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Abstract

Linear mixed models for association study and phenotype 

prediction

Sohyoung Won

Department of Agricultural Biotechnology 

Seoul National University

With the advance of sequencing and genotyping technologies, a large 

amount of genomic data has been accumulated and is available for 

biological studies. Along with the development of statistical models and 

computational capabilities, sizable genomic data can be analyzed thoroughly. 

Processing large genomic data via statistical computation enables discerning 

the relationship between genotypes and phenotypes. 

In this thesis, the main concern was how differences in genotypes are 

related to phenotypes. I conducted genome-wide association study to 

discover genetic variants correlated with phenotypes. Also, I constructed 

prediction models to precisely estimate phenotypes from genotypes. In the 

studies, various linear mixed models were applied to calculate the effects of 

genetic variants.

In chapter 2, genome-wide association study on intramuscular fat content 
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of pig was performed. Statistically significant single nucleotide 

polymorphisms were found and annotated to genes. Genes related to 

mitogen-activated protein kinase pathway were identified as candidate genes 

affecting the intramuscular fat content of pigs.

In chapter 3, genomic prediction models using haplotype alleles were 

constructed. The models attempt to predict carcass weight in Hanwoo. 

Different haplotype defining methods were implemented and the prediction 

accuracies of them were compared. As a result, genomic prediction accuracy 

was higher when haplotype alleles were used compared to when individual 

SNPs were used. 

In chapter 4, models predicting human height from genotype were 

developed. I designed a genomic best linear unbiased prediction model 

adjusted with parental height. In addition, variables having highest effects 

on height were selected using bootstrap resampling. Models using only the 

selected variables were tested, and consequently I could obtain a model with 

high prediction ability. 

Through these studies, I could understand how linear mixed models can be 

applied to explain relationships between genotypic variation and phenotypic 

variation. The findings of this dissertation will help to extend the use of 

linear mixed models for understanding the genetic architectures in animals 

and human.
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1.1 Linear Mixed Models

Linear mixed models are linear models with both fixed effects and 

random effects. Here, fixed effects represent values from the full population 

have specific values. On the other hand, random effects represent values of a 

random sample from the population and follow specific distributions such as 

the normal distribution. Linear mixed models are often used when there is 

hierarchical structure in data (Gelman and Hill 2006). In genomic data, 

linear mixed models can be applied to explain the additive genetic effects

where population structure is present among samples. Here, the effect of 

each genetic variant is different but follows a common distribution. 

Furthermore, linear mixed models allow to fit regression models having 

more number of independent variables than sample size. Since genotype 

data may contain tens of thousands or more variants while it is very difficult 

to obtain a comparable sample size, linear mixed models can be useful to 

handle genomic data.

1.2 Genome-wide association study

With the advance of sequencing and genotyping technologies, large 

amount of genomic data has been accumulated and is available for 

biological studies. From genomic data, discovering how differences in the 

genome is related with phenotypes is a major subject of interest. Genome-
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wide association study (GWAS) is a study using statistical models and 

genetic variants across the whole genome to identify which variants are 

associated with a certain phenotype. Since when GWAS was first introduced, 

many remarkable discoveries have been made by GWAS (Visscher, Wray et 

al. 2017). For example, genetic risk factors related to human diseases such 

as schizophrenia (Nature 2009), (Li, Chen et al. 2017) or type 2 diabetes 

(Scott, Mohlke et al. 2007), (Frayling 2007) were revealed. In animals, 

quantitative trait loci affecting economical traits such as milk production 

(Raven, Cocks et al. 2014), (Pryce, Bolormaa et al. 2010) were discovered, 

which could be further used to improve the rate of genetic gain from 

breeding.

GWAS measures the probabilities of genetic variants being 

associated with a trait and attempts to find causal variants, which have high 

probabilities of association, in other words have low p-values assuming no 

association. The most frequently used genetic variant is single nucleotide 

polymorphism (SNP) which refers to a single base-pair change in the DNA 

sequence (Nature 2010). The trait of GWAS may be either qualitative or 

quantitative and different models can be used according to the type of the 

trait. 

When the trait is quantitative, linear models are fitted to measure the 

significance of a SNP as an explanatory variable in the model. Quantitative 

traits are affected by large number of genetic variants cumulatively and 
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environmental effects. Therefore, a model accounting for both the additive 

effects of genetic variants and possible environmental effects is needed for 

GWAS of quantitative traits.

Here, is the phenotype of the ith individual, is the general 

mean, is the vector of covariates, is additive genetic effect of the ith 

individual, and is the random error. Covariates such as sex or age, or any 

differences other than genetic variants can be included in the model as the 

term to adjust environmental effects in the phenotype. Additive genetic 

effect, , is the total sum of the effects of the SNP alleles that an individual 

carry. This can be expressed as a linear combination of the SNP genotype 

coded in 0, 1, or 2 according to the number of a specific allele and the 

numeric effect of the allele, as , where is the genotype of 

the jth SNP of the ith individual and is the effect of the jth SNP. 

The effects of SNPs, denoted as in the equation above, can be 

treated as either fixed effects or random effects. If s are fixed effects, their 

effect and significance of each SNP can be simply calculated by linear 

regression. However, this is valid only when the samples are unrelated 

(Balding 2006). If not, false positive SNPs may be discovered due to 

population stratification. This is an important problem especially in GWAS 

with livestock, since it is almost impossible to obtain unrelated livestock 
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sample. To adjust population stratification avoiding spurious association, 

adding principal components as covariates can be considered (Price, 

Patterson et al. 2006). Another method to deal with population stratification 

is using linear mixed models (Yu, Pressoir et al. 2006). In linear mixed 

models, the effects of SNPs are random effects while environmental effects 

such as sex and age are fixed effects. Random effects follow a distribution 

rather than have a fixed value. In linear mixed models for GWAS, the 

effects of SNPs are assumed to follow normal distributions. The random 

errors are also random following normal distribution, and the variances of 

the genetic effect and environmental effect are estimated using restricted 

maximum likelihood. The significances of SNPs can be estimated using 

likelihood ratio test.   

In qualitative traits occurring as cases and controls, the frequencies 

of an allele in case and control are compared to measure the probability of 

association. Generalized linear models such as the logistic model can be 

used. With related samples, generalized linear mixed models can be applied.

GWAS mostly concerns identifying common variants associated 

with a trait under the common diseases common variant hypothesis (Lander 

1996). In this hypothesis, many common variants have small effects on a 

disease or a trait. Accordingly, it is common to leave out SNPs having lower 

minor allele frequencies, which seem rare, before performing GWAS. 

Removing rare SNPs is also due to statistical power since the statistical 
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power is extremely low for rare SNPs (Turner, Armstrong et al. 2011). 

However, common variants cannot account for all the phenotypic variation 

and GWAS attempting to detect rare variants are also being conducted 

(Cohen, Kiss et al. 2004), (Cohen, Kiss et al. 2004). Other quality controls 

prior to GWAS include removing SNPs severely deviating from Hardy-

Weinberg equilibrium to prevent genotyping error and population 

stratification (Turner, Armstrong et al. 2011). Also samples or SNPs with 

low genotyping rates are removed to maintain data quality and statistical 

power (Turner, Armstrong et al. 2011).

Many tools are developed for the practical application of GWAS, 

for example PLINK (Purcell, Neale et al. 2007), GCTA (Yang, Lee et al. 

2011) and GEMMA (Zhou and Stephens 2012). After preparing standard 

input files according to the manual of a certain tool, GWAS can be 

performed by entering some simple command lines. The results of GWAS 

can be presented as a Manhattan plot, which shows the physical positions 

and significances of SNPs. Gene annotations of significant SNPs followed 

by functional classifications or pathway analyses of the annotated genes are 

generally performed as the next step of GWAS. Since statistical significance 

does not always mean biological significance, these are crucial in further 

interpreting the results of GWAS.
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1.3 Genomic prediction

Genomic prediction is an effective way of predicting breeding 

values or phenotypes from a large number of genetic markers distributed 

across the entire genome (Hayes and Goddard 2001). Even though GWAS 

has discovered numbers of quantitative trait loci (QTL) associated with 

various complex traits, the effects of the QTLs could only account for a 

limited part of the genetic effects since very large number of genetic 

variants contribute to the genetic variances of complex traits (Hayes and 

Goddard 2010). To better account for genetic variances, an approach to use 

all available genetic markers simultaneously was developed, which is 

genomic prediction. In genomic prediction, a genome-wide panel of dense 

SNPs are used as explanatory variables of the prediction model, and their 

effects are calculated using statistical models. Then, the predicted values are 

obtained as the sum of the effects of all SNPs used. In this way, all QTL is 

assumed to be in linkage disequilibrium (LD) with at least one SNP 

(Meuwissen and Goddard 2001). Here, LD is the nonrandom association 

between different loci (Slatkin 2008). As all QTLs are in LD with some SNP 

used for prediction, all the possible genetic effects of a complex trait can be 

explained from the effects of SNPs. 

For the statistical prediction model of genomic prediction, linear 

mixed models as follows is used, 
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,where is a vector of phenotypes, is the vector of fixed effects such as 

sex and age, is the vector of additive genetic effects, is the vector of 

random errors, and are design matrices. Here, additive genetic effect 

and random error follow normal distributions with mean 0 and 

variance and respectively. and are variance components, 

where is the additive genetic variance and is the environmental

variance, and there sum equals phenotypic variance. is an identity 

matrix and is the genomic relationship matrix also , when is the 

number of individuals in the model. 

The genomic relationship matrix, , expresses the degree of 

genetic relatedness among individuals, in other words the proportion of 

genome shared by individuals. The scale of is 0 to 1, where 0 means 

being perfectly unrelated and 1 means being genetically identical. The 

diagonals of is the relatedness of an individual and itself, which is 1, and 

the th element is the relatedness of the th individual and the th. 

The genomic relationship matrix can be calculated from SNP genotypes by 

measuring how many alleles two individuals have in common adjusted with 

allele frequencies. This is realized using the following equation (VanRaden 

2008).
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Here, is the matrix of genotype coded in 1, 0, -1 so that the 

dialogs of is the number of homozygous alleles of individuals and 

off-diagonals of is the number of alleles shared by two individuals. 

is the matrix of allele frequencies and s are minor allele frequencies. The 

numerator expresses degrees of relatedness and denominator is for scaling. 

With the genomic relationship matrix, the additive genetic effects can be 

predicted as the best unbiased linear prediction (BLUP) solutions from the 

following equation. Alternatively, non-linear methods are applied for 

genomic prediction such as Bayesian methods (Hayes and Goddard 2001)

(Habier, Fernando et al. 2011).

Genomic prediction has provided a powerful tool in animal 

selection by accurately estimating the genetic merits of animals. The 

breeding value estimated using genomic prediction is called genomic 

estimated breeding value (GEBV) and the selecting animals according to 

their GEBV is called genomic selection. Genomic selection is a form of 

marker assisted selection (MAS), which is an indirect selection process 

based on markers rather than the trait itself. The difference between MAS 

using DNA markers and genomic selection is that MAS uses only some 

significant markers while genomic selection uses a large number of markers 

genome-wide. As the effects of individual SNPs are very small in complex 
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traits, using all available SNPs can improve the prediction accuracy making 

genomic selection outperform MAS (Hayes 2007). 

Another selection method that can be compared with genomic 

selection is pedigree based selection. Similar linear mixed models are used

in pedigree based selection and genomic selection. However, different 

methods are used to estimate the variance matrix of additive genetic effects, 

in other words the relationship matrix. The average relatedness is estimated 

in pedigree based method while the actual degree of DNA shared is 

estimated in genomic selection as described above. Because genomic 

selection can account for random recombination during meiosis, it can more 

accurately estimate the relationship matrix resulting in better prediction 

(Villanueva, Pong-Wong et al. 2005).

Nonetheless, there are cases when genotype data are available for only 

a small part of the population. In this case, a model jointly incorporating 

both pedigree and genotype to use all phenotypes can be a solution. This is 

achieved by constructing a relatedness matrix that combines pedigree 

and genomic relationships as follows (Legarra, Aguilar et al. 2009)

(Christensen and Lund 2010).
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Subscripts 1 and 2 denotes ungenotyped and genotyped animals respectively 

while is the pedigree relationship matrix and is the genomic 

relationship matrix. The matrix is used as the variance-covariance matrix 

of additive genetic values in the linear mixed model. This method is referred 

to as single-step GBLUP.

