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Abstract

Practical Partial Row Activation
for 3D Stacked DRAM with Applications

to Deep Learning Workloads

Namho Kim

Department of Computer Science and Engineering

The Graduate School

Seoul National University

GPUs are widely used to run deep learning applications. Today’s high-end

GPUs adopt 3D stacked DRAM technologies like High-Bandwidth Memory

(HBM) to provide massive bandwidth, which consumes lots of power. Thou-

sands of concurrent threads on GPU cause frequent row buffer conflicts to

waste a significant amount of DRAM energy. To reduce this waste we propose

a practical partial row activation scheme for 3D stacked DRAM. Exploiting

the latency tolerance of deep learning workloads with abundant memory-level

parallelism, we trade DRAM latency for energy savings. The proposed design

demonstrates substantial savings of DRAM activation energy with minimal

performance degradation for both the deep learning and other conventional

GPU workloads. This benefit comes with a very low area cost and only mini-

mal adjustments of DRAM timing parameters to the standard HBM2 DRAM

interface.

Keywords: DRAM Architecture, GPU, Convolutional Neural Network, HBM2,
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Chapter 1

Introduction

The recent advent of throughput computing with Graphics Processing Units

(GPU) led an increase in demand for the memory bandwidth. To meet this

increasing demand for memory bandwidth, 3D-stacked memory technologies

such as High-Bandwidth Memory (HBM) [1] or Hybrid Memory Cube [2] have

been proposed and now widely used in production GPUs and general-purpose

processors. While these recent advances in memory system help throughput-

oriented computing devices to exploit higher level of parallelism, this trend

of increased memory bandwidth is also increasing the amount of power/energy

spent on the memory system. For example, a future HBM-based memory system

providing 4TB/s memory bandwidth for GPU is expected to use over 150W

power [3].

One of the primary components in DRAM energy consumption is the row

access energy which is consumed when a DRAM row is activated (i.e., latch data

of a DRAM row into the row buffer) and precharged (i.e., restore the bitline

voltage). One main issue here is that the size of row is often much larger than

the minimum amount of data that a GPU needs. For example, in HBM2 (with

pseudo-channel mode [1]), the size of DRAM row is 1KB while the last level

cacheline size of a GPU is often 128 bytes. This is not really a problem if there

are many column accesses happening while the row is open. However, with a
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huge amount of parallelism provided by GPUs, a row is likely to close before

several column accesses happen [3, 4]. As a result, the amount of energy spent on

row accesses remains a substantial component of DRAM energy consumption.

To address this problem, partial row activation schemes [3, 4, 5, 6] have

been proposed, which only activate part of the row that is likely to be accessed.

By doing so, these proposals can avoid the problem of row over-fetching and

reduce the amount of energy spent on row accesses. However, many of these

proposals often incur significant area overhead reported to be 12% to 34% [5, 6],

which negatively affects both yield and capacity of DRAM. More importantly,

most previous proposals require substantial changes to the standardized mem-

ory controller interface (e.g., JEDEC standard). While such changes may enable

higher performance gains or energy savings, adopting such changes to a real sys-

tem requires a significant amount of effort from multiple stakeholders, such as

memory vendors, processor vendors, and memory standardization committee.

Instead, we advocate more localized solutions with minimal extensions to the

existing memory interface for easy deployment.

Thus, we present a practical partial row activation scheme which neither

incurs noticeable area overhead nor requires any modification to the memory

interface or controller. Exploiting the fact that many emerging GPU workloads,

such as deep neural networks, are latency-tolerant by nature, we propose a

partial row activation scheme requiring only minimal changes in DRAM and

thus can be used as a drop-in replacement for existing, real HBM2 systems. The

proposed ready-to-deploy scheme substantially reduces the amount of energy

spent on row accesses at the expense of negligible performance degradation in

most GPU workloads.

The rest of this thesis is organized as follows. Chapter 2 describes the fea-

tures of deep learning workload and its DRAM access pattern on GPU and

2



motivates this works. Chapter 3 elaborates on the proposed practical partial

activation scheme which includes the bank structure for partial row activation

and its timing. Chapter 4 presents the evaluation methodology and the results.

