

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Functionally and Temporally Correct

Simulation for Automotive Systems on

Multicore Simulator

멀티코어시뮬레이터에서의자동차시스템을위한

기능적/시간적정확성보장시뮬레이션기법

2019년 2월

서울대학교대학원

컴퓨터공학부

이원석

Functionally and Temporally Correct

Simulation for Automotive Systems on

Multicore Simulator

지도교수이창건

이논문을공학석사학위논문으로제출함

2018년 11월

서울대학교대학원

컴퓨터공학부

이원석

이원석의석사학위논문을인준함

2018년 12월

위 원 장 하순회 (인)

부위원장 이창건 (인)

위 원 이광근 (인)

2

Abstract

Functionally and Temporally Correct

Simulation for Automotive Systems on

Multicore Simulator

Wonseok Lee

Department of Computer Science and Engineering

The Graduate School

Seoul National University

This dissertation presents functionally and temporally correct simulation method for

cyber-side of an automotive system on multicore simulator. To overcome the limi-

tations of the existing simulation methods which do not correctly model temporal

behaviours such as varying execution times and task preemptions, the novel simula-

tion technique assuming single core simulator was proposed. In this work, we extend

the single core simulator to the multicore while keeping all of the proposed key ideas

to guarantee correct simulation. We introduce heuristic task partitioning algorithm

based on memory usages and approximated task-wise blockings of simulated tasks.

As a result, we could improve up to 97%p, 15%p of simulation capacity compared

to the single core, and other task partitioning algorithms, respectively.

keywords : Automotive System Simulation, Real-time Simulation

i

Student Number : 2017-21586

ii

Contents

1 Introduction 1

1.1 Motivation and Objective . 1

1.2 Approach . 1

1.3 Organization . 2

2 Related Work 3

2.1 Model-Based Simulations . 3

2.2 Real-time Execution Platforms . 3

2.3 Functionally and Temporally Correct Simulations 3

3 Background 5

3.1 Description on the real cyber-system 5

3.2 Description on the simulated cyber-system 7

3.3 Idea of Functionally and Temporally Correct Simulation 9

4 Problem Description 12

4.1 Keeping the key ideas of the single core simulator 12

4.2 Maximally utilizing the multicore 13

5 Proposed Approach 15

5.1 Memory constraint . 15

5.2 The Smallest-blocking-first heuristic 18

5.2.1 Intuition of Smallest-blocking-first algorithm 19

5.2.2 Finding the Expected Earliest Start Time 20

iii

5.2.3 Finding the Expected Latest Finish Time 22

5.2.4 Weighting the [EESTi j, ELFTi j] intervals 25

6 Evaluation 28

6.1 Simulatability according to the number of cores 28

6.2 Simulatability according to the partitioning method 30

6.3 Simulatability according to the physical read/write task ratio 31

7 Conclusion 35

References 37

iv

List of Figures

1 Predicted performance and real performance of LKAS 2

2 Example automotive system . 6

3 Execution scenario and simulation scenario of example automotive

system . 6

4 Job-level precedence graph of the example automotive system . . . 10

5 Possible job-level precedence graphs after executing J11 on the sim-

ulator . 14

6 Memory size of functions for body control module implemented by

Renault . 16

7 Intuition of Smallest-blocking-first heuristic 19

8 Construction of sparse graph and EESTi j of each job for the example

job-level precedence graph . 21

9 Construction of dense graph and ELFTi j of each job for the example

job-level precedence graph . 23

10 Weighted intervals and task-wise blocking values for the example

job-level precedence graph . 26

11 Simulatability according to the number of simulator cores 29

12 Simulatability compared to the other task partitioning heuristics . . 31

13 Simulatability according to physical read/write task ratio 32

v

List of Tables

1 Normalized worst case execution times of tasks according to co-run

task . 17

2 Normalized worst case execution times of tasks according to the mem-

ory usage of each core . 17

vi

1 Introduction

1.1 Motivation and Objective

Simulating the automotive system using an accurately designed simulation model is

essential to correctly predict its final performance at design phase. Incorrect predic-

tion brought out by imprecisely modeled simulation causes painful revalidation on

following development processes. Figure 1 shows that Simulink [1] predicts the ideal

performance of LKAS (Lane Keeping Assistance System) which does not match with

its real performance. This real performance is only revealed at the end of the im-

plementation phase, and subsequently system developers ought to repeat the entire

development processes from the beginning.

The reason why the real performance is not predicted on the existing simulation

tools is that they only focus on the functional behaviors of the system and do not

carefully consider the temporal behaviors such as varying execution times and task

preemptions on ECU (Electronic Control Unit) environments. To consider not only

the functional behaviors but also the temporal behaviors of the automotive system,

the previously proposed simulation method transformed the simulation problem to a

real-time task scheduling problem on single core simulator PC [2].

1.2 Approach

In this paper, we extend the proposed single core simulator to the multicore simulator

considering:

• memory constraint which is necessary to guarantee functionally and tempo-

1

Figure 1: Predicted performance and real performance of LKAS [3]

rally correct simulation

• heuristic task partitioning algorithm to efficiently utilize the multicore by

minimizing approximated task-wise blockings among the simulated tasks

1.3 Organization

This paper is organized as follows. In Section 2, we survey related works. Then,

Section 3 explains the idea of functionally and temporally correct simulation on sin-

gle core simulator that will be extended to the multicore. In Section 4, we describe

our problem. In Section 5, we propose our approach. In Section 6, we evaluate our

approach through synthetic workload experiments. Finally, Section 7 concludes the

paper.

2

2 Related Work

2.1 Model-Based Simulations

To predict the final performance of cyber-side of an automotive system at design

phase, simulation tool such as Simulink [1] is widely used in industry. However, it

mimics only functional behaviours of the system and does not consider temporal

behaviours which will occur once the system is implemented on the ECUs. The sim-

ulated tasks on Simulink are ideally executed while ignoring the temporal differences

caused by ECU environments. Moreover, Simulink is focusing on offline simulations

which do not interact with physical-side.

2.2 Real-time Execution Platforms

To simulate the system while interacting with the physical-side, real-time simulation

on AutoBox [4] is commonly used. However, AutoBox provides only rapid prototyp-

ing of the system and does not consider the real ECUs’ performance. The temporal

behaviours of the simulated tasks are determined only by the performance of Au-

toBox hardware, and users do not have any control knob to model the real target

ECUs’ performance which determines the actual temporal behaviours and the final

performance.

