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Abstract

Live migration of Virtual Machines (VMs) is an important technique in today’s
data centers. In existing data center management frameworks, complex algo-
rithms are used to determine when, where, and to which host a migration of a
VM is to be performed. However, very little attention is paid to the selection of
the right migration technique depending on which the migration performance
can vary greatly. This performance fluctuation is caused by the different live
migration algorithms, the different workloads that each VM is executing, and
the state of the destination and the source host. Choosing the right migration
technique is a crucial task that has to be made quickly and precisely. Therefore,
a performance model is the best and the right candidate for such a task.

In this thesis, we propose various machine learning models for predicting live
migration metrics of virtual machines. We predict seven different metrics for
twelve distinct migration algorithms. Our models achieve a much higher accu-
racy compared to existing work. For each target metric and algorithm, an input
feature evaluation is conducted and a strictly specific model is generated, lead-
ing to 84 different trained machine learning models. These models can easily be
integrated into a live migration framework. Using the target metric predictions
for each migration algorithm, a framework can easily choose the right migration
algorithm, which can lead to downtime and total migration time reduction and

less service-level agreement violations.

Keywords: machine learning, live migration, virtualization, VM

Student Number: 2017-28499
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Chapter 1

Introduction and Motivation

In present days, virtualization is an important technology used by cloud service
providers allowing them to better utilize their hardware resources. Virtualiza-
tion allows better data utilization and provides an isolation between tenants
that use the same physical resource. Live migration is a key technology in
virtualization, allowing efficient client management of virtualized resources in
data centers. As a result, data centers can migrate VMs between physical servers
transparently without causing a service interruption for the user. Companies like
Google use live migration technology in their data centers for migrating millions
of VMs each month [30, 7]. Other cloud resource management systems adopt live
migration for different purposes [8, 27, 31, 36]. Due to the absence of good and
practical instructions, most of the live migrations are performed using a fixed
live migration algorithm called pre-copy [4]. This migration algorithm works
well for moderately loaded VMs, but often suffers from a long migration time
and a high resource consumption. Therefore, alternative algorithms and opti-

mization techniques have been proposed [9, 10, 11, 13, 14, 18, 20, 22, 33, 36] that



perform better for specific metrics depending on the workload running inside
the VM and the state of the data center. With these different live migration al-
gorithms being available, guidelines to select the right migration algorithm that
gives the best performance for a specific metric have been proposed [16, 25, 34].
In [12] a machine learning approach using support vector regression (SVR) has
been proposed as a solution of selecting the right technique. SVR performs
well, but we believe it can be outperformed. Again using a machine learning
approach, but this time using neural networks, the prediction accuracy of our
models is better than SVR in almost all target metrics. In this work, we present
a number of models, specifically made for each algorithm and target metric, that
outperform the current state-of-the-art SVR approach [12] and greatly improve
the prediction accuracy. These models can be plugged into a VM migration
framework, that can use the target metrics predictions to easily decide which
migration algorithm will cause the lowest number of service level agreements vi-
olations. Another advantage of our approach is that our work uses the graphics
processing unit (GPU) instead of the central processing unit (CPU) as in [12]
where the training process is much slower.

The remainder of this thesis is organized as follows. Chapter 2 provides the
necessary background on virtualization, live migration, and artificial neural
networks. Chapter 3 introduces related work to this thesis. Chapter 4 gives in-
formation about design choices and an overview of the work. Chapter 5 gives
information about the implementation of the different types of networks tried.
Chapter 6 presents the different evaluation methods and compares the results
with previous work. Chapter 7 gives a presentation and comparison of our
models and the SVR with bagging model. Chapter 8 concludes this thesis and

includes information about related and future work.



Chapter 2

Background

2.1 Virtualization

Nowadays virtualization is an important technology used in cloud computing
environments. Live migration helps system administrators to better manage
workloads by transforming traditional computing to make it more scalable.
There are seven primary types of virtualization: storage, hardware, network,
administrative, application, server and operating system virtualization. In this
work, our main focus is on operating system virtualization.