Finally, we conclude the paper in Chapter 5.
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Chapter 2

Background and Motivation

2.1 Deep Learning Workloads

Memory performance is an important factor that affects overall DNN perfor-

mance, even in domain-specific architectures. For instance, TPU [7] shows that

the array active cycle is 78.2% with 86.0 TOPS/sec in CNN. The weight stall

cycle is 0% as CNNs reuse it in many domain-specific architectures. However,

TPU performance is limited when executing MLP and RNN as they require

high memory bandwidth. In MLP and LSTM, the weight stall cycle is 53.9%

and 58.1% that fetches from memory. They try increasing memory bandwidth

as four times, and the MLP and LSTM performance increase three times. Also,

they found that higher memory bandwidth reduces on-chip memory pressure.

We take CNNs, which is widely used DNNs, as an example. Most layers in

CNNs consist of convolution (CONV) layer and fully connected (FC) layer.

Figure 2.1 (a) shows the base algorithm of FC layers, whose computation is

general matrix-vector multiplication. The structure of data and weight are usu-

ally vector and matrix. Sequential as you see in the code, and it means DRAM

access also shows sequential patterns. On the other hand, as shown in Figure 2.1

(b), traditional CNN compute 3D data and 4D weight matrix multiplication.

It takes Oc×Oh×Ow output multiplying Ic×Ih×Iw data with Oc×Ic×Kh×
Kw weight. The convolution filter slides to each input features and accumulates
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1 // FC layer computation

2 // Stride: 1

3 float output[Oc];

4 float input[Ic][H][W];

5 float weight[Oc][Ic][H][W];

6

7 for(int o=0; o<Oc; ++o){

8 for(int i=0; i<Ic; ++i){

9 for(int h=0; h<H; ++h){

10 for(int w=0; w<W; ++w){

11 output[o]=input[i][h][w]

12 *weight[c][i][h][w];

13 }}}}

(a) FC layer computation

1 // Convolution layer

2 // Stride: 1, pad: 0

3 float output[Oc][H][W];

4 float input[Ic][H][W];

5 float weight[Oc][Ic][K][K];

6

7 // Computation of CONV.

8 for(int o=0; o<Oc; ++o){

9 for(int h=0; h<H; ++h){

10 for(int w=0; w<W; ++w){

11 float sum = 0.f;

12 for(int i=0; i<Ic; ++i){

13 for(int fh=0; fh<K; ++fh){

14 for(int fw=0; fw<K; ++fw){

15 int in_h = h+fh;

16 int in_w = w+fw;

17 sum+=input[i][in_h][in_w]

18 *weight[o][i][fh][fw];

19 }}}

20 output[o][h][w]=sum;

21 }}}

(b) CONV layer computation

Figure 1: FC and CONV layer algorithms
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Figure 2: Convolution structure and computation methodology

(b) is divided into two sides; one for convolution lower-
ing, and the other for matrix multiplication. There are
many DRAM write access (0x81520000⇠0x81820000)
because of saving the transformed matrix data in the
memory, while few DRAM read access (0x81480000⇠
0x814a0000) to get original input data. After finishing
convolution lowering, the access pattern in computation
is similar as FC layer’s. The DRAM read access is se-
quential for weight and regular for transformed data,
and there is few DRAM write access to update the out-
put (0x814e0000⇠0x81500000).

2.3 Partial Row Activation
Partial row activation is a well known technique to

mitigate the overfetching problem. Earlier work in-
cludes Fujitsu Fast Cycle RAM (FCRAM)[15], and [16].
That comes with a significant area overhead due to
many peripherals (i.e., lower cell e�ciency). More re-
cent work addresses these problem but requires changes
to the DRAM interface and protocols. ([17], [10], [12],
[11], [18], [9], and [8]) Many these proposals make use
of memory controller side information when issue col-
umn commands (posted-CAS [19]) or introduce new
DRAM commands. [10] for example, partial row ac-
tivation mask is required from the memory controller

after row command issued to activate dirty cache block.
It’s too challenging for DRAM vendor to modify to the
standardized DRAM interface. This is due to the fol-
lowing fundamental problems: The DRAM vendors are
not able to design the memory controller. We need a
practical partial row activation scheme which has low
area/power overhead without requiring changes to the
existing DRAM interface.

