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Abstract

L.oRa ToA-Based Localization
Using Fingerprint Map

Ha, Geun Yeop
Department of Computer Science and Engineering
The Graduate School

Seoul National University

Localization is one of the essential elements in Internet of Things (IoT)
applications. Especially, LoRa which is one of the Low-power wide area
network (LPWAN) technologies has suitable features for localization such as
low power consumption, long range, and low cost of employment. However,
the existing LoRa localization methods have limitations in terms of
localization possible area and accuracy. In the area where there are less than
three gateways, it is impossible to estimate location using the existing
algorithms. And the existing LoRa localization algorithms show large
estimation error in noisy environment such as urban. In this paper, we propose
LoRa ToA-based localization using Fingerprint map to tackle the issues. First,
we propose localization algorithm to estimate location even in the area where
there are less than three gateways. In addition, to calculate ToA-based
distances which are used in the algorithm, we propose a LoRa Time

Synchronization Protocol that is suitable for LoRa network. Second, we use



fingerprint map to reduce localization error caused by noisy environment.
Since we construct fingerprint map utilizing static end-devices, the overhead
to use the fingerprint map can be alleviated. The simulation results show that,
compared with other schemes, the proposed localization scheme significantly

expands localization possible area and improves the localization accuracy.

Keywords : LoRa, ToA Based localization,
LoRa Time Synchronization Protocol, Fingerprint Map,
Static End Device, Distance Correction
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Chapter 1

Introduction

Low-power wide area network (LPWAN) is a wireless wide area network
technology that allows long range communications with low power among
connected devices. Due to its ability to offer affordable connectivity for the
massive number of devices, LPWAN is considered as one of the key-enabling
technologies for Internet of Things (IoT) where billions of devices are
connected [1].

Localization is an essential element in the most IoT applications. There
are several studies on the localization that utilize GPS, Wi-Fi, Bluetooth or
other technologies. Unfortunately, few of solutions can be used to support loT
applications. For instance, although GPS can be useful for localization in
remote regions, but the power and cost associated with a GPS are having an
adverse effect for IoT devices. For the localization with WLAN or WPAN
systems such as Wi-Fi and Bluetooth, a number of access points are required
to cover a large region [2]. Hence, these technologies greatly increase the cost
of deployment.

On the other hand, LoRa is one of the LPWAN technologies with
advantageous features for localization. First, LoRa uses chirp spread spectrum
modulation (CSS) to support long distance communication. CSS is robust to

channel noise and resistant to multipath fading even at low power. Second, all



gateways which receive a packet from end-device record the timestamp of the
received packet [4]. Based on the timestamps and gateway locations, the
location of the target device can be estimated using Time Difference of
Arrival (TDoA) algorithm. Due to these useful properties, it would be
desirable to localize devices with the LoRa.

However, even though these useful properties, there are two problems on
the existing LoRa localization algorithms. The first problem is localization is
limited according to the number of gateways. And the second problem is the
performance is greatly degraded in noisy environment such as urban.

The TDoA algorithm requires at least three gateways which receive
signal from a device. Thus, it is impossible to estimate the location of a device
when less than three gateways are available. The authors in [5] used
pedestrian dead reckoning (PDR) technique for localization with a single
access point (AP). However, the PDR technique cannot be applied for LoRa
localization since the sensors are rather expensive and have high power
requirements.

Several researches on LoRa localization show that the performance is
highly degraded in noisy environment. The work in [6] proposed the TDoA-
based localization and several experiments were carried out. The localization
error is over 1 km. On the other hand, in [7], the authors utilized LoRaWAN
datasets to perform the RSSI fingerprinting-based localization [8] in urban
area. It has localization error of 400 meters. In both works, the performance is

highly influenced by noisy environment since there is no process to mitigate



errors caused by multipath fading. Moreover, in the case of [§8], there is an
additional overhead that the fingerprint map is needed to be updated
frequently since the method is sensitive to the environment change.