Hardware Virtualization is the most common form of virtualization and is a
long-established technology in cloud computing environments that gives the
system administrators abilities to manage their resources, to perform server
consolidation or load balancing, and to increase the system availability. It is a
server virtualization technology that virtualizes hardware components so that
the server can run different operating systems handled by multiple users on a

single computer at the same time as shown in Figure 2.1.
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Figure 2.1: Hardware virtualization

From a VM point of view, the VM is the only one having control over the (vir-
tualized) hardware, while from a physical host prospective each VM is just an
application process. The processes in the virtualized OS environment are iso-
lated and their interactions with the underlying hardware and OS instance are
monitored. These qualities of hardware virtualization has attracted consider-
able interest in recent years, especially from data centers and cluster computing
communities. In our work, we explore a further benefit allowed by virtualization,

that of live OS migration.

2.2 Live Migration

Live migration is the process of transferring a live virtual machine from one
physical host to another without disrupting its normal operation. Live migra-
tion enables the porting of virtual machines and is carried out in a system-
atic manner to ensure minimal operational downtime. Live migration is a key
selling point for the state-of-the-art virtualization technologies, making virtu-
alization of machines an even more appealing technology for the industry. It

allows administrators to consolidate system load, perform maintenance tasks,



and relocate cluster-wide resources quickly and with minimal downtime. First
of all, migration of the whole OS together with its applications as one unit
is saving many of the difficulties that we may face in process-level migration.
Secondly, migrating the entire virtual machine means that the memory state of
the virtual machine can be transferred as a chunk in a consistent and efficient
way. This way we can migrate a running guest without making its clients recon-
nect, an impossible task for application-level migrations. Lastly, live migration
of virtual machines allows the user or operator not to worry about application
interruption or loss of data during migration. Because of the advantages that
live migration provides, both user and operator benefit. The user is having an
interrupt-free usage of the system and the operator can expect a smooth tran-
sition from the host to the destination virtual machine.

Depending on the time when the state of the virtual machine is transferred,
there are two main approaches to live migration. The first one is called pre-copy
and can be observed when the state is transferred before execution is switched
from the source to the destination host. The second live migration approach is
the opposite: the state is transferred after execution, also called post-copy. In
this work, we will discuss in depth these two types of live migration and we
will see more different types of migration, which we will call hybrid migration
approaches. The hybrid approaches vary depending on many factors explained
later, in Chapter 2.4.3.

Choosing the right type of live migration is an important task. If the wrong
type of migration is selected the total migration time can be prolonged, the user
experience can be slowed down or even interrupted. In this work, we propose an
automatic selection of the best migration technique based on pre-profiling of the
source and destination machine. This approach will predict the best migration

technique.



2.3 SLA and SLO

As cloud computing is becoming more popular, an agreement between the ser-
vice provider and client is an important aspect. The requirements from the
client side can have many variations and some of them may not be able to be
fulfilled. Therefore, a balanced agreement has to be made. Such an agreement is
the Service Level Agreement (SLA). In SLAs between a service provider and a
customer, a Service Level Objective (SLO) is a key element. SLOs are agreed as
a means of measuring the performance of the Service Provider and are outlined
as a way of avoiding disputes between the two parties based on a misunder-
standing. While SLA is the entire agreement that specifies what service is to be
provided, how it is supported, times, locations, costs, performance, and respon-
sibilities of the parties involved, SLOs are specific measurable characteristics of

a SLA such as availability, throughput, frequency, response time, or quality.

2.4 Live Migration Techniques

Migration of a running VM transfers the execution of a VM from one host to
another. The execution context includes the entire volatile state of a VM: the
state of the virtual CPUs (registers), the state of the attached virtualized hard-
ware devices and the data stored in the VM’s RAM. During intra-datacenter
migration the permanent storage does not need to be moved since is typi-
cally provided by network-attached storage (NAS), see Figure 2.2. The largest
volatile component of a VM is the memory, which can easily reach several giga-
bytes. Each live migration consists of the following steps: 1) dirty page transfer,
2) suspending of the host machine, 3) transfer of remaining pages 4) resume
work at destination machine. As explained before depending when step two is

performed, live migration can be classified into two approaches: pre-copy and
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Figure 2.2: Live Migration

post-copy migration. In the pre-copy approach, we first copy the memory pages
while the VM keeps running on the source machine, while in post-copy, we first
stop the migrating VM on the source machine, restart it on the destination,

and then transfer the memory pages.