3. PROGRESSIVE PARTIAL DEACTIVATION

3.1 Overview
Baseline HBM2 architecture The baseline HBM2
device is organized like this: Base and core die slice
which is stacked up to 8-Hi slices. The core die slice has
4 channels interconnected by TSV as shown Figure 4.
Each of which has four quadrants with 16 banks/quad-
rant. Each quadrant, a channel is assigned 128 TSV
I/Os in the TSV area across the core slice. Currently,
we assume that our baseline HBM2 device consists of
4-Hi slices. So individual channel has 32 banks divded
into upper and lower slice group.
Terminology We add two modifications to the baseline
HBM2 device: First, we introduce the notions of sectors
and activation bit vector. The sector is a minimum ac-
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(b) CONV layer computation

Figure 2.1: FC and CONV layer algorithms

to make one pixel of output feature. In this computation, one convolution filter

may meet an input pixel twice or more. As this character, CNNs have two issue

that decreases the GPU performance. First, there is a lot of duplicated data

usage when computing convolution kernel parallel. Weight is used for all input

data and shared as thread index, but input data gets different thread and block

index even though the value is same. Also, GPUs should call lots of kernels

computing each convolution as all matrix multiplication is independent. These

kernels are called at GPU core randomly and the memory access pattern is hard

to predict what data to gather in the cache. Besides, the GPU kernel size is

bound to the convolution kernel size. Most CNNs use convolution kernels with

the size from 11 × 11 [8] to 1 × 1 [9] to get accurate features using the data.

This is significantly small compared to the maximum number of thread, usually

512 or 1024, in the kernel on GPU, and it causes the limitation of parallelism

executing overall CNNs. There is another issue when using small convolution

5



Kc
Kw

Kh

Iw

Ih

Ic
Oc

Ow

Oh

Weights: Fn filtersInput Output

(a) Traditional convolution process

N (= O
h x O

w )

F (= H x W x Ic) Oc (= Fn)

F (= K
h x K

w
x K

c )

Oc

N (= O
h x O

w )

WeightsInput Output

(b) Convolution lowering and computation

Figure 2.2: Convolution structure and computation methodology

kernels. When it uses general 3 × 3 convolution kernels, boundary check needs

to compute the convolution kernel. The condition flow in GPU is processed

one-by-one execution and it decreases the GPU performance at least twice. As

memory access range is high in CNNs, it shows inefficient memory bandwidth.

To optimize memory bandwidth software transformations like convolutional

lowering are performed to access memory sequentially. cuDNN [10] uses im2col

function to convolutional lowering as depicted in Figure 2.2 (b). Ic × Ih × Iw

input data is changed as Ic×Kh×Kw×Ih×Iw column. After transforming, the

convolution kernel executes general matrix multiplication (GEMM) with column

and weight. Though convolution lowering requires the amount of memory area

6



due to saving the transformed matrix, it helps to serialize the GPU kernel and

increase memory bandwidth as it does not check the boundary of the kernel

and fetches continuous data.

2.2 DRAM Access Patterns on GPU

Both CONV (im2col + GEMM) and FC layers demonstrate largely sequential

memory access patterns, to maximize DRAM bandwidth and minimize over-

fetching. Figure 2.3 (a) describes the last FC layer DRAM access patterns. It

reads DRAM on the regular step, which is the same as the stride of each data

and weight values. The output data is written at DRAM, in general, to pass

over it to the next layer. In this example, however, the output number of the

last FC layer is only 10 that is small to remain the cache. Also, it reuses directly

