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Abstract

An IoT system can be regarded as a distributed embedded system that is composed of het-

erogeneous smart devices with very different performance and functions. Also many IoT

applications that have different resource requirements and real-time requirements will

run concurrently in the IoT system. In addition, non-functional properties such as power

consumption and device lifetime are considered important. Since an IoT application can

be added or removed anytime and the device status may change at run-time, the system is

unprecedentedly dynamic in its configuration, which brings up a challenging scheduling

problem of IoT applications onto the smart devices. To tackle this problem, we pro-

pose a novel adaptive scheduling technique that consists of two scheduling techniques,

incremental and global. An incremental heuristic method is proposed to provide fast re-

sponsiveness to dynamically changing configuration. During the steady-state operation,

a GA-based method is applied to perform global rescheduling of IoT applications period-

ically to optimize a given objective function based on non-functional properties. We use

the acceptance ratio of new applications and energy consumption as two performance

metrics of the proposed scheduling method. The viability of the proposed approach is

verified by extensive simulations with randomly generated scenarios.

Keywords : IoT system, task graph scheduling, adaptive scheduling, IoT application

scheduling

Student Number : 2017-29611
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1. Introduction

An IoT (Internet-of-Things) system such as a smart home and smart office consists

of a variety of embedded systems, called smart devices, that have different functional-

ities, computing power, and resource constraints. A smart device may be added to the

system anytime or removed from the system due to various reasons such as power dis-

charge, device failure, or network disconnection. Thus, the IoT system can be regarded

as a distributed and highly heterogeneous computing system with dynamically varying

configuration.

There could be many IoT applications running concurrently in an IoT system. An

IoT application is defined as a sequence of tasks, invoked periodically or sporadically

by an event arrival, each of which is executed on a smart device. It is usually associated

with a real-time requirement such as period and deadline. We consider a dynamically

configurable IoT system where an IoT application may be newly added or removed from

the IoT system at runtime.

Even though most existent IoT platforms do not have such capability of accepting

new applications and mapping and scheduling them to the constituent smart devices at

runtime, we envisage that online scheduling of IoT applications on smart devices will be

a new challenging problem in the future. As a closely related work, a service-oriented IoT

platform has been proposed recently [1], where a smart device is abstracted as a service

provider that can serve a predefined set of services and an IoT application is specified by

a directed graph, called service graph. In a service graph, each node represents a service

while the directed edges represent the dependencies between services. Since services and

smart devices can be seen as tasks and processing elements (PEs) that can support only a

specific set of tasks, respectively, this platform brings forth a similar scheduling problem.

However no solution has been proposed. In this thesis, we define a more general adaptive
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real-time scheduling problem for future IoT systems as scheduling of dependent tasks

with real-time requirements on the heterogeneous non-preemptive1 PEs whose availabil-

ity may change dynamically.

To tackle this problem, we propose a novel adaptive scheduling technique that con-

sists of two scheduling heuristics, incremental and global. Taking into account the char-

acteristics of an IoT system, we deal with the scheduling problem for two separate cases:

dynamic and steady states.

The dynamic state denotes the reconfiguration of things or services, such as the

new arrival of IoT applications or removal of the devices. Such events do not happen

frequently, but it is crucial to respond to the request properly and promptly. Therefore, on

a new arrival of an application, we schedule the application onto available smart devices

incrementally without affecting other applications using a fast heuristic. The fast heuristic

is also invoked to re-schedule the system in case of device removals.

In the steady state, where many IoT applications are running concurrently on the

IoT system, we perform global scheduling periodically to re-schedule the entire tasks to

optimize some specific objective functions such as energy consumption. As the number of

tasks and PEs increases, the scheduling complexity will increase proportionally or higher.

In this work, we use a GA(genetic algorithm)-based heuristic. By setting a time limit

as the termination condition, the GA-based heuristic produces a sub-optimal schedule

within the given time limit.

The rest of this thesis is organized as follows. In the next section, we define the

adaptive scheduling problem of the future IoT system with some illustrative examples.

Then, in Section 3, we show how the IoT applications are converted to independent tasks

and how the timing constraints are validated with respect to a mapping. Based on this

analysis, Section 4 proposes an adaptive run-time scheduling technique, which is verified

1Typically, services provided by things are indivisible as they are related to certain sensors/actuators or
physical processes. Moreover, even if they are pure software tasks, it is common to adopt non-preemptive
scheduling in embedded systems [2, 3].
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with extensive evaluations of many scenarios in Section 5. Related work and concluding

remarks will be drawn in Section 6 and Section 7, respectively.
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2. Problem Description

2.1 Target IoT system

In this section, we first present the target IoT system that we assume in this work.

When a thing, or smart device, enter into the system, a set of tasks that it can serve is

registered in the IoT middleware. A simple device such as sensor and actuator is likely to

serve only one task, sensing, and actuation, respectively. On the other hand, some devices

may serve more than one tasks; a camera, for instance, may take a picture, record a video,

perform some image processing tasks, and so forth. There may exist powerful devices

like robots that can serve various types of tasks in the assumed IoT system. Moreover, a

virtual device that can perform cloud services such as mailing or any AI service can be

added to the system. Note that there could be more than one devices that can perform

a given task and a powerful device that can perform the task faster usually consumes

more power. Moreover, in a powerful device with many physical cores inside, multiple

tasks can be run concurrently. We assume that how many tasks can be run concurrently is

known a priori. We also assume that fixed-priority non-preemptive scheduling policy is

used in each device when multiple tasks are assigned, which is a natural choice for smart

devices when a task uses a shared HW resource during its execution.