2.4.1 Pre-copy (PRE)

Pre-copy as shown in Figure 2.3 is an iterative type of migration [28], this
is due to the fact that the first stage of pre-copy migration is using an iter-
ative approach. In the first stage, all pages are copied while the VM keeps
running on the source. If a memory page that has already been copied to the
destination host is modified, it is re-transmitted again in one of the following
iterations. The time required for this stage is determined by the page dirty
rate of the VM and the stop-and-copy threshold. The stop-and-copy thresh-
old defines when the number of dirty pages is low enough to terminate that

stage and proceed with stopping the source host VM and copying the remain-



ing pages. This termination can happen if dirty pages < threshold, but also

dirty pages

duration - In the first case,
uration

if dirty rate > bandwidth,,q., where dirty rate =

the stop-and-copy threshold is set so that the expected downtime is sufficiently

short, where expected downtime = """ dg;ﬁf/df) Cgesxpage S12¢ [33]. In the sec-

ond case, we are stopping the dirty page transfer because the amount of memory
dirtied is higher than the network transfer rate; this condition would prolong
pre-copy migration infinitely. When the previous stage page transfer terminates,
the stop-and-copy phase starts. The time when this transition is complete is not
trivial since there is a trade-off between total migration and downtime. If the
second stage starts too soon, more data must be sent over the network while
the VM is down, which leads to a longer downtime. If stopped too late, the
time for repeatedly copying dirtied pages is wasted which diminishes the use of
pre-copy. After transferring the CPU state and the remaining dirty pages, the

VM is resumed on the destination host.

Stop VM on Tr:tna Stf:;::U Resume VM on
source host L . destination host
remaining pages

Dirty page
Down Time

transfer

Total Migration Time

Figure 2.3: Pre-copy migration flow.

2.4.2 Post-copy (POST)

In post-copy, the step in which the memory pages are transferred is moved
behind the stop-and-copy (see Figure 2.4). As a consequence, the host VM
is stopped at the beginning of the migration. A minimal processor state is

copied to the destination host and the work is immediately resumed on the



destination node. The remaining pages are fetched from the source while the
VM is running on the destination host. The main advantage of this technique
is that each memory page is transferred at most once, this way the duplication

overhead observed in pre-copy is avoided.

Stop VM Transfer CPU Resume VM on Transfer
source host state destination host remaining pages

Down Time

Total Migration Time

Figure 2.4: Post-copy migration flow.

2.4.3 Hybrid Migration Techniques

The main bottleneck of live migration is the transfer of the memory pages. To
alleviate this problem there are two options. First, reduce the dirty page rate
or, second, reduce the amount of data to be sent over the network. In order for
this to be achieved, there are two main practices: slowing down the CPU of the

host machine and compressing the VM memory that is transferred.

Delta Compression (DLTC)

Even with the constant improvement of network connections, the transfer of
memory pages over the network is several times slower than the random-access
memory (RAM) or disc access [33]. If the page dirty rate is higher than the net-
work throughput, the migration (downtime) can be long. Therefore, in order to
shorten the migration (downtime), the page throughput needs to be increased.
This can be achieved by compressing the memory pages before the transfer.
Delta compression uses XBZRLE (Xor Binary Zero Run-Length-Encoding) to

compress the VM’s memory pages and thus reduce the total live-migration



time. On the sender side, XBZRLE is implemented as a compact delta encod-
ing of page updates, retrieving the old page content from a Least Recently Used
(LRU) cache. The receiving side uses the existing page content and XBZRLE
to decode the new page content. This technique requires additional memory on

the source host to store the memory pages for future delta computation [12].

