

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Dynamic Optimization of Large-Scale Data
Shuffling in a Data Processing System

데이터처리시스템에서의대규모데이터셔플에대한동적

최적화

2019년 2월

서울대학교대학원

컴퓨터공학부

이산하

Abstract

Dynamic Optimization of Large-Scale Data
Shuffling in a Data Processing System

San Ha Lee
Department of Computer Science and Engineering

The Graduate School
Seoul National University

The scale of data used for data analytics is growing rapidly and the ability to process large

volumes of data is critical to data processing systems. A scaling bottleneck for processing

large amounts of data in the data processing systems is the random disk read overhead that

occurs while shuffling data communications between tasks. To reduce this overhead, an ex-

ternal shuffle process can batch the disk read by aggregating the intermediate data through

an additional computation. However, the additional computation cannot take advantage of

distributed execution capabilities provided by data processing systems such as scheduling,

parallelization, or fault recovery. In addition, the systems cannot dynamically optimize the

external shuffle process in the same way that they optimize plain jobs without an external

process. Instead of launching the external shuffle process, we propose to insert the disk read

batching into a job. By doing so, the tasks can fully exploit the features, including the dy-

namic optimization provided by data processing systems, because the computation for inter-

mediate data aggregation is fully revealed to the systems. Moreover, we suggest a dynamic

data skew handling mechanism that can be applied with the disk read batching optimization

at the same time. Evaluations show that our implemented technique can mitigate random disk

read overhead and data skewness and can reduce the job completion time by up to 54%.

i

Keywords: Data Processing, Data Analytics, Large-Scale Shuffle, Storage I/O Optimization,

Dynamic Optimization, Skew Handling, Data Processing System

Student Number: 2017-28856

ii

Contents

Abstract i

Contents iv

List of Figures 1

Chapter 1 Introduction 2

Chapter 2 Background 4

2.1 Distributed Data Processing Concepts . 4

2.2 Random Disk Read Overhead in the Data Shuffle 5

2.3 Existing Solutions . 6

2.4 Skew Handling with Disk Read Batching 8

Chapter 3 Disk Read Batching as a Task 10

3.1 Intermediate Data Aggregation Stage . 10

3.2 Composing with Skew Handling Optimization 12

Chapter 4 Implementation 15

4.1 Optimization Pass for Disk Read Batching 15

4.2 Optimization Pass for Skew Handling . 17

Chapter 5 Evaluation 21

5.1 Cluster Setup . 21

iii

5.2 Disk Read Batching Optimization . 22

5.3 Skew Handling Optimization with Disk Batching 24

Chapter 6 Conclusion 28

Bibliography 29

국문초록 31

iv

List of Figures

Figure 3.1 Insertion of the intermediate data aggregation stage into a simple

map-reduce application. (a) shows the original task-level job DAG,

and (b) represents the job DAG when the aggregation stage (Agg

Task) is inserted. Each partition is consumed by tasks that have the

same color. 11

Figure 4.1 Optimization pass for disk read batching that inserts an aggregation

vertex (represented as Agg Vertex) for the target shuffle edge. (a)

shows the original IR DAG and the execution properties of a simple

word counting job, and (b) represents the IR DAG and the execution

properties after the optimization pass is applied. Only properties re-

lated to the optimization are presented. The inserted vertex and the

modified execution properties are marked in blue. 16

Figure 4.2 Skew handling optimization pass that inserts a sampling stage and

a metric aggregation vertex (represented as Metric Agg Vertex) for

the target shuffle edge. (a) shows the original IR DAG and the exe-

cution properties of an example job with the target shuffle edge, and

(b) represents the IR DAG and the execution properties after the op-

timization pass is applied. Only properties related to the optimiza-

tion are presented. The inserted vertices and the modified execution

properties are marked in blue. 18

v

Figure 5.1 Job completion time of the word-counting job with and without the

disk read batching optimization. Error bar represents the average

standard deviation of JCT. 23

Figure 5.2 Mean disk I/O throughput during a single run of the word-counting

job with and without the disk read batching optimization. The mea-

sured disks are the YARN local disks for maintaining intermediate

data. 23

Figure 5.3 Cumulative distribution function of the ratio of the input interme-

diate data size per consumer task of a join vertex in a single run

depending on sampling rate without skew handling. 25

Figure 5.4 Job completion time of the TPC-H query with and without the skew

handling and disk read batching optimization. Error bar represents

the average standard deviation of JCT. 27

Figure 5.5 Cumulative distribution function of the input intermediate data size

per consumer task of a join vertex in a single run with and without

the skew handling and disk read batching optimization. 27

1

Chapter 1

Introduction

Recently, data analysis applications that process tremendous amounts of data from a few

terabytes to petabytes are emerging. These applications, including log processing, machine

learning, and transaction processing, are commonly run on distributed data processing sys-

tems to take advantage of parallel processing. For example, Facebook announced via [1]

that over 20 petabytes of data are generated and processed daily on their Spark [2] cluster.

Accordingly, it becomes critical to process these large-scale applications efficiently for the

data processing systems such as Hadoop [3], Spark [2], Dryad [4], and Nemo [5].

Such data processing systems parse and execute these applications as small pieces of

parallel computation units (called tasks) and the communication between them. In most

cases, the systems persist the intermediate data to be shuffled between the tasks on hard disk

drives (HDDs) for the sake of persistency and cost efficiency. However, when tasks read

the intermediate data on the disk, multiple tasks simultaneously read a single intermediate

data file generated by a producer task and random disk reads occur. Furthermore, as the size

of the intermediate data grows, this overhead increases super-linearly. Therefore, the data

shuffle becomes a scaling bottleneck for the data analysis applications.