2.3 Functionally and Temporally Correct Simulations

To accurately model both of the functional and temporal behaviours while interacting

with the physical-side in real-time during the simulation the novel simulation method

guaranteeing the functionally and temporally correct simulation was proposed [2].

3

However, the proposed method considered only single core simulator PC which does

not provide enough capacity to simulate the whole system.

To increase capacity of the functionally and temporally correct simulation, a brief

idea of multicore usage based on G-EDF (Global-Earliest Deadline First) scheduling

was proposed [5]. However, in this approach, the task migration costs and memory

interferences, which must be taken into to guarantee temporal correctness, were not

considered.

4

3 Background

3.1 Description on the real cyber-system

The cyber-side of an automotive system to be simulated can be given as Figure 2

shows. Each control task is denoted as τi and data producer/consumer relations among

the tasks or physical-side are denoted by directed edges as in Figure 2(a). Each task,

τi, is realized on its mapped ECU as a periodic task and can be represented as a

five-tuple:

τi = (Fi,Φi,Pi,C
best,real
i ,Cworst,real

i)

where Fi is the function that τi executes, Φi is the task offset, Pi is the period of τi.

Cbest,real
i ,Cworst,real

i represent the best/worst case execution time of τi on its mapped

ECU, respectively.

If the task parameters are given as Figure 2(b), and RM (Rate Monotinic) schedul-

ing policy is assumed for each ECU, we can expect one of their possible execution

scenarios as Figure 3(a) shows. Every j-th job of τi, Ji j, is released at Φi +(j−1)Pi,

and has execution time varying within [Cbest,real
i ,Cworst,real

i]. The time points where

the cyber and physical-side interact each other are marked as triangles, and one of

the data paths from the physical read to the physical write is denoted by dashed di-

rected arrows. In the Figure 3(a), J11, who is the job of the τ1 that reads physical-side

data, reads data from the physical-side at time 0 and produces output for its consumer

task’s job, J21. J21, who starts after its producer tasks’ jobs J11 and J31 finish, con-

sumes the outputs produced by J11 and J31. After that, J21 writes its output to the

physical-side at time 14. J31, who starts before its producer task’s job J11 finishes,

5

Figure 2: Example automotive system

Figure 3: Execution scenario and simulation scenario of example automotive system

6

may consume the data produced by J10 (not shown in this figure).

At the above scenario, we assumed that all of the Fis always consume the most

recently produced data at the entry of their executions and produce their output at the

exit of the executions. On the same assumptions, let’s additionally assume that the

simulator running on a PC environment has:

• Faster execution than ECU: Since PC has more powerful performance than

ECU, the execution times of Fis are much faster on the simulator than that of

on the ECU. e.g., Core i7-9700K [6] in PC vs. TC275 [7] in ECU.

• Tagged/Delayed Data Read/Write: The simulator can log all of physical

read/write data with time-tags. The simulator can execute the Fis with any spe-

cific tagged physical read data. Similarly, the simulator can write the delayed

output data to the physical-side at any specific time point.

• Execution time mapping functions: For every Fi, there exist execution time

mappings between the simulator and the ECU. That is, when Ji j is executed

on the simulator for the time of esim
i j , we can estimate its execution time on the

ECU, ereal
i j = Mi(esim

i j) where Mi represents the execution time mapping func-

tion. This assumption on multicore simulator will be validated in Section 5.

3.2 Description on the simulated cyber-system

On the above assumptions, the resulting physical-side interactions produced by the

simulator depicted in Figure 3(b) equal with that of the real cyber-side shown in the

Figure 3(a). In the Figure 3(b), we assumed that ereal
i j = 2∗ esim

i j for all Fis. At time 0,

the simulator logs the physical-side data with its time-tag 0 while executing J31 who

7

may consumes the data produced by J10. When J31’s execution is finished, J11 starts

its execution with the tagged physical-side data which was logged at time 0. After

J11’s execution is finished, J21 starts its execution. At this moment, its data producer

jobs, J11 and J31, just have finished. So, J21 consumes the produced data of J11 and J31

which is most recently produced. After J21’s execution, J21 delays its physical write

until 14 which is the same with the actual physical write time on the real cyber-side. In

the Figure 3(b), we can see that the data path from the physical read to the physical

write is the same with that of the real cyber-side in the Figure 3(a). The simulator

shown in the Figure 3(b) guarantees the functional and temporal correctness since it

executes the same Fis with the same inputs and receives/gives the same interaction

from/to the physical-side at the same time point as the real cyber-side. More formally,

we can say that the simulation is functionally and temporally correct if all of the

simulated jobs can be scheduled while satisfying:

• Physical-read constraint: For any job Ji j who reads physical-side data, the

simulator should schedule it later than its actual start time on the real cyber-

side. i.e.,

tS,sim
i j ≥ tS,real

i j (1)

where tS,sim
i j and tS,real

i j represent the start time of Ji j on the simulator and the

real cyber-side, respectively.

• Physical-write constraint: For any job Ji j who writes its produced data to the

physical-side, the simulator should finish it before its actual finish time on the

real cyber-side, i.e.,

tF,sim
i j ≤ tF,real

i j (2)

8

where tF,sim
i j and tF,real

i j represent the finish time of Ji j on the simulator and the

real cyber-side, respectively.

• Producer/consumer constraint: For any pair of jobs, Ji′ j′ and Ji j, if Ji′ j′ is a

producer job of Ji j on the real cyber-side, the simulator should finish Ji′ j′ before

starting Ji j, i.e.,

tF,sim
i′ j′ ≤ tS,real

i j (3)

3.3 Idea of Functionally and Temporally Correct Simulation

To schedule the simulated jobs while meeting all of the above constraints, the sim-

ulator has to know tS,real
i j and tF,real

i j which are non-deterministic due to the varying

execution times of the jobs. To tackle this challenge, the previously proposed sim-

ulation method [2] transformed the simulation problem to the scheduling problem

of a job-level precedence. The proposed method progressively resolves such non-

determinism by executing the simulated jobs during the simulation.

