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Abstract

Predicting Sequence Specificities of
Transcription Factors with
Self—Attention Sequence Modeling

Yongjoo Ahn

Department of Computer Science & Engineering
College of Engineering

The Graduate School

Seoul National University

Transcription factor plays crucial role in gene expression via regulating
transcription process. To predict the sequence specificity of each transcription
factor I propose a deep learning model, the AttendBind which employs k—mer
embedding and self-attention sequence modeling approaches. The
experimental results on real biophysical data show that the proposed method

outperforms other deep learning methods, indicating that the self—attention



sequence modeling is highly effective on this task. In addition to the given
prediction task, the visualization of self—attention maps and top—3 frequency
based analyses can provide useful information for interpreting the deep

learning model and discovering scientific knowledge.

Keywords: Transcription Factor, Self—Attention, Protein Binding Array,

Sequence Modeling, Deep Learning
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Chapter 1

Introduction

To express the information in genes of cells, the role of various DNA-binding
proteins is crucial. This group of protein takes charge of important cell
functions such as DNA and RNA synthesis, DNA repair and cleaving,
chromosome packaging, and modulating gene expressions. As its name
implies, a DNA-binding protein has binding sites along the DNA and it has
a specific or general affinity for the sites. Proteins like polymerases which
synthesize DNA or RNA, or histones which are involved in DNA
condensation are classified as non—specific binding proteins because they
behave DNA sequence—agnostic manner. On the other hand, proteins called
transcription factors have sequence specificities which make them bind to
specific DNA sequences [1]. A transcription factor (TF) is a protein that
modulates gene expressions via controlling the rate of transcription of genetic
information from DNA to RNA. It makes genes to be expressed at the right
time and for the right amount thus orchestrate many essential cell activities

likes hormone response, cell division, cell growth or cell death.

To characterize the sequence specificity of a transcription factor, the binding
affinity between the protein and DNA sequences should be determined.

Because the TF-DNA binding affinity is a key to quantitative understanding



of sequence specificity, various biophysical experiments have been designed
to measure it. Especially the recent developments of high—throughput
biotechnology have guided significant experimental methods like protein
binding microarray (PBM) or chromatin immunoprecipitation sequencing
(ChIP-seq) to be proposed to tackle this problem [2, 3]. The data from these
high—throughput methods is too massive and noisy to be interpreted by
biologists, thus require data—driven computational approaches such as word
count based methods or probabilistic methods like hidden markov model

(HMM) [4, 5].

Deep learning has achieved the state—of-the—art performance in diverse
machine learning domains, especially in image and natural language
processing. The DeepBind [6] demonstrated the significant success of deep
learning method when it comes to bioinformatics domain. It used
convolutional neural network (CNN) to predict the sequence specificities of
DNA-binding proteins. Since the success of CNN based method, the
DeeperBind [7] proposed a hybrid neural network which stacked recurrent
neural network (RNN) upon CNN architecture and showed the capability of
RNN.

RNN coupled with attention mechanism have been successful in sequence
modeling domain [8]. Recently, the Transformer [9], which leverages self-
attention mechanism, was proposed to address the inherent sequential
constraint of RNN and it has been achieving state—of-the—art performance

in various sequence modeling tasks.



In this work, I propose the AttendBind, a deep learning model introducing
self—attention with k—mer embedding to task of predicting the binding affinity
of a transcription factor and DNA sequences. Firstly, the AttendBind interpret
given DNA sequences as consecutive k—mers and transforms into sequence of
real-value vectors via an embedding layer. Then it equips attention
information within the sequence by self—attention encoder. Finally, the vector
sequence is concatenated into a single vector and used in downstream neural
network to predict the corresponding TF-DNA binding affinity.
Experimental results on real data show that the performance of the proposed
approach in terms of correlation coefficient and area under the curve (AUC)
metrics is better than baselines. Besides, the visualization of computed
attention maps from self—attention encoder gives great interpretation for the

deep learning model, which well agrees with known biological facts.