Data Compression (DTC)

Delta compression is another technique that employs a standard data compres-
sion algorithm to compress the memory pages before transmitting them over
the network [12]. This method can significantly increase the CPU utilization

and therefore may not be a good option for hosts with high CPU utilization.

CPU Throttling (THR)

In this approach, to enforce convergence of the pre-copy process, the speed of
the virtual CPU of the VM is deliberately reduced in order to reduce the page
dirty rate. This technique typically incurs a significant performance degradation

in the VM which may violate SLOs.

2.5 Live Migration Performance Metrics

In this work we are predicting the metrics proposed in [12] where six target
metrics were suggested and additionally add network throughput as a metric
which we consider useful for evaluating migration performance.

Total migration time (TT) Denotes the elapsed time between the start of a
migration and its completion.

Downtime (DT) Represents the time duration of the stop-and-copy phase,
the phase during which the VM is not available.

10 -



Total traffic (TD) The total amount of transferred data from the source to
the destination machine.

Throughput (THRU) The rate of data sent from the host source to the des-
tination.

Performance degradation (PERF) The relative performance degradation
during live migration in terms of executed instructions per second (IPS).
Host CPU utilization (CPU) CPU load during migration on the source
host.

Host Memory utilization (MEM) Denotes the amount of memory used by
VM on the source host.

These metrics were chosen as important, because total time, total traffic, through-

put, host CPU utilization, and host memory utilization are metrics of interest
to data center operators in order to estimate the required resources for live mi-
gration. On the other hand, downtime and performance degradation may affect

SLAs and the quality of service (QoS) experienced by the user.

2.6 Artificial Neural Networks

The core part of this work is the generated prediction models. These models are
used to predict the aforementioned migration metrics using features collected
during profiling of the VM. This prediction is a core part of the framework
in [12], since based on these predicted values the framework selects the suitable
migration technique based on SLA requirements. In this work, we tried three
different neural networks types and compared the result of the best performing
type with the prediction results from [12].

Artificial neural networks are a set of algorithms designed with similar inten-
tions as the human brain. Their purpose is to recognize patterns in given data.

Based on the provided data the neural networks can be classified as supervised

11 :



and unsupervised. In supervised neural networks, the data and the expected
answer are provided, while in unsupervised models only the input data is given
and the answer has to be guessed. Each of these two types can be separated
into two other subtypes depending on what is the purpose of the model. If the
model is classifying the input into different categories then the model is called
a classification model. If the model is predicting or approximating an answer
then the model is called a regression model. Every neural network has layers,

depending on the number of layers a network can be classified as deep or not.

2.6.1 Feedforward Neural Network (FNIN)

A feedforward neural network is the simplest type of a neural network as shown
in Figure 2.5. As any other neural network, this one also has an input layer with
a size the number of input features x and an output layer with a size the number
of desired output predictions y. As the name suggests, the flow of the data in this
type of network goes only forward. That means the information flows through
the function being evaluated from x, through the intermediate computations,
and finally to the output y. There are no feedback connections in which outputs
of the model are fed back. When feed-forward neural networks are extended
to include feedback relationships, they are called recurrent neural networks.
The layers between the input and the output are called hidden layers. In a
feedforward neural network, the number of hidden layers is one. If the number
of hidden layers is more that one then the network is called a Deep Neural
Network. In theory, a feedforward network with a single layer is sufficient to
represent any function, but in practice, the layer may be infeasibly large and
may fail to learn and generalize correctly. In that case, we need deeper neural
networks to learn and generalize the problem correctly, so the prediction can

become more accurate.

12
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Figure 2.5: Feedforward neural network structure.