We skip the details of the proposed simulation method because they are beyond

the scope of this paper. Instead, we briefly review the proposed method using the ex-

ample automotive system in the Figure 2. The simulation problem for the cyber-side

of an automotive system in the Figure 2 can be transformed to a job-level precedence

graph scheduling problem as shown in Figure 4. At the left-side of the Figure 4, each

vertex represents the job to be simulated. The tags, ’R’ or ’W’, at the upper-left cor-

ner of the jobs show the physical read/write constraints that the tagged jobs have.

Each edge shows the pre-execution condition between the jobs where hat-job (Ĵ21)

is virtually added job which has zero-execution time and is needed only for deriv-

ing pre-execution conditions. The solid edge (Ji′ j′ ,Ji j) represents the deterministic

9

Figure 4: Job-level precedence graph of the example automotive system

edge which means Ji′ j′ should be finished before Ji j starts. The dashed edge (Ji′ j′ ,Ji j)

represents the non-deterministic edge which means it is not known yet whether Ji′ j′

should be finished before Ji j or not. The closed-intervals at the right-side of the Fig-

ure 4 represent the expected tS,real
i j , tF,real

i j ranges which are varied by the execution

times of the jobs. The numbers at the lower-left corner of the jobs show the deadlines

which are calculated based on the deterministic edges and the tS,real
i j , tF,real

i j ranges.

To schedule the jobs in the job-level precedence graph, the simulator first finds

a job who does not have any unfinished deterministic predecessor. If the found job

does not have the physical read constraint, it adds this job to the ready queue of the

simulator. If the found job has the physical read constraint, it adds the found job only

when Eq. 1 holds, i.e., current time is later than its start time on the real cyber-side.

Out of the jobs in the ready queue, one of them is scheduled based on EDF (Earliest-

Deadline-First) scheduling policy according to their assigned deadlines. Whenever a

job in the ready queue is finished, its execution time on the simulator, esim
i j , becomes

known, so its execution time on the real cyber-side, ereal
i j = Mi(esim

i j), is also known.

Using the ereal
i j , the simulator progressively narrows the tS,real

i j , tF,real
i j ranges. At this

step, the non-deterministic edges are determined as deterministic edges or removed

10

based on the narrowed tS,real
i j , tF,real

i j ranges. Lastly, the simulator re-assigns the dead-

line of each job using the updated job-level precedence graph. By iterating the above

processes, the proposed simulation method can schedule the job-level precedence

graph.

Meanwhile, it is already proven that at the time when the simulator is about to add

a job to the ready queue, its start time on the real cyber-side, tS,real
i j , is already known.

Besides, it is also already proven that if the simulator can schedule all the simulated

jobs meeting their assigned deadlines, they satisfy all of the constraints in Eq. 1,

Eq. 2, and Eq. 3. i.e., functionally and temporally correct simulation. At following

sections, we extends the above described single core simulator to the multicore.

11

4 Problem Description

We aim to extend the single core simulator to the multicore simulator while guaran-

teeing the functional and temporal correctness. The multicore simulator has multiple

processing units (cores) and corresponding ready queues. It means that the multicore

simulator can execute multiple simulated jobs in parallel. In this parallel execution

environment, our goal is keeping the key ideas of the previously proposed single core

simulator while maximally utilizing the benefits of parallel execution.

4.1 Keeping the key ideas of the single core simulator

The basis of the key ideas in the single core simulator is the execution time mapping

function. If the execution time mapping still holds in the multicore simulator, the

tS,real
i j , tF,real

i j ranges can be correctly narrowed, and therefore the non-determinism in

the job-level precedence graph can be properly resolved while keeping the temporal

and functional correctness.

However, in the multicore environment, it was reported that the interferences be-

tween the cores at shared memory such as DRAM and shared cache cause the delay

spike of the executed job as high as 600% of its normal execution time [8]. It means

that esim
i j becomes unpredictable and is bound to the memory interferences, not to its

actual computational amount. Therefore, ereal
i j , which is mapped from the esim

i j by the

execution time mapping function, also becomes unpredictable. This unpredictabil-

ity causes incorrect narrowing of the tS,real
i j , tF,real

i j ranges and consequentially incurs

incorrect simulation.

To prevent such unpredictability caused by the interferences between cores at

12

the shared memory, we introduce memory constraint at Section 5.1. By introducing

the memory constraint, all the simulated jobs can be executed while minimizing the

influence of the shared memory interferences between the cores.

4.2 Maximally utilizing the multicore

Our multicore simulator schedules the jobs in the job-level precedence graph. To

schedule the jobs with precedence constraints on the multicore environment, G-EDF

scheduling policy based on their effective deadlines is commonly used [9]. In this

approach, effective deadline is assigned to each job along the fixed precedence rela-

tions between the jobs. By executing the jobs following the G-EDF scheduling policy

according to their assigned deadlines, all the jobs with precedence constraints can be

efficiently scheduled.

However, our job-level precedence graph scheduling problem has two major dif-

ferences with the above problem. Firstly, our job-level precedence graph includes the

non-deterministic edges, so its precedence relations between the jobs are not fixed

and keep changing during the simulation. For example, both of (a) and (b) in Fig-

ure 5 are possible job-level precedence graphs after executing J11 in the example

job-level precedence graph mentioned at the Figure 4. Depending on ereal
11 , the non-

deterministic edge, (J31,J21), becomes deterministic edge or is removed. Secondly,

by introducing the memory constraint, we cannot use the G-EDF scheduling policy

anymore. It is because that the G-EDF may cause a core to execute the tasks exceed-

ing its memory usage limitation. The G-EDF scheduling policy globally picks a core

to execute the tasks without any consideration about the memory usage.

To cope with such differences, we introduce heuristic task partitioning algorithm

13

Figure 5: Possible job-level precedence graphs after executing J11 on the simulator

for partitioned EDF scheduling policy at Section 5.2. By using the heuristic task

partitioning algorithm, the job-level precedence graph can be efficiently partitioned

and scheduled on the multicore simulator.