at softmax function, which makes probability vector to prediction. Hence, it

does not have to access additional DRAM access to write the output. In con-

trast, Figure 2.3 (b) is divided into two sides; one for convolution lowering,

and the other for matrix multiplication. There are many DRAM write access

(0x81520000 ∼ 0x81820000) because of saving the transformed matrix data in

the memory, while few DRAM read access (0x81480000 ∼ 0x814a0000) to get

original input data. It might be possible to transform the data layout of a ten-

sor to maximize row buffer locality. Although this approach has an advantage

for deployment on commodity hardware, it is very difficult to implement it as

it requires the knowledge of DRAM address mapping. Today’s GPUs allocate

some of the column address bits to high-order bits (with optional XOR address

hashing) to minimize DRAM bank conflicts. This implies that even a simple

one-dimensional array is interleaved over multiple banks in a non-contiguous

manner. Thus, it is very challenging to optimize the data layout purely in soft-

7



(a) FC layer

(b) CONV layer

Figure 2.3: DRAM access patterns executing cuda-convnet on each layer

ware. Besides, even if the data layout of a single array is carefully optimized,

there are many concurrent thread blocks accessing the array out of order. The

state-of-the-art SM scheduler does not take into account DRAM row buffer lo-

cality, and its non-deterministic behaviors make DRAM locality optimization

in software even more difficult.
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2.3 Partial Row Activation

Partial row activation scheme is a well-known technique to mitigate the over-

fetching problem. Earlier works including Fujitsu Fast Cycle RAM (FCRAM) [11],

fine-grained activation DRAM [5] and [6]. These works can attain plenty of acti-

vation energy saving. However, that comes with a significant area overhead due

to many peripherals (i.e., lower cell efficiency) which support fine-grained acti-

vation. Fine-grained activation [5] added a one-hot decoder and a single AND

gate to the wordline of each division in a row. The division of row is selected and

activated when earning both row and column address. Using Posted-CAS com-

mand, DRAM controller sends row and column command back-to-back cycle.

It reduced the DRAM power by up to 40%.

Selective bitline activation (SBA) and single subarray access (SSA) [6] fun-

damentally re-organized the layout of DRAM arrays and the mapping of data to

these arrays so that an entire cache line was fetched from a single subarray. In-

troducing new protocol existing JEDEC DRAM interface called Posted-RAS,

which hold the row address until the column address arrives to activate the

bitline selectively. It reduced dynamic and background energy about 5×.

More recent work addresses these problems but requires changes to the

DRAM interface and protocols. [3, 4, 12, 13, 14, 15] Many of these proposals

make use of memory controller side information when issue column commands

(posted-CAS [16]) or introduce new DRAM commands. [12], for example, par-

tial row activation mask is required from the memory controller after row com-

mand issued to activate the dirty cache block.

Half-DRAM [13] proposed a reconstructed DRAM architecture to address

the row overfetching problem. By splitting one mat into two parts, it enables

half row activation which is almost no bandwidth loss while achieving row

9



activation power saving. As to the extending Half-DRAM which can perform

one-eighth row activation, it has a relatively large area overhead.

Fine-grained DRAM and subchannel [3, 4] proposed a new high-bandwidth

DRAM architecture to improves bandwidth by four times and energy efficiency

by twice compared to existing HBM2 reorganizing HBM2 channel structure

into the narrow parallel channel to mitigate latency overhead due to the narrow

path of the fine-grained activation structure. But these works require significant

modification of microarchitecture of DRAM core that incurs the area overhead

up to 10%.

2.4 Performance/Area Trade-off in Partial Activation

Many previous studies identify the row access energy as a major component

of DRAM dynamic energy [6, 14]. As a result, there are multiple proposals on

partial row activation of DRAM. However, as we hinted earlier, most of these

works require a substantial area overhead or changes to the DRAM protocol.

This is because of a trade-off between cost (area) and performance. In a con-

ventional DRAM architecture, a DRAM row is striped across multiple DRAM

cell arrays, or mats. Upon an ACTIVATE command a whole row of each mat is

latched. Then, when a READ command arrives, each mat provides the same num-

ber of bits (i.e., 16 bits in HBM2 pseudo-channel mode) based on the provided

column address from latches and outputs them to the bus. One potential way

to enable partial activation is to segment every single row of each mat and acti-

vate only part of the selected row within a mat. However, this requires adding a

large number of AND gates and local wordlines to incur huge area overhead [6].

Another potential way is to re-arrange DRAM column data layout so that a

single mat (or a few mats) contains the whole contents of a column in a row.

10
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Figure 2.4: Performance degradation with longer column latency (tAA)

This design can implement partial activation by letting only a single mat to be

activated but it incurs a performance overhead as such design needs to output

data through a narrow path between a single mat and the I/O, thus incurring

serialization delay. An alternative to the previous approach is to increase the

width of a path between a single mat and the bus to avoid performance penalty,

which also results in a large area overhead.