In practical, genomic selection is consisted of two stages. First, a 

model is trained for genomic prediction from genotypes and phenotypes. 

The effects of markers and covariates are estimated at this stage. Secondly, 

GEBVs are calculated from genotypes using the model from the first stage. 

Once a model is constructed, breeding values can be estimated without 

measuring phenotypes. Thus, genomic selection is especially effective when 

phenotypes are difficult to measure, for example when phenotypes are 

expressed in only one sex or phenotypes should be measured after death. 

Also, genomic selection enables selecting young animals before they can 

produce phenotypes, consequently reducing the time for selection and 

accelerating genetic gain.

Genomic prediction is widely used for animals (Hayes, Bowman et 

al. 2009) and plants (Jannink, Lorenz et al. 2010), yet carefully being 

implemented for estimating phenotypes of human. Still, there are studies 

estimating human complex traits such as height, high-density lipoproteins, 

and body mass index by genomic prediction (Lello, Avery et al. 2018)

(Rudan, Campbell et al.). Genomic prediction may be a powerful tool to 
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predict health indexes of risks for diseases, should be correctly used with 

ethical concerns.
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2.1 Abstract 

The aim of this study is to identify SNPs and genes related to pig 

IMF and estimate the heritability of IMF. Genome-wide association study 

(GWAS) on 704 inbred Berkshires was performed for intramuscular fat 

content (IMF). To consider the inbreeding among samples, associations of 

the SNPs with IMF were tested as random effects in a mixed linear model 

using the genetic relationship matrix by GEMMA. Significant genes were 

compared with reported pig IMF QTL regions and functional classification 

of the identified genes were also performed. Heritability of IMF was 

estimated by GCTA tool. Total 365 SNPs were found to be significant from 

a cutoff of p-value <0.01 and the 365 significant SNPs were annotated 

across 120 genes. 25 genes were on pig IMF QTL regions. BMPER, 

FOXO1, EDAR, RNF149, CD40, PTPN1, SOX9, MYC and MIF were 

related to mitogen-activated protein kinase (MAPK) pathway which 

regulates the differentiation to adipocytes. These genes and the genes 

mapped on QTLs could be the candidate genes affecting IMF. Heritability of 

IMF was estimated as 0.52, which was relatively high, suggesting that a 

considerable portion of the total variance of IMF is explained by the SNP 

information. Our results can contribute to breeding pig with better IMF and 

therefore, producing pork with better sensory qualities.
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2.2 Introduction

Intramuscular fat content (IMF), which stands for the amount of fat 

located throughout skeletal muscles, is a major quality trait of meat affecting 

sensory attributes such as flavor and texture. IMF is decided by the number 

and size of intramuscular adipocytes, and is directly related to the juiciness 

and tenderness of meat (Hocquette, Gondret et al. 2010). Pork with higher 

IMF tends to have better flavor, juiciness and tenderness, resulting in higher 

overall acceptability (Fernandez, Monin et al. 1999). Therefore, by breeding 

pigs to have higher IMF, more palatable pork can be produced.

GWAS enabled to find out the impact of genetic variants on various 

traits of animals affecting productivity. By using GWAS and genotyped SNP 

data, genes associated to a certain economic trait of animals can be 

discovered. Previous GWAS studies about IMF of pigs have found out that 

H-FABP and ACSL4 polymorphisms to have association with IMF of 

different pig populations (Chen, Jiang et al. 2014). Also, SFRS18 gene is 

reported to be related to the regulation of intramuscular fat deposition in 

pigs (Wang, Xue et al. 2009). Polymorphic microsatellite loci CSSM34 and 

ETH10 were associated with marbling scores, which show the IMF in the 

Angus, Shorthorn and Wagyu cattle (Hocquette, Gondret et al. 2010).

Many previous studies using GWAS to find out the association of 

genomic data with meat quality traits such as IMF focused on finding 

quantitative trait locus (QTL) (de Koning, Janss et al. 1999), (Paszek, 
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Wilkie et al. 2001), (Ovilo, Pérez-Enciso et al. 2000). Out bred line-cross 

model analysis suggested QTLs on chromosomes 2, 4, and 6, and the half-

sib model analysis suggested linkage for chromosomes 4 and 7 (de Koning, 

Janss et al. 1999). The data of QTLs discovered from previous studies is 

accumulated as a QTL database. The QTL database shows where QTL 

regions are located throughout chromosomes for each economic trait and 

animal. Using the QTL database, we can check whether a gene associated 

with a specific trait is within the known QTL region of the trait or not. 

In this study, we analyzed the SNP data and IMF of pigs using 

genome wide association study (GWAS) to identify SNPs associated with 

IMF. To adjust the effect of inbreeding, a genetic relationship matrix was 

constructed and used during GWAS. Significant SNPs were matched to the 

nearest genes within 100kb. We compared the identified genes with the QTL 

database of pig IMF and classified the function of the identified genes. We 

also estimated the heritability of IMF using the data. This study aims to 

search genes associated to IMF of pig and furthermore, to provide 

knowledge for breeding pigs having better IMF consequently, better sensory 

qualities.
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2.3 Materials and Methods

Ethics statement

The study protocol and the standard operating procedures (No. 

2009-077, C-grade) of Berkshire pigs were reviewed and approved by 

National Institute of Animal Science’s Institutional Animal Care and Use 

Committee.

Animals and phenotype records

Inbred Berkshire population was used for analysis, and IMF of the 

Berkshire sample were measured. A total of 704 samples were examined. 

Among them, 367 samples were male, 204 samples were female and the sex 

of 133 samples was unknown. Chemical fat extraction procedures were 

performed to measure IMF of each pig.

Genotyping and quality control

The genomic DNAs of pig were genotyped on the Illumina Porcine 

60 K SNP Beadchip. 62,163 SNPs were genotyped. We discarded the 

markers with low minor allele frequency (<0.05), significant deviation from 

Hardy-Weinberg equilibrium (p < ), and low genotype call rate (<95%). 

Among 62,163 SNPs, 40,191 SNPs passed quality control. 3,651 SNPs 

failed the Hardy-Weinberg test, 3,304 SNPs failed the genotype missingness 

test, and 19,829 SNPs failed the minor allele frequency test. 
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Genome-wide association analysis

The phenotype (IMF) was standardized to z-scores by subtracting 

the mean and then dividing by the standard deviation, in each sex group 

(male, female, unknown) separately. Single trait, univariate linear mixed 

model was used for the analysis assuming additive effect of SNPs. SNP 

effects were treated as random effects and sex was added as a covariate. 

Software GEMMA was used to calculate the genetic relationship matrix of 

individuals and to test the effects of SNPs by likelihood ratio test (Zhou and 

Stephens 2012). The cutoff for statistical significance of genes was p <0.01.

Gene annotation and functional classification

Gene annotation of significant SNPs was based on the Ensembl 

Genes 89 database of Sus scrofa genes (Sscrofa 10.2). Significant SNPs 

were annotated to the nearest genes within a distance of 100kb. Functional 

classification of genes was performed on DAVID, an online functional 

annotation database to see where the functions of the identified genes were 

mainly categorized into. Sus scrofa was selected as both species and 

background option. The cutoff of gene ontology was p <0.05. 

Heritability estimation

The GCTA tool (Yang, Lee et al. 2011) was used to calculate 
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heritability for IMF. We calculated the genetic relationship matrix (GRM) 

between all pairs of samples using all the autosomal SNPs. We then 

estimated the variance of genetic component by restricted maximum 

likelihood analysis, and heritability by dividing the estimated genetic 

variance by the total variance measured.
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2.4 Results

Identification of significant SNPs

Totally 365 SNPs from all 19 chromosomes were identified as 

significant SNPs as the result of GWAS in this study. Chromosome 14 

contained 53 significant SNPs which was the largest number among all 

chromosomes. There were 40 and 35 significant SNPs on chromosome 7 

and 11 respectively, which contained second and third many significant 

SNPs. The statistical significance values of the association between each 

SNP and IMF calculated as -log10(p-value) across 18 autosomal 

chromosomes and chromosome X was plotted in the form of a Manhattan 

plot (Figure 2-1).

The 365 significant SNPs found from GWAS were annotated to the 

nearest genes within 100kb. 153 SNPs among the 365 significantly 

identified SNPs were annotated across 120 genes. There were some SNPs 

annotated to same genes and none of the significant SNPs on chromosome 8 

and 15 had genes within 100kb distance. Full information of significant 

SNPs, their chromosome number, position, closest gene, distance from the 

closest gene, raw p-value is listed on Supplementary Table S2-1.

Mapping on QTL database

Identified genes were compared with IMF QTL regions base on the 

Pig QTLdb. Total 25 genes from the 120 significant genes, which is 20.8%, 
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Figure 2-1. Statistical significance values of the association of SNPs across 

18 autosomal chromosomes and the X chromosome with IMF are plotted as 

values. The horizontal dotted line indicates the cutoff p =0.001.
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were included in reported pig IMF QTL regions. 7 genes on chromosome 9, 

6 genes on both chromosome 2 and 6, and 2 genes on chromosome 4, 7, and 

17 each were mapped on QTLs (Figure 2-2). This suggests a considerable

The 365 significant SNPs found from GWAS were annotated to the 

nearest genes within 100kb. 153 SNPs among the 365 significantly 

identified SNPs were annotated across 120 genes. There were some SNPs 

annotated to same genes and none of the significant SNPs on chromosome 8 

and 15 had genes within 100kb distance. Full information of significant 

SNPs, their chromosome number, position, closest gene, distance from the 

closest gene, raw p-value is listed on Supplementary Table S2-1. 

Mapping on QTL database

Identified genes were compared with IMF QTL regions base on the 

Pig QTLdb. Total 25 genes from the 120 significant genes, which is 20.8%, 

were included in reported pig IMF QTL regions. 7 genes on chromosome 9, 

6 genes on both chromosome 2 and 6, and 2 genes on chromosome 4, 7, and 

17 each were mapped on QTLs (Figure 2-2). This suggests a considerable 

part of the genes identified from this study was consistent with the previous 

QTL studies, and those genes can be considered as genes that are located on 

the section of the genome having high correlation with IMF of pigs.

Functional classification 
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Figure 2-2. Location of significant genes mapped on QTLs. The red areas 

indicate where genes are located and the blue areas indicate QTL regions.
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Identified genes were classified by their biological function and 

ontology. Regulation of MAPK cascade was the most significant gene 

ontologies from GOTERM_BP_5. The full result of functionally annotated 

genes are listed on Supplementary Table S2-2. Especially, BMPER, FOXO1, 

EDAR, RNF149, CD40, PTPN1, SOX9, MYC, MIF were categorized as 

genes related to both MAPK cascade and the regulation of MAPK cascade. 

Also, GDF7 and BMP6 were related to the regulation of MAPK pathway. 

FOXO1, RNF149, PTPN1, MYC were additionally annotated to negative 

regulation of MAPK cascade and regulation of stress-activated MAPK 

cascade.

Estimated heritability

Heritability of IMF was estimated by GCTA. The total variance of 

the sample was 1.020818 and the genetic variance was 0.526911. The 

genetic variance was estimated by the variance of genome-wide SNPs. The 

estimated heritability was 0.516166, approximately 0.52, and the standard 

deviation of the estimated heritability was 0.061655. 

In previous studies, heritability of IMF was estimated at 0.39 

(Suzuki, Irie et al. 2005), 0.44 (Larzul, Lefaucheur et al. 1997), 0.52 (Lo, 

McLaren et al. 1992), 0.65 (Newcom, Baas et al. 2004). Estimated 

heritability of IMF in the referred studies had values between 0.39 and 0.65. 

