) and so |Apr(uw) N Apr(w)] > n — 2. Then u and v

are adjacent in G and we reach a contradiction. O]
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A hole of a graph is a cycle of length greater than or equal to 4 which
is an induced subgraph of the graph. A graph without holes is said to be
chordal.

Corollary 2.21. If a graph G with n > 4 wvertices is non-chordal or has an
induced path of length 4, then YT(G) C [n — 3]

Proof. 1f a p-competition graph with n vertices is non-chordal or has an
induced path of length 4 for integers n > 4 and p € [n], then it contains
two internally disjoint induced paths of length 2 whose internal vertices are

nonadjacent and the statement is true by Proposition 2.20. [

By Corollary 2.8, it is trivially true that if a connected graph G with n
vertices is an n-competition graph, then the diameter of G is 1. By Proposi-
tion 2.18, the diameter of a connected (n — 1)-competition graph which has n
vertices is at most 2. The diameter of a connected (n — 2)-competition graph
which has n vertices is at most 3 by Corollary 2.21. However, interestingly,
the diameter of a connected (n — 3)-competition graph with n vertices can

be arbitrarily large, which will be shown by Lemma 3.4.

Proposition 2.22. For a graph G with 0.(G) < |V(G)|, [[V(G)| — 0.(G) +
1] C T(G).

Proof. Let |V (G)| =n and V(G) = {v1,va,...,v,}. There is an edge clique
cover C := {C4,Cy,...,Cy (e} of G as 0.(G) is the edge clique number of G.

We define an n x 6.(G) matrix M = (m;;) as follows:

1 ifUiECj
0 1va§ZC’J

mij =

Then G is isomorphic to the 1-row graph of M. Therefore the statement is
true by Proposition 2.4. O
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Given a graph G, it is known that it can be made into the competition
graph of an acyclic digraph as long as it is allowed to add new isolated

vertices. The smallest among such numbers is called the competition number
of G and denoted by k(G). Opsut [12] showed that

k(G) > 0.(G) — |V(G)| + 2. (2.2)
Corollary 2.23. Let G be a graph with w components. If each component of
G has competition number one, then [w + 1] C YT(G).

Proof. Let Gy, G, ..., G, be the components of G. Then, by (2.2), |V(G;)|—
0.(G;) > 2 —k(G;) =1 for any 1 <i < w. Since |V(G)| = >, |[V(G;)| and
0.(G) = >, 0.(G:), |V(G)| = 0.(G) +1 > w+ 1. Thus, by Proposition 2.22,

the corollary is true. O

Since it is known that the competition numbers of a chordal graph and a
forest are at most 1, the following corollaries immediately follow from Corol-
lary 2.23.

Corollary 2.24. For a chordal graph G having w components, [w + 1] C
T(G).

Corollary 2.25. For a forest G having w components, [w + 1] C T(G).
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Chapter 3
Competition-realizers for trees

In this chapter, we study p-competition trees. Especially, we completely char-
acterize the competition-realizers for caterpillars.

Let G be a p-competition graph. Then G is isomorphic to the p-row graph
of a matrix M = (my;). If [Ay(v)] < p —1, then v is an isolated vertex in
G, and so G is still the p-row graph of the resulting matrix even if the row
corresponding to v is replaced by the row with p—1 1s. Thus we may conclude

as follows:

(§) If a p-competition graph G is isomorphic to the p-row graph of a matrix

M, then we may assume that |Ay(v)| > p — 1 for each vertex v in G.

Adding a pendant vertex v to a graph G means obtaining a graph G’ such
that v ¢ V(G), V(G') = V(G) U{v}, and E(G') = E(G) U {vu} for a vertex

u in G.

Theorem 3.1. Suppose that G is a p-competition graph. Then p € YT(G') if
G’ is obtained from G by adding a pendant verter.