The remaining part of this paper is organized as follows. Chapter 2 describes
the PBM data used in this work, attention mechanism and the Transformer
model, and the details of the proposed AttendBind. Chapter 3 shows
experiment results and the last chapter discuss the capability of proposed

model.



Chapter 2

Methods

This chapter starts with the description of used data in this work. The second
section gives the clarification of the attention mechanism in neural networks
and the following section describes the Transformer network. Finally, the

proposed AttendBind is illustrated in the last section.
2.1 Data

Protein binding microarray (PBM) is a DNA microarray—based technology
that leverages high—throughput characterization of the /n vitro DNA binding
site specificities of transcription factors [10]. The PBM technology has enabled
the profiling of the sequence specificity of a given TF by measuring its binding
affinity for DNA probes. The in vitro results is in agreement with in vivo
genome—wide location analysis (ChIP—chip) [11], thus its confidence has been

well recognized.

PBM arrays are constructed by taking a normal microarray and synthesizing

a complementary strand for each probe using DNA polymerase. Then



antibody—-labeled transcription factor is allowed to bind to probes on the
microarray. Each typical PBM data consists of tens of thousands DNA probe
sequences and corresponding fluorescence signal intensity scores representing
the relative binding affinity of the given TF to probes. Figure 1 shows an

example of a PBM data.

Given PBM data, regression problem can be established straightforwardly and
a binary classification problem can be set where the positive data is labeled
when the signal intensity is larger than the mean plus 4 times standard

deviation.

Seguence Signal Mean
AAAAAACAACAGGAGGGCATCATGGAGCTGTCCAGCCTGTGTGAAATTGTTATCCGCTCT  298.5674
AAAAAACAGCCGGATCACAATTTTGCCGAGAGCGACCTGTGTGAAATTGTTATCCGCTCT  679.3855
AAAAAACGTCCGGTACACCCCGTTCGGCGGCCCAGCCTGTGTGAAATTGTTATCCGCTCT  1998.715
AAAAAACTCTAGACCTTTAGCCCATCGTTGGCCAACCTGTGTGAAATTGTTATCCGCTCT  447.8639
AAAAAAGAACAACCGGATAACACCCTTACAGCACACCTGTGTGAAATTGTTATCCGCTCT  2846.6899
AAAAAAGCTAAATCTCACTACTATCAACCACGTGCCCTGTGTGAAATTGTTATCCGCTCT  355.98
AAAAAATCGGCGCTCGCACAATAACACTTGGACCACCTGTGTGAAATTGTTATCCGCTCT 862.8706
AAAAAATGGGCGTAAGCGTATTAGGTGGGAACCACCCTGTGTGAAATTGTTATCCGCTCT 307.876
AAAAACATATTTTTAAGCCCCATTGCGATCCAGCTCCTGTGTGAAATTGTTATCCGCTCT 587.8928
AAAAACCCCAGAAAGGTTGACTAGAGTAAATCTCCCCTGTGTGAAATTGTTATCCGCTCT  325.3881
AAAAACCTAAGAATCGTTTCTGAGTCATGAGGTTTCCTGTGTGAAATTGTTATCCGCTCT  456.2666
AAAAACGCGCTGTTTTTCATGCTACACGTCTCAGGCCTGTGTGAAATTGTTATCCGCTCT  1357.5722
AAAAACGTAGTGTGCCGCTGGTAAAGGCTCCGTCCCCTGTGTGAAATTGTTATCCGCTCT  364.5655
AAAAACTAGCTATCTTCGCGTCCACATCCGCCTCACCTGTGTGAAATTGTTATCCGCTCT  443.4153
AAAAACTTTTTACAAGAACTTATGACTTCGACTCGCCTGTGTGAAATTGTTATCCGCTCT  655.08422
370.3642
AAAAAGAACTACCGATGAATGCGCTCTGTTAGTCGCCTGTGTGAAATTGTTATCCGCTCT  6£39.8161
AAAAAGCCACATCGGGCTTTAAGCCTGGAGCTATTCCTGTGTGAAATTGTTATCCGCTCT  226.8623
AAAAAGCGACATTCTGCCCTTAGTGACTCATGAGGCCTGTGTGAAATTGTTATCCGCTCT  616.2941

Figure 1: An example of PBM data.