The heritability estimated from the SNP and phenotype data in this study, 
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0.52, was in the range of reported estimations and was according with the 

previous studies.
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2.5 Discussion

Genes related to MAPK cascade and adipocyte differentiation

MAPK cascade was the most significant GO term from the 

functional annotation results of significant genes and other GO terms related 

to MAPK cascade appeared multiple times as well. MAPK pathway 

regulates various cell functions such as proliferation, differentiation and 

mitosis (Pearson, Robinson et al. 2001). Moreover, MAPK pathway is 

closely related to the differentiation of preadipocytes to adipocytes (Sakaue, 

Ogawa et al. 2004), (Aouadi, Jager et al. 2007). Some of the proteins 

involved in MAPK pathway also regulate adipocyte differentiation. For 

example, MAPK phosphatase-1 (MKP-1) downregulates the expression of 

p42/p44 MAPK and plays an important role in adipocyte differentiation 

(Sakaue, Ogawa et al. 2004). In addition, inhibition of p38MAPK decreases 

adipocyte differentiation in human and therefore p38MAPK activation can 

be seen as a requirement for primary human adipocyte differentiation 

(Aouadi, Jager et al. 2007). Since IMF is determined by the amount of 

adipocytes, genes related to MAPK pathway could affect IMF by regulating 

the amount of adipocyte differentiation.

Some of the significant genes related to MAPK cascade or the 

regulation of MAPK cascade (BMPER, FOXO1, SOX9, PTPN1, CD40) are 

previously reported to have influence on adipocyte differentiation. BMPER 

(bone morphogenetic protein [BMP]-binding endothelial cell precursor-
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derived regulator) directly interacts with BMPs (Moser, Binder et al. 2003). 

Some BMPs activate p38MAPK pathway through the MAPK kinase kinase 

(MAPKKK) cascade (Tseng and He 2007) and BMPER could be needed for 

adipocyte differentiation to activate p38MAPK. Furthermore, BMP4 has an 

effect on lipid accumulation as well as expression of adipocyte markers 

(Bächner, Ahrens et al. 1998). Also, BMP2 and BMP7 induces adipocyte 

differentiation at low concentrate in C3H10T1/2 cell line (Wang, Israel et al. 

1993). FOXO1 is expressed in the early stages of adipocyte differentiation 

and act as a preadipocyte differentiation preventing substituent (Nakae, 

Kitamura et al. 2003). Epidermal growth factor [EGF] repeat containing 

transmembrane protein (pref1) activates MAPK and upregulates SOX9 

resulting in inhibition of adipocyte differentiation (Wang and Sul 2009). 

CD40 is related to the activation of MAPK (Shirakata, Ishii et al. 1999) and 

PTPN1 is a negative regulator of CD40 (Medgyesi, Hobeika et al. 2014). 

PTPN1 polymorphisms is reported to be associated with adipocyte related 

measures such as body fat percentage (Ukkola, Rankinen et al. 2005).

Heritability of IMF and selection 

The estimated heritability of IMF, 0.52, was relatively high. This 

means that a substantial part of the total phenotypic variance of IMF is 

explained by the genetic variance. Here, the variance is that of the 

population, and thus high heritability suggests high genetic influence in the 
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population on the whole (Griffiths, Wessler et al. 2005). Heritability is an 

important parameter for predicting the response to selection (Visscher, Hill 

et al. 2008). Since the Breeder’s equation is given as R=h2 S, where R is the 

response to selection, S is the selection differential and h is the heritability 

(Falconer 1960), higher heritability can result in stronger response of 

selection and effective selection. Therefore, the phenotype information of 

IMF can be useful information for selecting pigs to breed pigs having high 

level of IMF. 

Pork containing more than 3% IMF tends to have higher sensory 

qualities including juiciness, tenderness and taste (Daszkiewicz, Bąk et al. 

2005). As IMF of pork increased from a range of 2.01~3.0% to higher than 

3%, juiciness, tenderness, and both the intensity and desirability of taste 

increased. Since the current average of IMF measured from the Berkshire 

sample was 2.82%, if we increase IMF up to 3% by selection and breeding, 

we would be able to produce pork with improved juiciness, tenderness and 

taste. 

Limitations of results 

The tool used for association analysis in this study, GEMMA, 

adjusts the effect of sex by using sex as a covariate and use genetic 

information from the X chromosome in the same way as those from 

autosomal chromosomes while computing the genetic relationship matrix 
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(Zhou and Stephens 2012). However, since females carry two copies of X 

chromosomes while males carry a single copy, different methods should be 

used to estimate the genetic relationship for female-female pairs, male-male 

pairs and female-male pairs respectively in GWAS analyses (Yang, Lee et al. 

2011). Furthermore, among the 704 samples used in this study, the sex of 

133 was unknown. Approximately 19% of the sample had unknown sex. 

Also, to balance the allele dosage between sexes, one of the female X 

chromosome is silenced by random X chromosome inactivation (Ahn and 

Lee 2008). Therefore, additional information coding which allele was 

inactivated is needed to adjust GWAS analyses. In this study, information 

about which allele was inactivated was not provided, and this might together 

cause inaccuracy in the results from the X chromosome (Tukiainen, Pirinen 

et al. 2014). However, the proportion of significant SNPs on the X 

chromosome was 2.47% (9 out of 365) which was relatively low. Thus some 

part of inaccuracy in the results from the X chromosome may have not 

affect the overall results of the study.

Owing to the small sample size of animals, the overall significance 

of the study was low. Small sample size makes the effect size to be 

estimated low and consequently lowers the power of the study. The 

estimated power of the study was only 0.21 (Visscher, Hemani et al. 2014). 

To detect significantly associated SNPs in a study with low power, we had 

to use liberal statistics and a liberal cutoff (raw p-value and p <0.01). This 
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might cause some significant SNPs to be false positive, but still the SNPs 

detected in this study can be suggested as candidates for SNPs related to 

IMF of pig. Besides, we could pick out some SNPs more likely to be 

actually related to IMF of pig by comparing them with known QTLs or 

searching their biological pathways. The genes mapped on QTLs or related 

to MAPK cascade may be stronger candidates for genes that are associated 

with IMF of pig than others.
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Supplementary Table S2-1. SNPs and their chromosome number (Chr.), 

position on the chromosome, annotated gene name, distance from the gene, 

raw p-value are listed. ‘match’ indicates that the SNP was included in the 

gene and ‘-’ indicates that no gene was in 100kd distance of the SNPs.

SNP Chr Position Gene Distance p-value

MARC0018001 1 13478198 - - 2.04E-03

ASGA0001052 1 13677927 CLDN20 85316 8.32E-03

M1GA0000785 1 16529867 ESR1 12501 7.76E-03

ALGA0001232 1 17130048 CCDC170 match 5.20E-04

ASGA0001260 1 17256411 RMND1 match 2.22E-03

ALGA0001244 1 17279855 ZBTB2 16864 1.76E-03

DRGA0001141 1 79571312 - - 6.11E-03

INRA0002909 1 83308522 SEC63 match 9.40E-03

ALGA0005610 1 1.25E+08 - - 8.69E-03

H3GA0003313 1 1.86E+08 - - 5.19E-03

ALGA0007007 1 1.91E+08 - - 9.84E-03

INRA0005278 1 1.92E+08 LRFN5 51070 3.96E-03

MARC0080275 1 1.92E+08 LRFN5 22518 3.96E-03

ASGA0005303 1 1.92E+08 LRFN5 2176 3.96E-03

MARC0033468 1 1.92E+08 LRFN5 13558 4.74E-03

H3GA0003345 1 1.92E+08 LRFN5 31112 4.81E-03

MARC0002276 1 1.92E+08 LRFN5 48118 6.86E-03

ALGA0007015 1 1.92E+08 LRFN5 63056 2.69E-03

ALGA0115186 1 1.92E+08 - - 3.79E-03

MARC0036886 1 2.13E+08 NTRK3 match 9.80E-03

ASGA0005512 1 2.14E+08 - - 6.56E-03

M1GA0001554 1 2.97E+08 SNORD90 44608 2.30E-03

ASGA0008803 2 6896014 GPR137 match 5.42E-03

M1GA0002584 2 9336635 MYRF 4509 7.74E-03

MARC0005659 2 20249153 HSD17B12 37203 5.24E-03
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ALGA0112320 2 20842615 - - 4.44E-03

ALGA0109169 2 22336683 - - 5.67E-03

ALGA0012462 2 22590108 - - 7.23E-03

ALGA0012504 2 23230160 - - 2.98E-03

ASGA0009568 2 23271214 - - 3.68E-04

ALGA0012515 2 23297131 - - 7.60E-03

ALGA0113768 2 32333658 DCDC1 72522 3.06E-03

ALGA0012891 2 32621630 MPPED2 match 4.27E-03

ASGA0009858 2 32649983 MPPED2 match 4.42E-03

ALGA0012897 2 32887535 FSHB 22530 8.46E-03

MARC0113797 2 33100405 - - 6.46E-03

H3GA0006477 2 33751046 - - 9.35E-03

MARC0061061 2 35054445 - - 6.69E-03

MARC0049526 2 35068263 - - 9.62E-03

MARC0057893 2 35069583 - - 7.40E-03

ALGA0012954 2 35089353 - - 7.40E-03

MARC0067928 2 65512888 CC2D1A match 6.55E-03

ALGA0013819 2 65741376 CCDC130 41960 4.27E-03

ALGA0013817 2 65761499 CCDC130 62083 4.52E-03

MARC0097970 2 67524684 OR7G3 94155 4.94E-03

DIAS0000914 2 69067481 PIN1 8231 1.23E-03

ALGA0014210 2 88585407 - - 9.87E-03

ASGA0010795 2 89804886 HOMER1 39474 7.47E-03

H3GA0007086 2 90190571 CMYA5 3578 9.71E-03

ALGA0123643 2 1.36E+08 CTXN3 66969 3.84E-03

ALGA0015985 2 1.37E+08 - - 1.71E-03

H3GA0007722 2 1.38E+08 - - 7.32E-03

DRGA0003625 2 1.38E+08 - - 7.26E-03

MARC0063459 2 1.39E+08 - - 7.08E-03

ALGA0118500 3 12373502 - - 6.27E-03
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MARC0113856 3 18690752 ATXN2L 1178 2.09E-03

ASGA0090908 3 18873907 SBK1 6056 7.01E-03

ALGA0102956 3 18876394 SBK1 8543 7.72E-03

ALGA0116808 3 18943557 XPO6 60677 2.51E-03

ALGA0114914 3 32478883 - - 5.23E-03

ALGA0107071 3 35759370 - - 8.58E-03

ALGA0018852 3 49511934 EDAR 91461 1.76E-03

ALGA0018859 3 49555847 EDAR 47548 3.38E-03

H3GA0009479 3 49619062 EDAR match 1.40E-03

ALGA0018869 3 49634868 CCDC138 match 2.27E-03

MARC0016359 3 49652312 CCDC138 match 4.49E-03

ALGA0018856 3 49698069 CCDC138 12421 2.79E-03

ASGA0014485 3 49720172 CCDC138 34524 2.54E-03

ALGA0104619 3 49867263 GCC2 20143 2.27E-03

CASI0006979 3 49869950 GCC2 17456 2.27E-03

MARC0009789 3 55205882 - - 8.46E-03

MARC0100326 3 55496229 CREG2 match 9.63E-03

ALGA0019011 3 55561820 RNF149 16604 5.46E-03

MARC0065978 3 55717403 TBC1D8 59678 2.81E-03

ALGA0019168 3 58986683 TMEM131 match 4.92E-03

ASGA0094490 3 1.26E+08 GDF7 15667 5.33E-03

ASGA0103683 3 1.35E+08 ITGB1BP1 match 5.83E-03

H3GA0011795 4 8845519 - - 1.98E-03

ALGA0023171 4 11921004 - - 6.29E-03

ASGA0018288 4 11933016 - - 4.40E-03

ALGA0023189 4 12065855 - - 9.08E-03

ASGA0018338 4 12257838 - - 7.63E-03

ASGA0018370 4 12821695 MYC 38214 2.85E-03

ASGA0018384 4 12941813 - - 4.70E-03

DRGA0004465 4 13201853 - - 8.34E-03
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ALGA0023289 4 13259971 - - 6.89E-03