There are several research solutions that tailor a data processing system to large-scale data

shuffles by batching the disk read [1, 6]. These solutions launch a separate process on each

worker machine or a separate distributed file system on the worker machines that performs

intermediate data aggregation. The aggregation process or distributed file system groups the

2

intermediate data that a single consumer task will read and stores it in a file on the disk. This

aggregation allows consumer tasks to sequentially read only one file for each task.

However, because these solutions maintain a computing process detached from the main

procedure of application execution, the process (or another component) must provide addi-

tional functionalities, including computation scheduling, parallelization, and fault recovery,

that are already provided by the data processing systems for ordinary tasks. Moreover, since

the distribution of data from producer tasks to consumer tasks must be determined before the

data shuffle, it is difficult to apply other optimizations (especially, dynamic optimizations)

for the shuffle, such as data skew handling, at the same time.

Instead of performing intermediate data aggregation in a separate computing process, we

suggest inserting the disk read batching into a job. This reveals the disk read batching step

to the data processing system, and makes it naturally take advantage of the features of the

system, including computation scheduling, parallelization, and fault recovery. In addition,

exposing the disk read batching to the system in the form of tasks enables the system to

apply other optimizations transparently.

To demonstrate the merit of this exposure, we propose a dynamic data skew handling

technique that can be combined with our disk read batching optimization. By dynamically

calculating the data size histogram of the intermediate data generated by sampled producer

tasks, the intermediate data communication can be reconfigured before the original shuffle to

mitigate data skew.

We implemented this technique on Apache Nemo and evaluated the performance benefit

of it. The evaluation results show that our technique reduces the job completion time of a

map-reduce job for 1 terabyte (TB) of non-skewed data by 54% and reduces the job comple-

tion time of a TPC-H benchmark query for 100 GB of skewed data by 31% with proper skew

handling.

3

Chapter 2

Background

This chapter describes the overall concepts and problems we focus on. Section 2.1 explains

how a distributed data processing system parses and executes data analysis applications. Sec-

tion 2.2 describes the random disk read overhead that occurs during a data shuffle. In Sec-

tion 2.3, we demonstrate the existing solutions to alleviate the random disk read overhead,

including how they handle computation scheduling, parallelization, and fault recovery. In

Section 2.4, we illustrate the difficulty of combining dynamic optimizations for the shuffle

with the example of data skew handling.

2.1 Distributed Data Processing Concepts

Distributed data processing systems split a data analysis application into a number of par-

tial computations. Typical MapReduce [7] frameworks like Hadoop [3] divide their appli-

cations into two computational phases called map and reduce, and data communication be-

tween these computations. To break away from this convention, many recent data processing

systems, such as Spark [2], Dryad [4], and Nemo [5], represent data analysis applications

as job directed acyclic graphs (DAGs). A job DAG contains nodes representing the partial

computation of the application and edges representing the data communication between the

computations.

These systems provide common functionalities for executing parsed applications includ-

ing computation parallelization, scheduling, and fault recovery. At first, the job DAG is di-

4

vided again into partial DAGs called stages. Typically, computations that can be pipelined

are grouped as a stage. Data processing systems parallelize the stages into computation units

(i.e., tasks) and schedule them. The data communication at an edge is defined by a com-

munication pattern. The communication pattern includes the one-to-one pattern in which a

consumer task solely consumes the output of a producer task, the broadcast pattern in which

every consumer task consumes the entire output data of all the producer tasks, and the many-

to-many pattern (shuffle) in which a consumer task consumes a designated part of the output

data from every producer task. The output of each task is called a block, which is a part of

the intermediate data, and each block is divided into many partitions, which are units of data

communication. The procedure that collects output data into partitions is called partitioning.

This partitioning is usually determined by the communication pattern, but can be customized

by the system.

2.2 Random Disk Read Overhead in the Data Shuffle

As the amounts of data processed by applications increases, it becomes more important for

data processing systems to efficiently store and deliver large amounts of intermediate data.

The randomness of data reading is a crucial characteristic of data processing that affects the

performance of data communication. As mentioned above, when a task produces an output

block to be shuffled, the block consists of many partitions that can be read by many tasks.

Because the scheduling and execution order of tasks is determined at run-time based on

several factors, such as the number and status of worker machines, data locality, and so on,

read requests for a partition also occur randomly. Notably, the random read performance of

a HDD is definitely lower than the sequential read performance due to the disk seek, as it

is known. Therefore, the randomness of data reading degrades the performance of the data

shuffle when it encounters the characteristics of the HDD.

Unfortunately, it is very common to persist intermediate data to be shuffled on HDDs

to reduce re-computation cost. When a single task that reads some of the shuffled data that

5

is not storage fails, the entire tasks that generated the data must be re-executed. However,

the failure of tasks is considered a norm for distributed data processing. Furthermore, it is

too expensive to maintain large amounts of intermediate data in non-disk storage, such as

memory or solid state drive (SSD). As a result, many data analysis applications shuffle data

on HDDs while taking the random disk read overhead for every partition read request.

To make matters worse, the number of random read requests in the shuffle increases

quadratically with the size of the intermediate data. As the size of the input data of an ap-

plication becomes larger, the number of consumer tasks and intermediate data files usually

increases, and each consumer task reads a smaller part of all intermediate data files. When

there are P producer tasks and C consumer tasks connected with a shuffle edge, an output

block from a producer task consists of C partitions. In general, P and C are linearly propor-

tional to the input data size. Accordingly, the total number of random disk reads (P × C) is

quadratically proportional to the input data size. Consequently, every data request only reads

a small amount of data with random disk read overhead, and the overhead becomes a scaling

bottleneck.

