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Abstract

There exist several deep neural network (DNN) architectures suitable for em-

bedded inference, however little work has focused on training neural networks

on-device. User customization of DNNs is desirable due to the difficulty of col-

lecting a training set representative of real world scenarios. Additionally, inter-

user variation means that a general model has a limitation on its achievable

accuracy. In this thesis, a DNN architecture that allows for low power on-device

user customization is proposed. This approach is applied to handwritten charac-

ter recognition of both the Latin and the Korean alphabets. Experiments show

a 3.5-fold reduction of the prediction error after user customization for both

alphabets compared to a DNN trained with general data. This architecture is

additionally evaluated using a number of embedded processors demonstrating

its practical application.

Keywords: Deep Learning, On-Device Learning, User Adaptation

Student Number: 2016-25821
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have achieved great success in previously dif-

ficult to solve problem domains. Examples include Computer Vision [7, 36],

handwriting recognition [8, 26], and speech recognition [18, 11]. These appli-

cations are increasingly moving to the embedded domain, leading to research

into reducing the size and overhead of DNNs to run on embedded devices [15]

along with developing dedicated hardware DNN accelerators [4, 5, 14]. Research

has primarily been limited to the inference task, i.e. using a model pre-trained

on big data to classify an unknown input. This thesis, however considers on-

device training. Here, situations where this can be useful are explored along

with methods to allow efficient on-device training.

Training DNNs to become proficient at a task typically requires a lot of

training data, for example when training a handwriting classifier, samples from

many different users are gathered. The DNN is then trained on these large num-

ber of samples on a server using one or more GPUs in order to create a general

model. However, these general models have some limitations as they assume
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that the initial training data can be abstracted to to cover each real world sce-

nario. Realistically, however, it is difficult to obtain training data representative

of all real world scenarios. For example, an image classifier can struggle where

lighting conditions in the real world differ from training data, or alternatively

a handwriting classifier may struggle to classify a particularly unique style of

handwriting. This is known as the domain adaptation problem [41].

To allow for domain adaptation data must be collected from the real world

setting and used to adapt the DNN to the real world scenario, this is typically

performed by retraining part or all of the model. Offloading domain adaptation

to the server is possible, however on-device adaptation is desirable for a number

of reasons. First, as the embedded domain is considered, connection to a server

is not always guaranteed. Second, as user data is required, privacy becomes a

concern, particularly in the case of images or speech data. Third, in terms of

logistics, when offloading training to the server a separate personalized model

for each user must be kept on the server and synchronized to the device for

on-device inference. This could cause a large overhead in terms of both network

traffic and server storage, due to the size of the model. Retraining a model

on-device has some of its own issues, energy and processing power are more

of a concern. Existing on-device inference accelerators are not necessarily well

suited to on-device training, and often have relatively high power consump-

tion. For this reason a DNN architecture is proposed that enables low-power

on-device personalization of a large general purpose DNN. This attempts to

exploit existing high powered inference accelerators to accelerate inference of

the general model, which we call the Basic Inference Engine (BIE). The BIE is

augmented with a smaller network called the Augmenting Engine (AE) which

is retrained on user data. This is accelerated using an existing lower powered

on-device processor. In totality we call this the BIE-AE architecture.
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Although this architecture is flexible, we specifically investigate using the

Samsung Reconfigurable Processor (SRP) [38] to accelerate retraining. This is

a general purpose Coarse Grained Reconfigurable Array (CGRA) based embed-

ded processor already integrated into several devices [35, 24, 30, 29].

In summary, the main contribution of this work is a DNN architecture that

allows for adaption of existing DNNs with a small augmenting network that can

be re-trained on-device using a small set of user-specific data. It is also shown

that an existing CGRA can be used to achieve reasonable training performance

through applying minor hardware adaptations and compiler optimizations. In

combination, this allows the low-powered customization of DNNs on-device.

This thesis is primarily based on the journal paper [16] which is in turn an

expansion of the conference paper [17].

This thesis is organized as follows: First, a simple motivational example is

given in Chapter 2, and a background on DNNs and on-device acceleration is

given in Chapter 3. The proposed DNN architecture is defined in Chapter 4.

This is applied to the problem of Latin and Korean handwriting recognition in

Chapter 5. Acceleration on-device is discussed in Chapter 6, specifically how the

SRP can be adapted to DNN training. A description of the experimental setup

and the results are given in Chapter 7 and 8. An overview of related techniques

is presented in Chapter 9 and finally conclusions are given in Chapter 10.
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Chapter 2

Motivation

A simple example is shown to motivate the necessity of user/domain adap-

tation. Consider a DNN designed to recognize handwritten Latin letters and

digits. This is trained on a general training dataset consisting of data from sev-

eral different users achieving an accuracy of around 88% on its test set [8]. This

is deployed to user devices and is used to classify user handwriting. However,

for certain users the system may achieve a disappointingly low accuracy, par-

ticularly if the user has a unique writing style. This is especially the case when

the classification problem contains similar classes, in this case the characters

[I, l, 1, i]. The way in which a person writes an “l” can be nearly identical to

another person’s “1”. This inherently limits the accuracy of the general model

for a particular user.

A simple experiment was conducted to demonstrate this. The LeNet-5 net-

work model [28], is modified to recognize 62 classes (26 upper-, 26 lower-case

letters, and 10 digits), and is trained on NIST Special Database 19 [12], contain-

ing all 62 handwritten Latin letters and digits. This model achieves an accuracy
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Figure 2.1: Accuracy of the general NIST ’19 model on user data.

of 82.1% on the general testing set. However, testing the model against individ-

ual user data collected from a smartphone application, the average recognition

accuracy drops to 76.1% (Figure 2.1) with less than 70% accuracy for one user.

To further illustrate inter-user variation, examples of user data are shown in Fig-

ure 2.2, demonstrating how writing styles vary between individual users. This

demonstrates the necessity of a model that can quickly adapt to characteristics

of a particular user’s data.

Figure 2.2: The character ‘7’ written by four different users.