ASGA0018422 4 13393209 - - 6.96E-03

ALGA0023303 4 13453436 - - 6.17E-03

ASGA0019158 4 33419642 ABRA 57931 9.51E-03

ASGA0019164 4 33447340 ABRA 85629 9.51E-03

M1GA0005832 4 33879367 - - 8.95E-03

ALGA0026965 4 1.04E+08 KCNN3 match 8.73E-03

INRA0015741 4 1.04E+08 KCNN3 match 8.73E-03

MARC0109265 4 1.19E+08 DDX20 match 1.99E-03

INRA0016754 4 1.23E+08 - - 2.72E-03

ALGA0123355 4 1.24E+08 - - 7.76E-03

H3GA0014317 4 1.25E+08 - - 6.27E-03

ALGA0028566 4 1.28E+08 - - 4.13E-03

ASGA0022428 4 1.28E+08 - - 8.52E-03

H3GA0014451 4 1.31E+08 - - 9.21E-03

MARC0071918 5 6772267 DDX17 match 3.73E-03

ASGA0106044 5 6784209 DDX17 425 4.92E-03

ALGA0105509 5 6793058 KDELR3 match 4.09E-03

M1GA0007422 5 6800467 KDELR3 3641 3.48E-03

ALGA0032587 5 69669256 WASH1 24816 8.91E-03

MARC0019446 6 1829369 JPH3 match 8.52E-03

ASGA0084674 6 1838412 JPH3 match 7.89E-03

ALGA0115499 6 11401848 - - 9.15E-03

ALGA0119163 6 40937246 COX7A1 14345 6.24E-03

MARC0005493 6 41367001 ZNF260 47542 6.24E-03

MARC0061190 6 41583185 ZNF829 match 6.69E-03

ALGA0115443 6 76356357 - - 3.82E-03

ALGA0105228 6 76712823 MTFR1L match 6.78E-03

ASGA0097645 6 77180997 PDIK1L match 3.98E-03

ASGA0098887 6 77540317 RPS6KA1 60318 5.72E-03
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ALGA0105183 6 77561790 RPS6KA1 81791 6.35E-03

ALGA0035761 6 78173716 CD164L2 match 8.02E-03

ASGA0099240 6 78503422 STX12 1399 8.27E-03

MARC0018089 6 79884592 EPB41 8507 9.02E-03

ALGA0103867 6 79924229 TMEM200B 5615 7.62E-03

ASGA0105794 6 1.27E+08 - - 9.13E-03

M1GA0008912 6 1.27E+08 - - 9.98E-03

ASGA0029775 6 1.39E+08 - - 5.94E-03

ASGA0104725 6 1.46E+08 TTC4 26930 6.12E-03

ALGA0116372 6 1.55E+08 ERI3 match 5.26E-03

H3GA0010900 7 5120430 BMP6 41987 8.90E-03

H3GA0020119 7 17178315 CDKAL1 match 9.43E-03

MARC0024047 7 18074254 - - 5.79E-03

H3GA0021382 7 49132338 - - 3.14E-03

ASGA0033396 7 49191515 - - 4.06E-03

ALGA0041186 7 49212847 - - 2.86E-03

ASGA0033431 7 49785873 - - 1.57E-03

H3GA0021402 7 50260219 CRISP1 15588 6.28E-03

H3GA0021406 7 50518152 - - 9.02E-03

ALGA0041468 7 52319155 - - 3.51E-03

H3GA0021745 7 56152592 - - 8.15E-04

ASGA0034040 7 56199606 - - 6.76E-03

MARC0001031 7 57317276 TM6SF1 match 4.43E-03

ALGA0042134 7 58188114 PDE8A 98766 5.61E-03

ALGA0042187 7 59301837 - - 9.27E-03

H3GA0021903 7 62283996 LINGO1 93788 4.09E-03

M1GA0010442 7 62310234 LINGO1 67550 5.84E-03

H3GA0021941 7 63940639 ISLR 27268 3.03E-03

ASGA0034428 7 70929327 NPAS3 match 5.46E-03

M1GA0010466 7 71050476 NPAS3 79545 2.53E-03
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MARC0006751 7 71727031 - - 4.90E-03

ASGA0034705 7 88646106 - - 7.80E-03

ALGA0043433 7 91741766 RGMA 73267 7.33E-03

ALGA0043428 7 91766941 RGMA 48092 2.95E-03

ALGA0043424 7 91780068 RGMA 34965 4.17E-03

ALGA0043415 7 91825127 RGMA match 4.17E-03

ALGA0043406 7 91890551 CHD2 match 1.60E-03

ALGA0043404 7 91922539 CHD2 match 1.60E-03

DRGA0007977 7 92008579 CHD2 5988 1.60E-03

ALGA0043403 7 92021174 CHD2 18583 2.39E-03

ALGA0043398 7 92050130 CHD2 47539 2.84E-03

ALGA0043393 7 92089815 CHD2 87224 1.45E-03

ALGA0043388 7 92162122 FAM174B 49639 2.39E-03

H3GA0022349 7 92212775 FAM174B match 3.85E-03

M1GA0010535 7 92231886 FAM174B match 1.80E-03

MARC0095879 7 95409946 RAB15 7121 5.13E-03

MARC0098820 7 1.2E+08 SLC24A4 1550 7.88E-03

H3GA0023236 7 1.21E+08 TMEM251 48069 9.42E-03

ALGA0045073 7 1.22E+08 - - 6.11E-03

MARC0044680 7 1.23E+08 GSC 26063 2.37E-03

ALGA0120902 9 11173743 MOGAT2 40781 9.37E-03

ALGA0119045 9 15055605 ssc-mir-708 64872 1.68E-03

ASGA0106225 9 22588132 ME3 1498 7.76E-04

ASGA0099198 9 22748344 ME3 56081 4.19E-03

ALGA0118782 9 22793075 - - 2.20E-03

MARC0019308 9 25110616 TYR 54202 4.53E-03

H3GA0026870 9 30522282 PIWIL4 17025 4.76E-03

ALGA0052237 9 32169995 - - 5.64E-03

MARC0018577 9 36364394 TRPC6 255 1.25E-03

ALGA0114399 9 36476161 ANGPTL5 82952 3.32E-03
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ASGA0096889 9 37305665 MMP27 6788 6.09E-03

MARC0086124 9 37323349 MMP27 match 6.90E-03

ALGA0102606 9 37337886 MMP8 match 6.08E-03

ASGA0042475 9 37614741 DCUN1D5 5328 3.93E-03

DIAS0004102 9 37622654 DCUN1D5 match 3.36E-03

ASGA0042913 9 49127680 BUD13 81254 9.20E-03

H3GA0027281 9 51825334 PVRL1 55932 5.33E-03

ASGA0043018 9 52486044 OAF 53775 3.61E-03

MARC0057714 9 1.32E+08 - - 9.38E-03

ALGA0055453 9 1.42E+08 SMYD2 50732 7.71E-04

ALGA0055456 9 1.42E+08 SMYD2 69072 9.58E-03

ALGA0056924 10 11062696 LYPLAL1 1973 7.47E-03

ASGA0046818 10 17948351 AKT3 17715 9.55E-03

ASGA0046812 10 18176414 AKT3 match 9.23E-03

MARC0064247 10 19258175 ZBTB18 97827 6.37E-03

ALGA0058975 10 50080838 PTER match 2.86E-03

H3GA0030974 11 2923443 - - 1.06E-03

ALGA0060411 11 4117930 USP12 46528 2.25E-04

ALGA0060892 11 12388831 CCNA1 24088 2.99E-03

MARC0031054 11 15537141 FOXO1 7719 8.32E-03

MARC0065987 11 16153984 NEK5 match 4.06E-03

ASGA0091162 11 18394930 ARL11 18017 1.53E-03

ALGA0061166 11 18613210 SETDB2 14124 4.01E-03

INRA0035578 11 19434517 CYSLTR2 31003 8.76E-04

H3GA0031500 11 19458211 CYSLTR2 7309 6.58E-03

DRGA0010995 11 28499617 - - 2.04E-03

DRGA0011044 11 30843049 - - 2.90E-04

ALGA0111608 11 33518592 - - 6.97E-03

MARC0058247 11 40557571 - - 8.83E-03

MARC0038885 11 42076772 - - 9.26E-03
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DRGA0011147 11 42683281 - - 7.20E-04

ALGA0061971 11 43178260 - - 5.91E-03

ALGA0062095 11 48231247 - - 4.59E-03

ASGA0050759 11 49418020 RPS3A 60162 7.71E-03

DRGA0011263 11 51624925 - - 7.89E-03

MARC0064023 11 52484631 UCHL3 7498 1.34E-03

MARC0057778 11 52507508 UCHL3 30375 2.14E-03

H3GA0031956 11 53021827 - - 5.27E-03

ALGA0062282 11 53081698 - - 3.95E-03

INRA0036447 11 53204913 - - 1.28E-03

MARC0112524 11 53343454 - - 5.63E-04

DRGA0011285 11 53365158 - - 1.46E-03

INRA0036471 11 54041663 MYCBP2 7359 2.48E-03

INRA0036473 11 54059956 MYCBP2 25652 3.99E-03

ALGA0062309 11 54125788 MYCBP2 91484 7.84E-03

ASGA0102962 11 75272010 - - 2.09E-03

ALGA0063437 11 76088356 ZIC5 match 3.77E-03

M1GA0015266 11 76187291 ZIC2 79290 2.13E-03

MARC0021953 11 76512208 GGACT 37247 1.01E-03

ASGA0051686 11 76688874 TMTC4 match 5.72E-03

ASGA0051750 11 77617889 - - 8.06E-03

ASGA0098350 12 8826038 - - 2.58E-03

ASGA0052986 12 8952780 SOX9 74859 9.47E-03

ALGA0065691 12 24829127 HOXB9 13910 6.16E-03

MARC0013292 12 24901251 HOXB13 2806 9.43E-03

MARC0065078 12 42958510 - - 7.96E-03

ALGA0066582 12 44523799 RHOT1 23380 9.54E-03

MARC0110796 12 48693970 GOSR1 10842 1.48E-03

H3GA0034708 12 54636449 BCL6B 71720 7.59E-03

M1GA0017107 12 59863471 - - 9.96E-03
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MARC0093419 12 60329152 - - 1.84E-03

ASGA0100802 12 60335124 - - 7.49E-04

ASGA0101283 12 60445578 - - 2.12E-04

H3GA0052996 12 60451706 - - 4.63E-05

ALGA0120651 12 60466957 - - 5.28E-05

H3GA0034965 12 60524116 - - 9.13E-04

M1GA0017119 12 60549103 - - 2.07E-04

M1GA0017151 12 60577246 - - 1.61E-03

MARC0030180 12 61535474 U6atac 30049 5.75E-03

MARC0050410 12 61605585 - - 5.69E-03

ASGA0055602 13 2180354 - - 4.49E-03

ALGA0067480 13 3433598 GALNT15 86918 7.86E-03

MARC0015921 13 4575905 TBC1D5 match 8.01E-03

ASGA0089913 13 5308771 - - 7.47E-03

ALGA0067602 13 6000731 SATB1 16413 1.97E-03

MARC0037054 13 7650575 EFHB 77580 6.36E-04

ASGA0055807 13 7699209 EFHB 28946 2.55E-03

M1GA0025009 13 25577420 SCN5A match 7.19E-03

MARC0004520 13 1.41E+08 - - 7.37E-03

MARC0093228 13 1.41E+08 - - 5.62E-03

H3GA0037291 13 1.41E+08 - - 6.88E-03

MARC0093203 13 1.44E+08 TNK2 8716 6.88E-03

ALGA0073790 13 2.1E+08 - - 3.90E-03

ALGA0109869 13 2.1E+08 SIM2 24130 8.40E-03

ALGA0073982 13 2.14E+08 - - 1.13E-03

ALGA0073987 13 2.14E+08 - - 7.95E-04

M1GA0017861 13 2.14E+08 - - 7.25E-04

H3GA0038523 14 5972387 GFRA2 92072 4.20E-03

ALGA0074628 14 6363534 - - 8.00E-03

ASGA0061144 14 10777706 CDCA2 46175 1.36E-03
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ALGA0075064 14 10905579 - - 3.09E-03