2.3 Existing Solutions

To mitigate the random disk read overhead of the shuffle, Sailfish [6] and Riffle [1] aggregate

the intermediate data to batch the disk read.

• Sailfish [6] is a MapReduce framework optimized for the large-scale data shuffle. Sail-

fish maintains a customized version of a separate distributed file system for intermedi-

ate data aggregation. When a producer task generates intermediate data to be shuffled

in Sailfish, the task sends output data to the distributed file system immediately, in-

stead of to a local disk. A computation process called chunkserver runs on each cluster

machine forming the distributed file system and it aggregates and sorts the interme-

diate data. During this aggregation, all data to be read by a single consumer task is

6

grouped and stored in a single file, called an I-file, according to the partitioning policy

of the shuffle. Because there are a fixed number of I-files, an I-file can be read by many

consumer tasks. After this aggregation procedure, consumer tasks can read the inter-

mediate data almost sequentially from I-files, rather than reading from many spread

out data files and taking the random disk read overhead.

Because the chunkserver is designed as an on-demand process and runs on each cluster

machine, the MapReduce framework cannot control the scheduling and parallelization

of the aggregating computation. Moreover, when an I-file is lost, the framework re-

computes all producer tasks to re-generate the I-file.

• Riffle [1] is an optimized shuffle service for the large-scale data shuffle. Riffle launches

the merger scheduler process and the Spark scheduler on the driver and the external

shuffle service process and the Spark executors on each worker machines. When Spark

requests a data shuffle for Riffle, the merger scheduler schedules aggregating computa-

tions for the shuffle service processes. Through the aggregation, all data for a consumer

task is grouped and stored in a single file, like in Sailfish. Therefore, consumer tasks

can read intermediate data sequentially.

Instead of compromising the speed of the fault recovery process like Sailfish, Riffle

provides a customized fault recovery mechanism. Riffle stores the original intermediate

data files as well as the aggregated files. If an aggregated file is lost, the consumer task

can read data from the original files (and the partially aggregated files, if possible)

without recalculating the producer tasks.

The above solutions efficiently alleviate the random disk read overhead of large-scale

data shuffling by aggregating the intermediate data. However, the distributed file system or

the scheduling and computing processes for intermediate data aggregation are hidden from

the sight of the data processing system. Because of this, the additional computation for ag-

gregation cannot take advantage of the system’s basic functionalities for tasks, such as com-

7

putation scheduling, parallelization, and fault recovery. Furthermore, since the aggregation

process is separate from the optimization layer of the data processing system, the system can-

not modify the data distribution of the shuffle and aggregation directly; instead, the system

must modify the action of the external processes. This problem gets worse when trying to

modify the shuffle at run-time.

2.4 Skew Handling with Disk Read Batching

Data skew handling optimization is an example of optimization that is not easily compatible

with the previous disk read batching solutions. Data skew of shuffled data in distributed data

processing is a general problem, and there are several frameworks that handle the problem,

such as Themis [8], SkewReduce [9], Starfish [10], Optimus [11], and Hurricane [12]. These

solutions can be roughly classified into two types: input data sampling and dynamic redis-

tribution. However, these solutions are difficult to apply with the previously described disk

read batching solutions.

• Input Data Sampling

Themis, Starfish, and SkewReduce are MapReduce frameworks that handle data skew

with the input data sampling method. This type of framework has some sort of sampled

execution phase before the original application execution. In this phase, the framework

executes all or part of the original application for some sampled input data and col-

lects an ∂intermediate data size metric for each key. After this phase, the framework

reconfigures the distribution of the intermediate data to mitigate the data skew accord-

ing to the collected metric and executes the original application with the optimized

intermediate data distribution.

However, this kind of technique cannot be applied to the recent data processing systems

that process arbitrary job DAGs. When a part of the application is executed for some

sampled input data, the contents of the intermediate data after a few shuffle or broadcast

8

edges are significantly different from the contents when the application is executed

for the full input data. Therefore, the shuffles in later part of the job DAG cannot be

optimized correctly with this kind of technique.

• Dynamic Redistribution

Optimus and Hurricane are data processing systems that handle data skew with an

dynamic redistribution method. This type of system collects the intermediate data size

metric per key while executing the producer tasks of an arbitrary shuffle in the job

DAG without any sampled execution phase. When the producer tasks are completed,

the system dynamically reconfigures the intermediate data distribution to resolve the

data skew according to the collected metric. Afterward, each consumer task consumes

the data reassigned to the task.

However, the disk read batching techniques aggregate the intermediate data according

to the partitioning policy during the execution of the producer tasks. Because of this,

the distribution of the intermediate data from the producer tasks to the consumer tasks

must be determined before the execution of the producer tasks. Therefore, this kind of

data skew handling is not compatible with the disk read batching.

For the above reasons, the existing disk read batching techniques are not easily compati-

ble with the data skew handling techniques. In fact, Riffle does not provide any skew handling

mechanism. Sailfish modifies the number of consumer tasks for each I-file according to the

intermediate data size metric. However, this approach is only effective if the skewness is in-

significant. Otherwise skew handling will not work properly and the random disk read will

occur again.

9

Chapter 3

Disk Read Batching as a Task

In order to overcome the limitations specified in Chapter 2, we suggest to insert the disk read

batching optimization into a job. Section 3.1 describes how to conduct the disk read batching

by inserting an intermediate data aggregation stage. Section 3.2 proposes a hybrid version

of data skew handling optimization that is compatible with the inserted intermediate data

aggregation stage.

