creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Functionally and Temporally Correct
Simulation for Automotive Systems on

Multicore Simulator

EEECREC REL ERESZ R ES- L
ASRNAE FY BF ABH A 7Y

20194 2¢

Functionally and Temporally Correct
Simulation for Automotive Systems on

Multicore Simulator

201849 12¢

9% ses @
299% AZA (@

9 4 o] % 2 (@)

Abstract

Functionally and Temporally Correct
Simulation for Automotive Systems on

Multicore Simulator

Wonseok Lee
Department of Computer Science and Engineering
The Graduate School

Seoul National University

This dissertation presents functionally and temporally correct simulation method for
cyber-side of an automotive system on multicore simulator. To overcome the limi-
tations of the existing simulation methods which do not correctly model temporal
behaviours such as varying execution times and task preemptions, the novel simula-
tion technique assuming single core simulator was proposed. In this work, we extend
the single core simulator to the multicore while keeping all of the proposed key ideas
to guarantee correct simulation. We introduce heuristic task partitioning algorithm
based on memory usages and approximated task-wise blockings of simulated tasks.
As a result, we could improve up to 97%p, 15%p of simulation capacity compared

to the single core, and other task partitioning algorithms, respectively.

keywords : Automotive System Simulation, Real-time Simulation

Student Number : 2017-21586

ii

Contents

1 Introduction 1
1.1 Motivation and Objective 1

1.2 Approach 1

1.3 Organization. i i e e 2

2 Related Work 3
2.1 Model-Based Simulations 0oL, 3

2.2 Real-time Execution Platforms 3

2.3 Functionally and Temporally Correct Simulations 3

3 Background 5
3.1 Description on the real cyber-system 5

3.2 Description on the simulated cyber-system 7

3.3 Idea of Functionally and Temporally Correct Simulation 9

4 Problem Description 12
4.1 Keeping the key ideas of the single core simulator 12
4.2 Maximally utilizing the multicore 13

5 Proposed Approach 15
5.1 Memory constraint 15
5.2 The Smallest-blocking-first heuristic 18
5.2.1 Intuition of Smallest-blocking-first algorithm 19

5.2.2 Finding the Expected Earliest Start Time 20

iii

5.2.3 Finding the Expected Latest Finish Time

5.2.4 Weighting the [EEST;;, ELFT;

6 Evaluation

6.1 Simulatability according to the number of cores
6.2 Simulatability according to the partitioning method

6.3 Simulatability according to the physical read/write task ratio

7 Conclusion

References

v

28
28
30

31

35

37

List of Figures

10

11
12

13

Predicted performance and real performance of LKAS
Example automotive system

Execution scenario and simulation scenario of example automotive

Job-level precedence graph of the example automotive system
Possible job-level precedence graphs after executing J1; on the sim-
ulator
Memory size of functions for body control module implemented by
Renault
Intuition of Smallest-blocking-first heuristic
Construction of sparse graph and EEST;; of each job for the example
job-level precedence graph
Construction of dense graph and ELFT;; of each job for the example
job-level precedence graph
Weighted intervals and task-wise blocking values for the example
job-level precedence graph
Simulatability according to the number of simulator cores
Simulatability compared to the other task partitioning heuristics

Simulatability according to physical read/write task ratio

10

14

16

19

21

23

26

29

31

List of Tables

1 Normalized worst case execution times of tasks according to co-run

2 Normalized worst case execution times of tasks according to the mem-

oryusageofeachcore 17

vi

1 Introduction

1.1 Motivation and Objective

Simulating the automotive system using an accurately designed simulation model is
essential to correctly predict its final performance at design phase. Incorrect predic-
tion brought out by imprecisely modeled simulation causes painful revalidation on
following development processes. Figure 1 shows that Simulink [1] predicts the ideal
performance of LKAS (Lane Keeping Assistance System) which does not match with
its real performance. This real performance is only revealed at the end of the im-
plementation phase, and subsequently system developers ought to repeat the entire
development processes from the beginning.

The reason why the real performance is not predicted on the existing simulation
tools is that they only focus on the functional behaviors of the system and do not
carefully consider the temporal behaviors such as varying execution times and task
preemptions on ECU (Electronic Control Unit) environments. To consider not only
the functional behaviors but also the temporal behaviors of the automotive system,
the previously proposed simulation method transformed the simulation problem to a

real-time task scheduling problem on single core simulator PC [2].

1.2 Approach

In this paper, we extend the proposed single core simulator to the multicore simulator

considering:

e memory constraint which is necessary to guarantee functionally and tempo-

predicted performance by Simulink
real performance by implemented ---------
) cyber-side

E .
5 \
3} '
s 05 ¢ H .
—c% : .'/\'\
5 L N Y A A —~
o N A
3) . Voo v ~
= P Vo \/
o4 Vo Vg
5] Vo \
2 05 Y —
|5 Vi -
£ VY
o, \
<
0

1k 4

_1.5 1 1 1 1 1 1 1 1 1

0O 2 4 6 8 10 12 14 16 18
time (sec)

Figure 1: Predicted performance and real performance of LKAS [3]

rally correct simulation

o heuristic task partitioning algorithm to efficiently utilize the multicore by

minimizing approximated task-wise blockings among the simulated tasks

1.3 Organization

This paper is organized as follows. In Section 2, we survey related works. Then,
Section 3 explains the idea of functionally and temporally correct simulation on sin-
gle core simulator that will be extended to the multicore. In Section 4, we describe
our problem. In Section 5, we propose our approach. In Section 6, we evaluate our

approach through synthetic workload experiments. Finally, Section 7 concludes the

paper.

2 Related Work

2.1 Model-Based Simulations

To predict the final performance of cyber-side of an automotive system at design
phase, simulation tool such as Simulink [1] is widely used in industry. However, it
mimics only functional behaviours of the system and does not consider temporal
behaviours which will occur once the system is implemented on the ECUs. The sim-
ulated tasks on Simulink are ideally executed while ignoring the temporal differences
caused by ECU environments. Moreover, Simulink is focusing on offline simulations

which do not interact with physical-side.

2.2 Real-time Execution Platforms

To simulate the system while interacting with the physical-side, real-time simulation
on AutoBox [4] is commonly used. However, AutoBox provides only rapid prototyp-
ing of the system and does not consider the real ECUs’ performance. The temporal
behaviours of the simulated tasks are determined only by the performance of Au-
toBox hardware, and users do not have any control knob to model the real target
ECUs’ performance which determines the actual temporal behaviours and the final

performance.

2.3 Functionally and Temporally Correct Simulations

To accurately model both of the functional and temporal behaviours while interacting
with the physical-side in real-time during the simulation the novel simulation method

guaranteeing the functionally and temporally correct simulation was proposed [2].