MARC0025520 14 30477143 - - 6.00E-03

MARC0080850 14 41317882 RPH3A match 8.00E-03

MARC0016119 14 44298981 UNG 12724 6.56E-03

ALGA0077164 14 44313339 UNG match 3.07E-03

ALGA0077178 14 44528915 SSH1 match 3.10E-03

INRA0043787 14 44548710 SSH1 match 2.19E-03

ASGA0063107 14 46665998 - - 7.46E-03

ASGA0063110 14 46685558 - - 8.05E-03

ASGA0063368 14 53273094 MIF 9458 4.02E-03

ALGA0077597 14 54540355 SLC25A1 1209 3.65E-03

ASGA0063385 14 54569925 SLC25A1 25470 2.77E-03

ALGA0077602 14 54595487 HIRA 617 5.78E-03

ALGA0077603 14 54680716 UFD1L 42 4.44E-03

H3GA0040220 14 54744216 UFD1L match 2.77E-03

ASGA0063388 14 54791586 CLDN5 12252 2.77E-03

ASGA0063392 14 54837568 U3 25135 5.78E-03

MARC0059175 14 54867497 SEPT5 24594 3.65E-03

ASGA0063418 14 56633326 - - 7.32E-03

ALGA0077635 14 56741944 - - 6.38E-03

MARC0066981 14 56894113 - - 7.70E-03

ASGA0063487 14 58847222 LGALS8 match 9.39E-03

ASGA0063736 14 62108085 MAP10 13196 3.47E-03

MARC0008126 14 65033626 URB2 6270 9.33E-03

ASGA0063956 14 65870468 ZNF37A 24351 8.90E-03

MARC0059823 14 65951741 - - 9.87E-03

ASGA0063978 14 66119152 RET 42564 1.56E-03

MARC0097527 14 66239886 CSGALNACT2 match 9.08E-03

H3GA0040656 14 66437562 FXYD4 27335 3.18E-03

ALGA0078253 14 66455930 FXYD4 8967 8.41E-03
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ASGA0064014 14 66708189 BICC1 match 4.02E-03

H3GA0040682 14 67337783 - - 5.75E-03

MARC0009517 14 67360532 - - 3.82E-03

ALGA0078315 14 67556695 FAM13C match 4.79E-03

ASGA0064046 14 67586214 FAM13C match 4.59E-03

ASGA0064057 14 67938907 SLC16A9 61736 4.09E-03

ALGA0078325 14 67973979 SLC16A9 26664 3.65E-03

H3GA0040698 14 68241945 CCDC6 match 8.48E-03

ALGA0078353 14 68492083 ANK3 match 8.69E-03

MARC0047133 14 68911064 - - 8.13E-03

DRGA0013970 14 69219663 PSMA5 35898 7.51E-03

DRGA0013984 14 70168690 - - 3.25E-03

ALGA0078438 14 70180492 - - 4.19E-03

ALGA0078447 14 70318427 - - 8.01E-03

ASGA0064171 14 70424031 - - 5.89E-03

M1GA0018867 14 81218454 DNAJB12 224 1.23E-03

H3GA0042409 14 1.35E+08 - - 4.89E-03

ASGA0066628 14 1.35E+08 ADRB1 96737 4.06E-03

ASGA0066777 14 1.37E+08 ATRNL1 28528 3.48E-03

ASGA0068236 14 1.52E+08 - - 9.40E-03

ASGA0092166 15 2613630 - - 3.24E-03

MARC0083940 15 4198197 - - 9.19E-03

DRGA0014803 15 5072478 - - 7.10E-03

ASGA0068402 15 7398646 - - 4.63E-03

MARC0035392 15 53557172 - - 3.16E-03

DRGA0015125 15 53593754 - - 7.49E-03

ALGA0090697 16 52371543 MAP1B 20273 3.25E-03

H3GA0046642 16 55928776 - - 8.26E-03

ALGA0090781 16 57686358 - - 3.61E-03

ASGA0073900 16 71043011 - - 8.27E-03
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ALGA0091318 16 71070479 - - 9.07E-03

ASGA0074891 17 15174 - - 5.08E-03

H3GA0052370 17 439303 RPS19 13887 3.25E-03

ASGA0106200 17 494222 RPS19 68806 8.38E-03

ASGA0097925 17 536580 - - 8.11E-03

ASGA0075356 17 11848326 SFRP1 match 1.59E-03

MARC0096794 17 13254722 PLAT 57497 2.32E-03

ALGA0095128 17 46668799 KIAA1755 12352 1.66E-03

ASGA0077339 17 53943853 CD40 519 5.52E-03

INRA0054309 17 58229635 - - 4.60E-04

INRA0054308 17 58236218 - - 7.96E-04

INRA0054314 17 58294982 PTPN1 60151 6.44E-03

H3GA0050343 18 9979868 - - 4.04E-03

MARC0069211 18 10393660 TBXAS1 match 3.38E-03

ALGA0103897 18 10395342 TBXAS1 1259 3.51E-03

ALGA0102027 18 10404529 TBXAS1 10446 3.38E-03

ALGA0114284 18 10521082 - - 3.62E-03

INRA0055202 18 13299138 ssc-mir-490-1 62842 2.33E-03

ALGA0097246 18 17876779 - - 9.88E-03

ASGA0079081 18 18911412 - - 5.24E-03

ASGA0090721 18 19225959 TSGA13 match 7.22E-03

ASGA0079728 18 43556023 BMPER 93939 5.49E-03

ASGA0079726 18 43567691 - - 7.29E-03

H3GA0050905 18 47853853 - - 2.42E-03

ALGA0098358 18 48005642 CPVL match 2.36E-03

MARC0061468 18 48297065 - - 6.70E-03

MARC0103241 18 48620026 - - 2.00E-03

DBWU0000577 18 49563919 - - 3.13E-04

ASGA0080057 18 49673542 - - 3.07E-04

M1GA0023271 18 50032307 ssc-mir-196b-1 5195 1.31E-03
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MARC0033103 18 50615451 - - 2.39E-03

ALGA0111601 23 1182388 - - 8.24E-03

ASGA0102465 23 2108185 CH242-227G12.1 17804 7.74E-03

ASGA0096921 23 2174682 CH242-227G12.1 34046 1.78E-03

ALGA0103241 23 3024536 NLGN4X match 3.00E-03

ALGA0105315 23 3059017 NLGN4X match 2.41E-04

ASGA0101131 23 3744915 - - 3.62E-03

MARC0114252 23 3766084 - - 6.24E-03

ALGA0124535 23 3876374 - - 1.58E-03

ASGA0093054 23 4325817 STS 70802 6.87E-03
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Supplementary Table S2-2. Gene ontologies with p <0.05, count >3 and 

the genes involved in the ontology. Count is the number of genes involved 

the ontology and % is (involved genes)/(total genes).

GO ID GO term name Count % p Genes

GO:0043408
regulation of 

MAPK cascade
10 8.93 0.0018

BMPER, GDF7, 

FOXO1, EDAR, 

RNF149, CD40, 

PTPN1, MYC, 

MIF, BMP6

GO:0006355

regulation of 

transcription, 

DNA-templated

22 19.64 0.0050

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:2001141

regulation of RNA 

biosynthetic 

process

22 19.64 0.0054

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:1902531

regulation of 

intracellular signal 

transduction

15 13.39 0.0058

GDF7, ESR1, 

FOXO1, 

SMYD2, CD40, 

EDAR, SOX9, 

MIF, BMPER, 
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ADRB1, ABRA, 

PTPN1, 

RNF149, MYC, 

BMP6

GO:0000165 MAPK cascade 9 8.04 0.0062

BMPER, 

FOXO1, EDAR, 

RNF149, CD40, 

PTPN1, SOX9, 

MYC, MIF

GO:0023014

signal transduction 

by protein 

phosphorylation

9 8.04 0.0065

BMPER, 

FOXO1, EDAR, 

RNF149, CD40, 

PTPN1, SOX9, 

MYC, MIF

GO:0045935

positive regulation 

of nucleobase-

containing 

compound 

metabolic process

14 12.5 0.0072

DDX17, 

ADRB1, 

RPS6KA1, 

GDF7, UNG, 

MYRF, ESR1, 

ABRA, FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0019220

regulation of 

phosphate 

metabolic process

15 13.39 0.0072

WASH1, GDF7, 

FOXO1, EDAR, 

CD40, SOX9, 

MIF, BMPER, 

ADRB1, 

CDCA2, 

RNF149, TNK2, 

PTPN1, MYC, 

BMP6

GO:0031399

regulation of 

protein 

modification 

process

15 13.39 0.0076

WASH1, GDF7, 

FOXO1, EDAR, 

CD40, SOX9, 

MIF, BMPER, 

CDCA2, 

RNF149, TNK2, 

PTPN1, MYC, 

DCUN1D5, 

BMP6
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GO:0035556
intracellular signal 

transduction
20 17.86 0.0081

GDF7, ESR1, 

FOXO1, EDAR, 

CD40, SMYD2, 

SOX9, MIF, 

ARL11, 

BMPER, 

ADRB1, 

RPS6KA1, 

RHOT1, ABRA, 

RAB15, 

RNF149, 

PTPN1, MYC, 

GFRA2, BMP6

GO:0045893

positive regulation 

of transcription, 

DNA-templated

12 10.71 0.0091

DDX17, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 

FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0051252
regulation of RNA 

metabolic process
22 19.64 0.0092

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:0010604

positive regulation 

of macromolecule 

metabolic process

20 17.86 0.0095

GDF7, UNG, 

ESR1, FOXO1, 

EDAR, CD40, 

SOX9, MIF, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, 



４７

CDCA2, ABRA, 

HOXB9, TNK2, 

PTPN1, MYC, 

DCUN1D5, 

BMP6

GO:1902680

positive regulation 

of RNA 

biosynthetic 

process

12 10.71 0.0096

DDX17, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 

FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0045937

positive regulation 

of phosphate 

metabolic process

11 9.82 0.0112

ADRB1, 

BMPER, GDF7, 

CDCA2, EDAR, 

CD40, PTPN1, 

TNK2, SOX9, 

MIF, BMP6

GO:0010562

positive regulation 

of phosphorus 

metabolic process

11 9.82 0.0112

ADRB1, 

BMPER, GDF7, 

CDCA2, EDAR, 

CD40, PTPN1, 

TNK2, SOX9, 

MIF, BMP6

GO:0006351
transcription, 

DNA-templated
20 17.86 0.0115

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

SMYD2, CD40, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:0051254

positive regulation 

of RNA metabolic 

process

12 10.71 0.0127

DDX17, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 
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FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0022612
gland 

morphogenesis
4 3.57 0.0140

GDF7, 

HOXB13, 

EDAR, SOX9

GO:0032774
RNA biosynthetic 

process
22 19.64 0.0140

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:0031401

positive regulation 

of protein 

modification 

process

11 9.82 0.0141

BMPER, GDF7, 

CDCA2, EDAR, 

CD40, PTPN1, 

TNK2, SOX9, 

DCUN1D5, 

MIF, BMP6

GO:0051247

positive regulation 

of protein 

metabolic process

13 11.61 0.0145

BMPER, GDF7, 

CDCA2, 

FOXO1, EDAR, 

CD40, PTPN1, 

TNK2, SOX9, 

MYC, 

DCUN1D5, 

MIF, BMP6

GO:0007167

enzyme linked 

receptor protein 

signaling pathway

9 8.04 0.0161

PLAT, RGMA, 

BMPER, GDF7, 

FOXO1, 

PTPN1, TNK2, 

SOX9, BMP6

GO:0010468
regulation of gene 

expression
24 21.43 0.0163

SATB1, GSC, 

GDF7, ESR1, 
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HIRA, FOXO1, 

HOXB13, 

EDAR, CD40, 

SMYD2, SOX9, 

MIF, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

SIM2, BMP6

GO:0010628
positive regulation 

of gene expression
13 11.61 0.0175

DDX17, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 

FOXO1, 

HOXB9, EDAR, 

CD40, SOX9, 

MYC, BMP6

GO:0048732 gland development 6 5.36 0.0207

TYR, GDF7, 

HOXB13, 

HOXB9, EDAR, 

SOX9

GO:2000112

regulation of 

cellular 

macromolecule 

biosynthetic 

process

22 19.64 0.0208

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:0043409
negative regulation 