An IoT application usually consists of a sequence of tasks. For instance, let us sup-

pose that a user defines a new IoT application when leaving home, commanding “if some-

one enters my house, take a picture, and send it to me.” This application involves at least

three dependent tasks, 1) a sensor to detect someone’s entrance, 2) a camera to take a

picture, and 3) a cloud service to send an e-mail. This IoT application can be specified by

a script or an equivalent task graph as shown in Fig. 2.1, similarly to the service graph of

[1] where a node represents a task, and an arc represents the dependency between tasks.

Conditional execution of tasks can be specified by a conditional node that is depicted by

4



loop(5 SEC){
A: detect someone with sensor

if(detected) {
B: take a picture with camera
C: send an email through cloud

}
}

IF

loop (period: 5 SEC)

true
A B C

Figure 2.1: Script code description of an example IoT application and its equivalent task
graph representation

a diamond symbol. In this work, we assume that the IoT applications are triggered peri-

odically1 and the period information is annotated to the task graph specification as shown

in the figure. In this surveillance example, the task graph is invoked every five seconds,

which is the implicit deadline constraint of the task.

In the target IoT system, there is a central server that monitors the status of the

registered smart devices and manages the overall system status. It also orchestrates all

IoT applications by mapping and scheduling the constituent tasks onto the smart devices.

When a new application is requested by a user, it first checks whether the application

can be accepted or not, regarding the timing constraint, then, determine how to map

the constituent tasks to the devices, if acceptable. If any device fails to meet the real-

time requirement of any assigned task after adding a new task, the application should

be rejected, and the user is notified of the rejection. In the case of device failures, all

the IoT applications that use the device will be re-scheduled by the server. In order to

enable more sophisticated service control, it is allowed to set criticality levels of the IoT

applications, letting high critical applications survive longer in case all applications are

not schedulable.

In addition to the timing requirements, it is also important to consider the non-

1Note that this can be extended to other triggering models without loss of generality. For instance, the pe-
riod can be treated as the minimum time interval between two consecutive invocations in the event-triggered
or sporadic task invocation model.
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functional properties of the IoT system. For example, there may exist some devices with

limited energy capacity, and it is desirable to lengthen the lifetime of them. On the other

hand, saving energy consumption of the system is requested. In fact, the issue of energy

consumption is emerging as an important issue in IoT systems [4]. Another issue is to

increase the application acceptance ratio. We want to accommodate as many applica-

tions as possible in the system. In this thesis, we focus on maximizing the application

acceptance ratio and minimizing energy consumption. However, it is worthwhile to men-

tion that the proposed adaptive scheduling can be easily extended to other non-functional

optimization criteria.

2.2 Motivational Example

In this subsection, we motivate the necessity of adaptive scheduling that enhances

the application acceptance ratio. Let us suppose we have two IoT applications to be

mapped on three things as shown in Fig. 2.2, whose mapping decisions are made as

described in Table 2.1. In this particular mapping, thing 1 and thing 2 are considerably

loaded in terms of utilization, while thing 3 is relatively less occupied with fewer assigned

tasks. In this configuration, let us suppose that another application that uses task X with

a period of 10 seconds is requested. Then, this request cannot be accepted as both thing

1 and thing 2 do not have enough room for X. On the other hand, if task W of task graph

1 were mapped to thing 3, the new task X can be executed on thing 1. Note that such

enhanced acceptance ratio possibly comes at the cost of increased energy consumption.

In this case, task W consumes more energy on thing 1 than on thing 3. To summarize,

even with simple toy examples, it is not trivial to find a good mapping solution that co-

optimizes the acceptance ratio and energy consumption at the same time with respect to

the given timing constraints.
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W

X

Y Z

X

W

V

IF

Z

Task graph 1
period: 15 SEC

Task graph 2
period: 20 SEC Thing Supporting

Tasks
Execution

Time
Energy

Consumption

Thing1

W 4 3

X 3 7

Y 7 5

Thing2

X 2 9

Y 5 7

Z 6 4

Thing3

W 3 5

X 2 9

V 6 2

Figure 2.2: A motivational example with two task graphs and three things

Table 2.1: A possible mapping choice of the motivational example in Fig. 2.2

Thing
Mapped tasks
(Task graph)

Utilization
Energy

Consumption

Thing 1
W(Graph1),

X(Graph2), Y(Graph1)
0.88 15

Thing 2
X(Graph1),

Z(Graph1), Z(Graph2)
0.83 17

Thing 3
V(Graph2),
W(Graph2)

0.45 7
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2.3 Problem Definition

The problem addressed in this thesis can be defined as follows:

1. Offline Input: All IoT applications that can be executed on the target system are

given as input, each of which is specified as a task graph. All applications are as-

sumed to be triggered periodically2. Thus each task graph is associated with an

implicit timing constraint. That is, a task graph should be completed before the

next instance is invoked. The constituent tasks are scheduled in a non-preemptive

manner as stated in the previous section. As exemplified in Fig. 2.1 and 2.2, task

graphs may have conditional statements (if-else clauses). In addition to the appli-

cations, all types of things, or PEs3 that exist in the system are known in advance.

As shown in Fig. 2.2, a set of information on the tasks that each PE can serve is

given. To be more specific, execution time and energy consumption that a certain

task takes on each PE are known.

