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Abstract 

 

Predicting Sequence Specificities of 
Transcription Factors with  

Self-Attention Sequence Modeling 

 

 

Yongjoo Ahn 

Department of Computer Science & Engineering 

College of Engineering 

The Graduate School 

Seoul National University 

 

Transcription factor plays crucial role in gene expression via regulating 

transcription process. To predict the sequence specificity of each transcription 

factor I propose a deep learning model, the AttendBind which employs k-mer 

embedding and self-attention sequence modeling approaches. The 

experimental results on real biophysical data show that the proposed method 

outperforms other deep learning methods, indicating that the self-attention 
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sequence modeling is highly effective on this task. In addition to the given 

prediction task, the visualization of self-attention maps and top-3 frequency 

based analyses can provide useful information for interpreting the deep 

learning model and discovering scientific knowledge. 
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Chapter 1 

Introduction 

 

To express the information in genes of cells, the role of various DNA-binding 

proteins is crucial. This group of protein takes charge of important cell 

functions such as DNA and RNA synthesis, DNA repair and cleaving, 

chromosome packaging, and modulating gene expressions. As its name 

implies, a DNA-binding protein has binding sites along the DNA and it has 

a specific or general affinity for the sites. Proteins like polymerases which 

synthesize DNA or RNA, or histones which are involved in DNA 

condensation are classified as non-specific binding proteins because they 

behave DNA sequence-agnostic manner. On the other hand, proteins called 

transcription factors have sequence specificities which make them bind to 

specific DNA sequences [1]. A transcription factor (TF) is a protein that 

modulates gene expressions via controlling the rate of transcription of genetic 

information from DNA to RNA. It makes genes to be expressed at the right 

time and for the right amount thus orchestrate many essential cell activities 

likes hormone response, cell division, cell growth or cell death. 

To characterize the sequence specificity of a transcription factor, the binding 

affinity between the protein and DNA sequences should be determined. 

Because the TF-DNA binding affinity is a key to quantitative understanding 
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of sequence specificity, various biophysical experiments have been designed 

to measure it. Especially the recent developments of high-throughput 

biotechnology have guided significant experimental methods like protein 

binding microarray (PBM) or chromatin immunoprecipitation sequencing 

(ChIP-seq) to be proposed to tackle this problem [2, 3]. The data from these 

high-throughput methods is too massive and noisy to be interpreted by 

biologists, thus require data-driven computational approaches such as word 

count based methods or probabilistic methods like hidden markov model 

(HMM) [4, 5]. 

Deep learning has achieved the state-of-the-art performance in diverse 

machine learning domains, especially in image and natural language 

processing. The DeepBind [6] demonstrated the significant success of deep 

learning method when it comes to bioinformatics domain. It used 

convolutional neural network (CNN) to predict the sequence specificities of 

DNA-binding proteins. Since the success of CNN based method, the 

DeeperBind [7] proposed a hybrid neural network which stacked recurrent 

neural network (RNN) upon CNN architecture and showed the capability of 

RNN.  

RNN coupled with attention mechanism have been successful in sequence 

modeling domain [8]. Recently, the Transformer [9], which leverages self-

attention mechanism, was proposed to address the inherent sequential 

constraint of RNN and it has been achieving state-of-the-art performance 

in various sequence modeling tasks. 
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In this work, I propose the AttendBind, a deep learning model introducing 

self-attention with k-mer embedding to task of predicting the binding affinity 

of a transcription factor and DNA sequences. Firstly, the AttendBind interpret 

given DNA sequences as consecutive k-mers and transforms into sequence of 

real-value vectors via an embedding layer. Then it equips attention 

information within the sequence by self-attention encoder. Finally, the vector 

sequence is concatenated into a single vector and used in downstream neural 

network to predict the corresponding TF-DNA binding affinity. 

Experimental results on real data show that the performance of the proposed 

approach in terms of correlation coefficient and area under the curve (AUC) 

metrics is better than baselines. Besides, the visualization of computed 

attention maps from self-attention encoder gives great interpretation for the 

deep learning model, which well agrees with known biological facts. 