of MAPK cascade
4 3.57 0.0211

FOXO1, 

RNF149, 

PTPN1, MYC

GO:0031328 positive regulation 13 11.61 0.0218 DDX17, 
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of cellular 

biosynthetic 

process

ADRB1, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 

FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0032270

positive regulation 

of cellular protein 

metabolic process

12 10.71 0.0233

BMPER, GDF7, 

CDCA2, EDAR, 

CD40, PTPN1, 

TNK2, SOX9, 

MYC, 

DCUN1D5, 

MIF, BMP6

GO:0030509
BMP signaling 

pathway
4 3.57 0.0253

RGMA, 

BMPER, GDF7, 

BMP6

GO:0010556

regulation of 

macromolecule 

biosynthetic 

process

22 19.64 0.0272

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

RPS6KA1, 

MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

BMP6, SIM2

GO:0034654

nucleobase-

containing 

compound 

biosynthetic 

process

23 20.56 0.0282

SATB1, GSC, 

GDF7, ESR1, 

HIRA, FOXO1, 

HOXB13, 

CD40, SMYD2, 

SOX9, RGMA, 

DDX17, 

BMPER, 

ADRB1, 

RPS6KA1, 
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MYRF, BCL6B, 

CHD2, ABRA, 

HOXB9, MYC, 

SIM2, BMP6

GO:0035148 tube formation 4 3.57 0.0284
RGMA, GDF7, 

EDAR, SOX9

GO:0071772 response to BMP 4 3.57 0.0292

RGMA, 

BMPER, GDF7, 

BMP6

GO:0060627

regulation of 

vesicle-mediated 

transport

6 5.36 0.0300

SEPT5, 

TBC1D8, 

RAB15, 

GOSR1, 

PTPN1, TNK2

GO:0010557

positive regulation 

of macromolecule 

biosynthetic 

process

12 10.71 0.0313

DDX17, 

RPS6KA1, 

GDF7, MYRF, 

ESR1, ABRA, 

FOXO1, 

HOXB9, CD40, 

SOX9, MYC, 

BMP6

GO:0015031 protein transport 12 10.71 0.037

KDELR3, 

STX12, 

TBC1D8, 

XPO6, ABRA, 

EDAR, GOSR1, 

CD40, PTPN1, 

GCC2, MIF, 

BMP6

GO:0032268

regulation of 

cellular protein 

metabolic process

16 14.29 0.042

PLAT, WASH1, 

GDF7, FOXO1, 

EDAR, CD40, 

SOX9, MIF, 

BMPER, 

CDCA2, 

RNF149, TNK2, 

PTPN1, MYC, 

DCUN1D5, 

BMP6

GO:1902532 negative regulation 6 5.36 0.0451 ESR1, FOXO1, 
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of intracellular 

signal transduction

RNF149, 

PTPN1, MYC, 

MIF

GO:0032872

regulation of 

stress-activated 

MAPK cascade

4 3.57 0.0463
FOXO1, EDAR, 

PTPN1, MYC

GO:0036211

protein 

modification 

process

21 18.75 0.0473

SATB1, 

WASH1, GDF7, 

FOXO1, EDAR, 

CD40, SMYD2, 

SOX9, MIF, 

BMPER, 

USP12, 

GALNT15, 

CDCA2, 

UCHL3, 

RNF149, 

LYPLAL1, 

PTPN1, TNK2, 

MYC, 

DCUN1D5, 

BMP6

GO:0006464

cellular protein 

modification 

process

21 18.75 0.0473

SATB1, 

WASH1, GDF7, 

FOXO1, EDAR, 

CD40, SMYD2, 

SOX9, MIF, 

BMPER, 

USP12, 

GALNT15, 

CDCA2, 

UCHL3, 

RNF149, 

LYPLAL1, 

PTPN1, TNK2, 

MYC, BMP6, 

DCUN1D5

GO:0070302

regulation of 

stress-activated 

protein kinase 

signaling cascade

4 3.57 0.0476
FOXO1, EDAR, 

PTPN1, MYC
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Chapter 3. Genomic prediction accuracies 

using haplotypes defined by different 

methods in Hanwoo
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3.1 Abstract

Genomic prediction is an effective way to measure the breeding 

values from genetic information based on statistical methods such as best 

linear unbiased prediction (BLUP). Using haplotypes, clusters of linked 

single nucleotide polymorphism (SNP), as markers instead of individual 

SNPs can improve the accuracy of genomic prediction, since the probability 

of a quantitative trait loci to be in strong linkage disequilibrium (LD) with 

markers is higher. To efficiently use haplotypes in genomic prediction, 

finding optimal ways to define haplotypes is needed.

In this study, 770K SNP chip data was collected from Hanwoo 

(Korean cattle) population consisted of 3498 cattle. Haplotypes were first 

defined in three different ways using 770K SNP chip data: haplotypes were 

defined based on 1) length of haplotypes (bp), 2) the number of SNPs 

included, and 3) k-medoids clustering based on LD. To compare the 

methods in parallel, haplotypes defined by all methods were set to have 

comparable sizes; in each method, haplotypes defined to have an average 

number of 5, 10, 20 or 50 SNPs were tested respectively. A modified 

genomic BLUP (GBLUP) method using haplotype alleles as explanatory 

variables was implemented for testing the prediction accuracy of each 

haplotype set. Also, GBLUP using individual SNPs were tested to evaluate 

the performance of the haplotype sets on genomic prediction. Carcass 

weight was used as the phenotype for testing.
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As a result, using haplotypes defined by all three methods showed 

increased accuracy compared to GBLUP using individual SNPs. The 

prediction accuracy was highest when the average number of SNPs per 

haplotype was 20 in all three methods, implying that haplotypes including 

around 20 SNPs can be optimal to use as markers for genomic prediction. 

When the number of alleles generated by each haplotype defining methods 

was compared, clustering by LD generated the least number of alleles. This 

suggests that defining haplotypes based on LD can reduce computational 

costs and allows efficient prediction. Finding optimal ways to define 

haplotypes and using the haplotype alleles as markers can provide improved 

performance and efficiency in genomic prediction.
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3.2 Introduction

Genomic prediction is an effective way to measure the abilities of 

livestock for breeding based on their genetic information. In practical, the 

genomic estimated breeding values (GEBV) of animals is calculated by 

using their single nucleotide polymorphism (SNP) chip genotype data and 

statistical prediction methods such as the best linear unbiased prediction 

(BLUP) or Bayesian methods. The accuracies of these methods generally 

rely on degree of linkage disequilibrium (LD) between the SNP markers and 

real quantitative trait loci (QTL) (Goddard 2009). Here, linkage 

disequilibrium is the nonrandom association between different loci in a 

certain population, which can be calculated by measuring the frequencies of 

alleles and the haplotype frequencies of the pair of alleles at the loci (Slatkin 

2008).

By using clusters of related SNPs as markers instead of individual 

SNPs, the probability that a QTL is in strong LD with a marker becomes 

higher (Goddard and Hayes 2007). Thus, the accuracy of genomic 

prediction can be improved by using clusters of SNPs, which are referred to 

as haplotypes. To efficiently use haplotypes in genomic predictions, many 

studies have focused on finding optimal ways to define a cluster of SNPs as 

a haplotype. The simplest ways proposed were considering segments of 

equal sizes in the genome as haplotypes (Ferdosi, Henshall et al. 2016), 

(Hess, Druet et al. 2017), (Sun, Fernando et al. 2015), (Villumsen, Janss et 
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al. 2009). Here, size can be defined as the physical length in basepairs 

(Ferdosi, Henshall et al. 2016), (Hess, Druet et al. 2017), or the length in 

centimorgans (Sun, Fernando et al. 2015), or the number of SNPs in one 

haplotype (Villumsen, Janss et al. 2009). Along with, methods combining 

information about identity by descent (IBD) with clusters of adjacent SNPs 

to define haplotypes (Calus, De Roos et al. 2008), (Calus, Meuwissen et al. 

2009), and using predicted genealogy to define haplotypes (Edriss, 

Fernando et al. 2013) were studied. Also, setting minimum pairwise LD 

cutoffs to group SNPs into haplotypes was considered (Cuyabano, Su et al. 

2014).

Some of the methods to define haplotypes for genomic prediction 

attempts to incorporate the LD structure of the genome (Calus, De Roos et 

al. 2008), (Cuyabano, Su et al. 2014). An advantage of defining haplotypes 

based on LD is that the number of haplotypes alleles, which is the number 

of explanatory variable used for computation, can be reduced compared to 

other methods (Cuyabano, Su et al. 2014). Recently, to more precisely 

represent the LD structure while defining haplotypes, some clustering 

methods originated in the data mining field have been applied (Dehman 

2015). One of them is hierarchical clustering, which produces a tree that has 

nodes representing clusters in a hierarchical order from, where each element 

being each cluster is the leaf the all the elements being one cluster is the root. 

Applying hierarchical clustering to make SNP clusters based on LD was 
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implemented by Alia Dehman in 2015 (Dehman 2015). Another popular 

clustering method is partitioning clustering, which splits the data into a 

given number of clusters. One of the most known methods of partitioning 

clustering is the k-medoids clustering. k-medoids clustering make clusters 

so the distance between the data in a cluster and the center of the cluster is 

minimized.

In this study, k-medoids clustering was used to construct haplotypes 

based on LD from phased genotypes of 770K SNP chips. In addition, 

haplotypes were alternatively defined as segments with given sizes. The 

length of a haplotype in basepairs and the number of SNPs within a 

haplotype were respectively used as criteria of sizes. The genomic 

prediction accuracies using haplotypes defined based on 1) length of 

haplotypes (bp), 2) the number of SNPs, and 3) LD clustering by k-medoids 

clustering in Hanwoo population were tested and compared with the 

accuracy of using individual SNPs to find out whether these methods can 

bring improvement in genomic prediction. Also, to find out the optimal size 

of haplotypes, various sizes of haplotypes defined by each method were 

tested. To compare the methods in parallel, haplotypes defined by all 

methods were set to have comparable sizes.
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3.3 Materials and method

Genotypic and phenotypic data

The genotypic and phenotypic data used in this study were collected 

from the Hanwoo (Korean cattle) population consisted of 3498 cattle. 

Among them, samples with their sex and slaughter age available were used 

for the study. The carcass weight of the samples was measured after 

slaughter and was used as the phenotypic value of the genomic prediction 

model. Genomic DNA was extracted from blood samples. Genotyping was 

performed by using Illumina BovineHD Genotyping BeadChip in 1166 

samples and Illumina BovineSNP50 Genotyping BeadChip in 2332 samples.

50K genotype data was imputated to 770K by Minimac3.

Total 732225 SNPs were genotyped and used after quality control. 

SNPs having low minor allele frequency (<0.01), low genotyping rate 

(<0.95), significant deviation from Hardy-Weinberg equilibrium (p<0.001) 

were discarded and only one SNP was left if multiple SNPs were on the 

same site. Individuals with low genotype call rate (<0.95) were excluded 

from the study. Two-sided Grubb’s test with alpha=0.05 was performed to 

check whether there were outliers in phenotypic data and was not significant 

(p=0.07).

Consequently, 555678 SNPs and 2506 individuals including 831 

males and 1675 females remained to be used for the study. The total 

genotyping rate of 0.9971. Genotypes were phased using SHAPEIT2 with 
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200 states and window size of 0.5Mb for haplotyping.

Defining haplotypes

Three methods to define haplotypes were considered respectively in 

this study. First, segmentations of the genome with equal sizes in basepairs 

were regarded as haplotypes (method 1). Second, segments of the genome 

containing constant number of SNPs were treated as haplotypes (method 2). 

Third, k-medoids clustering based on LD was used to construct haplotypes 

(method 3). In the three methods, the start points and end points of 

haplotypes were designated accordingly and the SNPs within the point 

formed haplotypes.

In each method, the sizes of haplotypes were set variously to find 

out the optimal size of haplotypes for accurate genomic prediction. To 

compare the three methods in a parallel way, the average number of SNPs 

per block were balanced to be approximately 5, 10, 20, or 50. In brief, three

haplotype defining methods with four average size criteria, making twelve 

kinds of haplotype were tested. The lengths of haplotypes in method 1 was 

calculated by the total number of SNPs and the total length of the genome. 