5



Chapter 3

Background

3.1 Deep Neural Networks

Deep learning is a form of machine learning using deep neural networks, here

rather than the system being programmed to solve a problem directly, the

neural network is trained to learn the relationship between inputs and outputs.

This is useful for tasks such as image classification or voice recognition where it

is difficult or impossible to decide programmatically which patterns constitute

a class or word.

3.1.1 Inference

When using a neural network for classification, the input (e.g. an image) is

first input as a list or matrix of values. This input is fed into a layer of neurons,

where each input is connected to all neurons and each connection has a trainable

weight. The output of a neuron is calculated by first computing the weighted

sum of its input connections plus a trainable bias value. A non-linear activation
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Figure 3.1: Feedforward network diagram

function is then applied to this value, giving the output of the neuron. Non-

linear functions are used as they allow the network to represent and compute

more complex functions. Several layers of neurons are used, each feeding their

output into the next layer. The final layer consists of the N classes that are to

be classified, the neuron with the highest output is chosen as the class predicted

by the network (see Figure 3.1).

3.1.2 Training

After computing the output of the network, (a class prediction) a loss function

is used to measure how incorrect the network is (i.e. the error of the network).

This measures how far the network output is from the real output (label).

For the classification problem cross entropy loss is the most commonly used

loss function, this measures the difference between two distributions. First a

softmax function is applied, meaning outputs are scaled so they will sum to 1,

this is compared to the label (an array of N values where all classes are zero

apart from the correct label which is 1) using cross entropy. This loss value is

then used to adjust the weights of the network through backpropogation. Here

the gradient of the loss is calculated and fed backwards into the previous layer
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of neurons which can then use this to calculate its own error gradient. This

works backwards through the network until the first layer is reached, hence the

name backpropagation [37].

The error gradient determines how much and in which direction the weights

should be adjusted. This is also governed by a learning rate, which can also be

governed by its own policy. Typically, the learning rate decays after successive

training iterations. Initially, weights will need to be adjusted dramatically, how-

ever as time goes on, a reduced learning rate allows the weights to be adjusted

more delicately to find the precise weights that will result in the lowest loss

value.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network typically

used for image processing. Here, instead of a one dimensional input as in tradi-

tional feed forward network, 2d and 3d inputs can be used. Rather than having

every neuron connected to the next layer of the network, a small window of

weights (filter) is moved (convolved) across the input in order to compute the

output of a layer. This is known as a convolutional layer. The windows are 3

dimensional and extend over the input channels, however each filter will only

generate a 2D output. The outputs of several different filters being convolved

over the image are stacked behind one other, resulting in a 3D output (see

Figure 3.2). Using convolutional layers preserves the spatial information of the

input and has the additional effect of reducing the number of weights required

for the network. Typically, earlier layers of the network activate on simple fea-

tures such as edges and simple shapes whereas later layers activate on features

that are composites of these earlier features. Thus allowing the network to build

up a complex hierarchical representation of the input images.
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Figure 3.2: Convolutional network diagram

Other layers used in convolutional networks include pooling layers. These,

again, move a small window across the input. The output is calculated based

on the pooling operation, max or average. When performing max pooling the

output value for that window is the largest value in the pooling window, for

average pooling the average of the input values is the output value. After pooling

the number of channels remains the same, only the width and height of the

output is affected. Finally, to compute the final classification of an image a

fully connected layer is often used, this flattens out the convolutional output and

reduces the dimensions to the number of classes in the classification problems.

3.3 On-Device Acceleration

3.3.1 Hardware Accelerators

DNNs are increasingly used in the embedded domain. However, the computa-

tional properties of these are not suited for many existing embedded processors.

CPUs are particularly unsuited to DNN acceleration due to the high level of

parallelism and lack of control flow in DNNs. Mobile GPUs tend to be a fairly

good fit for DNNs device acceleration, however these tend to have a relatively

9



high energy cost. A number of dedicated hardware accelerators have also been

proposed, these include DianNao [4], and Eyeriss [6]. These achieve good per-

formance on DNNs but are highly specialized so cannot be used for other forms

of processing. Where space is limited and DNN processing is not a primary

concern these may not be a particularly good fit. Field Programmable Gate

Array (FPGA) processors are also frequently proposed as embedded DNN ac-

celerators [13]. These are not frequently incorporated into embedded devices

so again require additional hardware be added. Coarse Grained Reconfigurable

Arrays Processors (CGRAs) are an existing class of processor used for multime-

dia workloads in embedded devices. There has been some work on optimizing

these for DNN processing due to their similarity to existing DNN processors [2].

All these accelerators have primarily focused on on-device inference.

3.3.2 Software Optimization

To execute DNNs on embedded devices efficiently, some software based tech-

niques have also been proposed. One of these is Deep Compression [15]. Here

DNNs are pruned, quantized and compressed with Huffman coding, in order to

reduce their size. Pruning involves removing connections with weights close to

zero, the principle behind this is that these connections have little effect on the

output of the network so can be safely removed with little impact on accuracy.

Quantization is where the precision of each weight is reduced, in Deep Compres-

sion this is done through clustering weights and replacing then with indices to

the cluster array. This can not be directly optimized to run DNNs on-device but

can dramatically reduce the storage size of large networks, making on-device

implementations more practical.

There has additionally been work that attempts to compress networks in

a manner that can more directly be used hardware accelerators [42]. Along
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with accelerators that can better exploit these sparse/pruned network struc-

tures [33]. FPGA implementations, also, can often exploit the various bitwidth

weights generated by quantization.

Additionally, DNN designs such as SqueezeNet [20] and Mobile Nets [19],

aim to design DNN structures that are as small as possible while still achieving

the same accuracy as larger networks. Techniques such as knowledge distilla-

tion [43] can also be used to reduce the size of DNNs, here a smaller network

is trained on the outputs of a larger teacher network, rather than on the labels

of the dataset itself.
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Chapter 4

Methodology

To enable a general DNN model to be adapted to an individual user on-device

a DNN network architecture is presented. A large standard network trained on

general data is augmented with a small parallel auxiliary network. Together

these are able to quickly adapt to user specific data. Here we specifically look

at CNNs applied to image classification, although these techniques could be

applied to other tasks. A flow diagram of the system is shown in Figure 4.1.