The remaining part of this paper is organized as follows. Chapter 2 describes 

the PBM data used in this work, attention mechanism and the Transformer 

model, and the details of the proposed AttendBind. Chapter 3 shows 

experiment results and the last chapter discuss the capability of proposed 

model. 
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Chapter 2 

Methods 

 

This chapter starts with the description of used data in this work. The second 

section gives the clarification of the attention mechanism in neural networks 

and the following section describes the Transformer network. Finally, the 

proposed AttendBind is illustrated in the last section. 

 

2.1 Data 

 

Protein binding microarray (PBM) is a DNA microarray-based technology 

that leverages high-throughput characterization of the in vitro DNA binding 

site specificities of transcription factors [10]. The PBM technology has enabled 

the profiling of the sequence specificity of a given TF by measuring its binding 

affinity for DNA probes. The in vitro results is in agreement with in vivo 

genome-wide location analysis (ChIP-chip) [11], thus its confidence has been 

well recognized. 

PBM arrays are constructed by taking a normal microarray and synthesizing 

a complementary strand for each probe using DNA polymerase. Then 
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antibody-labeled transcription factor is allowed to bind to probes on the 

microarray. Each typical PBM data consists of tens of thousands DNA probe 

sequences and corresponding fluorescence signal intensity scores representing 

the relative binding affinity of the given TF to probes. Figure 1 shows an 

example of a PBM data.  

Given PBM data, regression problem can be established straightforwardly and 

a binary classification problem can be set where the positive data is labeled 

when the signal intensity is larger than the mean plus 4 times standard 

deviation. 

 

Figure 1: An example of PBM data. 
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2.2 Attention Mechanism 

 

Sequence Encoder 

Most successful deep learning models dealing with sequence have an encoder 

that convert input sequence into meaningful representation [12]. With this 

encoded representation of given sequence, downstream neural network 

performs task specific computation. If the given task is a sequence 

transduction classification problem, e.g. machine translation, the decoder 

computes decoded sequence, and if the task is sequence classification problem, 

the following network should compute the probability for each class label. In 

regression task which includes the sequence specificity prediction problem, 

the downstream network should compute a single real value that should be 

same as the given ground truth. 

 

Attention Mechanism 

Attention mechanism was introduced successfully in sequence transduction 

task. Sequence-to-sequence (seq2seq) architecture which consists of a 

recurrent neural network (RNN) encoder and an RNN decoder has been the 

standard approach to solve neural machine translation problem [12]. Recently 

the attention mechanism has been integrated with the seq2seq model and 

considered as an essential component [6]. 
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Given a set of vector values, and a vector query, attention mechanism is a 

technique to compute a weighted sum of the values dependent of on the query. 

In case of a seq2seq model, the RNN encoder takes an input sequence of 

symbol representation X = (𝑥1, 𝑥2, … , 𝑥𝑁)  and computes encoder hidden 

states, or values, ℎ1, ℎ2, … , ℎ𝑁 where ℎ𝑖 ∈ ℝ𝑑1. The decoder hidden state, or 

a query, 𝑠 ∈ ℝ𝑑2 and the encoder hidden states together make the attention 

scores 𝑒 ∈ ℝ𝑁. There are several ways to compute 𝑒 = (𝑒1, 𝑒2, … , 𝑒𝑁) where 

𝑒𝑖 ∈ ℝ: 

 Basic dot-product attention: 

𝑒𝑖 = 𝑠𝑇ℎ𝑖 , 

where it assumes 𝑑1 = 𝑑2. 

 Multiplicative attention: 

𝑒𝑖 = 𝑠𝑇𝑊ℎ𝑖 

where 𝑊 ∈ ℝ𝑑2×𝑑1 is a weight parameter. 

 Additive attention: 

𝑒𝑖 = 𝑣𝑇tanh (𝑊1ℎ𝑖 + 𝑊2𝑠) 

where 𝑣 ∈ ℝ𝑑3  is a weight vector, 𝑊1 ∈ ℝ𝑑3×𝑑1  and 𝑊2 ∈ ℝ𝑑3×𝑑2  are 

weight matrices. 

Then the attention distribution 𝛼 ∈ ℝN can be computed by softmax function, 

𝛼 = softmax(𝑒). 