14

5 Proposed Approach

As we mentioned before, we introduce the memory constraint for guaranteeing va-

lidity of execution time mapping functions. We limit the sum of tasks’ memory usage

on each core to minimize the influence of shared memory interferences between the

cores. In other words, it means that the set of tasks,T = {τ1,τ2, ...}, is partitioned into

the each core according to the memory usage of each task, MEMτi . Since there can

be more than one partitionings satisfying the memory constraint, we have to find the

most parallelizable partitioning among them to maximally utilize the benefits of the

multicore. To also consider such chance to be parallelized, we introduce the heuristic

task partitioning algorithm which minimizes the approximated task-wise blockings.

5.1 Memory constraint

To minimize the interfereces between the cores at the shared memory, the isolation

techniques such as DRAM bank partitioning [10] and shared cache partitioning [11]

were proposed. However, if we focus on the automotive system tasks which com-

monly have small memory usages, we can enjoy the reasonable level of isolation

through the task partitioning alone without such precisely designed isolation tech-

niques.

Since the automotive system tasks are run on ECU which has limited memory

resource, they are normally implemented to access the small memory section. For ex-

ample, Figure 6 shows the such restricted memory usages of the automotive functions

composing the body control module of Renault (Due to the confidentiality reasons,

the specific information of each function is not given). When we consider the parallel

15

Figure 6: Memory size of functions for body control module implemented by Renault
[12]

execution of such small memory usage tasks, the memory interferences on DRAM or

shared cache are negligible since we can expect that they infrequently access to such

shared memories. After the cold starts at the initial execution, their accessed memory

blocks will be copied to the local cache of each core and rarely evicted since the other

tasks on the same core also have small memory usages.

Table 1 shows the experiment result for clarifying the relation between the shared

memory interferences and the amount of memory usages per each core. We parallelly

executed two tasks at the different cores. Both of them access to float array in ran-

dom order and calculate the sum of element-wise power. We varied their array size

to 32KB, 4MB and executed them on i7-3610QM [13] which has 256KB local cache

for each core. We measured their execution times during the 32 releases excluding

the cold start. i.e., the first release. At every execution, the given array for each task

remained the same. Each entry in the Table 1, enorm,max
i j , represents the normalized

worst execution time of τi which is measured on the simulator during the 31 releases.

16

Table 1: Normalized worst case execution times of tasks according to co-run task

Core1 Core2 enorm,max
1 j enorm,max

2 j
τ1:32k τ2:32k 1.0002 1.0025
τ1:32k τ2:4m 1.0224 1.0652
τ1:4m τ2:4m 1.0966 1.1050

Table 2: Normalized worst case execution times of tasks according to the memory
usage of each core

Core1 Core2 enorm,max
1 j enorm,max

3 j enorm,max
5 j

τ1:128k τ4:64k
τ2:128k τ5:32k 1.1854 1.1880 1.0198
τ3:64k τ6:32k
τ1:128k τ2:128k
τ3:64k τ4:64k 1.0054 1.0015 1.0020
τ5:32k τ6:32k

They are normalized against the average execution time when they are executed ex-

clusively, not in parallel. We can see that the noticeable delay spike, 10.5%, occurs

only when the large memory usage task(4m)s run in parallel. For the small memory

usage task(32k)s, the delays caused by parallel execution are negligible, up to 0.25%.

Although the interferences between the cores at the shared memory are negligi-

ble, limiting the amount of memory usage on the each core is still needed to make

the execution times be more predictable. Table 2 shows such necessity of memory

constraint. We executed 6 tasks which perform the same thing with the experiment in

the Table 1 but in this time, tasks access to the array in sequential order and are given

different periods. We varied their array size to 32KB, 64KB, 128KB and measured

their execution times during the 32 releases excluding the first release. When we map

the tasks to a core exceeding the local cache size of the core, the execution times of

the tasks are delayed up to 18.8%. On the contrary, we can see that the delay spikes

17

do not exceed up to 0.5% when the sum of memory usages on each core does not

exceed the local cache size of the core.

To limit the sum of memory usages for each core, we propose the task partitioning

satisfying the following memory constraint:

∀ci ∈C ,

∑
∀τi mapped to ci

(MEMτi)≤ Local cache size o f ci (4)

where C = {c1,c2, ...} represents the set of cores on the multicore simulator.

5.2 The Smallest-blocking-first heuristic

The problem finding the existence of the task partitioning which satisfies the mem-

ory constraint in Eq. 4 is reducible to bin packing decision problem which is known

as NP-Complete [14]. When we consider exhaustive search of the whole possible

partitioning cases, the size of solution space equals to S(|T|, |C |) where S repre-

sents the second kind of Stirling number which exponentially increases according

to the number of tasks and cores. e.g., S(9,4) = 7770,S(10,4) = 34105. Since there

is no polynomial time algorithm and the whole solution space is too large to ex-

haustively search, the heuristic approaches such as Best-fit-first, Worst-fit-first can be

considered to practically find the partitioning [15]. However, we cannot efficiently

utilize the multicore through the above heuristics since they only focus on the pack-

ing of item(task) and do not consider the existence of the job-level precedence graph.

Therefore, we propose Smallest-blocking-first heuristic which considers efficient par-

allelization of the job-level precedence graph.

18

Figure 7: Intuition of Smallest-blocking-first heuristic

5.2.1 Intuition of Smallest-blocking-first algorithm

We explain the intuition of Smallest-blocking-first heuristic at Figure 7. Let’s as-

sume that the tasks τ1 and τ2 are already mapped to c1 and c2, respectively. Each

bidirectional arrow represents the job of each task where its left-end means EESTi j

(Expected Earliest Start Time) of Ji j, and its right-end means ELFTi j (Expected Lat-

est Finish Time) of Ji j. When we determining which core the τ3 is mapped to, we can

calculate the interleaved [EEST31, ELFT31] interval with the already mapped tasks.

If the τ3 is mapped to the c1, the length of interleaved interval is 2 as Figure 7 shows.

Since the only one job can be executed on a core at a time, one of the J11 and J31

will be blocked for the time of 2. Similarly, one of the J21 and J31 will be blocked for

the time of 4 when the τ3 is mapped to the c2. The proposed Smallest-blocking-first

heuristic always choose the smallest blocking core at every decision. In the example

shown in the Figure 7, Smallest-blocking-first maps the τ3 to the c1 which has lower

blocking value. At the rest of this section, we explain how to find EESTi j and ELFTi j

from the job-level precedence graph.