2.2 Attention Mechanism

Sequence Encoder

Most successful deep learning models dealing with sequence have an encoder
that convert input sequence into meaningful representation [12]. With this
encoded representation of given sequence, downstream neural network
performs task specific computation. If the given task is a sequence
transduction classification problem, e.g. machine translation, the decoder
computes decoded sequence, and if the task is sequence classification problem,
the following network should compute the probability for each class label. In
regression task which includes the sequence specificity prediction problem,
the downstream network should compute a single real value that should be

same as the given ground truth.

Attention Mechanism

Attention mechanism was introduced successfully in sequence transduction
task. Sequence—to—sequence (seq2seq) architecture which consists of a
recurrent neural network (RNN) encoder and an RNN decoder has been the
standard approach to solve neural machine translation problem [12]. Recently
the attention mechanism has been integrated with the seq2seq model and

considered as an essential component [6].



Given a set of vector values, and a vector query, attention mechanism is a
technique to compute a weighted sum of the values dependent of on the query.
In case of a seq2seq model, the RNN encoder takes an input sequence of
symbol representation X = (xq,x3,..,xy) and computes encoder hidden
states, or values, hq,h,,...,hy where h; € R%. The decoder hidden state, or
a query, s € R% and the encoder hidden states together make the attention
scores e € RN, There are several ways to compute e = (ey, ey, ...,ey) where

eiE]RI

*  Basic dot—product attention:
e = SThl' B

where it assumes d; = d,.

e Multiplicative attention:
e = STWhl'

where W € R%*%1 is a weight parameter.

e Additive attention:
e; = v tanh(W, h; + W,s)
where v € R% is a weight vector, W; € R%*%1 and W, € R%*% are

weight matrices.

Then the attention distribution a@ € RN can be computed by softmax function,

a = softmax(e).

Given the attention distribution, a weighted sum of the encoder hidden states,

a € R% is computed as follows:



p
M=

al-hl-.
i=1
Finally, the decoder hidden states along with the attention output a is fed to

downstream neural network which generates an symbol output .

The attention mechanism significantly improves the neural machine
translation performance because it allows queries, the decoder states, to focus
directly on source, the encoder states, and mitigates the bottleneck problem
of the final encoder state in source sequence representation. And it gives some

interpretability for seq2seq model by inspecting the attention distribution.

2.3 Transformer

Notwithstanding the great success of RNN based sequence modeling such as
long short—-term memory (LSTM) [13] or gated recurrent unit (GRU)
network [14], its inherent sequential property prevents computational
parallelization. Also, the path length which is required for learning long—range

dependencies among a sequence grows with the length of given sequence.

To solve these problems of RNN, the Transformer [9] which is a seq2seq
model that relies solely on attention mechanism was proposed and achieved
state—of—the—art performance on many natural language processing (NLP)

tasks. Based on the knowledge that attention gives model access to any hidden



state, the Transformer use self—attention to model the given input sequence of

symbol representation by relating different positions of a single sequence [9].

Scaled Dot—product Attention

The Transformer use scaled dot—product attention to compute the attention
scores. Given a query and a set of key—value pairs, it maps them to an output,
where the query, keys, values and output are all vectors. The output is
weighted sum of the values, where the weight of each value is computed by

the dot product of query and corresponding key.

Given a query q € R%, a key matrix K packing keys k; € R and a value
matrix V packing values v; € RY where i,j € {1,2,..,N} and N is the size

of key—value pairs, the output is defined with attention mapping as follows:

eCI'ki
Attention(q,K,V) = Z—_k_vi.
et

When we have multiple queries, it can be stack into a matrix Q, then the
outputs are computed as:

Attention(Q,K,V) = softmax(QKT)V.

Figure 2 illustrates this dot—product attention calculation in the Transformer.
Each query vector q; packed in matrix Q makes attention weights with key
vectors k; via matrix multiplication with KT. The computed weights are
normalized with softmax function and makes final output vectors by matrix

multiplication with value vectors packed in matrix V.