It is assumed that a DNN classifier to classify images into predetermined

classes is to be incorporated into a mobile or embedded device. In one of its

simpler instantiations, such a classifier could be used to recognize handwritten

characters, in a more complex form this could be used to classify images from

a camera feed. Several implementations of such networks exist in the form of

either a dedicated hardware accelerator or as a software implementation. We

call this system the basic inference engine (BIE). This can be trained on either

a large publicly available or private general dataset and can be included in the

mobile device. For our purposes, the BIE does not have to be re-trainable and

12
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Figure 4.1: Training flow.

could be implemented in software and accelerated using a dedicated acceler-

ator for embedded inference, a mobile GPU, or even a fixed implementation

in hardware. Such as system suffers from the problem described previously,

namely, that performing well in the general case does not necessarily mean

good accuracy for individual users.

4.1 Initialization

Although there has been much work on accelerating on-device inference (i.e. the

BIE) there has been little work on developing on-device training accelerators.

Therefore, to enable on-device user specialization, the BIE is augmented with

a smaller augmenting engine (AE) as shown in Figure 4.2. This much smaller

network can be executed on an existing general purpose low power processor in

parallel. The AE comprises two parts: a simple convolutional network, labeled

C, followed by a fully-connected layer labeled B. The system works as follows:

First, the BIE is trained on a large set of general data or purchased in a trained

state, then its weights are fixed. Second, blocks B and C of the AE are attached

to the outputs of the BIE. The AE is then retrained on the general data to

initialize the weights of blocks B and C.

13
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Figure 4.2: The basic inference engine (BIE) with the augmenting engine (AE).

4.2 On-Device Training

The purpose of block C is to learn any additional features present in user data

and the function of block B is to learn to combine the outputs of the BIE and

the C block adaptively. Instead of using the image as input for both the BIE

and AE blocks, the activations from a hidden layer of the BIE can be used as

an input to the AE. This allows the AE to reuse basic features present at earlier

layers of the network, while simultaneously reducing the overhead of the AE by

reducing the input dimensions.

On the user side, the weights of the BIE remain fixed, and only blocks B

and C are retrained with the user-specific dataset. For the problem of character

recognition, through using the classifier to recognize handwritten characters,

the user continuously trains the system. This can be done without active user

feedback. For an application that converts handwritten notes into text, for ex-

ample, a language model can be used to suggest word completions similar to the

autocomplete feature used in smartphones. When the user selects a suggested

14



word, this information can be used to label the handwritten character data and

transparently perform supervised learning.
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Chapter 5

Implementation

The proposed design is applied to two tasks suitable for user customization,

Latin and Hangul Handwriting Recognition. For both these problems a publicly

available data set and neural network architecture exist.

5.1 Pre-processing

An basic technique that is used to enable user adaptation, is image pre-processing.

This aims to make the user and general training data as similar as possible by

reducing simple variations. In terms of character recognition, the variations re-

moved by pre-processing are scaling, positioning, and normalization of pixel

values. Although this is a simple step it has a large impact on the effectiveness

of the system. The techniques used for pre-processing the data are along the

lines of the EMNIST dataset [9]. First, characters have Gaussian smoothing ap-

plied, are then centered, padded, and scaled down to the relevant input size of

the network. For the NIST network this is 28x28 pixels whereas for the Hangul

16



network this is 64x64 pixels. EMNIST is not directly used for training the NIST

network as we wished to ensure that the exact same pre-processing procedure

was applied to both the general and the user-specific datasets.

5.2 Latin Handwritten Character Recognition

5.2.1 Dataset and BIE Selection

For Latin character classification, the NIST ’19 dataset [12] is chosen. This

consists of 62 classes: lower-case characters “a”-“z”, upper-case characters “A”-

“Z”, and the digits “0”-“9”. NIST ’19 consists of 731,668 and 82,587 images for

training and testing, respectively. For the BIE implementation, the well known

LeNet-5 [28] is used, modified to produce 62 outputs, rather than the standard

ten. Alternative implementations for this base network exist, e.g. the network

described in [8]; however, this is based on a committee of multiple networks

working together in parallel, rendering it less suitable for the embedded domain.

5.2.2 AE Design

When applying the BIE-AE design a number of factors were considered. The

starting AE design is chosen as a basic convolutional network consisting of

one convolutional layer, one pooling layer and one fully connected layer. When

evaluating the AE design a two design variables are investigated, these being

the number of channels in the convolutional layer, the second being average

pooling to downsample the input. Configurations with one, five, 10, 20, and 50

channels were explored. When investigating downsampling three settings are

tested: no downsampling, downsampling by half, downsampling to a quarter of

the original input size. Table 5.1 shows how the accuracy and overhead of the

AE designs change in relation to these two parameters. Figure 5.1 visualizes

17



Table 5.1: Overhead and accuracy for different Latin AE designs.

The selected configuration is shown in a bold typeface.

MAC Memory Start Accuracy End Accuracy

Pooling Channels (kOps) (kB) (%) (%)

No pooling

1 40 112 75.9 93.2

5 169 421 74.9 93.1

10 330 808 74.4 92.8

20 653 1,582 74.5 92.9

50 1,622 3,904 73.4 92.9

1/2 pooling

1 13 50 75.7 92.9

5 36 104 75.3 93.1

10 64 172 76.1 93.7

20 120 308 75.7 93.4

50 289 716 75.6 93.8

1/4 pooling

1 8 37 75.6 93.1

5 11 46 76.0 92.7

10 15 58 76.2 93.1

20 23 81 75.4 93.2

50 45 149 76.1 93.0

this data. Two overheads are import to assess when choosing a design, the first

of these is the number of MAC operations, this is proportional to the execution

time of the network. The second is the memory, this determines whether the

network design fits in the on chip memory of the general purpose accelerator, if

the memory required is too large a number of off chip memory accesses will be

required. These are costly in terms of energy efficiency, so should be minimal

to ensure a low power AE design. The MAC and Memory columns give the

total memory requirements of the weights and activations used when training.