In method 3, the number of clusters, k was set as the total number of SNPs 

divided by 5, 10, 20, or 50. The lengths of haplotypes in method 1 and 

numbers of clusters in method 3 are later shown in Table 3-1.
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k-medoids clustering based on LD 

In k-medoids clustering based on LD of SNPs were calculated and 

the pairwise LD measured as D’ was set as the proximity measure of two 

SNPs. Here, D’ is calculated as the following equation.

In other words, (1-D’) was defined as the distance of two SNPs. k-

medoids clustering includes two parts; finding the center SNPs of clusters 

and assigning SNPs to the cluster with the closest center. However, since 

there were cases that the pairwise LD doesn’t match the physical distance of 

SNPS, by naively assigning SNPs to clusters of the closest center it was 

impossible to make non-overlapping and mutually exclusive clusters.

To make non-overlapping and linear clusters using all the SNPs for 

haplotype defining, we instead set boundaries of clusters and regarded all 

the SNPs within the boundary to be a cluster. The boundaries of clusters 

were defined as where they could minimize the sum of distances between 

the SNPs in each cluster and the center. A center of a cluster was defined as 

the SNP which minimize the sum of distances between itself and other SNPs 

in the cluster. First, SNPs of a given number as the number of clusters were 

randomly chose to be center SNPs. Then an iterative process of finding the 

boundaries of clusters and finding the centers of clusters was proceeded. 
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The process was repeated while the total sum of distances was decreasing.

Halotyping 

After defining the start points and end points of haplotypes 

throughout the genome, the phased genotype was re-coded according to the 

haplotype alleles from the haplotype definition. All present alleles of the 

haplotypes were found from the phased genotype and the data for each allele 

was coded into 0, 1, 2 to represent the number of that allele each sample 

carried. R package ‘GHap’ was used for this procedure (Utsunomiya, 

Milanesi et al. 2016). 

Genomic prediction

The BLUP model was used to perform genomic predictions using 

the haplotype markers defined in the previous stage. The BLUP model was 

described as:

where is the vector of CWT of the bull, is vector of fixed effects 

including sex and slaughter age, is the vector of additive genetic effects, 

and is the vector of residual errors. is the design matrix for fixed 

effects, is the design matrix associating haplotype alleles and effects to 

appropriate observations, which is N×H where N is the number of animals 

and H is the total number of haplotype alleles. The additive genetic effects 
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and residual errors were estimated as random effects assuming that they 

follow the distributions bellow:

The BLUP solution for the model was computed using the 

equation , where and are as in the model, is the 

inverse weighted sum of variances in the columns of , 

is the weight of each haplotype allele, and is the haplotype-based kinship 

matrix with R package ‘GHap’ (Utsunomiya, Milanesi et al. 2016). Then, 

the GEBVs were obtained as the following equation:

Finally, the performances different haplotype defining methods 

were compared based on the accuracy of the models, which was calculated 

as the correlation of the GEBVs and EBVs. 5-fold cross validation was used 

to obtain the accuracies of different methods. To compare with the 

conventional GBLUP method, the same model using single SNPs as 

haplotypes was also tested.
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3.4 Results

Haplotype construction

The statistics of haplotypes constructed by different haplotype 

defining methods and different average SNP number criteria of each method 

are presented in Table 3-1. The actual average numbers of SNPs per 

haplotype were also obtained to check whether the haplotypes were 

constructed with intended sizes. The average numbers of SNPs were 

consistent with the intended numbers in LD clustering-based haplotypes and 

length-based haplotypes with sizes of 44.5kb, 89kb and 222.5kb, while 

larger than intended in length-based haplotypes of 22.25kb. 

The total number of haplotype alleles were computed to compare 

the number of explanatory variables used for genomic prediction (Figure 3-

1). The number of alleles increased as the average number of SNPs per 

haplotype increased. However, the numbers of alleles from haplotypes of 

similar sizes were least when LD clustering was used to define haplotypes. 

In addition, the differences of haplotype alleles from other methods and LD 

clustering increased as the average number of SNPs per haplotype increased. 

The average number of alleles per haplotypes showed similar tendencies 

with total number of alleles.

Genomic prediction accuracy

The accuracy of genomic prediction using haplotypes was higher 
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Table 3-1. Haplotype and allele statistics of each haplotype defining method 

at different sizes. K is the number of clusters and N is the number of total 

SNPs.
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Figure 3-1. Number of haplotype alleles generated by different haplotype 

defining methods and sizes. Position on the horizontal axis indicates 

haplotype sizes as the number of average SNPs included and different colors 

indicate haplotype defining methods.
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compared to GBLUP using individual SNPs in all haplotype defining 

methods (Figure 3-2, Table 3-2). By using haplotype alleles, genomic 

prediction accuracy increased at least 0.47%. SNP count-based haplotypes 

with an average of 20 SNPs yielded the highest accuracy, 0.5959, which is 

1.32% higher than using individual SNPs. Different haplotype defining 

methods performed best depending on the size of haplotypes. When 

haplotypes contained average 5 SNPs, length-based haplotype performed 

best, probably because it actually contacting more than 5 SNPs. LD 

clustering-based haplotypes had the highest accuracies at average 10 SNPs 

and SNP count-based haplotypes at average 20 and 50 SNPs. From the view 

of haplotype size, containing average 20 SNPs showed highest accuracies in 

all haplotype defining methods.

Paired t-tests were performed in order to test whether the increases 

in prediction accuracies by using haplotypes compared to using individual 

SNPs were statistically significant. Tests were respectively performed for 

different haplotype defining methods with different sizes. As a result, all of 

the tests except length-based haplotypes of average 50 SNPs per haplotype 

were significant at significance level 0.05, suggesting that using haplotypes 

defined by any of the three methods for all sizes bring about a statistically 

meaningful increase in prediction accuracy generally (Table 3-3).  

Differences in accuracies were significant at significance level 0.01 at 

haplotypes having average 5 SNPs of all methods and all sizes of haplotypes 
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Figure 3-2. Genomic prediction accuracies of using various sizes of 

haplotypes defined by different methods compared with accuracy using 

individual SNPs. Straight lines of different colors indicate accuracies from 

different haplotype defining methods and the dashed line shows the 

accuracy from individual SNPs. Position on the horizontal axis indicates 

haplotype sizes as the number of average SNPs included. Accuracies were 

calculated as the correlation coefficients of GEBVs and true phenotypes. 
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Table 3-2. Genomic prediction accuracies of using various sizes of 

haplotypes defined by different methods and accuracy using individual 

SNPs.
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Table 3-3. P-values of paired t-tests comparing prediction accuracies using 

individual SNPs and haplotypes defined by different methods and sizes. *, 

**, and *** indicates significant at α=0.05, 0.01, 0.0001 respectively.
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defined using LD clustering. 
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3.5 Discussion

Genomic prediction accuracy using haplotypes designed in this 

study was always higher than using individual SNPs and mostly statistically 

significant. The increased accuracy by using haplotypes may be due to 

higher LD between alleles and QTLs, better detection of ancestral 

relationships (identity-by-descent), and capturing of short range epistatic 

effects (Hess, Druet et al. 2017). Haplotyping and constructing genomic 

prediction models using haplotype alleles can improve prediction accuracy 

without any additional cost for data production though it may cause some 

more computational cost. 

In all haplotype defining methods, prediction accuracy was highest 

when haplotypes of average 20 SNPs were used. Average 20 SNP, which is 

approximately 89kb, appears to be the optimal haplotype size from the 

results of this study. The optimal size to define haplotypes for genomic 

prediction depends on the distance between SNPs and the LD structure of 

the population (Calus, Meuwissen et al. 2009). The mean distance between 

SNPs was 4118.24bp and the mean LD ( ) was 0.43 in the Hanwoo 

population used for the study. As high density of SNPs was used and the LD 

between SNPs are high, the optimal size of haplotypes tend to be larger than 

other studies, where optimal numbers of SNPs per haplotype were 4~10 

(Hess, Druet et al. 2017) (Calus, Meuwissen et al. 2009) (Villumsen and 

Janss 2009). 
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The number of haplotype alleles indicates the number of 

explanatory variables used for genomic prediction. As the number of 

explanatory variables increases, the dimension of the design matrix in 

equation 1 becomes larger and it takes more time and memory to solve the 

mixed model equation. Thereby, reducing the number of haplotype alleles 

enable more efficient calculation of GEBVs. In this study, two methods are 

possible to reduce the number of haplotype alleles. The first is using LD 

clustering to define haplotypes and the second is using smaller sizes of 

haplotypes. To obtain best prediction accuracy, using SNP count-based 

haplotypes with 20 SNPs is optimal. Considering both accuracy and 

computational cost, LD clustering-based haplotypes with average 10 SNPs 

seem reasonable.

The estimation of GEBV from haplotype alleles depends on the 

phasing results from genotypes. Errors from phasing may produce allele 

which is not actually present. Especially in haplotypes defined by LD 

clustering, inaccurate phasing may cause haplotype boundaries to be 

differently defined resulting in lower accuracy. Therefore, finding more 

accurate phasing methods can further improve the prediction accuracy by 

using haplotypes. In addition, discarding haplotype alleles of low 

frequencies can be considered, since generation of alleles having extremely 

low frequency (e.g. only one in the population) can be a cause of overfitting, 

potentially lowering the prediction accuracy. Also, this and reduce the 
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computational cost by lessening explanatory variables.
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This chapter will be published in elsewhere 

as a partial fulfillment of Sohyoung Won’s Master program. 

Chapter 4. A height prediction model using 

selected genetic markers and parental 

heights in Korean
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4.1 Abstract

Human height is a polygenic trait with high heritability, which can 

be estimated from genetic markers with high accuracy. Since the Genomic 

Best Linear Unbiased Prediction (GBLUP) is an efficient method to predict 

breeding values or phenotypes from genotype data, was applied for the 

prediction of adult height of 490 Koreans. In addition, a GBLUP model 

adjusted with mid-parental height was fitted for height prediction, in which 

GBLUP was employed to predict the residuals from the mid-parental height 

model. Genetic markers explaining largest parts of the residuals were 

selected from bootstrap resampling and linear mixed models. Then, models 

using different numbers of selected markers were tested. As a result, the 

prediction accuracy of the GBLUP model adjusted with mid-parental height 

was higher than both the mid-parental model and the GBLUP predicting raw 

height. Also, the predictive performance was improved when selected 

markers were used for the model. A model using 10,000 SNPs showed the 

highest prediction accuracy, 0.9330. The approach of this study can 

generally be applied to improve the accuracy of genomic prediction in other 

complex traits or other species, by fitting GBLUP models adjusted with the 

phenotypes of parents and sex.
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4.2 Introduction

Human height is a polygenic trait, which has been studied well as a 

model trait for studying the genetic background of complex traits. The 

narrow-sense heritability of height is about 0.8 (Fisher 1919) (Silventoinen, 

Sammalisto et al. 2003) (Visscher, Medland et al. 2006), suggesting that 

about 80% of the variation in adult height is accounted for additive genetic 

effects. As a substantial part of human height is explained by genetic effects, 

it can be estimated using genetic markers accurately.

A classical model for human height estimation is the mid-parental 

model designed by Tanner, defining the target height of a person as the 

average height of the parents plus or minus 6.5 according to sex (Tanner 

1986). In addition, as single nucleotide polymorphisms (SNPs) account for a 

large portion of the variance in height (Yang, Benyamin et al. 2010), height 

can be precisely predicted from SNP genotype data of individuals. A method 

to predict phenotypes such as height from genotypes is using the genomic 

best linear unbiased prediction (GBLUP). In GBLUP, a genomic 

relationship matrix representing the relatedness of individuals is constructed 

and utilized to estimate phenotypes.

As GBLUP showed high predictive performances in other studies

(Meuwissen, Hayes et al. 2016), it was applied to predict the adult height of 

Koreans. Also, a model combining the mid-parental model and genomic 

prediction was designed to exploit the advantages of both models. In 
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addition, SNPs best explaining the residuals from the mid-parental models 

were selected and used for prediction in the combined model. SNP sets of 

various sizes were tested to find the most efficient model.
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4.3 Materials and Method

Data preparation

The genotypic and phenotypic data for this study were collected 

from Korean Association Resource (KARE) project. The Institutional 

Review Board of the Korea National Institute of Health approved this study. 