In this paper, we propose a LoRa Time of Arrival (ToA) based
localization algorithm aiming to find the accurate location in all areas. Unlike
the existing LoRa localization method, our method uses ToA-based algorithm.
The proposed algorithm estimates the location with ToA-based distances. The
basic ToA-based Algorithms also need at least three distances to estimate
location. In the area that less than three gateways receive the signal from a
device, we use the proposed algorithm that can estimate location with two or a
single distance. In addition, we propose a LoRa Time Synchronization
Protocol (LTSP) to calculate ToA-based distance in LoRa. The existing
method such as [9] is inefficient to calculate ToA-based distances in LoRa
network. It is because the method only calculates propagation delay between a
transmitter and a receiver in order to estimate the range.

To improve localization accuracy, before we do localization, we correct
the ToA-based distances through the fingerprint map. The ToA-based
distances are not accurate in noisy environment. Localization with the
inaccurate distances can lead to large localization errors. Thus, in off-line
phase, we estimate ToA-based distances at reference points (RPs) and store
them in database with real distances. In online phase, the ToA-based distance
of the target device is corrected by fingerprint map. Then, each corrected

distance is used for localization. However, as we mentioned above, there is



overhead to maintain the fingerprint map. To solve this problem, we use static
end-devices (smart metering device, environment monitoring device, smart
parking, etc.), as RPs. As we use static end-devices as RPs, the overhead can
be alleviated.

The rest of the paper is organized as follows. We describe a system
model in Section II and followed by LTSP in Section III. The proposed
algorithm is further described in Section IV. Some experimental results and
discussions are presented in Section V. We then conclude the paper in Section

VL



Chapter 2
System Model

Fig. 1. System model

As shown in Fig. 1, our proposed LoRa networks consist of network server
(NS), gateway (GW), and end-device (ED). The ED is further classified into
static end-device (SD) and mobile end-device (MD). The location of SD is
fixed and the NS knows its the location, whereas the MD is a device to be
localized. We consider there are N deployed GWs within a transmission
range. These GWs are synchronized with each other by using a GPS receiver

and the SDs are randomly deployed within the service area.



Chapter 3

LoRa Time Synchronization Protocol

tRCV tREQ tRCV
LOC,GW; SYNC SYNC,GW;
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Fig. 2. Example of LTSP operation

The goal of LTSP is to calculate distances between a device and multiple
GWs within a single operation. As seen in Fig. 2, there are synchronization
error and clock drift between ED and GWs. We can calculate ToA-based
distance using the message departure time, the message arrival time at GWs,
and synchronization error. In this section, we introduce ToA-based distance
calculation process considering synchronization error and clock drift. The

calculating distances procedure are follows:

1) The ED sends a localization request message to neighbor gateways

with its local time ti{gg



2) Among GWs which receive the message, only one GW sends a

synchronization request message

3) The ED reports the time that the message is received t&Enc

4) NS calculates the synchronization error and clock drift

to GWs

5) Thus, NS can calculate propagation delays between ED and GWs

By considering the whole process of message exchange process, we can

obtain the following three equations:

RCV REQ
trocew; = tLoc T At + agw;

REQ _ +REQ RES REQ
tsyne T @ew; = tioc T AL+ (e8fnc - troc) X B,

RCV _ REQ RES REQ
tsyne = tioc + At + (t8¥Re — troc) X B + agw;,

(1)
)
€)

where At is synchronization error, agw, is propagation delay between ED

and GW-i, and [ is time lapse ratio between ED and GW. Based on the Eq.

(1), (2), and (3), we can calculate At. Therefore, the ToA-based distance

between MD and GW-i can is calculated as follow:
D% = ¢ x {tlr}(():(‘:l,cwi — (¢ 5(])58 + At)},

where ¢ is signal propagation speed.

(4)



Chapter 4

Proposed Localization Algorithm

In the proposed scheme, the localization process consists of two phases: (1)
off-line phase, and (2) online phase. In the off-line phase, we create a
fingerprint map by using SDs. In the online phase, the location of MD is
estimated as following steps.

1) First, MD calculates ToA-based distances.