2. Online Input: There are four types of reconfiguration events in the target IoT sys-

tem, arrival/removal of applications and addition/removal of things. At runtime,

we assume that one of the above reconfiguration events may occur anytime.

3. Output (Mapping/Scheduling): For all accepted applications, the mapping deci-

sions, i.e., where to schedule each constituent task, have to be made. Once this

decision is fixed, each thing schedules the assigned tasks according to the non-

preemptive deadline monotonic policy. Whenever a new application arrives or

a device is removed, the IoT system has to respond promptly to the event by

updating the mapping decision of the tasks onto things while still satisfying the im-

posed timing constraints. Even without the runtime events’ occurrences, the system

2Note that this can be extended to other triggering models without loss of generality. For instance, the pe-
riod can be treated as the minimum time interval between two consecutive invocations in the event-triggered
or sporadic task invocation model.

3A thing is a processing element. Without confusion, we use both terms interchangeably.
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periodically adjusts the mapping/scheduling in order to enhance the optimization

criteria gradually at runtime.

4. Objectives: Primarily, the optimization goal of the proposed mapping/scheduling

technique is two-fold: to maximize the acceptance ratio and to minimize the overall

energy consumption. Also, we try to keep the system as responsive as possible to

the runtime reconfiguration events. In other words, the elapsed time for recalculat-

ing the mapping decision is to be minimized.
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3. Schedulability Analysis

In this section, we present how to determine whether the task graphs’ executions

satisfy their timing constraints with respect to a given mapping. There have been several

approaches proposed to analyze the worst-case latency of task graphs in distributed multi-

processor systems, including analytical methods [5, 6, 7] and formal verification [8].

However, none of these is a viable solution for our problem, as the mapping decision

needs to be made promptly online. Another approach to the real-time scheduling analysis

of the task graph model is to transform the graph to independent periodic task sets [9,

10, 11, 12], which is adopted in the proposed technique. Even though it suffers from the

risk of large over-estimation due to conservative transformation, it enables us to analyze

the execution latency of task graphs fast at runtime. Since the task graph associated with

an IoT application is usually a short chain of tasks or a simple DAG (directed acyclic

graph), the risk of over-estimation is expected to be low. In the following subsection, we

show how a task graph can be converted into a set of periodic independent tasks. Then,

in Section 3.2, the schedulability analysis method we rely on is presented.

3.1 Transformation of a Task Graphs to Independent
Tasks

We borrow the technique that transforms a task graph to a set of independent tasks

from [9, 10]. In that approach, all the task dependencies are removed, and each task is as-

signed a new timing constraint that is defined by a tuple ( release offset, deadline). These

release offsets keep the relative ordering of the original dependent tasks. A transformed

task τ on a thing θ is characterized by period Tτ, worst-case execution time Cτ,θ, release

offset Oτ, and deadline Dτ. Now, the problem is how to assign Oτ and Dτ for each τ as Tτ

and Cτ,θ can be inherited from the original task graph without any modification.

10



0

10
Period: 10

𝐷 = 3

𝐷 = 7

𝐷 = 10

𝐷 = 7

𝐶 = 1
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𝐶 = 2

𝐶 = 1

Task Graph Independent Task Set

deadline

IF

offset

perioddeadline

100 3 7

100 3 7

𝜏

period

Figure 3.1: An example of the task graph transformation to an independent task set
through the PURE method.

In this regard, they first find out the critical path, the sequence from the source to the

destination task, the sum of whose execution time is the largest. Then, the amount of slack

is quantified by calculating the difference between the period and the sum of execution

times of the critical path. This slack is now distributed over the constituent tasks in that

path in assigning the offset and deadline of each. Let us suppose that τi is the predecessor

of τ j in the critical path, the release offset of τ j is the deadline of τi and the deadline is the

sum of its release offset, execution time, and assigned slack. This procedure is repeated

until all tasks in the graph are assigned a slack.

Depending on how the slack is distributed over the tasks in a path, there are two

different approaches: PURE and NORM. In PURE, the slack is evenly distributed to all

tasks, while it is distributed to the tasks proportionally to the execution times in NORM

where tasks with longer execution time are assigned more slack. In the proposed tech-

nique, we used the PURE method as it has been reported that PURE exhibits better

schedulability in non-preemptive scheduling [11].

Fig. 3.1 illustrates an example of the task graph transformation to independent tasks

11



through the PURE method. For ease of illustration, we assume that all the tasks have

the same worst-case execution time on all things, i.e., ∀θ,Cτ,θ = Cτ. All the tasks in the

graph are converted into independent tasks with the same period, 10, i.e., ∀τ,Tτ = 10.

The critical path of the graph is (τ5→ τ3→ τ4), and the slack of the path is 10− (1+

2+ 1) = 6. Thus, each task in the path is assigned a time slack of 2 time units. Since

task τ5 has no predecessor, Oτ5 = 0, allocating a slack of 2 time units, its deadline is

set as follows: Dτ5 = Oτ5 +Cτ5 + 2 = 0+ 1+ 2 = 3. This deadline also behaves as the

release offset of the next task, τ3, thus, Oτ3 = 3. With the slack of 2 time units, Dτ3 =

Oτ3 +Cτ3 + 2 = 3+ 2+ 2 = 7. Similarly, we also have Oτ4 = 7 and Dτ4 = 10. Now, all

tasks in the critical path are transformed. Then, the only remaining path in the graph is

(τ2→ τ4). The same procedure is applied to the remaining tasks in the path. In this case,

τ2 is the only task remaining untransformed as τ4 has already been handled. Considering

the predecessor/successor tasks, we have Oτ2 = 0 and Dτ2 = Oτ4 = 7.