However, the proposed method considered only single core simulator PC which does
not provide enough capacity to simulate the whole system.

To increase capacity of the functionally and temporally correct simulation, a brief
idea of multicore usage based on G-EDF (Global-Earliest Deadline First) scheduling
was proposed [5]. However, in this approach, the task migration costs and memory
interferences, which must be taken into to guarantee temporal correctness, were not

considered.

3 Background

3.1 Description on the real cyber-system

The cyber-side of an automotive system to be simulated can be given as Figure 2
shows. Each control task is denoted as T; and data producer/consumer relations among
the tasks or physical-side are denoted by directed edges as in Figure 2(a). Each task,
T;, is realized on its mapped ECU as a periodic task and can be represented as a

five-tuple:
best,real ~worst,real
Ti:(Fiaq)hPhC[aci :)

where F; is the function that t; executes, ®; is the task offset, P; is the period of T;.

Cbest ,real Cworst ,real

; ,C; represent the best/worst case execution time of T; on its mapped

ECU, respectively.

If the task parameters are given as Figure 2(b), and RM (Rate Monotinic) schedul-
ing policy is assumed for each ECU, we can expect one of their possible execution
scenarios as Figure 3(a) shows. Every j-th job of T;, J;;, is released at ®; + (j—1)P,

. . . . best | t A
and has execution time varying within [C;“""" C;"*"™""

; ,C;]. The time points where

the cyber and physical-side interact each other are marked as triangles, and one of
the data paths from the physical read to the physical write is denoted by dashed di-
rected arrows. In the Figure 3(a), J11, who is the job of the T; that reads physical-side
data, reads data from the physical-side at time O and produces output for its consumer
task’s job, Jo;. Ja1, who starts after its producer tasks’ jobs Ji; and J3; finish, con-
sumes the outputs produced by Jj; and J3;. After that, J,; writes its output to the

physical-side at time 14. J31, who starts before its producer task’s job Ji; finishes,

0] 8 2 6
0|16 2 4
50 2 16] 2 4

Physical-side

(a) Cyber-side of an automotive (b) Control task parameters

Figure 2: Example automotive system

PTG T
1 1 A\A 4
J3 Ju Jo Jiz T T R
I T T T T I I I T

0 1 % 34 5 6 7 8 9 10 11 12 13 14 15 16

= ——— D e e e = \

T T O T O S O O N R RO N NN RN N :

[] I I I T I | I I I I T 1 Y T I H
[(A) Tagged Data Read / Delayed Data Write 14] ;

A y

» Loy AN |V*7\\ 777777
e B B B B B W AU e e e S
0 Physical-side 14]

(b) Simulation scenario of example automotive system

Figure 3: Execution scenario and simulation scenario of example automotive system

may consume the data produced by Jig (not shown in this figure).

At the above scenario, we assumed that all of the F;s always consume the most
recently produced data at the entry of their executions and produce their output at the
exit of the executions. On the same assumptions, let’s additionally assume that the

simulator running on a PC environment has:

o Faster execution than ECU: Since PC has more powerful performance than
ECU, the execution times of F;s are much faster on the simulator than that of

on the ECU. e.g., Core 17-9700K [6] in PC vs. TC275 [7] in ECU.

e Tagged/Delayed Data Read/Write: The simulator can log all of physical
read/write data with time-tags. The simulator can execute the F;s with any spe-
cific tagged physical read data. Similarly, the simulator can write the delayed

output data to the physical-side at any specific time point.

e Execution time mapping functions: For every F;, there exist execution time

mappings between the simulator and the ECU. That is, when J;; is executed

on the simulator for the time of efj-’", we can estimate its execution time on the

ECU, e{j“l = Mi(efj-’") where M; represents the execution time mapping func-

tion. This assumption on multicore simulator will be validated in Section 5.

3.2 Description on the simulated cyber-system

On the above assumptions, the resulting physical-side interactions produced by the
simulator depicted in Figure 3(b) equal with that of the real cyber-side shown in the
Figure 3(a). In the Figure 3(b), we assumed that e{j‘f“l =2 efj-’" for all F;s. At time O,

the simulator logs the physical-side data with its time-tag O while executing J3; who

may consumes the data produced by Jig. When J3;’s execution is finished, Ji; starts
its execution with the tagged physical-side data which was logged at time 0. After
J11’s execution is finished, J,; starts its execution. At this moment, its data producer
jobs, J11 and J31, just have finished. So, J>; consumes the produced data of J;; and J3;
which is most recently produced. After J>;’s execution, J; delays its physical write
until 14 which is the same with the actual physical write time on the real cyber-side. In
the Figure 3(b), we can see that the data path from the physical read to the physical
write is the same with that of the real cyber-side in the Figure 3(a). The simulator
shown in the Figure 3(b) guarantees the functional and temporal correctness since it
executes the same F;s with the same inputs and receives/gives the same interaction
from/to the physical-side at the same time point as the real cyber-side. More formally,
we can say that the simulation is functionally and temporally correct if all of the

simulated jobs can be scheduled while satisfying:

e Physical-read constraint: For any job J;; who reads physical-side data, the

simulator should schedule it later than its actual start time on the real cyber-

side. i.e.,
S,sim S,real
5" > (1
S,sim S,real . .
where 1;] and 7; ; represent the start time of J;; on the simulator and the

real cyber-side, respectively.

o Physical-write constraint: For any job J;; who writes its produced data to the
physical-side, the simulator should finish it before its actual finish time on the
real cyber-side, i.e.,

F,sim F,real
n" <t 2

Fsim

where 7;"" and tg’ml represent the finish time of J;; on the simulator and the

real cyber-side, respectively.

e Producer/consumer constraint: For any pair of jobs, Jy and J;;, if Jyy is a
producer job of J;; on the real cyber-side, the simulator should finish J; j» before
starting J;;, i.e.,

F,sim S,real

3.3 Idea of Functionally and Temporally Correct Simulation

To schedule the simulated jobs while meeting all of the above constraints, the sim-

F,real
ij

S,real
ij

ulator has to know ¢ and ¢ which are non-deterministic due to the varying
execution times of the jobs. To tackle this challenge, the previously proposed sim-
ulation method [2] transformed the simulation problem to the scheduling problem
of a job-level precedence. The proposed method progressively resolves such non-
determinism by executing the simulated jobs during the simulation.