2) Next, the distances are corrected by fingerprint map

3) Then, we perform the localization based on the corrected distances in

Step 2 with different algorithms, which to be further discussed in the

following section.

In the following section, we will describe the distance correction and

algorithms for different cases.



A. Distance Correction

Fingerprint map

Dyoa D
MD ToA distances
GW1 GW2 GW3 GW1 GW2 GW3
DTnA
GWI  Gw2 6wz @ SD; | DJ* | DI%* | DI | Dsy | Dsp | Dis
MD D;l‘oA Dél‘oA Dg‘oA _
SDs DZ({A Dg,(z)A Dg,gA D¢ D,z D¢3
@ : :
SD" DuT,(;A D]’f,gA D,TEA Dn,l Dn,2 Dn,3
k=2 ® l @
d3 d6 d8 e 5
GW1 GW2 GW3
Euclidean distances MD | (D31 +D61)/2 | (D32+Ds2)/2 | (D3a+Ds3)/2

MD corrected distances

Fig. 3. Example of distance correction (K = 2)

To ensure the accuracy of the localization, a correction process must be in
place. In this work, we use fingerprint map to correct ToA-based distances.
The fingerprint map is constructed during the off-line phase, where ToA-
based distance and real distance between SDs and GWs are collected
respectively. An example of distance correction is depicted in Fig. 3. Let

Dl-TJ‘-)A denotes the ToA based distance, and D;; be the real distance between

,j are stored in

SD-i and GW+. For each SD-i and GW+j, D{?* and D;
fingerprint map as a set of RPs. In online phase, ToA-based distances between
MD and GW-j, denoted as Dl-TOA, are calculated and corrected using K
Nearest Neighbors (KNN) algorithm. KNN algorithm is one of the notable

fingerprint based algorithm, where the K nearest RPs are selected according to



the Euclidean distance. Let Dyp and Dsp represent the ToA-based distance
vectors of MD and SD respectively. Euclidean distance in ToA-based distance

between MD and SDs is defined as

d =/X(Dwmp — Dsp)?, (5)
where d denotes the dissimilarity of ToA-based distances between the SD and
MD. Intuitively, the smaller d value indicating the smaller gap between SD
and MD. In this work, the K SDs with smallest d value are selected. Then the

MD’s ToA-based distances are corrected as based on:

= 1
D; = X1 Dy, (6)
where D; is the corrected distance between MD and GW-j. After all

distances are corrected, these distances are used in the localization algorithm

B. Case I : Area that three GWs receive MD signal

In this case, we consider localization in area where three GWs receiving the
signal from MD. Since we have corrected the distances between MD and

GWs, we can estimate the location with Least Squares method (LS) in [10].

C. Case IL: Area that two GWs receive MD signal

As shown in Fig. 4, the intersection between two circles (with radius D, and

Ds) will give us two intersection points. Since one of these two points is in a

- 10 - A



transmission range of the other gateway, we will exclude it and select another

point as the final location.

Fig. 4. Example of localization in Case LI

D. Case IIl: Area that a single GW receives MD signal

P4 N
7

7 ~
L D N
e ,®\\ FD, \
P I N X
y l i FD, !
P— 1 \

Fig. 5. Example of localization with two FDs in Case Il
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Even though we exclude the coverage range of other GWs, it is still unfeasible
to estimate the location of device with a single distance. To tackle this
problem, we propose to use SDs (Class B) as a forwarding device (FD). FD is
a normal SD in FD mode where it can listen MD message during certain
period and forward it to GW. In LoRa, the purpose of Class B is to have an
end-device available for reception on a predictable time. All gateways must
synchronously broadcast a beacon providing a timing reference to the end-
devices. Based on this timing reference the end-devices can periodically open
receive windows called ping slot. A network can initiate downlink using one
of these ping slots [6]. As NS sends a FD request message to SDs in ping slot,
SDs (Class B) are changed into FD mode. As well as GW, FDs receive a
message from MD. Thus, we can get D and Dgp, which are corrected
distance between MD and GW and ToA-based distances between MD and
FD-i, respectively. After calculating the distances, we find intersection points