To determine the influence of these design variables on the accuracy of the

model, start accuracy and end accuracy are listed. These show the accuracy of

the entire network before and after user specialization.
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Table 5.2: Absolute and relative overhead of the Latin AE with respect to the

BIE.

Training Inference

BIE AE Ratio BIE AE Ratio

MAC (kOps) 4,376 64 2% 2,319 44 2%

Activations (kB) 155 15 10% 79 9 12%

Weights (kB) 3,652 157 4% 1,826 78 4%

The table and the figure show that downsampling (average pooling) has the

largest effect on the computational overhead. The start accuracy is dominated

by the accuracy of the BIE and does not show much variance for the different

configurations. This is, somewhat surprisingly, also true for the end accuracy.

However, we also consider the properties of the AE designs in a standalone

setting. This is to investigate whether this could be used without the BIE in

low-power or extremely resource constrained environments. Figure 5.2 shows

the start and end accuracy of the AE in such a setting. We observe that in

a standalone setting, the number of channels and the downsampling signifi-

cantly affect both the start and the end accuracy, demonstrating the symbiosis

between the BIE and the AE. For the Latin AE, the configuration with 1/2

pooling and 10 channels was selected because it shows the best accuracy at

a low computational and space overhead when used with the BIE and in a

standalone configuration.

Table 5.2 gives the absolute and relative overhead of the AE to the BIE

on a single image using single-precision floating point numbers for weights and

activations. Training and inference overheads are minimal when compared to

the relatively simple BIE.
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Figure 5.1: Overhead and accuracy for Latin AE designs with BIE activated.
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Figure 5.2: Overhead and accuracy for Latin AE standalone designs.
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Figure 5.3 (a) shows the structure of the BIE (LeNet-5) and AE for Latin

character recognition. In block C, an average pooling layer is first used to down-

sample the input to a 14×14 resolution, followed by a convolutional layer with

a 5×5 filter size and a 10 channel output. A max pooling layer then further

downsamples the outputs to a 5×5 size. The output of the pooling layer is flat-

tened and forwarded to block B where it is attached to the output of the BIE.

The combined output is matched to the 62 classes by a fully connected layer.

5.3 Korean Handwritten Character Recognition

5.3.1 Dataset and BIE Selection

The Korean alphabet Hangul is an alphabet where about 40 individual charac-

ters are combined into a composite character, with a total of 11,172 valid char-

acters combinations. The vast majority of these combinations, however, are not

used day to day. For Hangul character recognition, the SERI95a database [21]

is used. This consists of the 520 most commonly used handwritten Korean

characters, with approximately 1000 examples for each character. The network

described in [25] is used as the BIE; this network achieves state-of-the-art ac-

curacy on the SERI95a task. Additionally, an FPGA implementation of this

network exists [34]. This, if implemented as a dedicated hardware chip, would

make a good component in the BIE-AE architecture.

5.3.2 AE Design

Several AE designs are again considered. The starting point is a simple con-

volutional network, this time consisting of a convolutional layer and a fully

connected layer. In this design, the critical overhead is the memory required to

train the AE. This is due to the large number of weights required for a fully
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Figure 5.3: Latin and Hangul BIE-AE Implementations.
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connected layer with 520 outputs. It is key that any output from the convo-

lutional layer of the AE does not add too many outputs before the final fully

connected layer, as each additional value here will add 520 weights. Therefore,

using an input from an intermediate layer of the BIE is investigated. This allows

the AE to use much smaller inputs, resulting in much smaller outputs, along

with the additional advantage of being able to reuse the features earlier in the

BIE. Therefore, the two variables investigated for this design are the layer of

the BIE that serves as the input to the AE and the number of channels used in

the convolutional layer. In Figure 5.3 (b), the locations considered as inputs to

the AE are the original image and after pool1, pool2, and pool3 in the BIE.

The fourth layer is not considered because its output dimension of 1×1 pixel

does not allow for further convolutions, making it difficult to learn new spatial

features in the user data. The considered designs are shown in Table 5.4.

The accuracy is low for configurations with inputs from the early layers of

the network; this is due to the extremely large number of weights that results

from flattening a large convolutional output. This large number of weights re-

sults in a model that is both difficult to train and has a high training overhead.

The design using the input raw image with 50 convolutional channels was un-

able to be trained even on a standard GPU due to its high memory demands.

For the AE, the selected configuration uses the 5×5×128 output from the third

pooling layer and 10 channels. This configuration has a moderate overhead in

terms of MAC operations and memory requirements, but achieves satisfactory

accuracy before and after user specialization. The convolutional layer in block

C in Figure 5.3 (b) uses a 5×5 kernel that reduces the input to a 1×1 output,

thereby removing the need for a pooling layer. The flattened output is merged

with output of the BIE, followed by a fully-connected layer that produces the

final 520 output classes. Table 5.3 lists the absolute and relative overhead of
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Table 5.3: Absolute and relative overhead of the Hangul AE with respect to the

BIE.