Note that the conditional execution information of the original task graph is oblit-

erated by the transformation. For instance, it is trivial to tell τ5 and τ2 will never be in-

voked at the same iteration from the original specification. However, in the transformed

independent task set, we assume that all tasks are instantiated in a single period. This is

obviously a source of pessimism in the scheduling analysis of the proposed technique,

but the inevitable cost to guarantee the schedulability at online mapping.

3.2 Schedulability Analysis

Now that all task graphs are transformed to an independent task set, the currently

active applications can be represented as a set of n periodic tasks, Γ = {τ1, ...,τn}. The

utilization of τ is Uτ = Cτ/Tτ. As a subset of Γ, hp(τ) denotes the set of tasks whose

priority is higher than or equal to τ among the tasks that are mapped on the same thing

as τ. Note that hp(τ) includes τ itself. Likewise, l p(τ) denotes the set of tasks with lower

priority than τ among the tasks that are mapped on the same core. In the schedulability

12



analysis, we use the relative deadline D′τ which is defined as Dτ −Oτ, instead of the

absolute deadline Dτ. For instance the deadline of τ3 in Fig. 3.1 is changed to D′
τ3 =

Dτ3−Oτ3 = 7−3 = 4 instead of 7, in order to make the analysis independent of release

offset. We assume Γ is sorted in the ascending order of deadlines, i.e., D′τi
≤ D′τ j

,∀i < j.

For schedulability analysis, we rely on the time demand analysis (TDA) [3] to certify

the deadline satisfaction of each task. TDA is based on the critical instant theorem [13],

which says that the worst-case response time of a task is caused when all tasks are re-

leased at the same instant. Therefore, the worst-case latency can be calculated by taking

into account the maximum amount of time a task τ on thing θ can be delayed by other

tasks as formulated as follows:

∑
τi∈hp(τ)

⌈
D′τ
Tτi

⌉
Cτi,θ ≤ D′τ (3.1)

Note that the interference quantified in equation (3.1) only considers the higher pri-

ority tasks. As we deal with non-preemptive scheduling policy in the target IoT platform,

a task may be blocked by a lower priority task as well. Thus, we modify the TDA formula

in [14] as follows:

Iτ +
∑

τi∈hp(τ)

⌈
D′τ
Tτi

⌉
Cτi,θ ≤ D′τ (3.2)

where Iτ is the maximum interference from a lower priority task, Iτ = max
τi∈l p(τ)

(Cτi,θ).

It is worthwhile to mention that the schedulability analysis presented in equation (3.2)

is not tight, but very pessimistic, as it is deprived of execution dependencies of the orig-

inal task graph. For instance, τ5 and τ3 will never interfere with each other even if they

are mapped on the same thing. However, in the analysis presented in equations (3.1) and

(3.2), the conflicts between them are taken into account. Such conservativeness could be

alleviated by refining the definition of hp(τ) so that the dependent tasks are not included.
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4. Proposed Mapping Technique

The IoT system exhibits two different aspects at the same time in its configuration.

On the one hand, like other ordinary embedded systems, it operates the same functions,

that are fixed a priori, repeatedly. In this sense, it is preferred that the configuration of the

system, e.g., task-to-processor mapping, is optimized and fixed at design time. On the

other hand, in the IoT system, users occasionally tend to install/remove functionalities or

things even during the IoT system is actively working. In this case, it is important to react

to the reconfiguration events promptly while still preserving the optimality of the system.

Typically, the response time and the degree of optimization are in a trade-off relationship

since it takes a considerable amount of time to explore the huge design space caused by

the reconfiguration events.

Therefore, in this thesis, we propose a hybrid mapping technique that combines

incremental and global methods. Essentially, the mapping decision is made online by

a heuristic for incremental mapping. That is, each time a reconfiguration event occurs,

the current mapping decision is marginally tweaked to cope with a new environment.

As each reconfiguration event affects only a small portion of the system, a new viable

configuration may not differ much from the current one. This is not a bad method as a way

to reduce the mapping time (and enhance the responsiveness), but not guaranteeing the

optimality. To compensate for this, a global re-mapping is performed when the number of

accumulated reconfiguration events exceeds a certain threshold since the last re-mapping

and a certain period elapses. In the two following subsections, the incremental and global

mapping methods are presented, respectively.
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4.1 Incremental Mapping

In favor of the reduced optimization time (responsiveness), the incremental map-

ping strategy tries to keep the current configuration as much as possible. As stated in

Section 2.3, it has to deal with four different types of re-configuration events as follows:

1. Arrival of a new application: When a user requests a new IoT application, we have

to decide whether the application can be accepted or not in the system. Each task

of the accepted application (or task graph) needs to be mapped on a certain thing.

2. Removal of an application: When the user withdraws a certain application from the

system, the corresponding tasks are simply removed from the things and the system

statistics (utilization and energy) are updated accordingly. Here, no incremental

mapping is needed.

3. Installation of a new thing: If a new thing is additionally deployed in the system,

the information about the thing is updated, and no mapping needs to be performed.

4. Removal of a thing: A thing can be deleted from the system due to various causes

including user request, energy shortage (out of battery), communication failures,

and so on. In this case, the tasks that are mapped on the things need to be re-mapped

on other active things. Thus, the incremental mapping is performed.