sets {P1,1,P1,2}, {P2,1,P2,2}, Y {Pn—1,1»Pn—1,2}a {Pn,1»Pn,2} where Pi,j is j-
th intersection point between circle with radius D and circle with radius
Dgp,. One intersection point in each set is selected and sum of distance
differences is calculated. The n intersection points with minimum sum of
distance differences are also selected. Having a minimum sum of distance
difference means the location which FDs expect is similar. Finally, the
median of n points will be determined as final location. An example of

localization with two FDs in Case III is depicted in Fig. 5. The procedures to

calculate Dgp, are as follows:

-12 -



1) The MD sends a localization request message and the server know

that it is in Case III

2) The NS sends localization interval request message to make SDs
(Class B) FD mode at next localization time and MD sends
localization interval information in interval response message

3) At next localization time, server sends forward request message to

SDs (Class B) in ping slot.

D To do localization, at least two FDs which can listen MD
message are needed. Thus, at first localization time, we divide
coverage range with 40" and select one SD randomly in each
partition.

@ After the localization, server selects n SDs near from last
location

4) The FDs are listening and MD sends localization request message
5) The FDs which receive the message forward it and the rest
procedures in LTSP are followed

6) Repeat the above steps from step 3 to step 5

The above procedure is described in Fig. 6.

- 13 -



RCV RCV
FWD REQ trwp, tFwp,

SN /S SN\
SN Y \ /
/- \/
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Fig. 6. Procedures of calculating Dgp, in Case III

As we follow the procedures, we will obtain

REQ — +RCV
tLoc + At + amprp; = trWwb; — XFD;GW> (7)

where aypp; is propagation delay between MD and FD-i, tg\?v‘]/)i is arrival
time of forwarded message from FD-i, and agp,qw is propagation delay
between FD-i and GW.
REQ
To calculate Dgp;, we should know aypp;. We know ¢; o, At, and
RCV

tpwp, through above procedures and app,gw since FDs are SDs which are

used in fingerprint map. Thus, we can calculate ayprp, and Dgp;.

-14 - +



Chapter 5

Performance Evaluation

A. Simulation Setting

In this section, we evaluate the performance of a proposed localization
algorithm through a simulation presented in Fig. 1. Our simulation is based on
the urban and rural scenarios with respect to the number of number of GWs
that receive message from device:

1) For urban scenario, we set the locations for three GWs (each with 5
km coverage range) at (0,0), (3000,0), and (1500,2500).

2) For rural scenario, we set the locations for three GWs (each with 10
km coverage range) at (0,0), (8000,0), and (4000,6920) for the rural
scenario.

Note that the unit used in our simulation is meter.

The SDs are located randomly and used for fingerprint map. The accuracy of
fingerprint-based method is highly affected by the number of RPs. To check
the impact on the performance of the algorithm, we set SDs density to 0.01
SD/m?, 0.0004 SD/m?, 0.0001 SD/m?, 0.00004 SD/m?. 20% of total SDs are
Class B SDs and the number of FD is set to 3. When the proposed scheme is
compared with other algorithms, we set density 0.0004 SD/m? and 0.0001

SD/m? respectively considering urban and rural environment. The MD

- 15 - :



moves at walking speed (1 m/s) for 1 hour. The localization interval is set to 5
minutes. For a given trial, the distance measurements for NLOS [7] are

rn=r+e+a, (8)
where 7; are the estimated distance, and rl-o are the true distance, and ¢;
denoting measurement noise are independently and identically distributed
(i.i.d.) zero mean Gaussian random variable of variance o2, and a; is NLOS
error which follows uniform distribution.

We compare the performance of our algorithm with the basic TDoA
localization algorithm and the algorithm in [6] which is called GFG. GFG
creates a grid of possible locations of the end device and creates subgrids in
the grid. The distances from each gateway to the center of subgrids were
computed and stored in dataset. In online phase, distances calculated by
TDoA algorithm were compared with the distances in the database. The center
location of subgrid that provide minimum error is determined as final location.