We skip the details of the proposed simulation method because they are beyond
the scope of this paper. Instead, we briefly review the proposed method using the ex-
ample automotive system in the Figure 2. The simulation problem for the cyber-side
of an automotive system in the Figure 2 can be transformed to a job-level precedence
graph scheduling problem as shown in Figure 4. At the left-side of the Figure 4, each
vertex represents the job to be simulated. The tags, 'R’ or "W’, at the upper-left cor-
ner of the jobs show the physical read/write constraints that the tagged jobs have.
Each edge shows the pre-execution condition between the jobs where hat-job (J3;)

is virtually added job which has zero-execution time and is needed only for deriv-

ing pre-execution conditions. The solid edge (Jyj,J;;) represents the deterministic

min(t%), max (%) = [0, 0
min(t55), max ()] =2, 6

[

[

[min(t55"), max(t55)] =8, 8
[min(t55"), max(t55)] = [10,
[
[
[
[

]
]
]
1
min(t57), max(t57)] = [2, 6]
6
]
]

J12

Flul/) I?’lCl‘C(Z‘I_“a/ [4 1]

min(t*F), max (%)) = [2, 2
min(t5¢), max(t'57)] = [4, 6

min(t

Figure 4: Job-level precedence graph of the example automotive system

edge which means Jy 7 should be finished before J;; starts. The dashed edge (J;j,J;;)
represents the non-deterministic edge which means it is not known yet whether J;

should be finished before J;; or not. The closed-intervals at the right-side of the Fig-

S,real F,real

ure 4 represent the expected 77, 7;;" ranges which are varied by the execution

times of the jobs. The numbers at the lower-left corner of the jobs show the deadlines

which are calculated based on the deterministic edges and the tS real tg’ml ranges.

To schedule the jobs in the job-level precedence graph, the simulator first finds
a job who does not have any unfinished deterministic predecessor. If the found job
does not have the physical read constraint, it adds this job to the ready queue of the
simulator. If the found job has the physical read constraint, it adds the found job only
when Eq. 1 holds, i.e., current time is later than its start time on the real cyber-side.
Out of the jobs in the ready queue, one of them is scheduled based on EDF (Earliest-
Deadline-First) scheduling policy according to their assigned deadlines. Whenever a

job in the ready queue is finished, its execution time on the simulator, eﬁj’", becomes

known, so its execution time on the real cyber-side, e’eal M;(e 5;’") is also known.

F,
real the simulator progressively narrows the tS real ¢! /zml

Using the e;7,

ranges. At this

step, the non-deterministic edges are determined as deterministic edges or removed

10 x—g N :.-_ -:I

S,real F,real
based on the narrowed ;" £;"

ranges. Lastly, the simulator re-assigns the dead-
line of each job using the updated job-level precedence graph. By iterating the above
processes, the proposed simulation method can schedule the job-level precedence
graph.

Meanwhile, it is already proven that at the time when the simulator is about to add
a job to the ready queue, its start time on the real cyber-side, tfj”eal, is already known.
Besides, it is also already proven that if the simulator can schedule all the simulated
jobs meeting their assigned deadlines, they satisfy all of the constraints in Eq. 1,

Eq. 2, and Eq. 3. i.e., functionally and temporally correct simulation. At following

sections, we extends the above described single core simulator to the multicore.

11 x—g N :.-_ -:I

4 Problem Description

We aim to extend the single core simulator to the multicore simulator while guaran-
teeing the functional and temporal correctness. The multicore simulator has multiple
processing units (cores) and corresponding ready queues. It means that the multicore
simulator can execute multiple simulated jobs in parallel. In this parallel execution
environment, our goal is keeping the key ideas of the previously proposed single core

simulator while maximally utilizing the benefits of parallel execution.

4.1 Keeping the key ideas of the single core simulator

The basis of the key ideas in the single core simulator is the execution time mapping

function. If the execution time mapping still holds in the multicore simulator, the

Freal
ij

S,real

Lt ranges can be correctly narrowed, and therefore the non-determinism in

the job-level precedence graph can be properly resolved while keeping the temporal
and functional correctness.

However, in the multicore environment, it was reported that the interferences be-
tween the cores at shared memory such as DRAM and shared cache cause the delay
spike of the executed job as high as 600% of its normal execution time [8]. It means

that efj-m becomes unpredictable and is bound to the memory interferences, not to its

actual computational amount. Therefore, e/¢“/, which is mapped from the e

i sim by the

ij
execution time mapping function, also becomes unpredictable. This unpredictabil-

Fireal
ij

. . . S.real . .
ity causes incorrect narrowing of the 7,7, ¢ ranges and consequentially incurs
incorrect simulation.

To prevent such unpredictability caused by the interferences between cores at

12 Al =51

the shared memory, we introduce memory constraint at Section 5.1. By introducing
the memory constraint, all the simulated jobs can be executed while minimizing the

influence of the shared memory interferences between the cores.

4.2 Maximally utilizing the multicore

Our multicore simulator schedules the jobs in the job-level precedence graph. To
schedule the jobs with precedence constraints on the multicore environment, G-EDF
scheduling policy based on their effective deadlines is commonly used [9]. In this
approach, effective deadline is assigned to each job along the fixed precedence rela-
tions between the jobs. By executing the jobs following the G-EDF scheduling policy
according to their assigned deadlines, all the jobs with precedence constraints can be
efficiently scheduled.

However, our job-level precedence graph scheduling problem has two major dif-
ferences with the above problem. Firstly, our job-level precedence graph includes the
non-deterministic edges, so its precedence relations between the jobs are not fixed
and keep changing during the simulation. For example, both of (a) and (b) in Fig-
ure 5 are possible job-level precedence graphs after executing Ji; in the example
job-level precedence graph mentioned at the Figure 4. Depending on eﬁ“’ , the non-
deterministic edge, (J31,J21), becomes deterministic edge or is removed. Secondly,
by introducing the memory constraint, we cannot use the G-EDF scheduling policy
anymore. It is because that the G-EDF may cause a core to execute the tasks exceed-
ing its memory usage limitation. The G-EDF scheduling policy globally picks a core
to execute the tasks without any consideration about the memory usage.

To cope with such differences, we introduce heuristic task partitioning algorithm

13 N = L

@)
DD
)

(a)

@)

)

(b)

Figure 5: Possible job-level precedence graphs after executing J;; on the simulator

for partitioned EDF scheduling policy at Section 5.2. By using the heuristic task

partitioning algorithm, the job-level precedence graph can be efficiently partitioned

and scheduled on the multicore simulator.

14

5 Proposed Approach

As we mentioned before, we introduce the memory constraint for guaranteeing va-
lidity of execution time mapping functions. We limit the sum of tasks’ memory usage
on each core to minimize the influence of shared memory interferences between the
cores. In other words, it means that the set of tasks, T"= {t;,72, ...}, is partitioned into
the each core according to the memory usage of each task, MEM,,. Since there can
be more than one partitionings satisfying the memory constraint, we have to find the
most parallelizable partitioning among them to maximally utilize the benefits of the
multicore. To also consider such chance to be parallelized, we introduce the heuristic

task partitioning algorithm which minimizes the approximated task-wise blockings.