Algorithm 1 delineates how the incremental mapping responds to the runtime re-

configuration events. First, it checks out the type of the event (lines 2-12). As mentioned

earlier, no incremental mapping is performed on the removal of an application or the

installation of a new thing. Thus, it simply returns after updating the information in the

IoT server (lines 4-9). In case of the arrival of a new application (lines 2-3), the new

application (task graph) is transformed to a task set Γmap derived by the transformation

procedure sketched in Section 3.1 as preparation of mapping. On the other hand, if the

event is caused by the removal of a thing (lines 10-11), the tasks mapped on the removed
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thing need to be re-mapped and so collected in the task set Γmap.

Once the tasks to be remapped are determined as Γmap, the mapping decision is

made for each τcur ∈ Γmap (lines 14-15). At line 16, a set of feasible things that can

accommodate τcur is collected in Θτcur . Now, the algorithm needs to make a decision on

which thing among the feasible ones is chosen for mapping. Recall in Section 2.3 that

the primary objectives we aim to optimize are 1) to maximize the acceptance ratio and 2)

to minimize energy consumption. Further, we do not have enough time to systematically

explore the design space as the system needs to be responsive to the events. Therefore, we

solely focus on the first one (acceptance ratio) in the incremental mapping. The rationale

is as follows. If we largely keep the previous mapping decision and make only marginal

changes for Γmap, the degree of optimality of the changed mapping would not be far away

from the previous one. Moreover, this temporary mapping can later be re-optimized by

the global re-mapping, which will be presented in the next subsection.

Maximizing the acceptance ratio in mapping is a challenging task since it is not

known which applications will arrive in the future. We can only be able to keep the map-

ping in a way that the future task graph would be more likely to fit in. In line with that, we

devise three different quantitative indicators, with which the set of candidate things Θτcur

is sorted (line 17). That is, the earlier a thing appears in Θτcur , the higher acceptance ratio

would be expected if τcur is mapped on that thing. So, we test the candidate things in Θτcur

one by one in order and verify the schedulability using TDA (line 20). If schedulable, τcur

is decided to be mapped on the thing (lines 21-23), and the procedure is continued with

the next task in Γmap. If not schedulable, the next thing in Θτcur is tested. When all tasks

in Γmap are fixed on a certain thing through the above procedure, the mapping is actu-

ally applied to the system, and the user is notified of the acceptance (lines 32-33). On

the contrary, if no feasible things are found for any element of Γmap, the requested IoT

application is rejected (line 29).

In what follows, we discuss, in more detail, on what basis the candidate things are
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chosen for mapping (line 17). We propose the following three policies and one compari-

son target:

• Sum Slack: In this approach, we assume that the acceptance ratio will be higher if

we maintain the sum of slacks in all things as large as possible. That is, we try to

maximize ∑
θ∈Θ

1−
∑

m(τ)=θ

Cτ,θ/Tτ

 (4.1)

where Θ denotes the set of all things in the system and m(τ) is the thing that τ is

mapped on. That is, the thing that makes equation (4.1) larger is preferred in the

mapping. Actually, equation (4.1) is equivalent to minimize Cτcur,θ over θ ∈Θτcur .

• Relative Slack: Note that faster things (smaller Ci values for τi) are more likely to

be chosen in the sum slack approach to enlarge the slack size. This might result in

an unbalanced mapping, i.e., the tasks are likely mapped on a few fast things. Thus,

we propose another approach, called relative slack, that encourages the tasks to be

distried more evenly over the things. Here, we choose the thing θ that maximizes

the following equation:
1−

∑
m(τ)=θ

Cτ,θ/Tτ

Cτcur,θ
(4.2)

It simply chooses the thing that has the biggest slack relative to the task’s execution

time on that thing.

• Period Ratio: There is a sufficient condition for schedulability, called utilization

bound. If the sum of utilization of the tasks mapped on a PE is bounded by a

certain value, it is guaranteed that a feasible schedule is existent with respect to

the scheduling policy. That is, for a thing θ, if the following condition is fulfilled,

Uθ =
∑

m(τ)=θ

Cτ,θ

Tτ

≤UBound (4.3)
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where UBound is the utilization threshold for the given scheduling policy, all the

tasks mapped on thing θ are schedulable. It is well-known that UBound is 1.0 and

0.69 for the preemptive earliest-deadline-first (EDF) and the preemptive rate-monotonic

(RM) policies, respectively [13]. Further, it has been proven in [2] that the utiliza-

tion bound of non-preemptive RM is proportional to min(Tτ)
max(Tτ)

,∀τ,m(τ) = θ. This

suggests that in non-preemptive scheduling it is beneficial to keep the difference

between the maximum and minimum invocation periods of the tasks on a PE as

small as possible. Inspired by this, we expect that the acceptance ratio would be

better if we decide the mapping in a way that every PE has a relatively balanced

invocation period. Therefore, we recalculate the period ratio of each thing with

the following equation and choose the thing with the smallest difference from the

previous period ratio of the thing:

min(Tτcur ,minm(τ)=θ(Tτ))

max(Tτcur ,maxm(τ)=θ(Tτ))
(4.4)

• First Fit: As a comparison target, we also propose another mapping approach,

called first fit. That is, a thing is chosen in an arbitrary order in Θτcur at line 17,

and anyone that meets the TDA constraint for the first time is chosen for mapping.