3.1 Intermediate Data Aggregation Stage

To reveal the disk read batching optimization to the data processing system, we insert a stage

that performs intermediate data aggregation before the large-scale shuffle edge in the job

DAG. The tasks of the inserted aggregation stage emits input data immediately without any

computation. By composing this simple task and a few functionalities provided by the system,

the disk read during shuffles can be batched without separate processes or a distributed file

system.

Figure 3.1 illustrates the insertion of the data aggregation stage into a simple map-reduce

job as an example. (a) represents the original map-reduce job DAG. The DAG has a map stage

and a reduce stage connected by a shuffle edge. As mentioned earlier, each output block of

a map task is read by many reduce tasks in a random order. (b) represents the optimized job

DAG with the aggregation stage inserted. The aggregation stage receives the shuffled data

from the map stage and is connected to the reduce stage by an one-to-one edge. Because the

10

Map
Task 1

Map
Task 2

Map
Tsk 3

Reduce
Task 1

Reduce
Task 2

Agg
Task 1

Agg
Task 2

Map
Task 1

Map
Task 2

Map
Tsk 3

Reduce
Task 1

Reduce
Task 2

Task

Data Communication Edge

Block

Partition

(a) Original DAG

(b) Optimized DAG

Figure 3.1: Insertion of the intermediate data aggregation stage into a simple map-reduce application.

(a) shows the original task-level job DAG, and (b) represents the job DAG when the aggregation stage

(Agg Task) is inserted. Each partition is consumed by tasks that have the same color.

11

aggregation task passes input data to the output, the intermediate data that each reduce task

reads is identical to the original intermediate data in (a). As depicted, the reduce task can read

the input sequentially, although the aggregation task still reads the shuffled data in a random

order.

In Figure 3.1 (b), the map tasks can push the shuffled data immediately to the aggregation

tasks using memory instead of disks, and the aggregation tasks can store the received data on

disks. Then, each output block of the aggregation tasks becomes a data group for a particular

reduce task stored on a disk as a file that can be read sequentially. This makes many random

read requests occur in memory instead of in disks. If there are P producer tasks and C

consumer tasks connected with a shuffle edge in the original DAG, the number of random

disk reads decreases from P ×C to C through the disk read batching. Accordingly, the total

number of random disk reads becomes linearly proportional to the input data size, and the

influence of the random read remarkably decreases.

This aggregation methodology is similar to the intermediate data aggregation solutions

mentioned above, but does not require an external process or file system for aggregation.

Moreover, the inserted stage and data communication follow the ordinary job execution path

of the data processing system. Because of this, the disk read batching step naturally exploits

the functionalities of the data processing system, such as computation scheduling, paralleliza-

tion, and fault recovery. Furthermore, the new stage and edge included in the job DAG can be

further optimized by the system in the same way that the system modifies other ordinary job

DAGs. For example, the skew handling optimization discussed in Section 3.2 can be applied

to the DAG that has the inserted aggregation stage. Section 4.1 also describes several detailed

tunings for the data transfer around the aggregation stage.

3.2 Composing with Skew Handling Optimization

As described in Section 2.4, existing skew handling optimizations are not compatible with

the disk read batching optimization. In order to apply skew handling and disk read batching

12

at the same time, we propose a skew handling optimization that is a hybrid of the input data

sampling method and the dynamic redistribution method. Instead of running a job for the

sampled input data and collecting a portion of the target intermediate data before executing

the original job for the full input data, the data processing system can generate a portion of

the intermediate data to optimize the distribution dynamically during the job execution.

When a job DAG consists of three stages S1, S2, and S3 and two edges, E1 connecting

S1 with S2 and E2 connecting S2 with S3, a portion of the output data of S2 can be generated

by executing some sampled tasks of S2 with the intermediate data from S1 at run-time. After

the execution of S1 is completed, the sampled tasks of S2 can consume the intermediate data

just as the original tasks of S2 consumes it, regardless of the communication pattern of E1.

Therefore, by sampling the tasks that produce the target intermediate data instead of the input

data, the data processing system can acquire the accurate data size metric of the intermediate

data. After the execution of the sampled tasks, the system can reconfigure the distribution of

E2 according to the gathered metric and execute S2. As a result, the tasks in S3 can consume a

similar amount of data. Section 4.2 presents a detailed implementation of this skew handling

optimization.

Because this optimization collects the data size metric of the target data before running

the original producer tasks, the distribution of the intermediate data is not changed once it is

stored, unlike the other solutions classified in the dynamic redistribution method. In addition,

because the data metric collection is conducted dynamically and the earlier stages before

generating the target data are executed normally, the data metric is reliable regardless of the

position of the target edge in the job DAG, unlike other solutions classified in the input data

sampling method. Therefore, this skew handling optimization is fully compatible with the

disk read batching optimization for arbitrary job DAGs.

Indeed, existing disk read batching solutions that conduct intermediate data aggregation

on an external component are compatible with this skew handling mechanism. However,

the external component must have an interface that enables the data processing system to

13

reconfigure the intermediate data distribution at run-time. Because the disk read batching

described in Section 3.1 includes the intermediate data aggregation in the job DAG as a stage,

the DAG with an aggregation stage can be optimized through this skew handling method just

like any other job DAGs.

14

Chapter 4

Implementation

The disk read batching and skew handling are implemented on Apache Nemo [5], which is a

distributed data processing system with a flexible optimizer. When an application is executed

in Nemo, the Nemo optimizer parses the application into an intermediate representation (IR)

DAG, which is an abstracted DAG representing the job. The IR DAG has annotations on each

IR vertex and IR edge called execution properties that designate the job execution, such as

the partitioning policy and communication pattern. The Nemo optimizer optimizes jobs by

modifying the annotations in the IR DAG or reshaping the IR DAG itself. In Nemo, a series

of reshaping or modifying annotations is represented as an optimization pass. The disk read

batching and skew handling are also implemented as optimization passes.