Data from a cohort consisted of 1,188 parents and 615 offspring was 

obtained. Among the samples, 492 individuals with their parental height 

available were kept. Genomic DNA was extracted using the Affymetrix 

Genome-Wide Human SNP array 6.0, and total 516610 autosomal SNPs 

were genotyped. For quality control, SNPs with low genotyping rate (<0.95), 

low minor allele frequency (<0.1), significant deviation from Hardy-

Weinberg equilibrium (p<0.0001) were excluded and samples with low 

genotyping rate (<0.9) were removed. Finally, 368,813 SNPs of 490 

individuals were used for the study.

Prediction models

Three prediction models were fitted and their prediction accuracies 

were compared. The first model is Tanner’s mid-parental model,

   (1)

, where and are the heights of the mother and father 

respectively, and is 1 when male and 0 when female. The second model 

is the GBLUP model predicting raw heights.
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   (2)

, where is the additive genetic effect, is the fixed effect which was sex, 

is random error. and are design matrices, is the genomic 

relationship matrix, and is the identity matrix. The third model is a 

GBLUP model adjusted with mid-parental height. In this model, first the 

residual heights were calculated from the mid-parental model.

   (3)

, where is the residual heights, is the raw height, and 

is the height estimated from equation (1). Then, a GBLUP model 

predicting the residuals was fitted.

   (4)

, where is the additive genetic effect of residuals from the mid-parental 

model, is random error, ' is a design matrix, is the genomic 

relationship matrix, and is the identity matrix. Finally, the predicted 

height was calculated as the sum of predicted from equation (4) 

and calculated in equation (1).

   (5)

LDAK software was used for the GBLUP models (Speed, Hemani 

et al. 2012).

Prediction accuracy measure

The prediction accuracy was measured as the correlation of 
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predicted heights and observed heights. In GBLUP, the effects of the SNP 

markers were estimated from the model and the phenotype is predicted as a 

linear combination of the genotypes and marker effects.

, where is the phenotype of the th individual, is the 

genotype of the th SNP of the th individual, and is the estimated effect 

of the th SNP.

Ten-fold cross validation was used to measure the prediction 

abilities of the models. The data was randomly divided into 10 separate 

folds, then one of the folds was assigned as a test set and the remaining 9 

folds were assigned as a training set. The effects of SNPs were estimated 

from the training set. Also, in the model using selected SNPs, SNPs were 

selected according to the results from the training set, then the effects of the 

selected SNPs were estimated again from the training set. The predicted 

height was calculated using the estimated effects from the training set and 

the genotypes of the test set. The prediction accuracy was measured as the 

correlation of predicted heights and observed heights in the test set. This 

was repeated 10 times and the final prediction accuracy was reported as the 

mean of the correlation coefficients. The square of the correlation 

coefficient was also calculated to see the proportion of variance explained 

from the model. In addition, the slope of the linear model regressing true 

values from predicted values was measured to evaluate whether the 
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predictions are inflated or depressed.

SNP selection

In the GBLUP model adjusted with mid-parental height, models 

using only selected SNPs were also tested. SNPs that explain the genetic 

effects of the residual heights well were extracted to be used in the model. 

For SNP selection, bootstrap resampling was applied. A subset containing 

half of the training set was randomly sampled. The effects of SNPs on 

residual heights were estimated as random effects using GCTA (Yang, Lee 

et al. 2011) from the subset. This was repeated for 100 times and the mean 

effects of SNPs were calculated. Then, SNPs were sorted according to the 

absolute value of the mean effects obtained. SNPs with the highest absolute 

mean effect were selected and used for the GBLUP model predicting 

residual heights. SNP sets consisted of 300000, 200000, 100000, 50000, 

20000, 10000, 5000, 2000, 1000, 500, 200, 100 SNPs were extracted and 

tested.
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4.4 Results and Discussion

Genomic prediction performances of three models

The prediction accuracies of the mid-parental model, GBLUP 

model, and GBLUP model adjusted with mid-parental height using all SNPs 

after quality control were 0.8287, 0.8091, 0.8399 respectively (Figure 4-1) 

and the proportions of phenotypic variance explained from the models were 

0.6867, 0.6547, 0.7054 respectively (Figure 4-2). The slope of regression of 

the models in the same order were 0.9339, 1.0148, 0.9397 respectively 

(Figure 4-3). It is ideal if the slope of regression is 1, suggesting no inflation 

nor depression in the prediction results. The differences of the slopes from 1 

were 0.0661 in the mid-parental model, 0.0148 in the GBLUP model, and 

0.0603 in the GBLUP model adjusted with mid-parental height. 

The prediction accuracy and proportion of variance explained from 

the mid-parental model was fairly high. However, this model has limitations 

since it cannot account for the differences in height among siblings. The 

prediction accuracy of GBLUP was the lowest, however the slope of 

regression was closest to 1. The GBLUP model adjusted with mid-parental 

height showed the best performance among the three models. The gain in 

prediction accuracy from additionally using genotypes compared to the mid-

parental model was 0.0102 and the gain in prediction accuracy from 

adjusting parental height in the GBLUP model was 0.0308. Using both 

parental height and genetic information from genotype can explain
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Figure 4-1. Prediction accuracies as the correlation coefficients of three 

models; the mid-parental model, the GBLUP model, and the GBLUP model 

adjusted with mid-parental height.
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Figure 4-2. Proportions of phenotypic variance explained from the models 

as the squares of the correlation coefficients of three models; the mid-

parental model, the GBLUP model, and the GBLUP model adjusted with 

mid-parental height.
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Figure 4-3. Slopes of regressions from linear models fitting true heights 

from predicted heights of three models; the mid-parental model, the GBLUP 

model, and the GBLUP model adjusted with mid-parental height.
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approximately 70% of the total variance in height.

The mid-parental height may explain some part of the genetic 

effects in child height and also some part of the environmental effects since 

parents and children usually share common environmental factors. This may 

be the reason why the prediction accuracy was higher in the mid-parental 

model than the GBLUP model, even though GBLUP model better explains 

the genetic variances. In the GBLUP model adjusted with mid-parental 

height, some part of the environmental variance and some part of the genetic 

variance are explained from the parental heights, and GBLUP further 

accounts for the genetic variances explaining the genetic variances of the 

residuals.  

Genomic prediction performances of GBLUP model adjusted with mid-

parental height using selected SNPs

The predictive performance improved when only selected SNPs 

were used for the GBLUP model adjusted with mid-parental height. For all 

sizes of the selected SNP sets, from 300,000 to 100, the prediction 

accuracies and the proportions of variance explained were higher than when 

all SNPs were used. The prediction accuracy and the proportion of variance 

explained was highest, 0.9330 and 0.8705 respectively, when 10,000 SNPs 

were used for prediction (Figure 4-4A, 4-4B). The prediction accuracy of 

using 10,000 selected SNPs was 0.0931 higher than using all SNPs and the 



８８

Figure 4-4. Predictive performances using different numbers of selected 

SNPs in the GBLUP model adjusted with mid-parental height (K=1000). A: 

prediction accuracies measured as the correlation coefficient (R), B: 

proportions of phenotypic variance explained from the model measured as 

R2, C: mean square errors, D: slopes of regressions from linear models 

fitting true heights from predicted heights.
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variance explained increased for 16.5%. The results from using 20,000

SNPs were as good as using 10,000 SNPs. The prediction accuracy was 

0.9328 and the proportion of variance explained was 0.8702 showing little 

difference, while the mean square error, measuring both the bias and 

variance of a model, was lower (figure 4-4C). The predictive performances 

improved as smaller numbers of SNPs were used until 20,000 or 10,000, 

and decreased when less SNPs were used. Still, the prediction accuracies 

were above 0.9, even when only 100 SNPs were used. This indicates that 

height can be accurately predicted from the GBLUP adjusted with mid-

parental height from low density of SNPs if the SNPs are properly selected.

The slope of regression was closest to 1 when 100,000 SNPs or 

500 SNPs were used, which were both 0.0035. The differences of slope of 

regression and 1 were always smaller for using selected SNPs compared to 

using all SNPs. Among the models of highest prediction accuracies, using 

10,000 SNPs and 20,000 SNPs, using 20,000 SNPs was better in the point 

of slope of regression (figure 4-4D).

Since mid-parental height and genotypes both accounts for genetic 

variances in height, there might be multicollinearity, where some of the 

SNPs are highly correlated with parental height. Multicollinearity of 

variables cause the unstableness in prediction and also overfitting since 

redundant variables are used in the model (Farrar and Glauber 1967). 

Therefore, if using large number of SNPs in the GBLUP model adjusted 
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with mid-parental height resulted in multicollinearity, it could be the reason 

why using all SNPs showed lower predictive performances than using 

selected SNPs. As SNPs that best explains the residuals of the mid-parental 

model instead of the raw height were selected, the selected SNPs and mid-

parental height may have less correlation compared to other SNPs. The 

approach of this study can generally be applied to other complex traits or 

other species, by fitting GBLUP models adjusted with the phenotypes of 

parents and sex in which selected markers best explaining the residuals are 

used.
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국문초록

전장유전체연관분석과 표현형 예측

연구를 위한 선형혼합모형

원소영

농생명공학부

서울대학교 대학원 농업생명과학대학

염기서열분석과 유전형질분석 기술의 발전으로 생물학적 연구에

이용할 수 있는 많은 양의 데이터가 축적되었다. 뿐만 아니라 통

계적 모형이 발달하고 큰 데이터를 계산하는 능력이 향상되면서

방대한 양의 유전정보에 대한 보다 정밀한 분석이 가능해졌다. 통

계적 계산을 활용한 유전정보의 분석으로부터 유전형질과 표현형

간의 관계를 밝혀낼 수 있다.

본 졸업논문에서는 유전형질의 차이가 어떻게 표현형과 관련이

있는지를 주로 다루고 있다.  우선, 전장유전체연관분석을 통해 표

현형과 연관성이 높은 유전 변이를 찾아내고자 하였다. 또한, 유전
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형질로부터 표현형을 정확하게 예측할 수 있는 모형을 개발하고자

하였다. 표현형에 대한 유전 변이들의 효과를 추정하기 위해서 다

양한 선형혼합모형을 적용하였다.

2장에서는 돼지의 근내지방도에 대해서 전장유전체연관분석을

실시하였다. 이로부터 통계적으로 유의한 효과를 가지는 단일염기

다형성들을 발견했고, 유의한 단일염기다형성이 포함되어 있거나

물리적으로 가까이 있는 유전자들을 찾아내었다. 찾아진 유전자들

중, 마이토겐 활성화 단백질 키나제 경로와 관련된 유전자들을 돼

지의 근내지방도에 영향을 주는 후보 유전자들로 제시하였다.

3장에서는 한우의 유전자형으로부터 도체중을 예측하기 위해 반

수체의 대립 형질을 이용한 유전체 예측을 진행하였다. 다양한 방

법으로 반수체를 정의하였고, 이로부터 얻어진 대립 형질을 사용

했을 때 유전체 예측의 정확도를 비교하였다. 이 때, 반수체를 이

용하였을 때의 정확도가 개개의 단일염기다형성을 이용했을 때의

정확도보다 높게 나타났다.

4장에서는 사람의 유전자형으로부터 키를 예측하는 모형을 설계하

였다. 예측 모형으로는 부모의 키로 보정된 최적선형불편추정 모

형을 사용하였다. 더불어 부트스트랩 재추출을 활용하여 키에 미

치는 영향이 큰 단일염기다형성을 선택하였다. 선택된 단일염기다

형성만을 변수로 사용하는 모형을 검증한 결과, 예측력이 높게 나
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타났다.

위의 연구들을 통해 유전자형에서의 변이와 표현형에서의 변이

사이의 관계를 설명하기 위해 선형혼합모형을 어떻게 적용할 수

있는지 이해할 수 있었다. 연구에서 얻어진 결과는 동물과 사람의

유전적 구조를 이해하기 위한 선형혼합모형의 적용을 확장하는 것

에 활용될 수 있다.

주요어: 선형혼합모형, 유전체 예측, 전장유전체연관분석

학번: 2017-22852
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