4.2 Global Re-mapping

Since the incremental heuristic method is a greedy approach that reflects dynamic

changes one by one at runtime, the degree of optimality of the mapping is not as good

as design time optimizations. In order to complement this drawback, we additionally

apply a GA-based global re-mapping either periodically or when the number of runtime

reconfiguration exceeds a certain threshold.

As the multi-processor mapping/scheduling is known to be NP-hard [15], it is com-

mon to use meta-heuristics such as GA in this class of optimization problems. Fig. 4.1
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Figure 4.1: The chromosome structure of the GA-based global re-mapping solution.

illustrates the chromosome structure we used in the global re-mapping, where the slots

for non-negative integer values are allocated as many as the number of tasks in the tar-

get system, i.e., |Γ|. Each value simply denotes task-to-thing mapping information. For

instance, a solution shown in Fig. 4.1 stands for the mapping where τ0, τ1, and τ2 are

mapped on θ0, θ2, and θ3, respectively. Initially, some individuals are randomly gen-

erated according to the presented gene structure. Then, as the generation goes by, they

are undergone well-known genetic processes such as crossover or mutation. Each newly

generated individual should be verified in terms of schedulability with inequality (3.2)

in order to survive in the population. This procedure is repeated until it converges to a

well-optimized mapping.

Note that, in the global re-mapping, all the applications including the ones that have

already been in the system need to be completely re-mapped. In doing so, unlike the

incremental mapping, we explicitly consider the minimization of energy consumption. It

tries to minimize the sum of energy dissipated by each task on the mapped thing, which

can be calculated as follows:

∑
θ∈Θ

 ∑
τ∈Γ,m(τ)=θ

Eτ,θ

 (4.5)

where Eτ,θ denotes the energy consumption of τ on thing θ.
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As the global re-mapping is a time-consuming optimization, it cannot be invoked

on any reconfiguration event. Rather, this is periodically performed in the background by

the IoT server, and the optimization result is occasionally reflected to the system when a

more decent mapping solution than the current setup is found.
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Algorithm 1 Incremental Mapping with Event e
1: ▷ Classification of events
2: if e is 1) the arrival of a new application then
3: Γmap← transformed task set of the new application;
4: else if e is 2) the removal of an application then
5: delete the tasks belonging to the deleted application;
6: return Accepted;
7: else if e is 3) the installation of a new thing then
8: register the new thing in the server;
9: return Accepted;

10: else if e is 4) the removal of a thing then
11: Γmap← tasks mapped on the deleted thing;
12: end if
13: ▷ Mapping
14: while Γmap ̸= φ do ▷ For all tasks
15: τcur← the first element of Γmap;
16: Θτcur ← set of things that support τcur;
17: sort Θτcur according to equation (4.1) or (4.2) or (4.4);
18: while Θτcur ̸= φ do ▷ For all feasible things
19: θcur← the first element of Θτcur ;
20: if inequality (3.2) holds true then ▷ If schedulable
21: map τcur on θcur; ▷ Mapping
22: Γmap← Γmap−{τcur};
23: break;
24: else ▷ If not schedulable
25: Θτcur ←Θτcur −{θcur};
26: end if
27: end while
28: if Θτcur = φ then ▷ If no feasible things found
29: return Rejected;
30: end if
31: end while
32: apply the new mapping; ▷ All tasks are mapped
33: return Accepted;
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5. Experiments

5.1 Benchmarks

As we assume a dynamically reconfigurable IoT system, that is not matched with

any existent IoT platform to the best of our knowledge; there are no open and public

benchmarks for the proposed technique. Therefore, we built an in-house simulation en-

vironment in which multiple randomly generated dynamic IoT workloads are requested

to run on multiple PEs (things).

A simulation environment can be characterized by some parameters that can be set

by the user as summarized in Table 5.1. N is the number of PEs, and we also assume

that there are N task types existing in the system. NT is the number of task types that a

PE can serve, while NA is the number tasks in an IoT application. While generating the

benchmarks, NT and NA are randomly chosen following a uniform distribution within

the range of [1,5] and [2,10], respectively. The topologies of the task graphs are also

randomly generated and the period and the execution time values are also randomly de-

termined following a uniform distribution as detailed in Table 5.1. If a task can be run on

multiple PEs, it is enforced that the task execution time on a more powerful PE is smaller

than that on a weaker PE. Two configurations, S1 and S2, are used with different sizes,

but with the same settings for the other parameters: N = 20 for S1 and N = 50 for S2.

The time values are scaled reflecting the typical characteristics of an IoT system

where the period of an application is longer than the worst case latency of the associated

task graph. The task types that a PE can serve are also randomly selected among the

available task types.

For energy consumption, we impose two rules; 1) among multiple PEs that can serve

a task, the PE that runs the task faster consumes more energy and 2) in a PE a task with

longer execution time consumes more energy. The following simple formula is used to
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Table 5.1: System Configuration Parameters

Symbol Meaning Value
N Number of PEs = Number of task types 20 or 50

NT Number of task types that a PE can serve uni(1,5)
NA Number of tasks that an application has uni(2,10)
Tτ Period of an application uni(200,1000)

Cτ,θ Task execution time of task τ on thing θ uni(1,10)
Pθ Relative computing capability of thing θ uni(1,10)

decide the energy consumption of a task τ on thing θ: Eτ,θ = k1 ·Pθ + k2 ·Cτ,θ + k3 where

k1,k2, and k3 are configurable coefficients and Pθ is the relative computing capability of

thing θ. In summary, the higher Pθ and Cτ,θ are, the higher Eτ,θ is.