4.1 Optimization Pass for Disk Read Batching

The implemented optimization pass for disk read batching inserts the aggregation vertex into

the IR DAG as described earlier. Figure 4.1 illustrates how the IR DAG of a word-counting

job is changed by the optimization pass. In (a), the map vertex counts the number of occur-

rences per word in each source block from the source vertex and the reduce task calculates

the total number of occurrences per word. The source and map vertex will be pipelined as a

stage. In (b), the optimization pass reshapes the IR DAG by inserting an aggregation vertex

that has the same parallelism with the reduce vertex, and connects the aggregation vertex

with the reduce vertex. The aggregation tasks of the inserted aggregation vertex relays the

15

Stage 1 Stage 2Stage 0

Map
Vertex

Agg
Vertex

Parallelism: P
Scheduling: Source Location Aware

Source
Vertex

Communication Pattern: One to One

Parallelism: P Parallelism: C

Communication Pattern: Shuffle
Encoder: {String, Long}

Decoder: {Bytes}
Compression: LZ4

Decompression: None
Data Store: Serialized Memory

Persistence: Discard
Data Flow: Push

Reduce
Vertex

Parallelism: C
Scheduling: Input Location Aware

Communication Pattern: One to One
Encoder: {Bytes}

Decoder: {String, Long}
Compression: None
Decompression: LZ4

Data Store: Disk
Persistence: Persist

Data Flow: Pull

Stage 0 Stage 1

Map
Vertex

Reduce
Vertex

Parallelism: P
Scheduling: Source Location Aware

Source
Vertex

Communication Pattern: One to One

Parallelism: P Parallelism: C

Communication Pattern: Shuffle
Encoder: {String, Long}
Decoder: {String, Long}

Compression: LZ4
Decompression: LZ4

Data Store: Disk
Persistence: Persist

Data Flow: Pull

IR Vertex

IR Edge (One to One)

(a) Original IR DAG

(b) Optimized IR DAG

IR Edge (Shuffle)

Stage

Figure 4.1: Optimization pass for disk read batching that inserts an aggregation vertex (represented

as Agg Vertex) for the target shuffle edge. (a) shows the original IR DAG and the execution properties

of a simple word counting job, and (b) represents the IR DAG and the execution properties after the

optimization pass is applied. Only properties related to the optimization are presented. The inserted

vertex and the modified execution properties are marked in blue.

16

input data to the output. The implemented pass always inserts an aggregation vertex before

every shuffle edge, but the pass can conditionally insert the aggregation vertex depending on

the parallelism of the consumer vertex.

After the reshaping, the optimization pass modifies the annotation of the IR DAG. By

modifying the data store property of the shuffle from the disk to the serialized memory, the

shuffled data is stored and read in the memory in a serialized format without disk access. In

addition, by setting the data flow method property of the shuffle edge as push and setting the

persistence as discard, the map tasks immediately push the shuffled data to the aggregation

tasks and discard it after the transfer. The output of the aggregation task is kept in a disk and

the reduce vertex is not pipelined with the aggregation vertex.

By these reshaping and annotating, the disk read can be batched. However, there are some

additional tunings that can be applied to improve performance. First, because the aggregation

task does not see the content of the input data, the input data does not need to be deserialized.

Therefore, by modifying the encoder, decoder, compression, and decompression properties as

in (b), the aggregation task can take arrays of partition bytes as the input and write the bytes

to the output directly without any additional (de)serialization, while the data that the reduce

vertex reads is unchanged. Second, the scheduling of the reduce tasks can be optimized by

letting the system schedule each reduce task to the executor that contains the input data. This

ensures that the data read from the disk is not transferred through the network. Finally, when a

vertex receives multiple shuffle edges, the optimization pass merges the aggregation vertices

for the shuffle edges into one aggregation vertex.

4.2 Optimization Pass for Skew Handling

The implemented skew handling optimization pass samples the stage that produces the target

intermediate data as explained earlier. Figure 4.2 depicts how the IR DAG of an example

job with 3 stages is changed by the optimization pass at compile-time. The optimization

pass tries to make each task of Stage 2 in (a) consume a similar amount of data. In order to

17

Stage 1

Stage 4Stage 3

Stage 0 Stage 2

Producer
Vertex 2

Consumer
Vertex

Parallelism: J Parallelism: K

Communication Pattern: Shuffle
Data Store: Disk

Persistence: Persist
Data Flow: Pull

Partitioner: Data Skew Hash Partitioner

Producer
Vertex 1

Parallelism: JParallelism: I

Communication Pattern: Broadcast
Data Store: Disk

Persistence: Persist
Data Flow: Pull

Parallelism: J / SParallelism: J / S

Producer
Vertex 1

Communication Pattern: Broadcast (Sampled)
Data Store: Disk

Persistence: Persist
Data Flow: Pull

Previous
Vertex

Metric
Collection

Vertex

Producer
Vertex 2

Parallelism: J / S

Metric
Agg

Vertex

Communication Pattern: Shuffle
Data Store: Serialized Memory

Persistence: Discard
Data Flow: Push

Parallelism: 1

Stage 1Stage 0 Stage 2

Producer
Vertex 2

Consumer
Vertex

Parallelism: J Parallelism: K

Communication Pattern: Shuffle
Data Store: Disk

Persistence: Persist
Data Flow: Pull

Partitioner: Hash Partitioner

Parallelism: JParallelism: I

Communication Pattern: Broadcast
Data Store: Disk

Persistence: Persist
Data Flow: Pull

Previous
Vertex

Producer
Vertex 1

(a) Original IR DAG

(b) Optimized IR DAG

IR Vertex

IR Edge (One to One)

IR Edge (Shuffle)

Abbreviated Partial DAG

Stage

IR Edge (Broadcast)

IR Edge (Control Dependency)

Figure 4.2: Skew handling optimization pass that inserts a sampling stage and a metric aggregation

vertex (represented as Metric Agg Vertex) for the target shuffle edge. (a) shows the original IR DAG

and the execution properties of an example job with the target shuffle edge, and (b) represents the IR

DAG and the execution properties after the optimization pass is applied. Only properties related to the

optimization are presented. The inserted vertices and the modified execution properties are marked in

blue.