2.5 Latency-Tolerance of Deep Learning Workloads

on GPU

One important characteristic of the emerging GPU workloads is that they are

tolerant to a long memory latency. Such workloads are often embarrassingly

parallel and GPU exploits this characteristic by scheduling multiple warps (e.g.,

64) to a single streaming multiprocessor (SM). When a warp in the SM cannot

execute due to memory latency, another warp in the SM will be run instead.

With this mechanism, the SM can effectively utilize its compute units and

operate at a near-perfect efficiency despite the presence of long-latency memory

operations. Figure 2.4 demonstrates the latency tolerance of two popular types
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of deep learning workloads, convolutional neural networks (CNNs) and multi-

layer perceptrons (MLPs), by presenting the performance impact of increasing

the tAA timing parameter (i.e., internal read command to data output) by 2×.

As shown in the figure, all five workloads show no performance degradation.

The other conventional GPU workloads also show at most 4% performance

degradation. Note that this does not mean that the memory system is not

important for GPU workloads. While they are less sensitive to memory latency,

most GPU workloads, due to its high degree of parallelism, require large memory

bandwidth. Based on this observation, we propose to trade DRAM latency for

energy savings in this work.
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Chapter 3

Practical Partial Row Activation

3.1 Overview

The baseline HBM2 device is organized as follows: base and core die slice

which is stacked up to 8-Hi slices. The core die slice has 4 channels inter-

connected by TSV as shown Figure 3.1, Each of which has four quadrants with

16 banks/quadrant. Each quadrant, a channel is assigned 128 TSV I/Os in the

TSV area across the core slice. Currently, we assume that our baseline HBM2

device consists of 4-Hi slices. So individual channel has 32 banks divided into

upper and lower slice group.

We introduce two terminologies to the baseline HBM2 design: sectors and

activation bit vector. The sector is a minimum activation granularity of row

buffer. We divide row buffer into 8 sectors from previous partial activation

schemes from [12] and [13].

3.2 Bank Structure

Figure 3.2 shows the structure of a bank for our proposed DRAM architecture

based on HBM2. A single bank consists of multiple subarrays, each of which

is further divided into 8 mats sharing the same global word line. With the

1Reproduced from [17]
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Figure 3.1: Baseline HBM2 architecture1

row size of 1KB, activating a single mat reads out 128B of row data, which

is a common cacheline size for GPUs. Exploiting this characteristic, we re-

organize the column address mapping of mats so that one mat houses a whole

32B column. To enable an activation of a single mat (instead of all eight), we

simply add AND gates to the global word line. Such design increases the time

to process a READ/WRITE command by 14 memory cycles as it takes 14 extra

cycles to burst out a 32B atom through a 16-bit-wide datapath (16 memory

cycles in total) instead of a 128-bit-wide datapath (2 memory cycles in total).

To mitigate the effect on READ/WRITE processing time from a narrower path

to I/O, we also employ a proposal similar to half-DRAM [13]. The main intuition

of the Half-DRAM proposal is that it is possible to utilize two set of bitlines

(and helper flip-flops (HFFs)) for activating a single DRAM cell worth of data

by making a row decoder drives two half mats (the right half of the mat on

the left and the left half of the mat on the right) instead of a single mat. As

shown in Figure 3.2, two half mats now utilize two sets of the 16 bitlines and

this reduces the READ/WRITE processing time to 8 memory cycles (i.e., 6-cycle

14
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increase). Note that we modify column mapping of mats so that a whole column

address fits in two corresponding half mats. Throughout the paper, we call these

two corresponding half mats a sector as shown in Figure 3.2.

To handle this increase in READ/WRITE command processing time, we need

to adjust DRAM’s timing parameters. First, timing parameter tAA, which rep-

resents the time between the read command and the first data output on bus,

needs to be increased as the proposed bank structure requires extra cycles to

output the data. So tAA is increased by 6 memory cycles.

Figure 3.3 above describes how the tAA timing is lengthened when data being

fetched by a cycle-by-cycle waveform. After corresponding sector activated, the

16-bit-wide bitlines on both sides are utilized to buffer the requested 32B data.

The data is fetched 32 bits per cycle, and it takes 8 cycles to fetch 256 bits.