19

5.2.2 Finding the Expected Earliest Start Time

The more precedence relations in the job-level precedence graph make the jobs start

more later since they force the successor job to start after all of its predecessor jobs

finish. Therefore, we need to use more sparse job-level precedence graph to conser-

vatively expect the EESTi js. To this end, we eliminate the non-deterministic edges,

which are not sure to be deterministic or removed during the simulation, from the

job-level precedence graph.

After eliminating the non-deterministic edges from the job-level precedence graph,

we assign the edge weights to the remaining edges following:

w(Ji j,Jkl) =Cbest,sim
i (5)

where Cbest,sim
i represents the best case execution time of τi on the simulator. Fig-

ure 8(a), (b) show this process using the example job-level precedence graph in the

Figure 4. Since we assign the edge weights as the best case execution time of the pre-

decessor job, the length of the longest path from the initially scheduled job to the Ji j

equals to the EESTi j when we assume the infinite number of simulator cores which

provides ideally parallelized execution.

The job-level precedence graph after eliminating non-deterministic edges forms

a DAG (Directed Acyclic Graph) because it is already proven that the job-level prece-

dence graph with only deterministic edges cannot contain cycle [2]. Since there ex-

ists a polynomial time algorithm to find the longest path on the DAG, we can find

the EESTi j of each job in polynomial time [16]. However, unlike the normal DAG-

formed job-level precedence graph, our job-level precedence graph has a constraint

20

(a) Initial job-level precedence graph (b) Job-level precedence graph after eliminat-
ing non-deterministic edges

(c) Sparse job-level precedence graph (d) EEST of each job

Figure 8: Construction of sparse graph and EESTi j of each job for the example job-
level precedence graph

about the start time of each job as the Eq. 1 shows. It means that the start time of the

Ji j who has physical read constraint is affected by not only its predecessor jobs but

also its actual start time on the real cyber-side. In other words, although the physical

read job does not have any unfinished deterministic predecessor, it cannot be added

to the ready queue until its actual start time on the real cyber-side.

To consider such constraint, we add virtual start job Jvs to the job-level precedence

graph and connect it to the jobs who have physical read constraint. At this step, we

additionally connect the Jvs to the jobs who do not have any predecessor with zero-

weight. These edges allow us to regard the Jvs as a single start job of the job-level

21

precedence graph by collecting all the jobs who might could be initially scheduled.

In summary, the weights of newly connected edges are assigned following:

w(Jvs,Ji j) =


min(tS,real

i j), when Ji j has physical read constraint

0, otherwise

(6)

As we mentioned at the Section 3, the start time interval [min(tS,real
i j), max(tS,real

i j)]

is progressively narrowed during the simulation. i.e., the value of min(tS,real
i j) keeps

increasing. By assigning the least narrowed min(tS,real
i j) value as the weight of edge

from the Jvs to the Ji j who has physical read constraint, we can force the length of the

longest path from the Jvs to the Ji j to be larger than the earliest start time of Ji j on the

real cyber-side. Figure 8(b), (c) show this process. After adding the virtual start job

and assigning the corresponding edge weights, we find the lengths of the longest path

from the Jvs to each job as Figure 8(d) shows. The shaded box at the lower-left corner

of each job Ji j represents the length of the longest path which equals to EESTi j.

5.2.3 Finding the Expected Latest Finish Time

Similar with the start time, the more precedence relations in the job-level precedence

graph make the jobs finish later. Therefore, we need to use more dense job-level

precedence graph to conservatively expect the ELFTi js. To this end, in this time, we

regard the non-deterministic edges as the deterministic edges. However, unlike the

sparse graph, when we consider both of deterministic and non-deterministic edges,

the job-level precedence graph may contain cycle which makes it impossible to define

the longest path from the job to the another job. Therefore, we first resolve the cycle

by eliminating the one of the non-deterministic edges composing the cycle.

22

(a) Initial job-level precedence graph (b) Job-level precedence graph after trans-
forming non-deterministic edges to determin-
istic edges (cycles are eliminated if exist)

(c) Dense job-level precedence graph (d) ELFT of each job

Figure 9: Construction of dense graph and ELFTi j of each job for the example job-
level precedence graph

Whenever a job in the job-level precedence graph is finished, the simulator checks

below inequality using the narrowed tS,real
i j , tF,real

i j ranges for all of the remaining non-

deterministic edges (Jkl,Ji j)s:

max(tS,real
kl)< min(tS,real

i j) (7)

If the above inequality holds, the non-deterministic edge (Jkl,Ji j) becomes deter-

ministic [2]. During the simulation, the value of max(tS,real
kl) keeps decreasing and

min(tS,real
i j) keeps increasing according to the narrowed tS,real

i j , tF,real
i j ranges. There-

23

fore, it intuitively implies that the smaller difference between max(tS,real
kl) and min(tS,real

i j)

makes the non-deterministic edges more likely to be deterministic. From this specula-

tion, we delete the non-deterministic edge who has the largest max(tS,real
kl)−min(tS,real

i j)

value among the non-deterministic edges composing the cycle. Since there exist

plenty of polynomial time cycle detection algorithms [17], we can resolve the cycles

in polynomial time by repeating the deletion of such non-deterministic edge until no

more cycle is detected.

After resolving the cycles, we assign the edge weights to the remaining edges

following:

w(Ji j,Jkl) =Cworst,sim
k (8)

where Cworst,sim
k represents the worst case execution time of τk on the simulator. We

also add the virtual start job and its corresponding edges from the Jvs to the jobs who

have physical read constraint or do not have any predecessor. The weights of edges

which are incident with the Jvs are assigned following:

w(Jvs,Ji j) =


max(tS,real

i j)+Cworst,sim
i when Ji j has physical read constraint

Cworst,sim
i , otherwise

(9)

Unlike the sparse graph, we assigned the edge weights following the worst case exe-

cution time of the successor job, and the virtual start job forces the physical read jobs

to start and finish as late as possible. i.e., they start at the latest start time on the real

cyber-side, max(tS,real
i j), and are executed for the worst case execution time, Cworst,sim

i .