The following results are obtained from 10000 simulation runs.

- 16 -



B. Simulation Result

1.0
0.9-
---- GFG
e TDoA
0.7 -
0.6
=3 ] '
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' ——0.0001 SD/m”
0.1 ' —— 0.00004 SD/m”
0.0

100 200 300 400 500 600

Localization error (m)

Fig. 7. CDF of localization accuracy in Case | of urban scenario

Fig. 7 shows the cumulative probability distribution of localization errors for
each algorithm in Case I of unban scenario. As observed from the figure,

although the number of SDs used for fingerprint map decreases in the
proposed scheme, the localization accuracy is not degraded greatly. The
proposed scheme has significantly low localization error, compared with GFG
and TDoA. Since the inaccurate ToA-based distances biased by NLOS error
are corrected through the fingerprint map and the corrected distances are used
for ToA-based localization algorithm. Thus, the performance is much better

than other schemes. On the other hand, GFG and TDoA has considerably high

17 - :



localization error. This is because there is no process to mitigate NLOS error
in both GFG and TDoA. The methods use the inaccurate values to estimate

location and lead to high localization error.

Proposed scheme

SDs density GFG | TDoA
. . . . 4
(SD/mZ) 0.01 0.0004 | 0.0001 | 0.0000:
mean (m) | 150.94 | 154.15 | 157.26 | 164.90 | 775.51 | 1360.51
Case 1
Std. (m) | 82.99 | 86.28 | 88.50 | 94.07 | 1268.04 | 4385.12
mean (m) | 217.74 | 221.44 | 222.68 | 228.98 X X
Case II
Std. (m) | 118.98 | 120.26 | 123.06 | 127.92 X X
mean (m) | 247.00 | 247.31 | 250.43 | 250.87 X X
Case I
Std. (m) | 242.28 | 249.45 | 251.12 | 252.50 X X

Table 1. Statistical characteristics of the localization accuracy in urban

Table 1 shows mean and standard deviation of the error in all cases of
urban scenario. In case I and III, [6] and TDoA methods cannot estimate
location since at least three GWs are needed for localization. However, the
proposed scheme can estimate the location in the cases. In both Case I and
[T, although the number of SDs decreases, the localization accuracy results
are not changed greatly. Moreover, the proposed scheme has high localization
accuracy 221.44 m and 247.31 min Case II and III, respectively. In a GW

coverage range, from the perspective of localization possible area, the area

- 18 -



that we can estimate location is widened by 51% compared with GFG and

TDoA.
Proposed scheme GFG
Sync error (ns) 10 200 400 10 200 400
mean (m) | 158.35 | 171.16 | 205.60 | 780.75 | 805.89 |1023.46
Case I
Std. (m) | 88.03 | 103.33 | 128.54 | 1280.28|1302.65|1568.16
mean (m) | 224.44 | 256.85 | 348.24 X X X
Case I
Std. (m) | 121.70 | 159.89 | 207.52 X X X

Table 2. Statistical characteristics of the localization accuracy
according to the time synchronization error in urban

Time based localization requires strict synchronization between the GWs.
It is critical that the GWs are synchronized with nanoseconds (ns) accuracy. If
it fails to achieve precise time synchronization between devices, the failure to
obtaining the correct values directly affects location estimation error. In the
work [13], GPS synchronization performance was evaluated. Although a
maximum time synchronization error value of 423 ns was measured, most
time synchronization errors were within 200 ns, corresponding to 60 m
localization error. Table 2 shows mean and standard deviation of the error
according to the time synchronization error in urban scenario. We assumed the

system having time synchronization error of 10 ns, 200 ns, and 400 ns. And

- 19 -



we set SDs density to 0.0001 SD/m? in the proposed scheme. Compared to

the performance of GFG, the proposed scheme has better performance. In the

average synchronization error 200 ns, the proposed scheme has good

performance compared with GFG. The proposed scheme has 171.16 m and

256.85 m in Case [ and Case II respectively. At last, we can see that

although the time synchronization error is changed, the performance is not

degraded significantly in the proposed scheme.