5.2 Experiment 1 (Incremental Mapping)

In the first set of experiments, we compare the three variations of incremental map-

ping (Sum Slack, Relative Slack, and Period Ratio) with two comparison targets (First Fit

and Utilization Bound). In Utilization Bound, Algorithm 1 is not performed but replaced

with a random mapping with a simple sufficient condition check of schedulability, DM

(deadline monotonic) version of equation (4.3). We generate 3000 random IoT applica-

tions (task graphs) and inject them to the system one by one. This has been repeated

ten times and how many tasks are accepted on average by each mapping policy is ob-

served ad illustrated in Fig. 5.1. Note that the acceptance decision is actually made for

each application (graph). However, for more sophisticated analysis, we plot the number

of accepted tasks.

Acceptance Ratio: As shown in Fig. 5.1, Utilization Bound shows the worst accep-

tance ratio among all policies, which shows the effectiveness of the TDA-based schedul-

ing analysis. Relative Slack shows the best acceptance as it tends to distribute the tasks

evenly over the things, making more room for future tasks. Period Ratio also exhibits

decent acceptance ratios, and we believe that the conservativeness of TDA is consider-
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Figure 5.1: The ratio of accepted tasks over requested tasks in each mapping policy

ably alleviated by the policy. First Fit shows a comparable result when the number of

requested tasks are not so many, but as the requested number increases, the acceptance

ratio gap between the relative slack policy and the random policy becomes outstanding;

about 10% difference can be observed when the number of requested tasks is 4000 in this

figure.

Responsiveness: To verify the effectiveness of the incremental mapping as a run-

time solution, we measure the elapsed time for the mapping decision and summarize in

Table 5.2. The incremental mapping is performed in the following environment: Intel i7

CPU 3.40GHz machine with 16GB RAM, running Ubuntu 14.04. On average, all the

proposed approaches take slightly more than 40 ms. The maximum mapping overhead is

less than 105 ms in case of the relative slack policy, which we believe is fast enough to

be used as a runtime decision maker.
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Table 5.2: Elapsed Time For Incremental Mapping [milliseconds]

Sum Slack First Fit Period Ratio Relative Slack
Average 42.05 43.38 44.22 41.71

Max. 136.46 146.422 150.29 104.83

5.3 Experiment 2 (Global Re-mapping)

In the second experiment, we examine the effectiveness of the global re-mapping

algorithm. For relative comparisons, we set Relative Slack as a baseline, which shows the

best performance in the previous experiment. Like the previous experiment, we randomly

generate 1000 IoT applications and inject them sequentially to the system and observe

the total energy consumption in the system. Note that the requested task graph is orig-

inally mapped by the incremental mapping at the time of acceptance. Then, the global

re-mapping is performed afterward. That is, in this experiment, the baseline Incremental

Mapping denotes the proposed technique without the global re-mapping, while Global

Re-mapping is the case that both two are applied together.

Energy Consumption: Fig. 5.2 compares the energy usage of the incremental method

and the global re-mapping method with respect to task acceptance. The horizontal axis

represents the number of tasks currently accepted by the entire system, and the vertical

axis represents the sum of all the energy consumed by the PEs. In Fig. 5.2, it can be

easily noticed that the energy consumption value is occasionally reduced because of the

re-mapping. Since the global re-mapping is not performed every time an application is

inserted, the degree of the optimality tends to decrease as the incremental mapping is

continuously invoked by the reconfiguration events. Note that, in the Incremental Map-

ping, the effect of suboptimal mapping are accumulated; The difference between the two

continues to be widened as the number of accepted tasks grows.

Optimization Time: The energy saving by the global re-mapping comes at the cost

of increased optimization time. In order to verify the feasibility of the technique, we mea-

sure the optimization time taken by the global re-mapping. Fig. 5.3 compares the elapsed
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Figure 5.2: Comparison of total energy consumption between the incremental mapping
and the global re-mapping

times of the incremental mapping and global re-mapping, where the horizontal and verti-

cal axes represent the number of tasks that are accepted and the measured elapsed time in

a logarithmic scale, respectively. The measurement is performed on the same computing

environment as the first experiment. While both show the exponentially growing time

cost, the time taken for the global re-mapping is not tolerable in the online mapping. This

justifies why the proposed technique adopts the hybrid approach in mapping. In prac-

tice, we set the time limit for global re-mapping as the system size grows, sacrificing the

optimality. Still, we could achieve significant energy saving from global re-mapping.
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Figure 5.3: Elapsed time for the incremental mapping and global re-mapping

5.4 Experiment 3 (Sensitivity Analysis)

It is expected that the performance of the proposed mapping technique depends on

the system configuration parameters. Among them, the period of application is likely the

most important parameter since it affects the deadline of the constituent tasks and so

the schedulability of the application. How the performance of the proposed incremental

mapping is affected by this parameter, another set of experiments is devised. The upper

bound of the application period, Tτ, is changed to 500 and 2000. The acceptance ratio

variations are displayed in Fig. 5.4. We performed the experiment ten times and took the

average. As shown in the figure, the performance gain from the proposed incremental

mapping becomes more evident as the period increases. When the period is small, the

number of tasks that a PE supports decreases since the deadline becomes tighter so that

the relative slack policy gains little. So there is no difference in performance between the

relative slack policy and the first fit policy. As the period becomes longer, more intelligent

mapping decision gives more benefit. It is also noteworthy that the simple first fit policy
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may outperform when the number of applications is small. When the system is relatively

idle, randomly generated dependencies of the task graphs affect the system in such an

unexpected way.
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6. Related Work

With increasing interest in the heterogeneous remote devices such as IoT and clouds,

many researches have been devoted to the scheduling in the heterogeneous computing

environments.