These assignments allow us to regard the length of the longest path from the Jvs to

the Ji j as the latest finish time of the Ji j on the cycle-eliminated job-level precedence

24

graph when we assume the ideally parallelized execution. Figure 9(a) through (d)

show these processes to find ELFTi j. EFLTi j for each job is denoted as the shaded

box at the lower-right corner of each job. Note that unlike the EESTi j, we cannot

guarantee the simulated job Ji j in the job-level precedence graph finishes before the

ELFTi j because we find it after deleting the non-deterministic edge who might could

be deterministic during the simulation. In the rest of this paper, ELFTi j means the

latest finish time on the cycle-eliminated job-level precedence graph. i.e., the latest

finish time on the dense graph. However, we will use the ELFTi j as the approximated

finish time of the job Ji j in the original job-level precedence graph since we delete

the least likely to be deterministic edge when we resolve the cycles.

5.2.4 Weighting the [EESTi j, ELFTi j] intervals

Our conservative approach to find [EESTi j, ELFTi j] intervals may leads us to expect

too broad intervals which cannot practically predict the task-wise blockings. Since the

job Ji j can be executed only up to for Cworst,sim
i within the interval [EESTi j, ELFTi j],

we weight the each interval as follow:

w([EESTi j,ELFTi j]) =
Cworst,sim

i
ELFTi j−EESTi j

(10)

Figure 10 shows the resulting weighted intervals and task-wise blocking values

for the example job-level precedence graph in the Figure 5. The Figure 10 represents

the situation where τ1 and τ2 are already mapped to c1, c2, respectively, and we are

determining which core τ3 is mapped to. The task-wise blocking between τi and τ j,

Bτi,τ j , is defined as the sum of their job-wise blocking, bJik,J jl :

25

Figure 10: Weighted intervals and task-wise blocking values for the example job-level
precedence graph

Bτi,τ j = ∑
∀Jik∈τi

∑
∀J jl∈τ j

bJik,J jl (11)

The job-wise blocking between Jik and J jl , bJik,J jl , is defined as the weighted product

of interleaved length:

bJik,J jl = the length o f interleaved interval

∗w([EESTik,ELFTik])∗w([EESTjl,ELFTjl]) (12)

For example, the task-wise blocking between τ1 and τ3, Bτ1,τ3 , is defined as the sum of

their job-wise blockings bJ11,J31 and bJ12,J31 . When we consider bJ11,J31 , the interleaved

interval is [1, 3] and weights of each interval are 1.00 and 0.50 respectively. Since

[EEST12,ELFT12] and [EEST31,ELFT31] are not interleaved each other, the task-

wise blocking between the τ1 and τ3 equals with bJ11,J31 = 1.00.

In summary, our proposed heuristic task partitioning can be represented as Al-

gorithm 1 shows. During the simulation, the simulated job who has no unfinished

26

Algorithm 1 Proposed task partitioning algorithm

1: T←{τ1...τn} // set o f tasks

2: C ←{c1...cm} // set o f cores

3: U ←{U1 = 0...Um = 0} // mem. usage o f each core

4: P←{P1 = /0...Pm = /0} // task partition o f each core

5: for τi ∈ T do
6: coremin←−1

7: blockmin← ∞

8: for Pj ∈ P do
9: if U j +MEMτi > local cache size o f c j then

10: continue
11: end if
12: block← 0

13: for τk ∈ Pj do
14: block = block+Bτi,τk

15: end for
16: if block < blockmin then
17: blockmin← block

18: coremin← j

19: end if
20: end for
21: if coremin =−1 then
22: Task partitioning failed!
23: else
24: Ucoremin =Ucoremin +MEMτi

25: Pcoremin = Pcoremin ∪{τi}
26: end if
27: end for

deterministic predecessor and does not violate the constraint in Eq. 1 is added to the

ready queue of its pre-partitioned core. Similar with the previously proposed sim-

ulation method at the Section 3, the jobs partitioned into the each ready queue are

scheduled following EDF scheduling policy. i.e., partitioned-EDF. As we mentioned

before, if all the jobs of partitioned tasks can be scheduled without any deadline miss,

we can say that the cyber-side of an automotive system is correctly simulated.

27

6 Evaluation

To evaluate our proposed approach, we measured the “simulatability” of our simu-

lation method using randomly synthesized cyber-sides of an automotive system. i.e.,

how many of them are correctly simulated. In the rest of this paper, by “cyber-side”,

we mean the cyber-side of an automotive system which is similarly given as the Fig-

ure 2.

6.1 Simulatability according to the number of cores

At first, we synthesized 9,000 random cyber-sides. Each cyber-side is synthesized

as follows. The number of ECUs is determined from uni f orm[3,10]. The number

of tasks on each ECU is fixed as 5. Out of all the tasks in each cyber-side, 20% of

them read data from the physical-side. Similarly, another 20% of them write data to

the physical-side. The data producer/consumer relations among the tasks are ran-

domly configured, but the total number of producer/consumer relations does not

exceed the number of tasks in each cyber-side. For each task τi, its task parame-

ters are randomly generated as follows. Its task period Pi is randomly selected from

{10,20,25,50,100} msec while the offset Φi is assumed as zero. The worst case ex-

ecution time Cworst,real
i is determined from uni f orm(0,10]% of the Pi and the best

case execution time Cbest,real
i is determined from uni f orm(0,100]% of the Cworst,real

i .

All the synthesized tasks are assumed to be scheduled following RM scheduling pol-

icy. Since the maximum utilization of each ECU cannot exceed L&L(Liu and Lay-

land) utilization bound, 69%[18], we can assume that the set of tasks on each ECU

is schedulable at the real cyber-side. Lastly, for all the tasks in each cyber-side, we

28

Figure 11: Simulatability according to the number of simulator cores

assume the following simple execution time mapping function:

esim
i j =

ereal
i j

3
(13)

For such synthesized cyber-sides, we measured the simulatability during the ten

hyper periods for each cyber-side as changing the number of simulator cores as Fig-

ure 11 shows. For fair comparison, we assumed that the memory usage of each task

is extremely small, so even all of them can be fit into a local cache of a core. By

assuming this, we can focus on only the efficiency of our task partitioning algorithm.

i.e., Smallest-blocking-first. We can observe that the simulatability of Single core,

29

the baseline, drops down to 0% when the number of ECUs and tasks pair is (8, 40).