Proof. Suppose that GG has n vertices and let G’ be a graph obtained from
G by adding a pendant vertex u at vertex v in GG. Since G is a p-competition

graph, G is isomorphic to the p-row graph of a matrix M = (m;;). By (§),
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we may assume that |Ay(v)] > p — 1. Without loss of generality, we may
assume that the row corresponding to v is located at the bottom of M and
Ay(v) ={1,2,...,|[Ap(v)|}.

Now we define a matrix M’ = (m};) of order n + 1 by

] 0
Mo (;

M' = ) v

1--410---01 1 |u

It is easy to check that G’ is the p-row graph of M’. By the Theorem 2.2, G’
is a p-competition graph. 0

Kim et al. [8] specified the length of a cycle which is a p-competition

graph in terms of p.

Theorem 3.2 ([8]). Let C,, be a cycle with n vertices for a positive integer
n > 4. Then Y(C,) = [n — 3].

In the proof of Theorem 3.2, F := {So,...,S, 1}, where, for each i =
0,....,n — 1, S; := {v;,vi41,...,Visp}, is given as a p-edge clique cover of

C,, = vgv1 . ..v,_109 for which all the subscripts are reduced modulo n. The
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following square matrix of order n is obtained from F by (2.1):

(1 0 11 1]
1 11 1
11 0 1 1
M,, = : , 3.1
P 111 110 0 (3:-1)
011 1 11 0
0000 -~ 011171 - 1

where ith row (resp. column) is corresponding to v;_; (resp. S;—;) and the
(7 + 1)st row is obtained by cyclically shifting the ith row by 1 to the right
for each i, 1 < i < n. Therefore the p-row graph of M, ,, is isomorphic to C,,

and the following proposition is immediately true.

Proposition 3.3. Let n be an integer greater than or equal to 4 and p be a
positive integer less than or equal to n — 3. Then, for the matriz M, ,, given

in (3.1), the following are true:
(1) the kth row contains exactly p+ 1 1s for each integer k , 1 < k <mn;
(2) the kth row and the (k+1)st row have common 1s in exactly p columns

for each integer k , 1 < k < n (we identify the n + 1st row with the
first row);

(8) the kth row and the lth row have common 1s in at most p— 1 columns
for integers k,l satisfying 1 < k,1 <n and 2 < |k —1|.
We denote the path graph with n vertices by P,.

Lemma 3.4. For an integer n > 3,

{1,2}  ifne{3,4}
[n—3] ifn>5.

T(P,) =

22
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Proof. For n > 5, then Y(P,) C [n — 3] by Corollary 2.21. If n = 3, then
T(P;) C {1,2} by Corollary 2.8. If n = 4, then Y(P,) C {1,2} by Corol-
lary 2.8 and Proposition 2.18.

Now we show the other direction containment. If n = 3 and p < 2, then
{1,2} € T(P,) by Corollary 2.25. It is easy to check that Py is isomorphic

to the 2-row graph of the following matrix:

* py—
M274 —

o O = o=
S = =
—_ = = O
_ o= O O

Thus 2 € T(P,). Now suppose that n > 4 and p < n — 3. In M,,, given in
(3.1), we replace 1 in the (1,n—p+ 1)-entry with 0 to obtain a square matrix
M, of order n. Let G' be the p-row graph of M. Then the first row and
the second row of M, still share p 1s. Yet the first row and the nth row
of My, share only p — 1 1s. Thus, by (2) and (3) of Proposition 3.3, G’ is

isomorphic to a path graph with n vertices. Hence [n — 3] C T(F,) and this
completes the proof. O

Proposition 3.5. Let T be a tree with the diameter m. Then Y(T) D [m—2].

Proof. Take p € [m—2]. Since the diameter of 1" is m, there exists an induced
path of length m. Since m > p + 2, we may take a section P of this path
which has length p + 2. Then P is a p-competition graph by Lemma 3.4.
Since T' can be obtained from P by adding pendant vertices sequentially, GG
is a p-competition graph by Theorem 3.1. O]

Corollary 3.6. Given a graph G with n vertices and diameter m, if G/~ is
a tree with n' vertices, then Y(G) D [n —n' +m — 2].