5.1 Memory constraint

To minimize the interfereces between the cores at the shared memory, the isolation
techniques such as DRAM bank partitioning [10] and shared cache partitioning [11]
were proposed. However, if we focus on the automotive system tasks which com-
monly have small memory usages, we can enjoy the reasonable level of isolation
through the task partitioning alone without such precisely designed isolation tech-
niques.

Since the automotive system tasks are run on ECU which has limited memory
resource, they are normally implemented to access the small memory section. For ex-
ample, Figure 6 shows the such restricted memory usages of the automotive functions
composing the body control module of Renault (Due to the confidentiality reasons,

the specific information of each function is not given). When we consider the parallel

15 N = L

35
5% XX ROM size
KXl
e 7 .
30 :::: 2272 RAM size
KXl
K
2 K
M 25 K
Y K
o K
220
2 &
= K]
e
215 &
g &
=) %
%%
5} %}
KXl -
S 10 5 & &
038 k3 e
KA %} o
K o k4
&) 53 K
5 3 & &
[o%| P KX
038 ks e
%3] K KA R4
R KSR @ R
0 239 %l kB %
A C D E F M NO&POQR S

Body control functions
Figure 6: Memory size of functions for body control module implemented by Renault
[12]
execution of such small memory usage tasks, the memory interferences on DRAM or
shared cache are negligible since we can expect that they infrequently access to such
shared memories. After the cold starts at the initial execution, their accessed memory
blocks will be copied to the local cache of each core and rarely evicted since the other
tasks on the same core also have small memory usages.

Table 1 shows the experiment result for clarifying the relation between the shared
memory interferences and the amount of memory usages per each core. We parallelly
executed two tasks at the different cores. Both of them access to float array in ran-
dom order and calculate the sum of element-wise power. We varied their array size
to 32KB, 4MB and executed them on i7-3610QM [13] which has 256KB local cache
for each core. We measured their execution times during the 32 releases excluding

the cold start. i.e., the first release. At every execution, the given array for each task

norm,max

remained the same. Each entry in the Table 1, ¢;; , represents the normalized

worst execution time of T; which is measured on the simulator during the 31 releases.

’ N &) 3t 7

Table 1: Normalized worst case execution times of tasks according to co-run task

Corel Core2 Y‘;rm’max g?rmmax
71:32k 15:32k 1.0002 1.0025
71:32k Tp:4m 1.0224 1.0652
T1:4m Tp:4m 1.0966 1.1050

Table 2: Normalized worst case execution times of tasks according to the memory

usage of each core

Corel Core2 ;;;rm,max g;{rm,max gz;)_rm,max
71:128k T4:64k

Tp:128k T5:32k 1.1854 1.1880 1.0198
T3 :64k ’E6232k

71:128k T,:128k

T3:64k T4:64k 1.0054 1.0015 1.0020
T5:32k T6:32k

They are normalized against the average execution time when they are executed ex-
clusively, not in parallel. We can see that the noticeable delay spike, 10.5%, occurs
only when the large memory usage task(4m)s run in parallel. For the small memory
usage task(32k)s, the delays caused by parallel execution are negligible, up to 0.25%.

Although the interferences between the cores at the shared memory are negligi-
ble, limiting the amount of memory usage on the each core is still needed to make
the execution times be more predictable. Table 2 shows such necessity of memory
constraint. We executed 6 tasks which perform the same thing with the experiment in
the Table 1 but in this time, tasks access to the array in sequential order and are given
different periods. We varied their array size to 32KB, 64KB, 128KB and measured
their execution times during the 32 releases excluding the first release. When we map
the tasks to a core exceeding the local cache size of the core, the execution times of

the tasks are delayed up to 18.8%. On the contrary, we can see that the delay spikes

17 A

do not exceed up to 0.5% when the sum of memory usages on each core does not
exceed the local cache size of the core.
To limit the sum of memory usages for each core, we propose the task partitioning

satisfying the following memory constraint:

Ve € C,
(MEMy,) < Local cache size of c;)

V1; mapped to c;

where C = {cy,c2, ...} represents the set of cores on the multicore simulator.

5.2 The Smallest-blocking-first heuristic

The problem finding the existence of the task partitioning which satisfies the mem-
ory constraint in Eq. 4 is reducible to bin packing decision problem which is known
as NP-Complete [14]. When we consider exhaustive search of the whole possible
partitioning cases, the size of solution space equals to S(|T'|,|C|) where S repre-
sents the second kind of Stirling number which exponentially increases according
to the number of tasks and cores. e.g., S(9,4) = 7770,5(10,4) = 34105. Since there
is no polynomial time algorithm and the whole solution space is too large to ex-
haustively search, the heuristic approaches such as Best-fit-first, Worst-fit-first can be
considered to practically find the partitioning [15]. However, we cannot efficiently
utilize the multicore through the above heuristics since they only focus on the pack-
ing of item(task) and do not consider the existence of the job-level precedence graph.
Therefore, we propose Smallest-blocking-first heuristic which considers efficient par-

allelization of the job-level precedence graph.

18 x—g N :.-_ -:I

(—) (—)
C T T T T R T R T O RO TR N N
Y s s B S IO B R B S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ey
< >
C T T T R T A Ty RO RO Y N N
, Ittt it 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- a
2
H 4 H

Figure 7: Intuition of Smallest-blocking-first heuristic

5.2.1 Intuition of Smallest-blocking-first algorithm

We explain the intuition of Smallest-blocking-first heuristic at Figure 7. Let’s as-
sume that the tasks T; and T, are already mapped to ¢; and c;, respectively. Each
bidirectional arrow represents the job of each task where its left-end means EEST;;
(Expected Earliest Start Time) of J;;, and its right-end means ELF'T;; (Expected Lat-
est Finish Time) of J;;. When we determining which core the T3 is mapped to, we can
calculate the interleaved [EEST3,, ELF T3] interval with the already mapped tasks.
If the 13 is mapped to the ¢y, the length of interleaved interval is 2 as Figure 7 shows.
Since the only one job can be executed on a core at a time, one of the J;; and J3;
will be blocked for the time of 2. Similarly, one of the J,; and J3; will be blocked for
the time of 4 when the T3 is mapped to the c¢;. The proposed Smallest-blocking-first
heuristic always choose the smallest blocking core at every decision. In the example
shown in the Figure 7, Smallest-blocking-first maps the T3 to the ¢; which has lower
blocking value. At the rest of this section, we explain how to find EEST;; and ELF'T;;

from the job-level precedence graph.

¥ o -1
19 M = TH

5.2.2 Finding the Expected Earliest Start Time

The more precedence relations in the job-level precedence graph make the jobs start
more later since they force the successor job to start after all of its predecessor jobs
finish. Therefore, we need to use more sparse job-level precedence graph to conser-
vatively expect the EEST;;s. To this end, we eliminate the non-deterministic edges,
which are not sure to be deterministic or removed during the simulation, from the
job-level precedence graph.