18

achieve the data size metric per key for the intermediate data, the pass samples tasks in the

Stage 1, inserts a metric collection vertex at the end of the sampled tasks, inserts a metric

aggregation vertex after the sampled stage, and creates a control dependency between the

metric aggregation vertex and the original Stage 1 to allow Stage 1 to run after the metric

aggregation. When the sampling rate is 1
S and the parallelism of the original Stage is J , the

pass sets the parallelism of the vertices of the sampled Stage 3 in (b) as J
S . The inserted metric

collection vertex groups the input data from the Producer Vertex 2 per key and calculates the

size of the data of each group. The inserted metric aggregation vertex aggregates the collected

metric by summing the data size per key. To perform the metric aggregation concurrently

with the metric collection, the output data of the metric collection vertex is pushed through

memory and discarded. When a vertex receives multiple shuffle edges, a metric aggregation

vertex collects all metrics for the receiving vertex and the reconfigured data distribution is

applied for the shuffle edges identically for correctness.

Because an optimization pass for skew handling in a dynamic redistribution style al-

ready exists in Nemo, many concepts of this pass, such as the custom hash partitioner, the

dynamic reconfiguration mechanism, the skewed task aware scheduling, and the run-time

optimization pass that contains the shuffled data redistribution algorithm, are reused for the

new skew handling optimization pass. The custom hash partitioner marked as ”Data Skew

Hash Partitioner” increases the key range of the partitions several times. When a task of the

metric aggregation stage aggregates the data size metric at run-time, the task sends the met-

ric to the Nemo driver. By using this metric, the run-time optimization pass coupled to the

compile-time optimization pass calculates a better shuffled data distribution and reconfig-

ures the shuffle edge. After the reconfiguration, the metric aggregation vertex is marked as

complete and the control dependency is resolved.

As we mentioned above, this optimization pass can be applied to an arbitrary DAG in-

cluding the DAG optimized by the disk read batching optimization pass. Although the sam-

pled stage of the example only receives a single broadcast edge, the stages that receive many

19

edges of the arbitrary communication pattern can be sampled. When the compile-time opti-

mization pass samples the target stage, an index of the task in the original stage is assigned

to each task of the sampled stage. The sampled task reads the data exactly the same as the

data that is read by the original task of the assigned index as follows.

• When the original task has a source vertex, the sampled task reads the source block of

the designated index.

• If the original task receives a one-to-one edge, the sampled task reads the output data

from the producer task of the one-to-one edge with the index.

• Since all the tasks in the stage receiving a broadcast edge read the same broadcasted

data, the sampled task reads the broadcast data in the same way as the original tasks.

• When the original task receives a shuffle edge, the sampled task reads the partitions of

the key range assigned to the original task with the index.

20

Chapter 5

Evaluation

In this chapter, we evaluate our implementation of the optimization to answer the following

questions:

• Does the disk read batching optimization effectively reduce the random disk read over-

head?

• Is the skew handling optimization compatible with the disk read batching optimization?

5.1 Cluster Setup

We composed an evaluation cluster with AWS EC2 h1.4xlarge instances in a single placement

group. The h1.4xlarge instances have 16 virtual cores, 64 gigabytes (GB) of memory and two

2TB HDDs, and are connected to a 10 Gbps network. One instance was used as a driver and

others were used as workers. A Hadoop distributed file system (HDFS) [13] that occupied

one 2TB HDD of each worker instance was launched to store the job input data and output

data. These instances also configure the YARN [14] cluster. The rest of the HDDs are used as

the local storage of the YARN cluster and store the intermediate data at run-time. To see the

performance of Nemo, we executed the word-counting job used for Section 5.2 on Spark [2]

2.3.0 and confirmed that the JCT on Spark (102 minutes on average) is comparable for the

JCT of the default execution on Nemo. Each experiment is repeated 5 times.

21

5.2 Disk Read Batching Optimization

To see the effectiveness of the disk read batching optimization, we evaluated the job com-

pletion time (JCT) and disk throughput of the word-counting job described in Section 4.1.

The application is programmed in Apache Beam [15] and executed on Nemo. A 1 TB dataset

from the Wikipedia 2016 page count dataset [16] is used as the input data, and the job counts

the view count of each page in a specific period. 11 instances were used for this experiment.

Figure 5.1 represents the JCT of the word-counting job and Figure 5.2 represents the

disk input output (I/O) throughput during the word-counting job execution. Default is the

case in which the job runs with the default optimization passes of Nemo but without the

disk read batching optimization. Optimized is the case in which the job runs with the default

optimization passes and the disk read batching optimization together. For the optimized case

in Figure 5.1, the execution time of the original producer stage and the aggregation stage

belong to the shuffled data production time.