Given the attention distribution, a weighted sum of the encoder hidden states, 

𝑎 ∈ ℝ𝑑1 is computed as follows: 
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𝑎 = ∑ 𝛼𝑖ℎ𝑖

𝑁

𝑖=1

. 

Finally, the decoder hidden states along with the attention output 𝑎 is fed to 

downstream neural network which generates an symbol output 𝑦̂. 

The attention mechanism significantly improves the neural machine 

translation performance because it allows queries, the decoder states, to focus 

directly on source, the encoder states, and mitigates the bottleneck problem 

of the final encoder state in source sequence representation. And it gives some 

interpretability for seq2seq model by inspecting the attention distribution. 

 

2.3 Transformer 

 

Notwithstanding the great success of RNN based sequence modeling such as 

long short-term memory (LSTM) [13] or gated recurrent unit (GRU) 

network [14], its inherent sequential property prevents computational 

parallelization. Also, the path length which is required for learning long-range 

dependencies among a sequence grows with the length of given sequence. 

To solve these problems of RNN, the Transformer [9] which is a seq2seq 

model that relies solely on attention mechanism was proposed and achieved 

state-of-the-art performance on many natural language processing (NLP) 

tasks. Based on the knowledge that attention gives model access to any hidden 
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state, the Transformer use self-attention to model the given input sequence of 

symbol representation by relating different positions of a single sequence [9]. 

 

Scaled Dot-product Attention 

The Transformer use scaled dot-product attention to compute the attention 

scores. Given a query and a set of key-value pairs, it maps them to an output, 

where the query, keys, values and output are all vectors. The output is 

weighted sum of the values, where the weight of each value is computed by 

the dot product of query and corresponding key. 

Given a query 𝑞 ∈ ℝ𝑑, a key matrix 𝐾 packing keys 𝑘𝑖 ∈ ℝ𝑑 and a value 

matrix 𝑉 packing values 𝑣𝑗 ∈ ℝ𝑑 where 𝑖, 𝑗 ∈ {1, 2, … , 𝑁} and 𝑁 is the size 

of key-value pairs, the output is defined with attention mapping as follows: 

Attention(𝑞, 𝐾, 𝑉) =  ∑
𝑒𝑞∙𝑘𝑖

∑ 𝑒𝑞∙𝑘𝑗
𝑗𝑖

𝑣𝑖. 

When we have multiple queries, it can be stack into a matrix 𝑄, then the 

outputs are computed as: 

Attention(𝑄, 𝐾, 𝑉) =  softmax(𝑄𝐾𝑇)𝑉. 

Figure 2 illustrates this dot-product attention calculation in the Transformer. 

Each query vector 𝑞𝑖 packed in matrix 𝑄 makes attention weights with key 

vectors 𝑘𝑖  via matrix multiplication with 𝐾𝑇 . The computed weights are 

normalized with softmax function and makes final output vectors by matrix 

multiplication with value vectors packed in matrix 𝑉. 
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Figure 2: An illustration of dot-product attention. The dot-product of vectors can 

be reformulated by matrix multiplication of query matrix 𝑄  and key matrix 𝐾𝑇 . 

Then the computed weights and value vectors 𝑉 makes the result vectors. In this 

example, the query, key and value vectors are all 4-dimensional. 

 

For large values of 𝑑, the dimensionality of query and key, the variance of 

𝑞 ∙ 𝑘 increases and the softmax gets peaked causing extremely small gradients. 

To solve the problem, the final scaled dot-product attention is scaling the 

softmax by 𝑑: 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑
)𝑉. 
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Multi-head Attention 

In a machine translation task, the input words vectors could be the queries, 

keys and values of self-attention computation. In other words, the word 

vectors themselves selectively attention on each other. For a single self-

attention, there is only one way for words to interact with one-another and 

it lacks sequence modeling expressivity. To solve this problem, the multi-head 

attention was proposed which maps 𝑄 , 𝐾  and 𝑉  into several lower 

dimensional spaces then apply attention and concatenates outputs. 