Since the first cycle of fetch data and tAA timing can overlap, and the last fetch

and two bursts can overlap, thus it takes a total of 6 cycles to buffer the data
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Figure 3.3: Data fetch timing diagram through the narrow bitline

through the narrow bitline.

The timing between column commands to the same bank has to be in-

creased. While a memory controller compliant to HBM standards already has

tCCD, column command to column command delay, we need a variation of this

because we only need to increase the delay between column command to col-

umn command to the same bank. We denote this parameter tCCDS and set

it to tCCD+6. This requires a slight timing change to the memory controller.

Lastly, other READ/WRITE related delays (e.g., tWR, tWTR, and tRTP) needs to

be increased by six cycles as well.

While these mechanisms reduce the peak bank bandwidth by up to 4×
since the time it takes to handle a single READ/WRITE command increases to 8

cycles from 2 cycles. However, this often does not lead to a decrease in overall

memory bandwidth since HBM2 specification over-provisions DRAM banks.

For example, the evaluated configuration includes 32 banks per channel, where

each bank can provide up to 128 bits/cycle. On the other hand, each channel,

despite having 32 banks, supply data at 256 bits/cycle. Assuming balanced

distributions across 32 banks, each bank only needs to supply 8 bits/cycle to

saturate the channel bandwidth. In other words, each bank achieving 1/16×
of its peak throughput is enough to saturate the channel in this case. For this
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reason, although our proposed bank structure reduces the peak throughput of

a single bank by 4×, it is unlikely to affect the overall memory throughput,

which is often first limited by channel throughput.

3.3 Delayed Activation

To specify which sector to activate we use delayed activation. When a DRAM

device receives ACTIVATE commands, the DRAM device decodes row address as

usual but does not actually perform an activation and buffer the row address.

Instead, the activation happens when a column command arrives. Once a col-

umn command (i.e., READ/WRITE) arrives, the column address is first decoded

and it is used to determine which DRAM sector it should activate. Then, a

partial activation for that particular sector is performed and followed by ac-

tual READ/WRITE operation. Figure 3.4 shows how this delayed activation

scheme affects DRAM timing. First, since ACTIVATE does not actually perform

an activation, tRCD becomes shorter (by half according to our estimation using

CACTI-3DD [18]). At the same time, since the activation happens in column

commands, tAA (i.e., the timing of read command to the first output data on

the bus) and tWL (i.e., the timing of write command to the first input data on

the bus) should be increased by the reduced tRCD amount. In our configuration,

tRCD is originally set to 16ns and thus tRCD is reduced by 8ns while tAA and

ACT

tRCD/2 = 8ns tAA = 12nsActivation time = 8ns

CK

Row Cmd

Col Cmd

DQ

RD/WR

D0 D1 D2 D3

Figure 3.4: Waveform of proposed delayed activation
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tWL are increased by 8ns. This scheme basically avoids unnecessary activation

at the expense of potential 8ns extra latency for READ and WRITE command. The

rationale behind this scheme is that such a minor increase in DRAM latency

does not usually affect the performance of the latency-tolerant GPU workloads.
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Chapter 4

Evaluation

4.1 Methodology

We evaluate the proposed scheme using GPGPU-Sim [20]. Table 4.2 shows the

configuration we used for the simulation. We assume HBM2 device architecture

based on a recent HBM2 design [17, 21] with pseudo-channel mode enabled. We

evaluated proposed DRAM architecture based on GTX780-TI device replacing

timing model of HBM2 device with existing timing model on DRAM system

configuration of the GPGPU-sim, which originally modeled on GDDR5. This

GPGPU-sim model coupled with HBM2 is a 1/4 scale down version of the

Nvidia P100 [22], a product using HBM2 devices.

We evaluate the performance impact of our scheme across several GPU

workloads including memory-intensive general-purpose workloads. We run both

popular deep learning workloads on Caffe [23] (augmented with the in-house

cuDNN-like library) and several GPU workloads including various memory-

intensive workloads from Rodinia [24]. To evaluate energy efficiency, we utilize

the GPUWattch [25] integrated with GPGPU-Sim. For DRAM energy param-

eters, we take numbers from [3]. Lastly, we estimate the area overhead of the

proposed scheme using CACTI-3DD [18].