Proof. Suppose G/~ is a tree with n’ vertices. Then, by Proposition 2.10,
G/~ has diameter m. Thus, by Proposition 3.5, T(G/~) D [m — 2]. By
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Corollary 2.14,
Y(G)D{p+i|lpem—2andie€ [n—nJU{0}}=[n—n"+m—2].

]

A caterpillar is a tree with at least 3 vertices the removal of whose pendant
vertices produces a path called a central path. A spine of a caterpillar is the
longest path of the caterpillar. In the following, for a caterpillar T" with n
vertices, we shall find all the positive integers p such that T is a p-competition

graph in terms of n. To do so, we need the following lemma.

Lemma 3.7. Let n and p be positive integers such that either (n,p) = (4,2)
orn >4 and p < n — 3. Then, for any nonnegative integer k and a path
graph P of length n — 1, a caterpillar T obtained by adding k new vertices to
P in such a way that the added vertices are pendent vertices of T adjacent

to interior vertices of P is a (p + k)-competition graph.

Proof. Let P = x1x9---x, and vy1,...,y, be the vertices added to P as
described in the theorem statement. Since either (n,p) = (4,2) or n > 4 and
p <n—3, Pis a p-competition graph by Lemma 3.4. By the way, P is the
p-row graph of MJ  where M, is the matrix defined in the proof of the
same lemma.

There exists a map ¢ : [k] — [n] such that x4 is a vertex on P adjacent
to y;. By the way that yq,...,y, were added, ¢ is well-defined. We define a
k xn (0,1)-matrix A so that the ith row of A is the same as the row of M
corresponding to 4. Then, for 1 <7< j <k,

(M-1) if y; and y; are adjacent to the same vertex on P, then the ith row
and the jth row of A are identical and have exactly p + 1 common 1s;
otherwise, the ¢th row and the jth row of A have at most p common
1s;
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Figure 3.1: A matrix whose p-row graph is a caterpillar

n Y2 Yo r

1 1
2 1
z3 1
T4 0

0

T5

Y1 1
Y2 1
Y3 1
Y4 1
Ys Ys vs o1

Y4 Y6 0

Figure 3.2: A caterpillar T and a matrix whose 8-row graph is isomorphic to
GG where the row labeled with w corresponds to the vertex w in T'.

(M-2) if y; and x; are adjacent in T, then the [th row of the (1, 1)-block of M
and the ith row of the (2, 1)-block of M have exactly p+ 1 common 1s;
otherwise, ith row and the {th row of the (1, 1)-block of M and the ith
row of the (2, 1)-block of M have at most p common 1s.

Now we consider the matrix M in Figure 3.1. For an example of M, see

Figure 3.2.
Let G be the (p+ k)-row graph of M. We denote the row of M containing
the row of My, corresponding to x; by x; for each ¢ =1, ..., n, the row of

M containing the ith row of A by y; foreach i =1, ..., k.
By the definition of M, the row of M}, corresponding to x; and the

p?n’
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row of M, corresponding to x; have at most p — 1 common 1s if and only
if |[j — ¢| > 2. Thus the rows x; and x; have at most p+ k — 1 common 1s if
and only if |j — i| > 2 and therefore P is an induced subgraph of G.

We note that the ith row and the jth row of the (2,2)-block of M have
exactly k — 2 common 1s for 1 <14 < j < k. Thus, by (M-1), y; and y; have
at most p + k — 1 common 1s for 1 < i < j < k. Thus y; and y; are not
adjacent in G for 1 <i < j <k.

We note that the Ith row of the (1,2)-block of M and the ith row of the
(2,2)-block of M have at least kK — 1 common 1s if and only if y; and x; are
adjacent. Thus, by (M-2), y; and z; are adjacent in 7" if and only if y; and x;,
have at least p + k common 1s. Hence we have shown that 7' is isomorphic
to G. [

Lemma 3.8. Given an integer n > 2 and the star graph K ,, Y(K1,) = [n].