After eliminating the non-deterministic edges from the job-level precedence graph,

we assign the edge weights to the remaining edges following:

W(Jij7jk1) _ Cbest,sim (5)

i

best .sim
where C;“""

represents the best case execution time of T; on the simulator. Fig-
ure 8(a), (b) show this process using the example job-level precedence graph in the
Figure 4. Since we assign the edge weights as the best case execution time of the pre-
decessor job, the length of the longest path from the initially scheduled job to the J;;
equals to the EEST;; when we assume the infinite number of simulator cores which
provides ideally parallelized execution.

The job-level precedence graph after eliminating non-deterministic edges forms
a DAG (Directed Acyclic Graph) because it is already proven that the job-level prece-
dence graph with only deterministic edges cannot contain cycle [2]. Since there ex-
ists a polynomial time algorithm to find the longest path on the DAG, we can find

the EEST;; of each job in polynomial time [16]. However, unlike the normal DAG-

formed job-level precedence graph, our job-level precedence graph has a constraint

1 ™
20 *" == L]

(a) Initial job-level precedence graph (b) Job-level precedence graph after eliminat-

ing non-deterministic edges

(c) Sparse job-level precedence graph

(d) EEST of each job

Figure 8: Construction of sparse graph and EEST;; of each job for the example job-
level precedence graph

about the start time of each job as the Eq. 1 shows. It means that the start time of the
Jij who has physical read constraint is affected by not only its predecessor jobs but
also its actual start time on the real cyber-side. In other words, although the physical
read job does not have any unfinished deterministic predecessor, it cannot be added
to the ready queue until its actual start time on the real cyber-side.

To consider such constraint, we add virtual start job J,; to the job-level precedence
graph and connect it to the jobs who have physical read constraint. At this step, we
additionally connect the J,;; to the jobs who do not have any predecessor with zero-

weight. These edges allow us to regard the J,; as a single start job of the job-level

¥)
21 o e el

precedence graph by collecting all the jobs who might could be initially scheduled.

In summary, the weights of newly connected edges are assigned following:

min(tisj’real), when J;; has physical read constraint

W(JVS7Jij) = (6)

0, otherwise

S,real>’ x(tS,real)]

As we mentioned at the Section 3, the start time interval [min(#;; i

is progressively narrowed during the simulation. i.e., the value of min(; real

1) keeps

increasing. By assigning the least narrowed min(tfj’real) value as the weight of edge
from the J,, to the J;; who has physical read constraint, we can force the length of the
longest path from the J, to the J;; to be larger than the earliest start time of J;; on the
real cyber-side. Figure 8(b), (c) show this process. After adding the virtual start job
and assigning the corresponding edge weights, we find the lengths of the longest path
from the J,; to each job as Figure 8(d) shows. The shaded box at the lower-left corner

of each job J;; represents the length of the longest path which equals to EEST;;.

5.2.3 Finding the Expected Latest Finish Time

Similar with the start time, the more precedence relations in the job-level precedence
graph make the jobs finish later. Therefore, we need to use more dense job-level
precedence graph to conservatively expect the ELFT;;s. To this end, in this time, we
regard the non-deterministic edges as the deterministic edges. However, unlike the
sparse graph, when we consider both of deterministic and non-deterministic edges,
the job-level precedence graph may contain cycle which makes it impossible to define
the longest path from the job to the another job. Therefore, we first resolve the cycle

by eliminating the one of the non-deterministic edges composing the cycle.

1 ™
22 *" == L]

(a) Initial job-level precedence graph (b) Job-level precedence graph after trans-
forming non-deterministic edges to determin-
istic edges (cycles are eliminated if exist)

(c) Dense job-level precedence graph (d) ELFT of each job

Figure 9: Construction of dense graph and ELFT;; of each job for the example job-
level precedence graph

Whenever a job in the job-level precedence graph is finished, the simulator checks

below inequality using the narrowed t;gj’rwl, til;’ml ranges for all of the remaining non-
deterministic edges (Ji/,J;;)s:
max(t,fl’real) < min(tisj’real) (7

If the above inequality holds, the non-deterministic edge (Ji,J;;) becomes deter-

S,real

ministic [2]. During the simulation, the value of max(t;;" ") keeps decreasing and

min(tfj’real) keeps increasing according to the narrowed ¢

S,real
ij

F,real

, ;7 ranges. There-

¥)
23 o e el

S,real

fore, it intuitively implies that the smaller difference between max(r;**') and min(r; ’

makes the non-deterministic edges more likely to be deterministic. From this specula-
tion, we delete the non-deterministic edge who has the largest max(t3;"*“) — min (tfj’rwl)
value among the non-deterministic edges composing the cycle. Since there exist
plenty of polynomial time cycle detection algorithms [17], we can resolve the cycles
in polynomial time by repeating the deletion of such non-deterministic edge until no

more cycle is detected.

After resolving the cycles, we assign the edge weights to the remaining edges

following:
W(Jijw,kl) — C]:vorshstm (8)
where C}’ OrsLSIm represents the worst case execution time of Ty on the simulator. We

also add the virtual start job and its corresponding edges from the J, to the jobs who
have physical read constraint or do not have any predecessor. The weights of edges

which are incident with the J, are assigned following:

S,real) + C1'/vorst,sim

max(t; ; ; when J;; has physical read constraint

W(JVSaJij> = C))
C_worst,sim

; , otherwise

Unlike the sparse graph, we assigned the edge weights following the worst case exe-
cution time of the successor job, and the virtual start job forces the physical read jobs
to start and finish as late as possible. i.e., they start at the latest start time on the real
cyber-side, max(tfj’real), and are executed for the worst case execution time, Cl-wom"”‘m.
These assignments allow us to regard the length of the longest path from the J,, to

the J;; as the latest finish time of the J;; on the cycle-eliminated job-level precedence

3
24 N =L

)

graph when we assume the ideally parallelized execution. Figure 9(a) through (d)
show these processes to find ELFT;;. EFLT;; for each job is denoted as the shaded
box at the lower-right corner of each job. Note that unlike the EEST;;, we cannot
guarantee the simulated job J;; in the job-level precedence graph finishes before the
ELFT;; because we find it after deleting the non-deterministic edge who might could
be deterministic during the simulation. In the rest of this paper, ELFT;; means the
latest finish time on the cycle-eliminated job-level precedence graph. i.e., the latest
finish time on the dense graph. However, we will use the ELFT;; as the approximated
finish time of the job J;; in the original job-level precedence graph since we delete

the least likely to be deterministic edge when we resolve the cycles.