1.0
: - T
0.8— ¢~‘f-4‘v.’,,"‘.f—,‘__
0.7 4 -
0.6 |
T // ----GFG
5 P .
0.4 -
2
- ——0.018D/m"
. ——0.0001 SD/m?
g ——0.00004 SD/m’
0.0 | I I
0 100 200 300 o

Localization error (m)

Fig. 8. CDF of localization accuracy in urban scenario

Fig. 8 shows CDF of localization accuracy in Case [ of rural scenario. In

general, the localization error of rural scenario is smaller than the localization

- 20 - A



error of urban scenario. And there is no big difference on localization error
between GFG and TDoA. It is because the NLOS error of rural scenario is
smaller than the NLOS error of urban scenario. Similar to the result of urban
scenario, although the number of SDs decreases in the proposed scheme, the
localization accuracy is not degraded greatly. The proposed scheme provides
better performance than GFG and TDoA. This is because, although the NLOS
error is lower than the NLOS error of urban scenario, still the inaccurate

values affected by NLOS error are used for localization.

Proposed scheme

SDs density GFG TDoA
(SD/mZ) 0.01 0.0004 | 0.0001 | 0.00004
mean (m) | 53.82 | 55.61 | 63.86 | 76.65 | 205.21 | 207.66
Case 1
Std. (m) | 27.55 | 28.48 | 33.85 | 42.65 | 336.79 | 319.82
mean (m) | 64.69 | 66.49 | 73.34 | 89.63 X X
Case II
Std. (m) | 29.44 | 31.13 | 38.15 | 49.76 X X
mean (m) | 117.43 | 118.27 | 119.66 | 121.01 X X
Case I
Std. (m) | 120.44 | 120.52 | 123.78 | 123.43 X X

Table 3. Statistical characteristics of the localization accuracy in rural

Table 3 shows mean and standard deviation of the error in all cases of
rural scenario. Like the urban scenario, GFG and TDoA methods cannot

estimate location in case Il and case III. Although the number of SDs

-21 -



decreases, the localization accuracy result in Case II and III are not
changed greatly. And the proposed scheme has a high localization accuracy
74.34 m and 119.66 m in Casell and III, respectively. The localization

possible area in a GW coverage range is widened by 75% compared with

GFG and TDoA
Proposed scheme GFG
Sync error (ns) 10 200 400 10 200 400
mean (m) | 63.13 | 83.89 | 133.03 | 201.96 | 339.64 | 588.96
Case I
Std. (m) | 33.69 | 44.49 | 59.97 | 316.29 | 550.80 | 952.64
mean (m) | 76.56 | 126.31 | 227.67 X X X
Case I
Std. (m) | 40.22 | 64.29 | 77.23 X X X

Table 4. Statistical characteristics of the localization accuracy
according to the time synchronization error in rural

Table 4 shows mean and standard deviation of the error according to the
time synchronization error in rural scenario. Compared to the performance of
GFG, the proposed scheme has better performance. In the average
synchronization error 200 ns, the proposed scheme has good performance
compared with GFG. The proposed scheme has 83.89 m and 126.31 m in

Case [ and Case II respectively. Like the urban scenario, we can see that

-22 -



although the time synchronization error is changed, the performance is not

degraded significantly in the proposed scheme.

-23 -



Chapter 5

Conclusion

We have suggested a LoRa ToA-based localization using fingerprint map. To
make localization possible in all areas, we have designed LoRa Time
Synchronization Protocol (LTSP) and proposed ToA-based algorithm for each
case. In addition, the proposed scheme uses fingerprint map to reduce the
localization error. As we use static end-devices as reference points, we can
reduce the overhead to maintain the fingerprint map. The simulation results
show that the localization accuracy is improved compared with the existing
LoRa localization algorithms in both urban and rural scenarios. In addition,

the localization possible area is also widened by the proposed scheme.
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