Q: set of queries KT, K: set of keys weights, “attention map”

q1 ky ky k3 ky ky ky ks ky
92 X = q1
qz
q
: qs
weights with softmax V: set of values output
ky k2 ks ky vy ‘ 0y ‘

qz

q1 X vy = 0y
| v ) I

V4

Figure 2: An illustration of dot—product attention. The dot—product of vectors can
be reformulated by matrix multiplication of query matrix @ and key matrix KT.
Then the computed weights and value vectors V makes the result vectors. In this

example, the query, key and value vectors are all 4—dimensional.

For large values of d, the dimensionality of query and key, the variance of
q - k increases and the softmax gets peaked causing extremely small gradients.
To solve the problem, the final scaled dot—product attention is scaling the
softmax by d:

KT
¢ YR

Attention(Q, K, V) = softmax(

10

&) 8t



Multi—head Attention

In a machine translation task, the input words vectors could be the queries,
keys and values of self-attention computation. In other words, the word
vectors themselves selectively attention on each other. For a single self—
attention, there is only one way for words to interact with one—another and
it lacks sequence modeling expressivity. To solve this problem, the multi—head
attention was proposed which maps Q, K and V into several lower

dimensional spaces then apply attention and concatenates outputs.

2.4 AttendBind

The AttendBind follows the approach of the Transformer model. However,
the aforementioned Transformer model is designed for sequence transduction
problem, so I adopted the self—attention encoder for generating the
representation of sequences and constructed following feed forward neural
network for given prediction task. Briefly, the encoder maps a length—N input
sequence of symbol representations S = (sq,S3,..,Sy) to a sequence of
continuous representation Z = (24,23, ...,Zy). Then the downstream neural
network views this vector sequence as a single concatenated vector z and
generates a real value § which is the predicted value of binding affinity
between given sequence S and a transcription factor. Figure 2 depicts the

overall model architecture of the AttendBind.

11 :



Sequence Representation

Existing deep learning methods for predicting sequence specificities of
transcription factors use one—hot encoding for representing input DNA
sequences. DeepBind transforms DNA sequences into image—like 2-D
representation via one—hot encoding and leverages the CNN'’s capability for
processing those form of data. DeeperBind adopts the same sequence
representation manner as DeepBind, and augmentatively stacks RNNs over

the CNN structure.

12



Self-Attention Encoder

( Prediction Value)

X

Concatenate & Feed Forward )

4 4
C( Add & Normalize )\
" 4
E ( Feed Forward ) ( Feed Forward )
L - R 4
2+ [T 2 [
A Add & Normalize A
X
, > LayerNorm( % )
Y A
: ( Self-Attention )
x+ [ x2[1T1TT7
ATC TCG

Figure 3: The overall model architecture of the AttendBind. Input sequence of k—mers

(ATC, TCG, ...) is embedded into (xq,x5,...) then encoded by self—attention encoder.

The final feed forward network concatenates the encoded vectors and predicts a real

value.
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In the AttendBind, I use k—mer embedding based representation for DNA

sequences. Given a DNA sequence S of length Z:

S = (51,82, ,SL),

where s; € {A,C,G, T}, and A,C,G,and T are 4 bases of DNA, it can be
interpreted as a sequence of k—mers KS of length L, =L —k+1 with 1

width stride:
KS = (kq, kg, ..o, kp,),
where k; € {A,C,G, T}*.

Then the embedding layer maps k; into d,,qe—dimensional vector for i €
{1,2,..,L}. Finally, the k-mer embedded sequence representation X =
(x1, %3, ...,xy) is obtained and fed to the sequence encoder, where x; €

R%modet is embedded vector of k; and N = L.

Self—Attention Encoder

The input embedded vectors could be the queries, keys and values in self-
attention making themselves be attended to each other. Given k-—mer
embedded vectors X, it can be stacked into a matrix form X € R4~*%modet,
and Q =K =V =X where Q, K, and V are queries, keys and values in

attention mapping.