5.2.4 Weighting the [EEST;;, ELFT;;] intervals

Our conservative approach to find [EEST;;, ELFT;;] intervals may leads us to expect
too broad intervals which cannot practically predict the task-wise blockings. Since the
job J;; can be executed only up to for Cl-wor‘“’ﬁm within the interval [EEST;;, ELFT;],

we weight the each interval as follow:

Cworst,sim

W(EESTyj, ELFTyj]) = ot (10)
ij ij

Figure 10 shows the resulting weighted intervals and task-wise blocking values
for the example job-level precedence graph in the Figure 5. The Figure 10 represents
the situation where T and T, are already mapped to ci, c», respectively, and we are
determining which core T3 is mapped to. The task-wise blocking between T; and T},

By, 1;, 18 defined as the sum of their job-wise blocking, by, s,

1 ™
25 *" == L]

1.00 1.00
JI] J12
C L | | | | | | | | 1 | | | | | | 1
1 I I T T | i 1 i I i I I 1 i I T
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I i
21 0.33
< >
C L | | | | | | | 1 | | | | | | 1
2 I i i | I I I I i I I I i I T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Br, = by, 5, by, 1y, = (3-1)¥1.00%0.50 + 0*1.00%0.50 = 1.00

Br, ;= by 5. = (5-1)%0.33%0.50 = 0.66

11,031

Figure 10: Weighted intervals and task-wise blocking values for the example job-level
precedence graph

BT,’,’CI': Z Z bll'k,le (11)

VI €ETi VJJ‘IG"CI’
The job-wise blocking between J; and Jj;, by, Tirs is defined as the weighted product

of interleaved length:

by, = the length of interleaved interval

sw([EESTy, ELFTy]) +w([EEST;, ELFTy]) (12)

For example, the task-wise blocking between Ty and T3, By, «,, is defined as the sum of
their job-wise blockings by,, 7, and by, j,,. When we consider by,, j,,, the interleaved
interval is [1, 3] and weights of each interval are 1.00 and 0.50 respectively. Since
[EEST»,ELFT,] and [EEST3,ELF T3] are not interleaved each other, the task-
wise blocking between the T; and 13 equals with by, 7, = 1.00.

In summary, our proposed heuristic task partitioning can be represented as Al-

gorithm 1 shows. During the simulation, the simulated job who has no unfinished

26 al =d!

Algorithm 1 Proposed task partitioning algorithm

l: T« {t)..ty} // set of tasks
2: C <+ {cy...cm} /] set of cores
3: U« {U, =0..Uy, =0} // mem. usage of each core
4: P+« {P,=0...P,, =0} // task partition of each core
5: fort; € T do
6: corepip < —1
7: blockip +— oo
8: for P; € IP do
9: if Uj+MEM-, > local cache size of c; then
10 continue
11: end if
12: block <0
13: for 1, € Pj do
14: block = block + B, r,
15: end for
16: if block < block,,;, then
17: blocky,in < block
18: coremin +— j
19: end if
20: end for
21: if corepi, = —1 then
22: Task partitioning failed!
23: else
24: Ucoreyin = Ucorey, + MEMz,
25: Peoreyy = Peore,yy U{Ti}
26: end if
27: end for

deterministic predecessor and does not violate the constraint in Eq. 1 is added to the

ready queue of its pre-partitioned core. Similar with the previously proposed sim-

ulation method at the Section 3, the jobs partitioned into the each ready queue are

scheduled following EDF scheduling policy. i.e., partitioned-EDF. As we mentioned

before, if all the jobs of partitioned tasks can be scheduled without any deadline miss,

we can say that the cyber-side of an automotive system is correctly simulated.

27

6 Evaluation

To evaluate our proposed approach, we measured the “simulatability” of our simu-
lation method using randomly synthesized cyber-sides of an automotive system. i.e.,
how many of them are correctly simulated. In the rest of this paper, by “cyber-side”,
we mean the cyber-side of an automotive system which is similarly given as the Fig-

ure 2.

6.1 Simulatability according to the number of cores

At first, we synthesized 9,000 random cyber-sides. Each cyber-side is synthesized
as follows. The number of ECUs is determined from uniform(3,10]. The number
of tasks on each ECU is fixed as 5. Out of all the tasks in each cyber-side, 20% of
them read data from the physical-side. Similarly, another 20% of them write data to
the physical-side. The data producer/consumer relations among the tasks are ran-
domly configured, but the total number of producer/consumer relations does not
exceed the number of tasks in each cyber-side. For each task t;, its task parame-
ters are randomly generated as follows. Its task period P; is randomly selected from
{10,20,25,50,100} msec while the offset ®; is assumed as zero. The worst case ex-

. . t,real
ecution time C;""*""™

is determined from uniform(0,10]% of the P; and the best
case execution time C’**""“ is determined from uni form(0,100]% of the C"”*""**
All the synthesized tasks are assumed to be scheduled following RM scheduling pol-
icy. Since the maximum utilization of each ECU cannot exceed L&L(Liu and Lay-
land) utilization bound, 69%][18], we can assume that the set of tasks on each ECU

is schedulable at the real cyber-side. Lastly, for all the tasks in each cyber-side, we

1 ™
28 *" == L]

[==7] Single-core V23 Ours(2 cores)

== Ours(4 cores) N4 Ours(8 cores)
100

PETY 4 S o

801
60 |-

401 |-

Simulatability(%)

2011

U U U U U U U U U U LT LTI
U U JJJJJJJJJJUUJJUUUJUUU I
T T T T I T T T T T T T T T T T T T T U T T T

I T T T T T T T I T T T T T T T I T T T T T I T T I T I TITITITITITITl

T T T T T I T T T I T I T T I T I T T I T I T T T TITITITITITTITIT

[HERENERERENERERENERERERERERENERERERERERERERERERERERE]

[

0) (5, 55) (6, ??0) (7, 35) (8, ZO) (9,45) (10, 50)
Paired value(# of ECUs, # of tasks)

(G.15) (4
Figure 11: Simulatability according to the number of simulator cores

assume the following simple execution time mapping function:

‘ real
e’ = 3 (13)

For such synthesized cyber-sides, we measured the simulatability during the ten
hyper periods for each cyber-side as changing the number of simulator cores as Fig-
ure 11 shows. For fair comparison, we assumed that the memory usage of each task
is extremely small, so even all of them can be fit into a local cache of a core. By
assuming this, we can focus on only the efficiency of our task partitioning algorithm.

i.e., Smallest-blocking-first. We can observe that the simulatability of Single core,

2 ; .H 21

n

the baseline, drops down to 0% when the number of ECUs and tasks pair is (8, 40).
On the other hand, our proposed approach using 8 cores, Ours(8 cores), has 97% of
simulatability on the same number of ECUs and tasks. Furthermore, by comparing
Ours(2 cores), Ours(4 cores), and Ours(8 cores), we can also see that our proposed
approach scalably schedules the more ECUs and tasks in line with the increasing

number of simulator cores.