Proof. By Corollary 2.8, n+ 1 & YT(Kj,), so T(K1,) C [n].

Now we show the converse containment. By Corollary 2.25, {1,2} C
T(K,,) for n > 2. By Lemma 2.17 and Corollary 2.25, {1,2,n} C T(K},)
for n > 3. Therefore [n] C Y(K;,) for n = 2,3 and

{1,2,n} C T(K1,) (3.2)

for n > 3. Now suppose n > 4. By (3.2), it is sufficient to show that p €
T(K,,) for 3 <p <n—1. Now we consider the following matrix M:

where M,_5,, is the matrix defined in (3.1). Let G be the p-row graph of
M. In addition, let r; denote the ith row of M and v; be the vertex of G
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corresponding to r;. For ¢ = 1, ..., n, the ith row of M,_,, contains exactly
p — 1 1s by Proposition 3.3(1). Thus r; contains exactly p 1s in M and so v;
and v, are adjacent in G.

By (2) and (3) of Proposition 3.3, the ith row and the jth row of M, 5,
have at most p —2 common 1s for distinct ¢ and j in [n]. Thus r; and r; have
at most p — 1 common 1s and so v; and v; are not adjacent in G for distinct

i and j in [n|. Hence G is isomorphic to K7 ,. O

Theorem 3.9. For a caterpillar T with n vertices,

mn—1] ifd(T) =2
T(T) =S [|n—2 ifdT)=3;
n—3] ifd(T)>4

where d(T') denotes the diameter of T.

Proof. If d(T') = 2, then T'= K, and, by Lemma 3.8, Y(T') = [n — 1].

Suppose d(T) > 3. If d(T) = 3, Y(T) C [n — 2] by Corollary 2.8 and
Proposition 2.18. If d(T') > 4, Y(T') C [n — 3] by Proposition 2.20.

To show the converse containment, let k(7") denotes the number of vertices
which are attached to the spine of T'. Now take a positive integer p € [n — {]
where t =2 if d(T) =3 and t =3 if d(T") > 4.

Since d(T') is the length of the spine of ', n = d(T) + 1 + k(T"). Thus
p<(dT)+14+k(T))—tor

p—d(T)+t—1<k(T). (3.3)

If either d(T) =3 and p < 2 or d(T') > 4 and p < d(T") — 2, then the spine of
T is a p-competition graph by Lemma 3.4 and so T is a p-competition graph
by Theorem 3.1.

Now assume that either d(T)) = 3 and p > 2 hold or d(7) > 4 and
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p>d(T) — 2. Let

p—2 if d(T) =3 and p > 2,
p—d(T)+2 ifd(T)>4and p>dT)— 2.

o =

By (3.3), we have a < k(7). Let T" be a caterpillar obtained from 7" by
deleting some pendent vertices of T' so that d(7") = d(T) and a = k(T").
Then, by Lemma 3.7, T is a p-competition graph and so, by Theorem 3.1,
T is a p-competition graph. O]

Corollary 3.10. Let G be a graph with n vertices such that G/~ is a cater-
pillar. Then

n—1] ifd(G) =2;
T(G)=<[n—-2] ifdG) =3;
n—3] ifd(G)>4
where d(G) denotes the diameter of G.
Proof. By Theorem 3.9,
[m—1] if d(G/~) =2;
TG/~ = =2 it d(G/~) =3
[m —3] if d(G/~) >4,

where m = |V(G/~)| and d(G/~) denotes the diameter of G/~. Since G/~

has no isolated vertices,

n—1] if d(G)
T(G) D [n—2 ifdG)=3
n—3] ifdG)>4

2

?
I
Y

by Proposition 2.10 and Corollary 2.14. By Corollary 2.8, n ¢ Y(G). There-
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fore Y(G) = [n — 1] if d(G) = 2. By Proposition 2.18, n — 1 ¢ T(G) if
d(G) > 3. Thus T(G) = [n—2] if d(G) = 3. By Proposition 2.20,n—2 ¢ T(G)
if d(G) > 4. Hence Y(G) = [n — 3] if d(G) > 4. O

Lemma 3.11. Given a p-competition graph G with n vertices, suppose that
2" + 1 neighbors of a vertex v of G form an independent set for some positive
integer r. Then, if p > n—r, then there are two nonadjacent neighbors x and
y of v with |Apy(2)] < [Ap(0)] and [Ap(y)| < [An(v)| for any p-row matriz
M of G.