The self-attention encoder performs the multi—headed scaled dot—product

14 :
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attention as proposed in the Transformer. The multi—head attention splits the
dmoder ~dimensional embedded vector into h dj —dimensional vectors by

multiplying weight matrices:

= QWO K, =KWKV, =VWY e RW%dn for i =1,...,h,
Ql Q i 1 1 l l

Amodel

e, Q, K, and V are queries, keys, and values respectively,

where dj, =
and W,°, WX, W) € RmoderX@n are parameter weight matrices for splitting

dimensionality. Then head; computed by applying scaled dot—product:

: Q:k;"
head; = Attention(Q;, K;, V;) = softmax V.

Jan

The output Z of self—attention layer is,
MultiHead(Q, K, V) = Concat(heady, ..., head,)W?,

where Concat is vector concatenating function and W9 € R%modetX@modet ig 3

parameter weight matrix for recovering the full dimensionality.

Figure 4 illustrates the calculation process of multi—head attention in the self-
attention encoder. Input vectors X generates queries Q;, keys K; and values
V; for each head; by matrix multiplication with WiQ,WiK,Wl-V. All heads
computed by scaled dot—product attention are concatenated and make final

output Z by a linear layer whose weight parameter is W°.

15 :



head,

X input sequence

X h: # of heads

/0
Wy
Wi

W ;\ heady

Figure 4: An illustration of multi—head attention in self—attention encoder. Q;,K;,V;
which are inputs for scaled dot—product attention are made by matrix multiplication
of vector sequence X and parameter matrices W%, WX, WY . Computed heads and

WO then generate the output vectors.

With Z = (24,25, ...,zy) which is the output of self—attention layer, the
encoder applies residual connection [15] and layer normalization [16] as
depicted in Figure 3, then feed it to a 2-layer fully connected feed—forward
network with ReLU activation function, which is applied each position

separately and identically.

TF-DNA Binding Affinity Prediction

Z = (21,2,, ..., 2y), which is the final output of the encoder, represents given
DNA sequence S . For downstream network, all vectors of Z are

concatenated into a single vector Zs = [2;; 2,; ...; Zy]. To generate a single real

16
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value §, which is the predicted binding affinity, I use 2—layer fully connected

network which takes Zg as an input.

Model Training

In this work [ employ k = 5, which is the length of k—mer, h =4, dp4e =
256, and 1024 for the internal dimensionality of the feed—forward network

in self—attention encoder.

The loss is mean squared error between the ground truth binding affinity y
and predicted value §. I used the Adam optimizer [17] for training the model
parameters and apply dropout [18] to the output of residual connection and

self—attention layer for regularization.

17



Chapter 3

Results

To evaluate the proposed AttendBind method, I reproduced DeepBind and
DeeperBind as baselines and trained three models with PBM experiment data
from the UniPROBE database [19]. Each PBM data consists of about 40,000
60—base DNA probe and corresponding intensity score representing the
relative binding affinity of a given TF to the probes. I chose five TFs (Cbfl,
Ceh-22, Oct-1, Rapl, and Zif268) from yeast, worm, mouse and human for
evaluation the performance of models and used two PBM array designs for

each TF, one for train and validation and the other for test provided by [2].
3.1 Regression Results

To evaluate about 40,000 predicted values for each PBM, I chose spearman’s
rank correlation coefficient and pearson correlation coefficient between

ground truth and predicted values as evaluation metrics.

Table 1 shows the spearman’s rank correlation coefficients of the AttendBind

18 :
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outperformed other models on all five TFs’ test data with significant margins,
and Table 2 shows same results for pearson correlation coefficients. In both
results the DeepBind surpassed the DeeperBind in almost all TFs, but these
are quite different from the original DeeperBind paper. In the paper, authors
reported the performance of their model as spearman’s rank correlation
coefficients on two TFs, 0.43 on Ceh—22 PBM data and 0.60 on Oct—1. These
numbers are compatible with my implementation of DeeperBind, 0.393 on
Ceh-22 and 0.600 on Oct—1. But their implementation of the DeepBind
showed significantly poor than mine. On Ceh—22 PBM data, their number is
0.40 and mine is 0.411, and on Oct—1 PBM data, their number is 0.49 but
mine is 0.625. Because they used only two TFs and their implementation of
the DeepBind is doubtable, they seemed to fail on evaluating the performance

of DeepBind correctly.