Training Inference

BIE AE Ratio BIE AE Ratio

MAC (kOps) 103,814 615 0.6% 52,994 308 0.6%

Activations (kB) 1,746 17 1.0% 881 15 1.7%

Weights (kB) 8,042 2,461 31.0% 4,021 1,230 31.0%

the AE relative to the BIE for one image using single-precision floating point

numbers for weights and activations. The memory overhead of the design is not

one that can be reduced easily as 520 outputs are necessary for the network to

function.
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Table 5.4: Hangul AE designs

Input Input MAC Memory Start Accuracy Final Accuracy

location dimensions Channels (kOps) (kB) (%) (%)

Image 64x64x1

1 4,375 17,189 90.4 98.2

5 19,711 77,209 87.5 96.7

10 38,881 152,234 86.3 95.6

20 77,221 302,284 67.0 88.8

50 232,753 765,484 n/a n/a

Pool 1 30x30x32

1 1,785 5,107 90.8 98.0

5 6,764 16,402 84.4 95.8

10 12,987 30,522 85.2 95.3

20 25,434 58,762 76.1 89.0

50 62,773 143,481 75.9 89.1

Pool 2 13x13x64

1 756 2,561 90.5 97.6

5 1,618 3,963 91.0 97.1

10 2,695 5,715 89.3 97.5

20 4,850 9,219 87.0 97.1

50 11,313 19,731 86.3 95.8

Pool 3 5x5x128

1 548 2,210 93.3 98.4

5 578 2,329 91.2 98.5

10 615 2,478 92.0 97.9

20 690 2,776 92.1 98.5

50 913 3,669 92.5 98.6
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Chapter 6

On-Device Acceleration

The BIE-AE structure is designed to take advantage of existing low-power

general-purpose mobile accelerators for training, while using a higher power

implementation for inference, this being either a high-performance general-

purpose accelerator or dedicated hardware. To demonstrate the effectiveness

of using a low power general purpose embedded accelerator to execute the AE

an existing accelerator is used to evaluate the network. The processor chosen is

the Samsung Reconfigurable Processor (SRP), due to its incorporation into sev-

eral commercial devices. However, other existing embedded accelerators such

as FPGAs could also be used. This is a Coarse Grained Reconfigurable Ar-

ray (CGRA) processor, used primarily to accelerate multimedia workloads in

embedded devices [35, 24, 30, 29]. To accelerate the BIE the NVIDIA Jetson

TX2 [32] is chosen as a representative accelerator, this is a high powered state

of the art development board for DNN processing using a mobile GPU.

The SRP consists of an array of heterogeneous processing elements (PEs)

and register files (RFs), connected with an interconnected data-flow network.
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Fast on-chip data storage is provided by SRAM or eDRAM, a schematic dia-

gram is shown in Figure 6.1 (a). The SRP is chosen to accelerate the AE as it

has many similarities to recently proposed dedicated DNN accelerators. First,

in both, a large on chip memory is situated close to the PEs to allow for the fast

loading of DNN weights/multimedia workloads. Second, a dataflow network is

used to move data between PEs. Third, multiple PEs are used to process input

in parallel. If the weights and activations of the AE fit on the on-board SRP

memory, expensive off-chip memory accesses can be avoided.

6.1 Architecure Optimizations

In its basic configuration, the SRP is fairly suited to process DNNs, however as

this is a design time reconfigurable processor a number of configurations more

suited to DNN processing are also explored. The basic configuration is a 32-bit

floating-point CGRA with 4×4 heterogeneous PEs and a total of 320KB of

on-chip data SRAM. Four PEs are connected to the data memory and support

memory instructions while half of the 16 PEs support floating point operations.

To ensure the SRP can continue to be used as a general-purpose acceler-

ator and to avoid increasing power usage and chip size, modifications to the

architecture should be minimal. Therefore, adding PEs is not considered. Pri-

marily, the number and positioning of floating point and memory units along

with the amount of on-chip memory is the architectural design space explored.

This is due to the specific properties of CNN layers which consists primarily of

matrix multiplications of floating point values, meaning that floating point and

memory operations dominate the overhead.

To accommodate the frequency of these instructions, the following hardware

modifications to the SRP are explored. The on-chip SRAM is replaced by 4MB
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Figure 6.1: SRP hardware configuration variations.

of 3D-stacked eDRAM [31] comprising of eight banks in a similar layout as

proposed by DianNao [4] to reduce the number of off-chip memory accesses. This

means that larger AE designs for more complex networks can be accommodated

entirely in on-chip memory. On the compute side, four hardware modifications

were considered, as shown in Figure 6.1. These involve increasing the number

of memory-enabled PEs, the number of floating point-enabled PEs, or both.
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6.2 Compiler Optimizations

Code executed on the SRP runs bare-metal. As a consequence, support for run-

time environments (i.e. Python) or libraries (such as the C standard library or

math libraries) is not available. Existing deep learning frameworks like Caffe [22]

or Tensorflow [40] depend heavily on libraries. For this reason, an DNN frame-

work supporting embedded accelerators such as CGRAs was used [23]. This is

written in the C language, without any external dependencies. Compiler opti-

mizations are also explored, for this the auto-tuning framework proposed in [2]

is used. This automatically performs architecture aware loop unrolling, fusion,

and interchange as well as using a CGRA optimized convolution algorithm.

The framework requires the the C code description of the DNN and the CGRA

architecture description to perform these optimizations.
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Chapter 7

Experimental Setup

The proposed BIE-AE networks are trained first with a publicly available gen-

eral dataset. An Android application was developed and used to collect data

from individual users, in order to test user customization. For Latin handwrit-

ing recognition, 40 images of each of the 62 character classes were collected

from 10 users. Of these 40 image sets, 30 are used to train the AE and the

remaining 10 sets are used as a testing set, giving 1860 training images and 620

testing images per user. For Hangul recognition, due to the large alphabet size

a subset of 50 of the most commonly used characters were collected from seven

users. Here, 20 sets are collected with 10 being used for training and the other

half comprising the test set.

The BIE and AE are first trained with the relevant general purpose dataset,

the BIE is then fixed and the AE is retrained with the user-specific dataset one

set at a time. To implement the network design for Latin character classification

the Caffe framework is used, the user data is pre-processed using a Matlab

script and packaged using a bash script. To implement Hangul classification
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Table 7.1: Overview of compared processor architectures.

Clock Power Technology

Architecture Type PEs (MHz) (mW) (nm)

ARMv8-A [1] general-purpose CPU 4 1200 271 20

VLIW [38] general-purpose accelerator 3 500 50 32

CGRA general-purpose accelerator 16 500 150 32

Jetson TX2 [32]1 mobile GPU 256 850 4,800 20

the Tensorflow framework was used, again a Matlab script was used to pre-

process the images which were again packaged using a bash script.