The JCT results show that the disk read batching causes a slight increase in production

time, but a significant reduction in consumption time. The JCT is decreased by 54% on av-

erage. The disk I/O throughput results also show that the disk read batching slightly slows

down the intermediate data write but largely accelerates the read. The slow disk read through-

put of the default case indicates that the consumer stage suffers from the random disk read

overhead. The JCT and disk I/O throughput results show that the insertion of the aggregation

stage causes the modest increase of the production time, but the time needed to read the shuf-

fle data is significantly decreased because the consumer tasks can read the data sequentially.

22

Default Optimized
Optimization

0

20

40

60

80

100

Jo
b
Co

m
pl
et
io
n
Ti
m
e
(m

in
)

Shuffled Data Production Time
Shuffled Data Consumption Time

Figure 5.1: Job completion time of the word-counting job with and without the disk read batching

optimization. Error bar represents the average standard deviation of JCT.

20 40 60 80 100
Duration (min)

0

20

40

60

M
ea

n
di

sk
 I/

O
th

ro
ug

hp
ut

 (M
B/

s)

Default Read
Default Write
Optimized Read
Optimized Write

Figure 5.2: Mean disk I/O throughput during a single run of the word-counting job with and without

the disk read batching optimization. The measured disks are the YARN local disks for maintaining

intermediate data.

23

5.3 Skew Handling Optimization with Disk Batching

To evaluate whether the skew handling optimization alleviates the data skew and is compat-

ible with the disk read batching for a complicated DAG, we ran the TPC-H [17] query 10,

which is a decision support SQL query. The application is programmed by using the Beam

SQL library [18] and is executed on Nemo. To introduce data skew, we generated a 100 GB

dataset by using the skewed TPC-H dataset generator [19] introduced in [20]. We selected

query 10 because the query produces various degree of data skew. The job has 8 shuffle edges

and 9 stages as a default, and the optimization pass optimizes all the shuffle edges. 4 instances

were used for this experiment.

Because the intermediate data size metric is collected from the sampled tasks only, the

performance of skew handling largely relies on the quality of sampling. To confirm that the

sampled intermediate data can represent the total intermediate data, we evaluated the inter-

mediate data size metric with various sampling rates before the skew handling experiment.

Figure 5.3 shows the results. The ratio of the input intermediate data size per consumer task

is presented instead of actual size because the size is varied by the sampling rate. The result

shows that the trend of data sizes is detected in low sampling rates (1%, 5%), and the actual

distribution is calculated in higher sampling rates. We decided to sample the 5% of tasks in

producer stage for each shuffle edge in the skew handling experiment to reduce the sampling

overhead.

24

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
Ratio of intermediate data consumed by each task

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el
ih
oo

d
of
 o
cc
ur
re
nc

e 1%
5%
10%
50%
100%

Figure 5.3: Cumulative distribution function of the ratio of the input intermediate data size per con-

sumer task of a join vertex in a single run depending on sampling rate without skew handling.

25

Figure 5.4 represents the JCT of the TPC-H query and Figure 5.5 represents the sorted

size of the input intermediate data per consumer task. Default is the case in which the job

runs with the default optimization passes of Nemo. Optimized is the case in which the job

runs with the default optimization passes, the disk read batching optimization, and the skew

handling optimization together. In Figure 5.5, the input intermediate data size is collected

for the vertex that joins ”orders” table and ”customer” table, which consumes various size of

input data.

The JCT results show that the skew handling optimization with the disk read batching

reduces the JCT by 31 % on average. The high standard deviation of JCT in default is due

to the skew unaware scheduling. The data size results also show that the skew handling

optimization mitigates the skew of the intermediate data size that each consumer task reads.

These results show that the data skew handling optimization handles the data skew well by

dynamically sampling stages and reconfiguring the data distribution and it is compatible with

the disk read batching.

26

Default Optimized
Optimization

0

10

20

30

40

50

JC
T
(m

in
)

Figure 5.4: Job completion time of the TPC-H query with and without the skew handling and disk

read batching optimization. Error bar represents the average standard deviation of JCT.

160 180 200 220 240 260 280 300
Intermediate data size per task (MB)

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d
of

 o
cc

ur
re

nc
e

Default
Optimized

Figure 5.5: Cumulative distribution function of the input intermediate data size per consumer task of

a join vertex in a single run with and without the skew handling and disk read batching optimization.

27

Chapter 6

Conclusion

As the scale of data analysis is growing rapidly, the random disk read overhead that oc-

curs during a large-scale shuffle becomes a scaling bottleneck. Existing systems deal with

this problem by launching a separate intermediate data aggregation service or file system.

However, this approach requires a separate computation scheduling, parallelization, and fault

recovery mechanism and makes it hard to apply further optimization, such as data skew han-

dling, to the shuffle.

To overcome this limitation, we propose to insert the disk read batching computation

into the job. By doing so, the inserted tasks can fully exploit the features provided by the data

processing system and the system can apply other optimizations transparently. As an example

of a further optimization, we suggest a skew handling optimization technique compatible with

our disk read batching optimization.

By evaluating these techniques, we show that our disk read batching optimization can

largely mitigate the random disk read overhead while keeping the flexibility of the job exe-

cution and optimization. We hope that the design of our disk read batching optimization will

help other silo-versions of optimization techniques to be revealed and combined with other

optimizations.

28

Bibliography

[1] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman, “Riffle: optimized shuffle

service for large-scale data analytics,” in Proceedings of the Thirteenth EuroSys Con-

ference, p. 43, ACM, 2018.

[2] “Spark.” http://spark.apache.org.

[3] “Apache Hadoop.” http://hadoop.apache.org.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel

programs from sequential building blocks,” in EuroSys, 2007.

[5] “Nemo.” http://nemo.apache.org.

[6] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves, “Sailfish: A

framework for large scale data processing,” in SOCC, 2012.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

in OSDI, 2004.