 

2.4 AttendBind 

 

The AttendBind follows the approach of the Transformer model. However, 

the aforementioned Transformer model is designed for sequence transduction 

problem, so I adopted the self-attention encoder for generating the 

representation of sequences and constructed following feed forward neural 

network for given prediction task. Briefly, the encoder maps a length-𝑁 input 

sequence of symbol representations S = (𝑠1, 𝑠2, … , 𝑠𝑁)  to a sequence of 

continuous representation Z = (𝑧1, 𝑧2, … , 𝑧𝑁) . Then the downstream neural 

network views this vector sequence as a single concatenated vector 𝑧 and 

generates a real value 𝑦̂  which is the predicted value of binding affinity 

between given sequence S  and a transcription factor. Figure 2 depicts the 

overall model architecture of the AttendBind. 
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Sequence Representation 

Existing deep learning methods for predicting sequence specificities of 

transcription factors use one-hot encoding for representing input DNA 

sequences. DeepBind transforms DNA sequences into image-like 2-D 

representation via one-hot encoding and leverages the CNN’s capability for 

processing those form of data. DeeperBind adopts the same sequence 

representation manner as DeepBind, and augmentatively stacks RNNs over 

the CNN structure. 
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Figure 3: The overall model architecture of the AttendBind. Input sequence of k-mers 

(ATC, TCG, ...) is embedded into (𝑥1, 𝑥2, … ) then encoded by self-attention encoder. 

The final feed forward network concatenates the encoded vectors and predicts a real 

value.  
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In the AttendBind, I use k-mer embedding based representation for DNA 

sequences. Given a DNA sequence S of length L: 

S = (𝑠1, 𝑠2, … , 𝑠𝐿), 

where 𝑠𝑖 ∈ {A, C, G, T} , and A, C, G, and T  are 4 bases of DNA, it can be 

interpreted as a sequence of k-mers KS  of length 𝐿𝑘 = 𝐿 − 𝑘 + 1  with 1 

width stride: 

KS = (𝑘1, 𝑘2, … , 𝑘𝐿𝑘
), 

where 𝑘𝑖 ∈ {A, C, G, T}𝑘. 

Then the embedding layer maps 𝑘𝑖 into 𝑑𝑚𝑜𝑑𝑒𝑙-dimensional vector for 𝑖 ∈

{1, 2, … , 𝐿𝑘} . Finally, the k-mer embedded sequence representation X =

(𝑥1, 𝑥2, … , 𝑥𝑁)  is obtained and fed to the sequence encoder, where 𝑥𝑖 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙 is embedded vector of 𝑘𝑖 and 𝑁 = 𝐿𝑘. 

 

Self-Attention Encoder 

The input embedded vectors could be the queries, keys and values in self-

attention making themselves be attended to each other. Given k-mer 

embedded vectors 𝑋, it can be stacked into a matrix form 𝑋 ∈ ℝ𝑑𝑁×𝑑𝑚𝑜𝑑𝑒𝑙, 

and 𝑄 = 𝐾 = 𝑉 = 𝑋  where 𝑄 , 𝐾 , and 𝑉  are queries, keys and values in 

attention mapping. 

The self-attention encoder performs the multi-headed scaled dot-product 
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attention as proposed in the Transformer. The multi-head attention splits the 

𝑑𝑚𝑜𝑑𝑒𝑙 -dimensional embedded vector into ℎ  𝑑ℎ -dimensional vectors by 

multiplying weight matrices: 

𝑄𝑖 = 𝑄𝑊𝑖
𝑄

, 𝐾𝑖 = 𝐾𝑊𝑖
𝐾 , 𝑉𝑖 = 𝑉𝑊𝑖

𝑉 ∈ ℝ𝑑𝑁×𝑑ℎ  for 𝑖 = 1, … , ℎ, 

where 𝑑ℎ =  
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
, 𝑄, 𝐾, and 𝑉 are queries, keys, and values respectively, 

and 𝑊𝑖
𝑄, 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑ℎ  are parameter weight matrices for splitting 

dimensionality. Then ℎ𝑒𝑎𝑑𝑖 computed by applying scaled dot-product: 

ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = softmax (
𝑄𝑖𝐾𝑖

𝑇

√𝑑ℎ

) 𝑉𝑖. 