Proof. Since v is not isolated, p < |Ap/(v)| < n. For notational convenience,
we let Ay(v) = [n] \ Aa(v) Now suppose p > n — 7. Then 0 < Ay (v)] <
n —p < r. Thus the number of subsets of Ay;(v) is less than 2" + 1. For each
neighbor x of v, Ay (v) N Ay (x) is a subset of Ap(v). Since v has 2" + 1
neighbors which form an independent set by the hypothesis, there are two
nonadjacent neighbors z and y of v such that Ay/(v) N Ay (z) = Apr(v) N
A () by the Pigeonhole principle. Since Ay (v) N Ay (z) and Ay (v) VA ()

are subsets of Ay/(z) and Ay (y), respectively, we have
Apyr(v) N Ay (z) = Apr(v) N AN (y) C Apr(x) N Aps(y). (3.4)

Since v is adjacent z and y, |Ay (v)U(Ay(2)] < n—pand [Ay (v) UMy (y)] <
n — p. Since z and y are not adjacent, |Ay(x) U Aps(y)| > n — p. Thus

[Ans (0)] 4+ [Aar ()] = [Anr(v) N Anr(2)] = [Aar(v) U Ay
< [ () UMM ()] = [Anr ()] + [Aar(y)] = [Aar(2) 0 Ay

Then, by (3.4), |Ay(y)| > |Ax(v)]. By the same argument, one can show
that |Ay(x)| > [Ax(v)] and we complete the proof. O

Let k be a positive integer. A k-ary tree is a rooted tree in which each

vertex has no more than k children. A full k-ary tree is a rooted tree exactly

29

&

| &1

1V



k children or no children. A perfect k-ary tree is a full k-ary tree in which all
pendant vertices are at the same depth.

By Proposition 3.5, T(T') # () for a tree T, so max(Y (7)) exists. We
have shown that |V(7T)] — max(Y (7)) < 3 for a caterpillar 7. One might
think by this result that there exists a positive integer ¢ such that |V (7T')| —
max (Y (7)) < t for any tree T, yet it is not true by the following theorem.

Theorem 3.12. For any positive integer r, there is a tree T with |V (T)| —
max (Y (7)) > r.

Proof. Let T be a perfect (2"+1)-ary tree with height r+1 and a root xg. Sup-
pose that |V (T)|—max(Y(T")) < r. Then by the definition of T(G) for a graph
G, T is a max(Y(7T))-competition graph and max(Y(7")) > [V(T')| —r. Then
T is a max(Y(7T))-row graph of a matrix M. By Lemma 3.11, |Ay(z1)] <
|An(zo)| < |V(T)| for some children z; of xy. Then, by the same lemma
again, |Ap(z2)| < [Ap(z1)] < |V(T')] — 1 for some children x5 of z1. We ap-
ply the lemma repeatedly to have |Ay(z,41)] < |V(T')| —r. We have reached

a contradiction since x,41 is non-isolated. Hence |V(T')| — max(Y) >r. O
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Chapter 4
Closing Remarks

We have shown that T (K3 3) = 0. We would like to know Y (K, ,,) = 0 for any
n > 4. We have characterized the graphs with n vertices and the competition-
realizer [n| and [n— 1], respectively. It would be interesting to characterize the
graphs with n vertices and competition-realizer [n — 2|. Finally we suggest to
find the realizer for a Lobster to extend our result which gives every element

in the competition-realizer for a caterpillar.
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