6.2 Simulatability according to the partitioning method

Secondly, we synthesized another 9,000 random cyber-sides to compare our proposed
approach with other task partitioning heuristics. Each cyber-side is synthesized in the
same way with the experiment in the Figure 11 but in this time, the number of ECUs
is determined from uniform[10,17]. We assumed the small memory usage tasks as in
the previous experiment and compared our task partitioning algorithm with following

commonly used heuristics:

o Worst-fit-first: It considers only memory constraint. It places the new task in a
core where it fits loosest. i.e., a core who has the largest remaining local cache

size after placing MEM:,

e Smallest-utilization-first: It considers only utilization of each core. It places
the new task in a core which has the smallest utilization where the utilization
of a core ¢;, Util,, is defined as below:

vaorstmeal

Util,., =) N A— (14)

V' 1; mapped to c; Pj

Figure 12 shows the result of the experiment. We can see that Ours always

1 ™
30 *" == L]

73 Worst-fit-first(4 cores) EA Worst-fit-first(8 cores)
E=3 Smallest-utilization-first(4 cores) E== Smallest-utilization-first(8 cores)
X X] Ours(4 cores) XA Ours(8 cores)

100

80

60

40

Simulatability(%)

20

RAAR AR A AR AR R R R XXX XXX XXX XXX
XXX XXX X XXX XXX XXX XXX XY

TITITITITITITITITITITITITITI

ol | LA V1
(1 1,55 (12,60) (

Paired value(# of ECUs, # of tasks)

Figure 12: Simulatability compared to the other task partitioning heuristics

has better simulatability than Worst-fit-first and Smallest-utilization-first in ei-
ther 4 cores and 8 cores. By comparing Ours with Worst-fit-first and Smallest-
utilization-first, we could confirm that Smallest-blocking-first approach has mean-
ingful improvement in comparison with the other heuristics which do not consider

the existence of the job-level precedence graph.

6.3 Simulatability according to the physical read/write task ratio

In order to more deeply investigate the simulatability of our approach according to the
characteristics of the given cyber-side, we additionally synthesized another 10,000

cyber-sides again. The experiment was conducted in the same conditions with the

31 z A—} 2 Eﬂ

100

[Z A Worst-fit-first(4 cores)
=1 Smallest-utilization-first(4 cores)
XX Ours(4 cores)
80
7] 7=
— i Vi
= 7
X =
2z =
i =
] —
= —
= —
g —
A 40 E
20 =
10% 20% 30% 40% 50%

Physical read task ratio(%)

(a) Simulatability as changing the physical read task ratio

100
[A Worst-fit-first(4 cores)
= Smallest-utilization-first(4 cores)
g XX Ours(4 cores)
80
7o
S 60
£ %
:_g
=
=1
g
£ 40 —
20
0 10% 20% 30% 40% 50%

Physical write task ratio(%)

(b) Simulatability as changing the physical write task ratio

Figure 13: Simulatability according to physical read/write task ratio

3 > xﬂ k12 1]| 'ﬁﬂr w

previous experiment but in this time, we fixed the number of ECUs as 10 and varied
their physical read/wirte task ratios from 10% to 50%.

Figure 13(a) shows the simulatability according to the physical read task ratio.
At this experiment, we fixed their physical write task ratio as 20% and varied their
physical read task ratio from 10% to 50%. Similar with the before experiments, Ours
always has better simulatability than others. Since the more physical read tasks in
the cyber-side imply the more physical read constraint in Eq. 1, the higher physi-
cal read task ratio leads the more jobs in the job-level precedence graph to wait its
actual start time on the real cyber-side although they do not have any unfinished
deterministic predecessors. We can see such influence through the declines of the
simulatabilities according to the physical read task ratio in Ours, Worst-fit-first, and
Smallest-utilization-first. However, unlike the other heuristic task partitioning algo-
rithms, Smallest-blocking-first considers the [EEST;;, ELF T;;] intervals which reflect
the actual start time on the real cyber-side. The noticeable simulatability gap between
Ours and others for all physical read task ratios shows such consideration in our ap-
proach efficiently handles the physical read tasks.

Similarly, Figure 13(b) shows the simulatability according to the physical write
task ratio while the physical read task ratio is fixed as 20%. Since the more physical
write tasks in the cyber-side imply the more physical write constraint in Eq. 2, the
higher physical write task ratio forces the more jobs in the job-level precedence graph
to finish before their actual finish time on the real cyber-side. We can see this ten-
dency through the decreasing simulatabilities of Ours, Worst-fit-first, and Smallest-
utilization-first according to the physical write task ratio. We can also validate that

our consideration about the [EEST;;, ELFT;;] efficiently handles the physical write

¥ o -1
33 A = TH

tasks by the increasing simulatability ratio between Ours and other heuristic algo-

rithms.

34 2 A2 ety

7 Conclusion

This paper proposes the multicore extension of previously proposed functionally and
temporally correct single core simulator. The proposed approach consists with two
parts: (1) memory constraint for keeping the key ideas of single core simulator and
(2) heuristic task partitioning algorithm that aims to minimize the task-wise blocking.
By introducing (1), we could guarantee the correct working of the execution map-
ping functions without any precisely designed isolation technique. We also showed
that our memory constraint is not too strict to be satisfied by focusing on the prac-
tical usecases of the automotive system tasks. Since our derived memory constraint
makes our problem as NP-Complete, we proposed the heuristic algorithm to partition
the tasks into the cores. Our heuristic algorithm is empirically validated through the
experiments using plenty of synthesized cyber-sides.

The followings are our future works to cover the limitations and extend the pro-

posed approach:

o Another control knobs to precisely expect the actual execution scenarios
of the cyber-side: In this dissertation, we proposed the conservative method
for expecting the start/finish time of each job. In the future, by studying another
knobs to precisely expect the real cyber-side behaviors, we expect to improve

the simulatability of our proposed approach.

e Accurate execution time mappings from the simulator environment to ECU
environment: Our concept of correctness is based on the execution time map-
pings. In the future, by studying more accurate execution time mappings be-

tween different machines, we expect to lay the firm foundation of our proposed

3 '._'.
35 N =

approach.

Simulation for more complex cyber-physical systems: In this dissertation,
we could simply evade multicore interferences by focusing on the automo-
tive system tasks which have small memory usage. In the future, by studying
another method for evading multicore interferences, we expect to extend our
coverage of the simulation to more complex cyber-physical systems which nor-

mally have immense memory usage and super-large computation amount.