The output Z of self-attention layer is, 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂, 

where Concat is vector concatenating function and 𝑊𝑂 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 is a 

parameter weight matrix for recovering the full dimensionality. 

Figure 4 illustrates the calculation process of multi-head attention in the self-

attention encoder. Input vectors 𝑋 generates queries 𝑄𝑖, keys 𝐾𝑖 and values 

𝑉𝑖  for each ℎ𝑒𝑎𝑑𝑖  by matrix multiplication with 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 . All heads 

computed by scaled dot-product attention are concatenated and make final 

output 𝑍 by a linear layer whose weight parameter is 𝑊𝑂. 
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Figure 4: An illustration of multi-head attention in self-attention encoder. 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 

which are inputs for scaled dot-product attention are made by matrix multiplication 

of vector sequence 𝑋 and parameter matrices 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 . Computed heads and 

𝑊𝑂 then generate the output vectors. 

 

With 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑁)  which is the output of self-attention layer, the 

encoder applies residual connection [15] and layer normalization [16] as 

depicted in Figure 3, then feed it to a 2-layer fully connected feed-forward 

network with ReLU activation function, which is applied each position 

separately and identically. 

 

TF-DNA Binding Affinity Prediction 

Ẑ = (𝑧̂1, 𝑧̂2, … , 𝑧̂𝑁), which is the final output of the encoder, represents given 

DNA sequence S . For downstream network, all vectors of Ẑ  are 

concatenated into a single vector Ẑs = [𝑧̂1; 𝑧̂2; … ; 𝑧̂𝑁]. To generate a single real 
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value 𝑦̂, which is the predicted binding affinity, I use 2-layer fully connected 

network which takes Ẑs as an input. 

 

Model Training 

In this work I employ 𝑘 = 5, which is the length of k-mer, ℎ = 4, 𝑑𝑚𝑜𝑑𝑒𝑙 =

256, and 1024 for the internal dimensionality of the feed-forward network 

in self-attention encoder. 

The loss is mean squared error between the ground truth binding affinity 𝑦 

and predicted value 𝑦̂. I used the Adam optimizer [17] for training the model 

parameters and apply dropout [18] to the output of residual connection and 

self-attention layer for regularization. 
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Chapter 3 

Results 

 

To evaluate the proposed AttendBind method, I reproduced DeepBind and 

DeeperBind as baselines and trained three models with PBM experiment data 

from the UniPROBE database [19]. Each PBM data consists of about 40,000 

60-base DNA probe and corresponding intensity score representing the 

relative binding affinity of a given TF to the probes. I chose five TFs (Cbf1, 

Ceh-22, Oct-1, Rap1, and Zif268) from yeast, worm, mouse and human for 

evaluation the performance of models and used two PBM array designs for 

each TF, one for train and validation and the other for test provided by [2]. 

 

3.1 Regression Results 

 

To evaluate about 40,000 predicted values for each PBM, I chose spearman’s 

rank correlation coefficient and pearson correlation coefficient between 

ground truth and predicted values as evaluation metrics. 

Table 1 shows the spearman’s rank correlation coefficients of the AttendBind 
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outperformed other models on all five TFs’ test data with significant margins, 

and Table 2 shows same results for pearson correlation coefficients. In both 

results the DeepBind surpassed the DeeperBind in almost all TFs, but these 

are quite different from the original DeeperBind paper. In the paper, authors 

reported the performance of their model as spearman’s rank correlation 

coefficients on two TFs, 0.43 on Ceh-22 PBM data and 0.60 on Oct-1. These 

numbers are compatible with my implementation of DeeperBind, 0.393 on 

Ceh-22 and 0.600 on Oct-1. But their implementation of the DeepBind 

showed significantly poor than mine. On Ceh-22 PBM data, their number is 

0.40 and mine is 0.411, and on Oct-1 PBM data, their number is 0.49 but 

mine is 0.625. Because they used only two TFs and their implementation of 

the DeepBind is doubtable, they seemed to fail on evaluating the performance 

of DeepBind correctly. 
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Table 1: Spearman’s correlation coefficients on 5 TFs. The AttendBind achieves the 

best result for whole dataset. 