1GPU architecture parameter from [19]
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Platform Nvidia GTX 780TI 1

Warp size

# of SM cores

Execution model

Max warps per SM

Size of register file

# of register banks

Warp scheduler

32

16

In-order

64

256KB (per SM)

24

Greedy then oldest

Shared memory

L1 Cache

48KB

16KB

L2 Cache 1536KB

Table 4.1: Platform parameters

DRAM System parameters

Channel/Device 8

Slices/Device 4-Hi

Banks/Channel 32

Clock frequency 1000MHz

Burst length 4

DQ ×128

Table 4.2: DRAM system parameters

HBM2

1024b @ 1000MHz (ns)

tRP = 16, tRC = 45, tRAS = 29, tRCD/2 = 8,

tCCDS = 2, tCCDL = 10, tRRD = 2, tWR = 15, tCL = 12

Table 4.3: HBM2 timing parameters
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Figure 4.1: Activation energy savings on CNN and MLP workloads
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Figure 4.2: Activation energy savings on general workloads (Rodinia and

STREAM)

4.2 DRAM Energy Savings

Figure 4.1 and 4.1 compare the DRAM activation energy of the baseline full

activation, Half-DRAM [13], and our work with 4 and 8 sectors. To first order,

the activation energy is proportional to the number of columns activated. The

activation energy savings are 37%, 59% and 76% on average for Half-DRAM,

and our work with 4 and 8 sectors, respectively, over the baseline. The energy

savings are particularly pronounced for the workloads with frequent row buffer

conflicts. In other word, lower spatial locality on a row buffer leads to greater

savings of the activation energy. The CNN and MLP workloads have relatively

lower row buffer locality to save activation energy about 75% on average for the

8-sector configuration. Among Rodinia benchmarks streamcluster and hotspot

have smaller savings due to the higher average row buffer locality.

Occasionally, the activation energy savings are affected by row buffer access
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Figure 4.3: DRAM energy savings on CNN and MLP workloads
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Figure 4.4: DRAM energy savings on general workloads (Rodinia and

STREAM)

patterns. For instance, memory accesses in mlpc frequently fall on both halves of

a row buffer. This leads to little activation energy savings with the Half-DRAM

configuration. Figure 4.3 and 4.4 show how the activation energy savings are

translated to DRAM-wide energy savings. The 8-sector configuration achieves

7.6% energy savings on average with maximum savings of 14.1%.

4.3 Performance Impact

Figure 4.5 demonstrates that both CNN and MLP workloads are tolerant of

increased memory latency. The CNN workloads are known to compute-intensive

as convolution layers, which dominates the execution time of a CNN, have a lot

of data reuse [7] to have relatively low off-chip memory access rate. Thus, they

are able to maintain a high degree of memory-level parallelism and hence IPC.

In contrast, MLP workloads, which are composed of fully-connected layers only,
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Figure 4.5: Performance degradation on CNN and MLP workloads
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Figure 4.6: Performance degradation on general workloads (Rodinia and

STREAM)

are known to be memory-intensive as there is no reuse of weight parameters in

these layers. However, compared with recent results from Google’s TPU [7], our

MLP workloads are less memory-intensive due to fewer layers and smaller input

data sets (Cifar-10 and MNIST). MLP workloads also have a lot of memory-

level parallelism and is not sensitive to memory latency. Overall, both CNN

and MLP workloads show only negligible IPC degradation.

To evaluate performance impact on non-DNN workloads we take memory-

intensive GPU workloads from Rodinia [24] as shown on Figure 4.6. These

workloads have a lower degree of memory-level parallelism than DNN work-

loads. For instance, needleman-wunsch (nw) has a fairly complex control flow

with frequent branch divergence, thus suffering up to 22% IPC degradation with

the proposed scheme. In contrast, other workloads, such as hotspot, kmeans,

and streamcluster, are compute-intensive with a high degree of memory-level
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parallelism, thus experiencing less performance hit than the others.