19



Table 1: Spearman’s correlation coefficients on 5 TFs. The AttendBind achieves the

best result for whole dataset.

T Method
DeepBind | DeeperBind | AttendBind
Cbfl 0.192 0.152 0.241
Ceh-22 0.411 0.393 0.537
Oct-1 0.625 0.600 0.700
Rap1 0.147 0.156 0.328
Zif268 0.479 0.463 0.494

Table 2: Pearson correlation coefficients on 5 TFs. For whole dataset, the AttendBind

outperformed other two models with significant margins.

Tr Method
DeepBind | DeeperBind | AttendBind
Cbfl 0.529 0.162 0.821
Ceh-22 0.474 0.462 0.762
Oct-1 0.422 0.42 0.647
Rapl 0.074 0.055 0.284
71268 0.599 0.573 0.647
20



3.2 Binary Classification Results

Additionally, the prediction task can be formulated as binary classification
where positive probes are defined as those with actual intensities larger than
4 times standard deviation above the mean of probe intensities in a given
experiment array [20]. For each PBM data, I conducted receiver operating
characteristic (ROC) curve analysis. Table 3 shows area under the ROC curve
(AUC) for each TF indicating the AttendBind outperformed other two

baselines, and the ROC curves on five TFs, are depicted in Figure 5.

Table 3: AUC analysis on 5 TFs. The AttendBind achieves the best result for all TFs.

TF Method
DeepBind | DeeperBind | AttendBind

Cbfl 0.988 0.874 0.993
Ceh-22 0.946 0.913 0.984
Oct-1 0.946 0.922 0.97

Rapl 0.859 0.727 0.921
71268 0.973 0.952 0.974

21 .
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Figure 5 (a)—(e): Receiver operating characteristic (ROC) curve analysis on 5 TFs.

The AttendBind outperformed baselines.
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3.3 Attention Visualization and Motif Analysis

KT . . .
For each head; = softmax (Ql—’) V; in self—attention layer, an attention map

Jan

A; is given as,

Q:k;"

Jar

A = softmax( > € RVXN,

where the row vector is summed up to 1, due to the softmax function. In case
of column vectors, it can be interpreted as the significance of embedded
VECtOTs Xq,Xs, ..., Xy within the head. If jth column vector has large value
components, x; thus has large attention weights, and the output head;
reflects x; more than others. Considering this intuition, it could be possible
to determine which k—mer is more important than others by visualizing the

attention maps.

Figure 4(c) shows all h =4 attention maps, in transposed form, for the
sequence which has the largest predicted affinity in Oct—1 PBM data. Figure
4(a) depicts a single map computed by adding all attention maps and figure
4(b) is known motif (conserved sequence pattern among TF binding sites) of
Oct—1 obtained from the UniPROBE database. In figure 4(a), it can be seen
that k—mers in the red line box has large attention weights, and nearly equal

with the known motif.
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Figure 6 (c): 4 attention maps (in transposed form) for the sequence

“TTAGTTATGCATAATTGGCCTTGCGGTCACAGGC” which has the largest
predicted affinity value in Oct—1 PBM data and the known motif of Oct—1. (a): A
single attention map computed by adding 4 head attention maps. The subsequence
marked by red line box has large attention weights. (b): Known motif of Oct—1 from
the UniPROBE database. The two logos illustrate the DNA binding site motif of Oct—
1 as graphical representations of the sequence conservation of nucleotides with its
information content at each position. The bottom is reverse complement of the upper

one.
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Agreement with Known Motif

For quantitative analysis, I chose all 418 positive sequences in Oct—1 PBM
test data and find some agreement with biologically known motif from the
information of the attention maps. In this analysis [ define the 7op—-3
frequency of k—mer as follows: for each possible k—mer, where k is 5, the
top—3 frequency of a k—mer is initialized as 0 and incremented by 1 when the
attention weight of the k—mer has value that is in largest top 3 within a

sequence.