 

 

Table 2: Pearson correlation coefficients on 5 TFs. For whole dataset, the AttendBind 

outperformed other two models with significant margins. 
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3.2 Binary Classification Results 

 

Additionally, the prediction task can be formulated as binary classification 

where positive probes are defined as those with actual intensities larger than 

4 times standard deviation above the mean of probe intensities in a given 

experiment array [20]. For each PBM data, I conducted receiver operating 

characteristic (ROC) curve analysis. Table 3 shows area under the ROC curve 

(AUC) for each TF indicating the AttendBind outperformed other two 

baselines, and the ROC curves on five TFs, are depicted in Figure 5.  

 

Table 3: AUC analysis on 5 TFs. The AttendBind achieves the best result for all TFs. 
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Figure 5 (a)-(e): Receiver operating characteristic (ROC) curve analysis on 5 TFs. 

The AttendBind outperformed baselines.  
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3.3 Attention Visualization and Motif Analysis 

 

For each ℎ𝑒𝑎𝑑𝑖 = softmax (
𝑄𝑖𝐾𝑖

𝑇

√𝑑ℎ
) 𝑉𝑖 in self-attention layer, an attention map 

𝐴𝑖  is given as, 

𝐴𝑖 = softmax (
𝑄𝑖𝐾𝑖

𝑇

√𝑑ℎ

) ∈ ℝ𝑁×𝑁 , 

where the row vector is summed up to 1, due to the softmax function. In case 

of column vectors, it can be interpreted as the significance of embedded 

vectors 𝑥1, 𝑥2, … , 𝑥𝑁  within the head. If j th column vector has large value 

components, 𝑥𝑗  thus has large attention weights, and the output ℎ𝑒𝑎𝑑𝑖 

reflects 𝑥𝑗 more than others. Considering this intuition, it could be possible 

to determine which k-mer is more important than others by visualizing the 

attention maps. 

Figure 4(c) shows all ℎ = 4  attention maps, in transposed form, for the 

sequence which has the largest predicted affinity in Oct-1 PBM data. Figure 

4(a) depicts a single map computed by adding all attention maps and figure 

4(b) is known motif (conserved sequence pattern among TF binding sites) of 

Oct-1 obtained from the UniPROBE database. In figure 4(a), it can be seen 

that k-mers in the red line box has large attention weights, and nearly equal 

with the known motif.  
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Figure 6 (c): 4 attention maps (in transposed form) for the sequence 

“TTAGTTATGCATAATTGGCCTTGCGGTCACAGGC” which has the largest 

predicted affinity value in Oct-1 PBM data and the known motif of Oct-1. (a): A 

single attention map computed by adding 4 head attention maps. The subsequence 

marked by red line box has large attention weights. (b): Known motif of Oct-1 from 

the UniPROBE database. The two logos illustrate the DNA binding site motif of Oct-

1 as graphical representations of the sequence conservation of nucleotides with its 

information content at each position. The bottom is reverse complement of the upper 

one. 
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Agreement with Known Motif 

 

For quantitative analysis, I chose all 418 positive sequences in Oct-1 PBM 

test data and find some agreement with biologically known motif from the 

information of the attention maps. In this analysis I define the Top-3 

frequency of k-mer as follows: for each possible k-mer, where k is 5, the 

top-3 frequency of a k-mer is initialized as 0 and incremented by 1 when the 

attention weight of the k-mer has value that is in largest top 3 within a 

sequence. 

Figure 7 shows results of the align agreement of k-mers with known motif of 

Oct-1. 6 k-mers in Figure 7(a), which has largest top-3 frequencies are 

aligned in (c). Except the k-mer “GGGGG”, all other k-mers are well agreed 

with known motif in (b). The alignment result indicates that the information 

from attention maps in self-attention layer is well agreed with known fact, 

and could provide some useful guideline for scientific discoveries. 
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Figure 7: Top-3 frequencies of k-mers and the result of alignment with known motif 

of Oct-1. (a) shows 6 k-mers which has the largest top-3 frequencies. (b) illustrates 

the motif. (c) is result of sequence alignments of k-mers in (a) with the known motif. 