On the other hand, our proposed approach using 8 cores, Ours(8 cores), has 97% of

simulatability on the same number of ECUs and tasks. Furthermore, by comparing

Ours(2 cores), Ours(4 cores), and Ours(8 cores), we can also see that our proposed

approach scalably schedules the more ECUs and tasks in line with the increasing

number of simulator cores.

6.2 Simulatability according to the partitioning method

Secondly, we synthesized another 9,000 random cyber-sides to compare our proposed

approach with other task partitioning heuristics. Each cyber-side is synthesized in the

same way with the experiment in the Figure 11 but in this time, the number of ECUs

is determined from uni f orm[10,17]. We assumed the small memory usage tasks as in

the previous experiment and compared our task partitioning algorithm with following

commonly used heuristics:

• Worst-fit-first: It considers only memory constraint. It places the new task in a

core where it fits loosest. i.e., a core who has the largest remaining local cache

size after placing MEMτi

• Smallest-utilization-first: It considers only utilization of each core. It places

the new task in a core which has the smallest utilization where the utilization

of a core ci, Utilci , is defined as below:

Utilci = ∑
∀ τ j mapped to ci

Cworst,real
j

Pj
(14)

Figure 12 shows the result of the experiment. We can see that Ours always

30

Figure 12: Simulatability compared to the other task partitioning heuristics

has better simulatability than Worst-fit-first and Smallest-utilization-first in ei-

ther 4 cores and 8 cores. By comparing Ours with Worst-fit-first and Smallest-

utilization-first, we could confirm that Smallest-blocking-first approach has mean-

ingful improvement in comparison with the other heuristics which do not consider

the existence of the job-level precedence graph.

6.3 Simulatability according to the physical read/write task ratio

In order to more deeply investigate the simulatability of our approach according to the

characteristics of the given cyber-side, we additionally synthesized another 10,000

cyber-sides again. The experiment was conducted in the same conditions with the

31

(a) Simulatability as changing the physical read task ratio

(b) Simulatability as changing the physical write task ratio

Figure 13: Simulatability according to physical read/write task ratio

32

previous experiment but in this time, we fixed the number of ECUs as 10 and varied

their physical read/wirte task ratios from 10% to 50%.

Figure 13(a) shows the simulatability according to the physical read task ratio.

At this experiment, we fixed their physical write task ratio as 20% and varied their

physical read task ratio from 10% to 50%. Similar with the before experiments, Ours

always has better simulatability than others. Since the more physical read tasks in

the cyber-side imply the more physical read constraint in Eq. 1, the higher physi-

cal read task ratio leads the more jobs in the job-level precedence graph to wait its

actual start time on the real cyber-side although they do not have any unfinished

deterministic predecessors. We can see such influence through the declines of the

simulatabilities according to the physical read task ratio in Ours, Worst-fit-first, and

Smallest-utilization-first. However, unlike the other heuristic task partitioning algo-

rithms, Smallest-blocking-first considers the [EESTi j,ELFTi j] intervals which reflect

the actual start time on the real cyber-side. The noticeable simulatability gap between

Ours and others for all physical read task ratios shows such consideration in our ap-

proach efficiently handles the physical read tasks.

Similarly, Figure 13(b) shows the simulatability according to the physical write

task ratio while the physical read task ratio is fixed as 20%. Since the more physical

write tasks in the cyber-side imply the more physical write constraint in Eq. 2, the

higher physical write task ratio forces the more jobs in the job-level precedence graph

to finish before their actual finish time on the real cyber-side. We can see this ten-

dency through the decreasing simulatabilities of Ours, Worst-fit-first, and Smallest-

utilization-first according to the physical write task ratio. We can also validate that

our consideration about the [EESTi j,ELFTi j] efficiently handles the physical write

33

tasks by the increasing simulatability ratio between Ours and other heuristic algo-

rithms.

34

7 Conclusion

This paper proposes the multicore extension of previously proposed functionally and

temporally correct single core simulator. The proposed approach consists with two

parts: (1) memory constraint for keeping the key ideas of single core simulator and

(2) heuristic task partitioning algorithm that aims to minimize the task-wise blocking.

By introducing (1), we could guarantee the correct working of the execution map-

ping functions without any precisely designed isolation technique. We also showed

that our memory constraint is not too strict to be satisfied by focusing on the prac-

tical usecases of the automotive system tasks. Since our derived memory constraint

makes our problem as NP-Complete, we proposed the heuristic algorithm to partition

the tasks into the cores. Our heuristic algorithm is empirically validated through the

experiments using plenty of synthesized cyber-sides.

The followings are our future works to cover the limitations and extend the pro-

posed approach:

• Another control knobs to precisely expect the actual execution scenarios

of the cyber-side: In this dissertation, we proposed the conservative method

for expecting the start/finish time of each job. In the future, by studying another

knobs to precisely expect the real cyber-side behaviors, we expect to improve

the simulatability of our proposed approach.

• Accurate execution time mappings from the simulator environment to ECU

environment: Our concept of correctness is based on the execution time map-

pings. In the future, by studying more accurate execution time mappings be-

tween different machines, we expect to lay the firm foundation of our proposed

35

approach.

• Simulation for more complex cyber-physical systems: In this dissertation,

we could simply evade multicore interferences by focusing on the automo-

tive system tasks which have small memory usage. In the future, by studying

another method for evading multicore interferences, we expect to extend our

coverage of the simulation to more complex cyber-physical systems which nor-

mally have immense memory usage and super-large computation amount.

36

References

[1] Simulink. version 8.4.0.150421 (R2014b). MathWorks Inc., Natick, Mas-

sachusetts, 2014.

[2] Kyoung-Soo We, Seunggon Kim, Wonseok Lee, and Chang-Gun Lee. Func-

tionally and temporally correct simulation of cyber-systems for automotive sys-

tems. In Real-Time Systems Symposium (RTSS), 2017 IEEE, pages 68–79.

IEEE, 2017.

[3] Hyejin Joo, Kyoung-Soo We, Seunggon Kim, and Chang-Gun Lee. An end-to-

end tool for developing cpss from design to implementation. 2016.

[4] dSPACE. version 8.4.0.150421 (R2014b). dSPACE GmbH., Wixom, Michigan,

2018.

[5] Kyoung-Soo We. Functionally and Temporally Correct Simulation for Cyber-

Physical Systems. PhD thesis, Seoul National University, 2017.