The IPC degradation is attributed to a couple of reasons. First, due to the

narrower datapath between a DRAM mat and the I/O, the column access time

(tAA) is increased substantially. This also negatively affects the latency of a

column read/write request directed to the same bank as the previous column

request. Second, there is an additional latency cost (8ns in our setup) when

a new sector needs to be activated in the currently open row. Our proposed

DRAM device activates the requested sector lazily only when a column request

is directed to it. By activating only those sectors that are actually read or

written, we may have a performance hit for workloads with good spatial locality

in DRAM accesses. This problem may be alleviated by increasing the sector

granularity (e.g., from 8 sectors to 4 sectors per DRAM row), while losing some

of the energy savings with potential overfetching within a sector.

4.4 Area Overhead

We estimated area overhead incurred by additional circuitry using CACTI-

3DD [18]. The area overhead for the portion added to the inside of the dram

core includes the following: latches which hold valid bit vector per bank, and

9 AND gates added per subarray. The sector selection latch logic is modeled

based on the local sense amplifier inside the core, and the NAND gate uses

the NAND gate model used in the core. Overall, the die area overhead is 0.3%

which we believe acceptable.
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Chapter 5

Conclusion

This thesis presents a practical partial activation scheme for 3D stacked DRAM

with applications to deep learning workloads without significant modifications

to the standard HBM2 DRAM interface. To achieve high energy efficiency

while maintaining low performance overhead, we exploit the latency tolerance of

emerging deep learning workloads to trade DRAM latency for energy efficiency.

Consequently, our proposal demonstrates substantial DRAM energy savings

with minimal performance hit for both the deep learning workloads and other

conventional GPU workloads. This benefit comes with a very low implemen-

tation (area) cost and minimal adjustments of DRAM timing parameters over

the standard HBM2 DRAM interface.
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국문초록

GPU는 심층 학습 애플리케이션을 실행하는 데 널리 사용된다. 오늘날의 high-

end GPU는 HBM (High-Bandwidth Memory)과 같은 3D 적층 DRAM 기술을

채택하여엄청난대역폭을제공하므로많은전력을소비한다. GPU에서수천개의

동시 스레드가 발생하면 빈번한 row buffer conflict로 인해 상당한 양의 DRAM

에너지가 낭비된다. 이러한 낭비를 줄이기 위해 3D 적층 DRAM에 대한 partial

row activation 기법을 제안한다. 풍부한 memory-level parallelism 이 있는 딥 러

닝 워크 로드의 latency tolerance를 활용해서, DRAM latency를 지불하고 에너지

절감을 얻을 수 있다. 본 제안에서 딥 러닝 및 기타 기존 GPU 워크 로드에서

성능 저하를 최소화하면서 DRAM activation energy의 상당한 절감 효과를 보여

준다. 본 제안은 매우 낮은 면적 비용으로 표준 HBM2 DRAM 인터페이스에 대한

DRAM 타이밍의 최소한의 변경만으로 구현할 수 있다는 장점이 있다.

주요어: CNN, GPU, DRAM 아키텍처, 에너지 효율, HBM2

학번: 2017-22393
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본 연구를 하면서 도움을 주신 분들께 감사를 드립니다. 연구의 디테일 한

부분까지 검토 해주신 함태준 박사님, 학부 인턴임에도 연구에 많은 기여를 한

한성이에게 깊은 감사를 전합니다.

연구실 생활을 하면서 많은 긍정적인 에너지를 공유할 수 있어서 정말 감사

했습니다. 힘들때 술 한잔 기울일 수 있었던 학범이형과 재영이형, 무슨얘기를

하더라도 잘 웃어주고 들어주는 영환이형, 가끔 연구에 지쳤을때, 보드게임을 함

께즐겼던준이형과문경이누나,뭐든지물어봐도거의모르는게없는종현이형, 2

년동안같이수업도듣고연구실생활의시작과끝을함께한대연이와천이,수학도

잘하고논리의끝이날카로운성학이,힘들때마다 “이겨내야죠”라고말해줬던예

진이,타르트와쿠키를잘만들어왔던성준이,회사생활을함에있어서현실적이고

실질적인 조언을 많이 해주신 신이형 석용이형, 행정 업무를 맡아 주시고 발레를

좋아하는미림누나연구실모든분들감사드립니다.마지막으로,이논문이나오는

데 간접적이나마 도움이 된 분들 모두 감사드립니다. 2019년 1월
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