To test the efficiency of the network on an embedded device, the structure is

rebuilt in C using the CGOOD framework [23]. This is evaluated on the various

embedded hardware processors show in Table 7.1. The accelerators chosen are

the ARMv8, a general purpose embedded CPU running inside a Raspberry Pi

3, this is chosen due to its wide use in mobile devices. Second, the SRP chip

running in VLIW mode is used, this is an extremely low power configuration so

gives some insight into very power restricted embedded processors. Third, the

SRP with the CGRA enabled is used, this shows the performance of a low power

chip, but one that is somewhat suited to DNN processing. Finally, to evaluate

high power state of the art embedded DNN processors the Jetson TX2 is used,

this is a mobile GPU based development board specifically for DNN processing.

This gives a fairly large range of different types of embedded processors that

may be used to process DNNs.

The latency results are determined by training or inferencing on one im-

age using the CGOOD implementation of the network. Measurements for the

ARMv8 and Jetson have been executed on real systems; for the CGRA and

1The Jetson TX2 is operated in its most energy-efficient configuration (Max-Q).
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VLIW results, a cycle-accurate simulator is used that simulates both the core

and the memory. Energy is computed by multiplying the average power con-

sumption from Table 7.1 with the runtime of the relevant architecture.
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Chapter 8

Evaluation

This section evaluates the performance of the presented BIE-AE network struc-

ture with respect to user specialization, as well as evaluating its suitability for

execution on existing embedded systems.

8.1 Latin Handwritten Character Recognition

Figure 8.1 shows the gain in accuracy for individual users as the AE is retrained

on successive user datasets. Each training set consists of one image from each

class and is trained on for 10 epochs. After 30 training sets, the average accu-

racy improves from 76.1% to 93.7%. Table 8.1 lists the results before and after

training for each of the five categories of NIST. For all categories a significant

increase in accuracy is achieved, often surpassing the accuracy of the general

model significantly. This demonstrates that the BIE-AE model can successfully

adapt to a user’s writing style.

In this problem domain, errors predominantly stem from similar looking
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Figure 8.1: Accuracy of BIE + AE on Latin user data

characters. These include characters where the lower and upper class symbols

are similar (e.g. f, F) and similarly shaped characters (i,l,1,j). For an individual

user, there is usually some consistency in the way these characters are written, so

a personalized model is able to perform better. However, a general model must

be able to distinguish the characters from several different users so can’t exploit

the internal consistency of a single user’s writing style. These improvements

accounts for the large improvements in the ’all’ and ’letters’ categories where

many of the misclassified characters are of this type.

To illustrate how the BIE-AE structure adapts to a user’s writing style, Fig-

ure 8.2 shows the misclassified characters after training with 0, 1, 2, 3, 5, and

10 sets of user data. We observe that the way the network improves is some-

what systematic. Figure 8.2 (a) shows all characters that the general model

failed to correctly classify. After one training set (b), the misclassified m’s all

become correctly classified as well as many of the x, c, u, w, v, p, and 1 char-

acters, giving an overall improvement in recognition, which can be seen as a

general adaptation to the user’s style. For subsequent steps, improvements are
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Table 8.1: Accuracy before/after retraining the Latin BIE-AE model using in-

dividiual user data.

all letter lower upper digit

Dataset before after before after before after before after before after

NIST 82.1 73.9 69.7 73.8 88.8 87.0 96.2 96.1 98.2 96.7

User 1 67.7 87.6 74.6 91.2 86.5 96.2 95.8 98.5 97.0 99.0

User 2 76.9 97.6 78.1 98.7 94.2 100 100 100 91.0 100

User 3 77.7 93.9 76.0 94.8 97.3 98.9 99.2 99.6 98.0 100

User 4 78.5 96.3 78.5 96.5 95.4 98.9 99.2 100 99.0 100

User 5 76.1 93.2 73.3 92.3 85.4 98.9 94.2 98.5 98.0 100

User 6 77.6 91.5 79.2 93.3 97.3 99.2 97.7 100 99.0 100

User 7 75.3 93.9 75.6 96.5 90.8 99.6 100 100 100 100

User 8 77.1 95.3 78.7 96.5 93.1 99.6 98.5 100 100 100

User 9 82.1 97.9 81.2 97.9 95.0 99.2 99.6 100 100 100

User 10 72.3 89.5 72.7 90.4 90.4 98.8 89.6 97.7 93.0 99.0

Average 76.1 93.7 76.8 94.8 92.5 98.9 97.4 99.4 97.5 99.8

more concentrated in certain areas. After the second training set (c), the system

learns how to distinguish between upper and lower case o’s, however, as a result

there is an increase in 0’s being misclassified. A similar pattern can be observed

between q’s and 9’s. There is often an oscillation between similar characters,

where after one set one class is over predicted and after the following another

is over predicted, but as more data is collected these similar characters are dis-

tinguished more accurately. These difficult to distinguish characters eventually

become more accurately classified, as can be seen in Figure 8.2 (f). After 10

training sets 0,o and Os along with 9 and q are better classified and the balance

of misclassification is more evenly spread between the classes.

The percentage of images misclassified by the retrained models but correctly
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(a) 0 sets
(b) 1 set

(c) 2 sets (d) 3 sets

(e) 5 sets (f) 10 sets

Figure 8.2: Misclassified images from Latin test set while retraining

classified by the general model is shown in Figure 8.3. This demonstrates the

errors introduced by retraining the system. Initially, the images that are in-

correctly classified by the system are very similar to the ones misclassified by

the general model. Quickly, the misclassified images diverge from the initially

misclassified images. However, the percentage of newly introduced misclassifi-

cations always accounts for less than 50% of the total incorrect images, meaning

that the majority of misclassified images are difficult for both the general and

personal models to classify correctly.

A valid question is if the BIE is needed at all. To test this, the AE, without

the BIE, is first trained on the general NIST data, then retrained on user data.