[6] Intel. Core i7-9700k. https://www.intel.com/content/www/us/en/

products/processors/core/i7-processors/i7-9700k.html, 2018. Ac-

cessed 1 Nov. 2018.

[7] Infineon. Tricore 27x. https://www.infineon.com/cms/en/product/

microcontroller/32-bit-tricore-microcontroller/aurix-safety-

joins-performance/aurix-family-tc27xt/, 2018. Accessed 1 Nov. 2018.

[8] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon,

Rodolfo Pellizzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arun-

37

https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/

dale, et al. Single core equivalent virtual machines for hard real—time comput-

ing on multicore processors. Technical report, 2014.

[9] Abusayeed Saifullah, David Ferry, Chenyang Lu, and Christopher Gill. Real-

time scheduling of parallel tasks under a general dag model. 2012.

[10] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Pal-

loc: Dram bank-aware memory allocator for performance isolation on multicore

platforms. In Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[11] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches.

In Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International

Symposium on, pages 423–432. IEEE, 2006.

[12] Sophie Stern and Cigdem Gencel. Embedded software memory size estima-

tion using cosmic: A case study. In Int’l Workshop on Software Measurement

(IWSM), volume 39, 2010.

[13] Intel. Core i7-3610qm. https://ark.intel.com/products/64899/Intel-

Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-, 2012. Ac-

cessed 8 Nov. 2018.

[14] Michael R Garey and David S Johnson. Computers and intractability: A guide

to the theory of npcompleteness (series of books in the mathematical sciences),

ed. Computers and Intractability, 340, 1979.

38

https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-
https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-

[15] Hoon Liong Ong, Michael J Magazine, and TS Wee. Probabilistic analysis of

bin packing heuristics. Operations Research, 32(5):983–998, 1984.

[16] Ei Ando, Toshio Nakata, and Masafumi Yamashita. Approximating the longest

path length of a stochastic dag by a normal distribution in linear time. Journal

of Discrete Algorithms, 7(4):420–438, 2009.

[17] Gabriel Nivasch. Cycle detection using a stack. Information Processing Letters,

90(3):135–140, 2004.

[18] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46–61, 1973.

39

요약(국문초록)

본논문에서는멀티코어시뮬레이터를활용하여자동차사이버-물리시

스템의 사이버 시스템을 기능적/시간적으로 정확하게 시뮬레이션하기 위

한방법을제시한다.앞선연구에서는시스템의기능적행태뿐만아니라태

스크의가변수행시간,자원선점등과같은시간적행태역시함께정확히

모사하기위한새로운시뮬레이션기법들이제안되었다.앞선연구에서제

안된시뮬레이션기법들이싱글코어시뮬레이터만을가정하고있다는점에

착안하여 본 논문에서는 정확한 시뮬레이션을 보장하기 위해 제안되었던

기존 연구의 주요 아이디어를 모두 유지하면서 싱글코어 시뮬레이터를 멀

티코어 시뮬레이터로 확장한다. 제안하는 방법에서는 각 태스크의 메모리

사용량과 근사화 된 태스크 간 블로킹 값을 기반으로 시뮬레이션 대상 태

스크에대한휴리스틱태스크분할알고리즘을설계한다.또한,임의적으로

생성한다수의워크로드를사용하여시뮬레이션성능을측정하고,이를통

해제안하는방법이싱글코어시뮬레이터및다른태스크분할알고리즘에

비해 각각 최대 97%p, 15%p의 향상된 시뮬레이션 용량을 갖는 것을 보인

다. 결과적으로 제안하는 멀티코어 시뮬레이터는 앞선 연구에서 제안되었

던기능적/시간적정확성을동일하게보장함과동시에보다높은시뮬레이

션 용량을 제공함으로써 전체 자동차 시스템의 시뮬레이션에 효과적으로

활용될수있다.

주요어 :자동차시스템시뮬레이션,실시간시뮬레이션

학번 : 2017-21586

40

	1 Introduction
	1.1 Motivation and Objective
	1.2 Approach
	1.3 Organization

	2 Related Work
	2.1 Model-Based Simulations
	2.2 Real-time Execution Platforms
	2.3 Functionally and Temporally Correct Simulations

	3 Background
	3.1 Description on the real cyber-system
	3.2 Description on the simulated cyber-system
	3.3 Idea of Functionally and Temporally Correct Simulation

	4 Problem Description
	4.1 Keeping the key ideas of the single core simulator
	4.2 Maximally utilizing the multicore

	5 Proposed Approach
	5.1 Memory constraint
	5.2 The Smallest-blocking-first heuristic
	5.2.1 Intuition of Smallest-blocking-first algorithm
	5.2.2 Finding the Expected Earliest Start Time
	5.2.3 Finding the Expected Latest Finish Time
	5.2.4 Weighting the [EEST, ELFT] intervals

	6 Evaluation
	6.1 Simulatability according to the number of cores
	6.2 Simulatability according to the partitioning method
	6.3 Simulatability according to the physical read/write task ratio

	7 Conclusion
	References

<startpage>10
1 Introduction 1
 1.1 Motivation and Objective 1
 1.2 Approach 1
 1.3 Organization 2
2 Related Work 3
 2.1 Model-Based Simulations 3
 2.2 Real-time Execution Platforms 3
 2.3 Functionally and Temporally Correct Simulations 3
3 Background 5
 3.1 Description on the real cyber-system 5
 3.2 Description on the simulated cyber-system 7
 3.3 Idea of Functionally and Temporally Correct Simulation 9
4 Problem Description 12
 4.1 Keeping the key ideas of the single core simulator 12
 4.2 Maximally utilizing the multicore 13
5 Proposed Approach 15
 5.1 Memory constraint 15
 5.2 The Smallest-blocking-first heuristic 18
 5.2.1 Intuition of Smallest-blocking-first algorithm 19
 5.2.2 Finding the Expected Earliest Start Time 20
 5.2.3 Finding the Expected Latest Finish Time 22
 5.2.4 Weighting the [EEST, ELFT] intervals 25
6 Evaluation 28
 6.1 Simulatability according to the number of cores 28
 6.2 Simulatability according to the partitioning method 30
 6.3 Simulatability according to the physical read/write task ratio 31
7 Conclusion 35
References 37
</body>