Lakra and Yadav [16] proposed a multi-objective scheduling algorithm for cloud

computing, where two QoSes are co-optimized by means of non-dominated sorting. In

their work, however, dependencies between the tasks were not considered at all, mak-

ing the technique hardly applicable to the IoT use-cases. Furthermore, no real-time con-

straints were considered in the scheduling.

Srichandan et al. [17] proposed a multi-objective scheduling optimization for cloud

computing based on genetic and bacterial foraging algorithms. While their problem is

similar to the one proposed in this work in that they considered task dependencies and

scheduling makespan and energy consumption are co-optimized, their solution is not

applicable to the runtime mapping due to the prohibitively long optimization time.

Wang et al. [18] proposed a list scheduling algorithm for heterogeneous computing

systems, where the scheduling workloads are specified in DAG. However, the merit of

the technique is limited as they simply relied on a simple performance metric, such as

average makespan ratio.

Recognizing an IoT system as a heterogeneous, complex, and dynamic system,

Mabrouk et al. [19] addressed the problem of scheduling an incoming application onto

devices. Similarly to ours, an application can be composed of multiple services and could

be launched in the system at runtime. They proposed a heuristic that composes multiple

services on-the-fly, co-optimizing the QoS and the energy consumption.

Unlike our model, however, they did not consider the service (task) dependencies

and the real-time constraints. Narman et al. [20] proposed a scheduling method tailored
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to the cloud-based IoT system, in which the requests are classified and mapped onto

server groups. Like our approach, they proposed to periodically update the request-server

mapping. However, they were not aware of the dependencies between services.

Li et al. [21] attempted to solve the scheduling problem in service-oriented IoT

systems. They modeled the IoT system as a composition of application, network, and

sensing layers, then, for each layer, an associated QoS is determined and optimized in the

scheduling optimization. While the rapid service deployment was enabled for the sug-

gested IoT environment, the dependencies between the IoT services were not considered.

Pham et al. [22] proposed a scheduling algorithm of DAG-specified applications

for heterogeneous fog/cloud computing systems, considering makespan and cloud cost.

During the scheduling, task prioritizing, node selection, and task reassignment are per-

formed. While the task reassignment deals with the user-specified deadline constraint,

however, no guarantee is provided in terms of schedulability.

To summarize, the mapping/scheduling optimization has been actively studied re-

cently in the domain of heterogeneous distributed computing such as cloud and IoT.

However, to the best of our knowledge, none of the existing solutions guarantees the

schedulability of the IoT or cloud services within the given stringent timing-constraints.

In this regard, the proposed technique is distinguishable from the related work. We

considered the dependencies between the IoT services (tasks) and performed the schedu-

lability analysis using the task graph transformation and TDA. Based on this, a hybrid

runtime mapping optimization technique has also been proposed.
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7. Conclusion

In this thesis, we presented a new mapping/scheduling problem of IoT applications

that can be added or removed anytime to/from the system on distributed heterogeneous

things. We proposed a novel adaptive mapping/scheduling technique that consists of In-

cremental Mapping mapping and Global Re-mapping. The incremental mapping enables

the fast responsiveness to dynamically changing configurations and still maintains the

high application acceptance ratio. When the system is in a steady state, the GA-based

global re-mapping is periodically performed to enhanced the optimality of the system,

which is the energy consumption in this thesis. The effectiveness of the proposed method

was verified by extensive simulations with randomly generated scenarios in terms of ac-

ceptance ratio, energy consumption, and responsiveness.
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요약

IoT시스템은매우다른성능과기능을가진이기종스마트장치로구성된분산임베디

드시스템이다. IoT시스템에서일반적으로리소스요구사항과실시간요구사항이서

로다른많은 IoT애플리케이션들이동시에실행된다.또한,전력소비및장치수명과

같은비기능적특성이중요하게고려된다. IoT애플리케이션은언제든지추가되거나

제거될수있으며런타임에디바이스상태가변경될수있다.이같이시스템은동적

특성을갖기때문에 IoT애플리케이션을스마트디바이스에매핑/스케줄링하는것은

매우까다로운문제이다.이문제를해결하기위해점진적매핑및글로벌재매핑의두

가지스케줄링기법으로구성된새로운적응적스케줄링기법을제안한다.동적환경

변화에 대한 빠른 응답을 제공하기 위해 점진적 매핑 방법을 제안하며, 정적 상태에

서 비 기능적 특성에 기초하여 주어진 목적 함수를 최적화하기 위해 주기적으로 IoT

애플리케이션의 전체 태스크를 모두 다시 스케줄링 하는 유전 알고리즘 기반 글로벌

재 매핑 방법은 제안한다. 제안 된 스케줄링 방법의 두 가지 성능 지표로 애플리케이

션 수용 비율 및 에너지 소비량을 사용하였으며, 성능 및 실용성은 무작위로 생성 된

시나리오를사용한시뮬레이션환경을통해검증한다.

주요어 : 사물인터넷 시스템, 태스크 그래프 스케줄링, 동적 스케줄링, 사물인터넷

애플리케이션스케줄링

학번 : 2017-29611
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