36 H'E —T -.::

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

Simulink. version 8.4.0.150421 (R2014b). MathWorks Inc., Natick, Mas-

sachusetts, 2014.

Kyoung-Soo We, Seunggon Kim, Wonseok Lee, and Chang-Gun Lee. Func-
tionally and temporally correct simulation of cyber-systems for automotive sys-
tems. In Real-Time Systems Symposium (RTSS), 2017 IEEE, pages 68-79.

IEEE, 2017.

Hyejin Joo, Kyoung-Soo We, Seunggon Kim, and Chang-Gun Lee. An end-to-

end tool for developing cpss from design to implementation. 2016.

dSPACE. version 8.4.0.150421 (R2014b). dSPACE GmbH., Wixom, Michigan,

2018.

Kyoung-Soo We. Functionally and Temporally Correct Simulation for Cyber-

Physical Systems. PhD thesis, Seoul National University, 2017.

Intel. Core i7-9700k. https://www.intel.com/content/www/us/en/
products/processors/core/i7-processors/i7-9700k.html, 2018. Ac-

cessed 1 Nov. 2018.

Infineon. Tricore 27x. https://www.infineon.com/cms/en/product/
microcontroller/32-bit-tricore-microcontroller/aurix-safety-

joins-performance/aurix-family-tc27xt/, 2018. Accessed 1 Nov. 2018.

Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon,

Rodolfo Pellizzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arun-

37 S

https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/

[9]

[10]

[11]

[12]

[13]

[14]

dale, et al. Single core equivalent virtual machines for hard real—time comput-

ing on multicore processors. Technical report, 2014.

Abusayeed Saifullah, David Ferry, Chenyang Lu, and Christopher Gill. Real-

time scheduling of parallel tasks under a general dag model. 2012.

Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Pal-
loc: Dram bank-aware memory allocator for performance isolation on multicore
platforms. In Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2014 IEEE 20th, pages 155-166. IEEE, 2014.

Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches.
In Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International

Symposium on, pages 423-432. IEEE, 2006.

Sophie Stern and Cigdem Gencel. Embedded software memory size estima-
tion using cosmic: A case study. In Int’l Workshop on Software Measurement

(IWSM), volume 39, 2010.

Intel. Core i7-3610gqm. https://ark.intel.com/products/64899/Intel-
Core-17-3610QM-Processor—-6M-Cache-up-to-3-30-GHz-, 2012. Ac-

cessed 8 Nov. 2018.

Michael R Garey and David S Johnson. Computers and intractability: A guide
to the theory of npcompleteness (series of books in the mathematical sciences),

ed. Computers and Intractability, 340, 1979.

38 x—g N :.-_ -:I

https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-
https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-

[15] Hoon Liong Ong, Michael J] Magazine, and TS Wee. Probabilistic analysis of

bin packing heuristics. Operations Research, 32(5):983-998, 1984.

[16] Ei Ando, Toshio Nakata, and Masafumi Yamashita. Approximating the longest
path length of a stochastic dag by a normal distribution in linear time. Journal

of Discrete Algorithms, 7(4):420-438, 2009.

[17] Gabriel Nivasch. Cycle detection using a stack. Information Processing Letters,

90(3):135-140, 2004.

[18] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46-61, 1973.

39 H'E —T -.::

F Aol -2 A
gt ofu et

S~

7} g2 20] wm 2]

I

a

S
—

sfof 2t
oA

9

H
H

doleE &8

=
g5t Al

Q

E] 5o] A

20] Apolu] A 2R 7%
Az Al 7)o At glrt. g Aol A A4

T

o YAZES A

o

2~
an

o}

T

5171 9

[e)

_‘|

4

7|2 @70] %4 ofollo]

A}

p——

T W ol I
oy ! of ’T -1
g X o e "
~K o A 5
o

o _:_u oy VL
,.aro ek H 2 j—

7] = ™ A
do X T B i
~ o ~ m
2 & o atia
™ — O o <
E_UE o __OD w 1r1_
o= 2 Kl N
~ X ~3 ~3
gmpl E HT_ _ XK o
o X TN - ¥
X)
N TS o ~
__OO o . =

H o1 X o
MDM W e T ™
= ooy & _“,_ALE
— o
R =
o, o n_mw_- _.:._ W
SR <]
W o- R° o — O
> K om o N
T o R R T X5
Moo TR G do o
N % oo < N3
7_| _YE 1:0 m_wo ‘EE .q .
T LN % odo o F
T T T K 5o

	1 Introduction
	1.1 Motivation and Objective
	1.2 Approach
	1.3 Organization

	2 Related Work
	2.1 Model-Based Simulations
	2.2 Real-time Execution Platforms
	2.3 Functionally and Temporally Correct Simulations

	3 Background
	3.1 Description on the real cyber-system
	3.2 Description on the simulated cyber-system
	3.3 Idea of Functionally and Temporally Correct Simulation

	4 Problem Description
	4.1 Keeping the key ideas of the single core simulator
	4.2 Maximally utilizing the multicore

	5 Proposed Approach
	5.1 Memory constraint
	5.2 The Smallest-blocking-first heuristic
	5.2.1 Intuition of Smallest-blocking-first algorithm
	5.2.2 Finding the Expected Earliest Start Time
	5.2.3 Finding the Expected Latest Finish Time
	5.2.4 Weighting the [EEST, ELFT] intervals

	6 Evaluation
	6.1 Simulatability according to the number of cores
	6.2 Simulatability according to the partitioning method
	6.3 Simulatability according to the physical read/write task ratio

	7 Conclusion
	References

<startpage>10
1 Introduction 1
 1.1 Motivation and Objective 1
 1.2 Approach 1
 1.3 Organization 2
2 Related Work 3
 2.1 Model-Based Simulations 3
 2.2 Real-time Execution Platforms 3
 2.3 Functionally and Temporally Correct Simulations 3
3 Background 5
 3.1 Description on the real cyber-system 5
 3.2 Description on the simulated cyber-system 7
 3.3 Idea of Functionally and Temporally Correct Simulation 9
4 Problem Description 12
 4.1 Keeping the key ideas of the single core simulator 12
 4.2 Maximally utilizing the multicore 13
5 Proposed Approach 15
 5.1 Memory constraint 15
 5.2 The Smallest-blocking-first heuristic 18
 5.2.1 Intuition of Smallest-blocking-first algorithm 19
 5.2.2 Finding the Expected Earliest Start Time 20
 5.2.3 Finding the Expected Latest Finish Time 22
 5.2.4 Weighting the [EEST, ELFT] intervals 25
6 Evaluation 28
 6.1 Simulatability according to the number of cores 28
 6.2 Simulatability according to the partitioning method 30
 6.3 Simulatability according to the physical read/write task ratio 31
7 Conclusion 35
References 37
</body>