The initial accuracy of this AE-only general model is lower, with an average

starting accuracy of 70% compared to the 76% of the BIE + AE model. More
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Figure 8.3: Percentage of misclassified images introduced by retraining

training samples are also required for the accuracy to reach a satisfactory level,

which is particularly relevant for the user customization scenario. For end users

it is important to have a high starting accuracy and improve this as quickly as

possible. Since the accuracy of the standalone personalized AE is still higher

than that of the BIE trained on general data, a standalone configuration may

make sense for low-power environments.

There exist also some limitations with regards to personalization, after spe-

cializing on user data the accuracy on the general dataset falls. In this case,

from 82.1% on average to 73.9%. This is unsurprising due to the nature of

personalization, when a model becomes specialized to a user it can no longer

classify general data as accurately. To overcome this problem the initial weights

of the AE can be saved and reloaded if the user of the device changes. Due to

the small size of the AE the overhead of storing this is minimal.
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Figure 8.4: Accuracy of BIE + AE on Hangul user data

8.2 Korean Handwritten Character Recognition

Figure 8.4 shows how the accuracy for Hangul characters increases for individ-

ual users with an increasing amount of user data. Each training set consists

of one character from each collected class and is trained on for 100 epochs to

increased the speed of learning. The average starting accuracy on the user data

is considerably higher than for Latin characters at 92.0%, but still improves

significantly to 97.9% as additional user data is added. The higher starting

accuracy is likely due to the reduced number of hard to distinguish classes in

Hangul compared to Latin. As the characters of Hangul are more complex than

the Latin alphabet the number of properties that can be used to distinguish

them are more numerous. Harder to distinguish categories in this domain typi-

cally stem from characters where the majority of component characters are the

same but one differs e.g. [정, 장, 작]. The detailed accuracy for each individual

user is listed in Table 8.2.
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Table 8.2: Accuracy before/after retraining the Korean BIE-AE model using

user-specific data.

Dataset before after

SERI95a 95.3 90.8

User 1 81.5 94.4

User 2 96.6 98.8

User 3 94.6 99.0

User 4 95.0 98.4

User 5 99.0 99.8

User 6 89.9 98.0

User 7 87.5 96.8

Average 92.0 97.9

Here we see that the accuracy for the personalized models on the general

dataset is again reduced after specialization, this time by 4.5% compared to the

8.2% reduction for the Latin problem. This is most likely due to the difference

in initial accuracy for the users. The Latin users have a lower starting accuracy,

meaning that the model needs to be adjusted more in order to classify their

data correctly. Whereas the higher starting accuracy of the Hangul model means

that the general model is adjusted less, meaning it is still able to classify the

initial dataset correctly. This is confirmed by looking at individual user data.

The general test accuracy for user 1 and 7, the two users with the lowest start

accuracy, is around 87% after specialization, whereas for all other users it is

above 90%.

Figure 8.5 shows the test characters that are misclassified by the Hangul

network for one user after successive training sets. This shows that initially that

characters such as [아, 어, 이] are often confused by the general model. This is

also the case for the characters [래, 대], [생, 상], [학, 항, 함, 막] and [정, 적, 점,
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(a) 0 sets

(b) 1 set

(c) 2 sets
(d) 5 sets

(e) 10 sets

Figure 8.5: Misclassified images from Hangul test set while retraining

잔, 항]. A lot of these confusions are eliminated after the first retraining set as

the network gets better at telling apart these hard to distinguish characters.

Similar to the Latin example, the greatest gain in accuracy is this first set and

this improvement is fairly evenly distributed across classes. Later training sets

have less effect on the accuracy as the scope for improvement is reduced by the

initial training set, where the accuracy already increases from 87.5% to 93.8%.

8.3 On-Device Acceleration

To determine the ideal hardware configuration for the modified SRP processor,

the design variations (Figure 6.1) are evaluated using the BIE design for the

Latin network. This is chosen rather than the AE as larger CNNs should show

optimizations more clearly. The performance in terms of speedup compared to
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Table 8.3: Comparison of different hardware configurations.

Figure 6.1 (a) original (b) add mem (c) add fp (d) add mem & fp

Speedup 33.9 46.1 37.6 46.7

executing the BIE on the VLIW portion of the hybrid processor is shown in

Table 8.3. The results show that the addition of more memory units yields the

greatest increase in performance, while additional floating point units improve

performance only marginally. Design (b) is used for further experiments as,

although it is slightly slower than design (d), it is closer to the original SRP

and less specialized, thus better suited for general-purpose acceleration.

The modified SRP is compared to an ARMv8 processor, a 3-issue VLIW,

and the Jetson TX2 mobile GPU. The processing time of these various pro-

cessors is shown in Table 8.4, and as a graph in Figure 8.6. This shows that

the chosen CGRA used for the AE implementation is sufficiently fast to not

slow down the faster BIE. Assuming a state-of-the-art DNN accelerator such

as the Jetson TX2 is used for the BIE, we observe that the processing times

of inference and training on the BIE for both alphabets are always higher than

that of the AE on the CGRA. Since the BIE and the AE cannot run com-

pletely in parallel (Figure 5.3), the latency of a single operation may be slightly

higher, however, for batch processing the AE should not slow down the BIE.

For Hangul inference, for example, the BIE on the Jetson TX2 takes 1ms to

execute, but the results of the AE on the CGRA are available after 0.7ms.

We also observe that the large dedicated CNN accelerators such as the

Jetson TX2 do not perform well on small networks like the AE. Despite its

computing power, inference and training of the AE is significantly faster on

the CGRA for both presented AEs. The reason for this is that the Jetson is

specialized for both inference and comparatively large networks, so retraining a
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Table 8.4: Processing time of BIE and AE on different architectures.

Processing time (ms)

Architecture Latin AE Latin BIE Hangul AE Hangul BIE

infer train infer train infer train infer train

ARMv8 3 12 118 489 25 91 2739 10370

VLIW 2.8 14 131 573 26 113 2966 11730

CGRA 0.1 0.46 2.8 12 0.7 2.6 63 240

Jetson TX2 0.7 2.7 0.7 4.8 1.1 4.5 1 8.4

Figure 8.6: Processing time of BIE and AE on different architectures

small network is not necessarily something it is well suited to. This shows that

using a low power processor such as the CGRA makes sense for this component.