Figure 7 shows results of the align agreement of k—mers with known motif of
Oct—1. 6 k—mers in Figure 7(a), which has largest top—3 frequencies are
aligned in (c). Except the k—mer “GGGGG”, all other k—mers are well agreed
with known motif in (b). The alignment result indicates that the information
from attention maps in self—attention layer is well agreed with known fact,

and could provide some useful guideline for scientific discoveries.
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Figure 7: Top—3 frequencies of k—mers and the result of alignment with known motif

of Oct—1. (a) shows 6 k—mers which has the largest top—3 frequencies. (b) illustrates

the motif. (c) is result of sequence alignments of k—mers in (a) with the known motif.

The “rc” means reverse complementary convert and the k—mers are well aligned with

the known motif (the bottom of (b)) except only “GGGGG”.
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Motif Analyses on other TFs

To evaluate validity of the motif analysis that I conducted on Oct—1 PBM

data as stated earlier, additional analyses were performed in other two TFs,

Cbfl and Zif268.

TF Cbf1 has strongly conserved motif as showed in Figure 8(c). To assess the
capability of attention map and top—3 frequency based motif analysis, I listed
5 k—mers which was ranked in top five with top—3 frequency criteria in Figure
8(b). For 177 positive probe sequences in Cbfl PBM test data, k—mers
“CACGT” and “ACGTG” appeared in almost all sequences, and this is
explained by the highly conserved sequence “CACGTG” in the motif. In
Figure 8(d), it can be seen that all alignments of k—mers are well agreed with

the known motif on Cbfl in (¢).

Figure 9 present similar analysis on 1006 positive probes of Zif268 PBM test
data. Again, the results of agreement with the motif of Zif268 showed
capability of the AttendBind to capture scientifically meaningful pattern from

PBM data.
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(a) AACTCCGGTICACGTGACGATGCCACGCAAAACGTC

2.0
- -1 CACCT
® I A
Top-3 frequency | k-mer @ L 2 3 456 7 8 9
176 CACGT . CACGT
165 ACGTG . ACGTG
35 TCACG| _rc , CGTGA
26 CGTGA| CGTGA
14 GTGAC| G TG ATC

Figure 8: Attention map based motif analysis on Cbfl PBM data. (a): The sum of 4
attention maps for the sequence “AACTCCGGTCACGTGACGATGCC-
ACGCAAAACGTC” which has the largest predicted affinity value in the test data.
The subsequence “CACGTG” marked by red box has large attention weights and is
well agreed with known motif in (c). (b): Top 5 k—mers and its top—3 frequencies.
(©): Known motif of Cbfl from the UniPROBE database. (d): Result of sequence
alignments of k-mers in (b) to the known motif. The “r¢” means reverse

complementary convert.
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CTCTAACCCALCCACHEGTAATGGTCGCAGACAGA
A

Top-3 frequency | k-mer
547 CCCAC
350 CCccc
258 CCACG
256 GGGGG
151 GCCCC

(c)
2.0

1.0
0.0

Gy

Figure 9: Attention map based motif analysis on Zif268 PBM data. (a): The sum of

4 attention maps for the sequence

“CTCTAACCCACCCACGCGTAATGG-

TCGCAGACAGA” which has the largest predicted affinity value in the test data. The

subsequence “CCCACG” marked by red box has large attention weights and is well

agreed with known motif in (c). (b): Top 5 k—mers and its top—3 frequencies. (c):

Known motif of Cbfl from the UniPROBE database. (d): Result of sequence

alignments of k-mers in (b) to the known motif. The “rc” means reverse

complementary convert.
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Chapter 4

Conclusion

In this paper I proposed a new approach for predicting TF-DNA binding
affinity using the self—attention techniques. Through extensive comparisons
with competitive baselines models, it was shown that the new approach for
DNA sequence modeling outperforms existing methods. The great success of
the AttendBind is due to the self—attention encoder’s capability of modeling
embedded sequence. Along with the performance gain, attention maps from
self—attention layer gave some useful information for interpreting deep

learning model and discovering scientific knowledge.
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