The “rc” means reverse complementary convert and the k-mers are well aligned with 

the known motif (the bottom of (b)) except only “GGGGG”. 
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Motif Analyses on other TFs 

 

To evaluate validity of the motif analysis that I conducted on Oct-1 PBM 

data as stated earlier, additional analyses were performed in other two TFs, 

Cbf1 and Zif268. 

TF Cbf1 has strongly conserved motif as showed in Figure 8(c). To assess the 

capability of attention map and top-3 frequency based motif analysis, I listed 

5 k-mers which was ranked in top five with top-3 frequency criteria in Figure 

8(b). For 177 positive probe sequences in Cbf1 PBM test data, k-mers 

“CACGT” and “ACGTG” appeared in almost all sequences, and this is 

explained by the highly conserved sequence “CACGTG” in the motif. In 

Figure 8(d), it can be seen that all alignments of k-mers are well agreed with 

the known motif on Cbf1 in (c). 

Figure 9 present similar analysis on 1006 positive probes of Zif268 PBM test 

data. Again, the results of agreement with the motif of Zif268 showed 

capability of the AttendBind to capture scientifically meaningful pattern from 

PBM data. 
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Figure 8: Attention map based motif analysis on Cbf1 PBM data. (a): The sum of 4 

attention maps for the sequence “AACTCCGGTCACGTGACGATGCC-

ACGCAAAACGTC” which has the largest predicted affinity value in the test data. 

The subsequence “CACGTG” marked by red box has large attention weights and is 

well agreed with known motif in (c). (b): Top 5 k-mers and its top-3 frequencies. 

(c): Known motif of Cbf1 from the UniPROBE database. (d): Result of sequence 

alignments of k-mers in (b) to the known motif. The “rc” means reverse 

complementary convert. 
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Figure 9: Attention map based motif analysis on Zif268 PBM data. (a): The sum of 

4 attention maps for the sequence “CTCTAACCCACCCACGCGTAATGG-

TCGCAGACAGA” which has the largest predicted affinity value in the test data. The 

subsequence “CCCACG” marked by red box has large attention weights and is well 

agreed with known motif in (c). (b): Top 5 k-mers and its top-3 frequencies. (c): 

Known motif of Cbf1 from the UniPROBE database. (d): Result of sequence 

alignments of k-mers in (b) to the known motif. The “rc” means reverse 

complementary convert. 
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Chapter 4 

Conclusion 

 

In this paper I proposed a new approach for predicting TF-DNA binding 

affinity using the self-attention techniques. Through extensive comparisons 

with competitive baselines models, it was shown that the new approach for 

DNA sequence modeling outperforms existing methods. The great success of 

the AttendBind is due to the self-attention encoder’s capability of modeling 

embedded sequence. Along with the performance gain, attention maps from 

self-attention layer gave some useful information for interpreting deep 

learning model and discovering scientific knowledge. 
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요약 

 

전사인자는 DNA 프로모터에 결합하여 전사를 개시하는 단백질 집합으로, 

유전자 발현 및 조절 과정에서 매우 중요한 요소를 차지한다. 전사인자는 

DNA 서열 특이성을 가지며 이를 예측하기 위한 모델이 꾸준히 제시되었다. 

본 연구에서는 전사인자-DNA 결합 친화도를 예측하기 위해 k-mer 임베딩 

및 자기참조(self-attention) 기반의 딥러닝 모델을 만들어 단백질 결합 마이

크로어레이(PBM) 데이터를 이용하여 학습 및 성능 평가를 실시하였다. 실

험을 통해서 본 모델이 컨볼루션 신경망(Convolutional Neural Network)과 

순환 신경망(Recurrent Neural Network) 기반의 경쟁 모델을 큰 차이로 앞

서는 결과를 얻었고 이를 통해 k-mer 임베딩과 자기참조 모델링이 DNA 

서열을 다루는 데에 좋은 방법론임을 밝혔다. 그리고 자기참조 모델링을 통

해 얻을 수 있는 어텐션 지도(attention map)를 통해 과학적으로 의미 있는 

지식을 발견할 수 있다는 것도 보일 수 있었다. 
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