A comparison of the energy consumption for inference and training on one

image is given in Table 8.5. For the chosen CGRA, energy is reduced 47 times

compared to the ARM processor for the Latin AE. For the larger Hangul AE, the

energy consumption is reduced 62-fold. Compared to the less powerful VLIW,

the hybrid CGRA still achieves a 10-fold reduction in energy for the Latin AE

and 14-fold reduction for the Hangul AE. The Jetson TX2 consumes several
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Table 8.5: Energy consumption of inference and training on one image.

Latin AE Energy Hangul AE Energy

Architecture [mJ] [mJ]

infer train infer train

ARMv8 0.80 3.27 6.70 24.55

VLIW 0.14 0.70 1.30 5.66

CGRA 0.02 0.07 0.10 0.40

Jetson TX2 3.20 12.10 5.10 21.40

orders of magnitude more energy than the SRP; this is both caused by the high

average power consumption and the relatively bad performance on small CNN

networks.
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Chapter 9

Related Work

The proposed methodology is an example of the domain adaptation problem,

which is related to transfer learning. It makes use of transfer learning techniques

but uses an architecture that can effectively exploit existing embedded hardware

accelerators.

Several other approaches to domain adaption have been proposed, however

this one targets embedded environments specifically. Other approaches to do-

main adaption include Adversarial Discriminative Domain Adaption (ADDA)[41],

this is an unsupervised approach that uses two separate networks for both the

source and target domains, (general and user data) and a discriminator net-

work to distinguish between the two. In ADDA a source image is fed into the

source network and a target image is fed into the target network, the target

network learns to map the new target images to the source feature space, while

the discriminator attempts to distinguish the (feature) outputs of the source

and target networks. This adversarial training means that eventually the target

network will be able to transform the target images into representations similar
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to the source network. Essentially, the target network attempts to mimic the

source network given a target input. However, this process requires both gen-

eral and user data to be available when training which is not possible for the

proposed use case. Additionally, the target network is typically a duplicate of

the source network, giving it a large network structure rendering it unsuitable

for the embedded domain.

Alternative methods of adapting DNNs to a new task are the transfer learn-

ing techniques of Joint Training [3] and Fine-Tuning [10]. In joint training, the

entire CNN is retrained with both general and user datasets to allow it to be

used for both tasks, again unsuitable for the embedded domain due to storage

limitations. Fine tuning is where either the whole or part of a pretrained net-

work is adapted to a new task by training either all or part of the network with

a reduced learning rate. However this is not possible to perform with a hardware

implementation of an existing network, which is one advantage of the proposed

structure. Additionally, the parallelism of the BIE allows the AE to be trained

on a lower powered accelerator giving a more efficient training implementation.

Federated learning is also a technique that bears some resemblance to the

presented work [27]. This works by training on a distributed network of user de-

vices, each user device having a subset of user data (and classes). The on-device

model is trained on this data. The weights from all of these models are sent to

a server, where they are averaged, the averaged model is then distributed again

to all the distributed devices. This happens for a number of rounds resulting in

a general model that is able to recognize data from all distributed devices. Fed-

erated learning does not, however, make use of the properties of personalization

and instead creates a better general model through distributed learning.

There have additionally been numerous works regarding the acceleration

of DNNs on embedded mobile devices. These often make use of FPGAs and
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ASICs, but concentrate almost exclusively on the inference task. There have

been FPGA implementations developed specifically for accelerating certain net-

works, such as SqueezeNet [20] and the base network used to recognize Hangul

in this paper [34]. The proposed focus on the CGRA is to make use of a low

power accelerator already present in mobile devices as a general purpose ac-

celerator, primarily for the training task. There has been work on accelerating

DNNs with CGRAs [39] however, this proposes significant hardware changes to

the CGRA, rendering it suitable only for CNN acceleration. What are proposed

here are minor modifications to the CGRA, allowing it to be used as both an

effective DNN and general purpose accelerator on embedded devices.
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Chapter 10

Conclusion

In conclusion, this work proposes a DNN architecture suitable for on-device

personalization of deep neural networks. This consists of a large base inference

engine (BIE) trained on general data and a smaller augmenting engine (AE)

that can be retrained on the device. This allows for an energy efficient method

of adapting to additional user data on-device.

The proposed approach is applied to the problem of handwritten character

recognition for both the Latin and the Korean alphabet. After user specializa-

tion, the system has a 3.5-fold lower classification error than the standalone

BIE, increasing classification accuracy from 76.1 to 93.7% for the Latin al-

phabet and from 92.0 to 97.9% for the Korean character set. Experiments on

various embedded accelerators show that when using a high powered inference

accelerator for the BIE and a low-power general purpose accelerator for the AE

efficient training is achieved, with a minimal effect on the inference overhead.
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요약

내장형 기기에서 심층 신경망을 추론할 수 있는 아키텍처들은 존재하지만 내장형

기기에서 신경망을 학습하는 연구는 별로 이뤄지지 않았다. 실제 환경을 반영하는

학습용 데이터 집합을 모으는 것이 어렵고 사용자간의 다양성으로 인해 일반적

으로 학습된 모델이 충분한 정확도를 가지기엔 한계가 존재하기 때문에 사용자

맞춤형 심층 신경망이 필요하다. 이 논문에서는 기기상에서 저전력으로 사용자

맞춤화가 가능한 심층 신경망 아키텍처를 제안한다. 이러한 접근 방법은 라틴어와

한글의 필기체 글자 인식에 적용된다. 라틴어와 한글에 사용자 맞춤화를 적용하여

일반적인 데이터로 학습한 심층 신경망보다 3.5배나 작은 예측 오류의 결과를 얻

었다. 또한 이 아키텍처의 실용성을 보여주기 위하여 다양한 내장형 프로세서에서

실험을 진행하였다.

주요어: Deep Learning, On-Device Learning, User Adaptation

학번: 2016-25821
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