[8] A. Rasmussen, M. Conley, G. Porter, R. Kapoor, A. Vahdat, et al., “Themis: an i/o-

efficient mapreduce,” in Proceedings of the Third ACM Symposium on Cloud Comput-

ing, p. 13, ACM, 2012.

[9] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant parallel processing

of feature-extracting scientific user-defined functions,” in Proceedings of the 1st ACM

symposium on Cloud computing, pp. 75–86, ACM, 2010.

29

http://spark.apache.org
http://hadoop.apache.org
http://nemo.apache.org

[10] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu, “Starfish:

a self-tuning system for big data analytics.,” in Cidr, vol. 11, pp. 261–272, 2011.

[11] Q. Ke, M. Isard, and Y. Yu, “Optimus: A dynamic rewriting framework for data-parallel

execution plans,” in EuroSys, 2013.

[12] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel, “Rock you

like a hurricane: taming skew in large scale analytics,” tech. rep., 2018.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file sys-

tem,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium

on, pp. 1–10, Ieee, 2010.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,

J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet another resource negotiator,”

in Proceedings of the 4th annual Symposium on Cloud Computing, p. 5, ACM, 2013.

[15] “Apache Beam.” https://beam.apache.org/.

[16] “Wikipedia Pagecounts.” https://wikitech.wikimedia.org/wiki/

Analytics/Archive/Data/Pagecounts-raw.

[17] “TPC-H: a Decision Support Benchmark.” http://www.tpc.org/tpch/.

[18] “Apache Beam SQL Library.” https://beam.apache.org/

documentation/dsls/sql/walkthrough/.

[19] https://github.com/ldbc/dbgen.JCC-H.

[20] P. Boncz, A.-C. Anatiotis, and S. Kläbe, “Jcc-h: Adding join crossing correlations with

skew to tpc-h,” in Technology Conference on Performance Evaluation and Benchmark-

ing, pp. 103–119, Springer, 2017.

30

https://beam.apache.org/
https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
http://www.tpc.org/tpch/
https://beam.apache.org/documentation/dsls/sql/walkthrough/
https://beam.apache.org/documentation/dsls/sql/walkthrough/
https://github.com/ldbc/dbgen.JCC-H

국문초록

오늘날데이터분석작업에서사용하는데이터의크기가빠르게커지고있으며,이때문에

데이터 처리 시스템은 대용량의 데이터를 효율적으로 처리할 수 있어야 한다. 분산 데이

터 처리 시스템에서 큰 데이터를 처리할 때의 병목은 태스크 간 데이터 셔플시 발생하는

랜덤디스크읽기비용이다.이비용을줄이기위하여,외부셔플프로세스가데이터처리

시스템바깥에서추가적인계산을통해중간데이터를병합하여디스크읽기를일괄처리

하도록할수있다.그러나,이경우추가된계산은기존에데이터처리시스템이제공하는

계산스케쥴링,병렬화,실패복구등의기능을이용할수없다.또한,데이터처리시스템

이다른일반적인작업을최적화하는것처럼이외부셔플프로세스의동작을최적화할수

없다. 이 문제를 해결하기 위하여, 본 논문에서는 디스크 읽기를 일괄 처리하도록 만드는

계산을 작업 수행 내부에 끼워넣는 방식을 고안하였다. 중간 데이터 병합을 위한 계산을

태스크로서 작업에 끼워넣어 데이터 처리 시스템이 이 태스크를 수행하도록 하면 이 태

스크들은동적최적화를포함하여데이터처리시스템이제공하는모든기능들을사용할

수 있다. 또한, 본 논문에서는 이러한 중간 데이터 병합과 호환되는 데이터 치우침 처리

방식을 제안한다. 수행된 실험의 결과를 통해 구현된 최적화가 랜덤 디스크 읽기 비용을

줄이고데이터치우침을완화하여최대 54%의성능향상을보임을확인할수있다.

주요어:데이터처리,데이터분석,대규모셔플,저장소입출력최적화,동적최적화,데이

터치우침처리,데이터처리시스템

학번: 2017-28856

31

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Distributed Data Processing Concepts
	2.2 Random Disk Read Overhead in the Data Shuffle
	2.3 Existing Solutions .
	2.4 Skew Handling with Disk Read Batching

	Chapter 3 Disk Read Batching as a Task
	3.1 Intermediate Data Aggregation Stage
	3.2 Composing with Skew Handling Optimization

	Chapter 4 Implementation
	4.1 Optimization Pass for Disk Read Batching
	4.2 Optimization Pass for Skew Handling

	Chapter 5 Evaluation
	5.1 Cluster Setup .
	5.2 Disk Read Batching Optimization .
	5.3 Skew Handling Optimization with Disk Batching

	Chapter 6 Conclusion
	Bibliography
	국문초록

<startpage>8
Chapter 1 Introduction 2
Chapter 2 Background 4
 2.1 Distributed Data Processing Concepts 4
 2.2 Random Disk Read Overhead in the Data Shuffle 5
 2.3 Existing Solutions . 6
 2.4 Skew Handling with Disk Read Batching 8
Chapter 3 Disk Read Batching as a Task 10
 3.1 Intermediate Data Aggregation Stage 10
 3.2 Composing with Skew Handling Optimization 12
Chapter 4 Implementation 15
 4.1 Optimization Pass for Disk Read Batching 15
 4.2 Optimization Pass for Skew Handling 17
Chapter 5 Evaluation 21
 5.1 Cluster Setup . 21
 5.2 Disk Read Batching Optimization . 22
 5.3 Skew Handling Optimization with Disk Batching 24
Chapter 6 Conclusion 28
Bibliography 29
국문초록 31
</body>