2.6.2 Deep Neural Network (DNN)

A definition for a deep neural network is a neural network which has more
than one hidden layer (Figure 2.6). Deep neural networks are purposed for
more complicated and nonlinear problems. DNNs can be regarded as a sub-
type of FNNs with more layers since the flow of the information also goes in one
direction. DNNs can be more difficult to train, because they have an infinite
number of variations. In this thesis, the networks we trained have different
characteristics: number of input features, depth and width (number of layers and
number of neurons), number of training epochs and more. Each DNN model also
implements backpropagation. Backpropagation is an algorithm for supervised
learning using gradient descent. Given a deep neural network and an error
function, the backpropagation method can calculate the gradient of the error
function with respect to the neural network’s weights. Backpropagation works

in a similar way as the delta rule for a deep neural network. To calculate the

13 -
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Figure 2.6: Deep neural network structure.

backpropagation the following three things are required:
1. Labeled dataset (with both the input and the output) denoted as (x;, y;)

where x; is the input and y; is desired output. The set with size N samples

is denoted as X = {(x1,v1), ..., (xN,yN)}

2. A fully connected DNN with weights w and biases b for each layer . Where

wfj is the weight between the node j in layer [ and node ¢ in layer I
and bias bf , the bias for node 7 in layer [, which are collectively denoted

as 0.

3. An error function, F(X,6) which is defining the error between the ex-
pected output y; and the predicted output g; of the DNN on input z;, for

the set of pairs (x;,y;) €eX and the particular value of the parameters 6.

Training a neural network with gradient descent requires the calculation of the

gradient of the error function F (X, #) with respect to the weights wfj and biases

14



bf. Then, according to the learning rate «, each iteration of gradient descent

updates the weights and biases according to:

i

t+1 _ pt _ . OE(X,0)
0 =0'—« 50

where 6 denotes the parameters of the neural network at iteration t in gradient

descent.

2.6.3 Convolution Neural Network (CNN)

Convolutional Neural Networks are known for their ability to recognize patterns
in images. Their architecture makes the implicit assumption that the input is
an image (or just any 2D argument of data). However, in this work, we feed
our CNN with a numerical input and expect a continuous number prediction.
Computers are not able to recognize shapes and patterns; they read the images
as pixels that are arranged as a matrix (height x width x depth). Normally
the layers of a CNN consist of Convolutional, Pooling, Activation and Fully-

Connected layers. A common order of the layers is:

Convolutional — Activation — Pooling — Convolutional — Activation —

Pooling — Fully-Connected.

The convolutional layer has filters that are used to detect a feature or a pattern
in the image. Filters usually have smaller dimensions and are expressed as
matrices. The filter is sliding (convolving) across the picture and at each place
a dot product is computed. Different filters are convolving for different features
on the input data. As a result, a set of activation maps are given as an output.
The output dimension of the convolutional layer is calculated in the following

way:

O — W=K+2P)

15



where O is the output height/length, W is the input height/length, K is the
filter dimension, P is the padding, and S is the stride of the filter. After the
convolutional layer, an activation layer follows. The purpose of this layer is
to nonlinearly transform the input from the previous layer and pass it to the
next layer. The most widely used activation function is Rectified Linear Unit
(ReLU). This function converts all the negative inputs to zero and this way
the neuron does not activate with negative inputs. The activation layer is typ-
ically followed by a pooling layer. The purpose of this layer is to reduce the
number of parameters and computation in the network. Because of the pool-
ing layer, the network spatial size is reduced and the chances of overfitting are
reduced. There are two types of pooling layers: average and maximum pooling
(Figure 2.7). Max-pooling picks the maximum value from every neighborhood
and average pooling computes the average of every neighborhood. The size of
the neighbourhood can vary, but the most common form is a pooling layer with

filters of size 2x2 applied with a stride of 2 downsamples same as in Figure 2.7.

21 8 8 12

12 19 9 7

4 | 3
9 | 10
15 | 9 2 | 12
7 10
Average Pooling Max Pooling

Figure 2.7: Pooling layer types

At the end a fully connected layer is needed to flatten the data and put it into

a vector, then based on each value of this vector a prediction is made.
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Chapter 3

Related Work

Machine learning is a good and powerful tool that can predict and solve com-
plex problems by using past examples. Many researchers have used machine
learning for solving problems in data centers or making quick decisions in a
time-critical task. Such a time-sensitive and important decision can be the de-
cision of the right migration technique. In this chapter, we explore some of the
previously proposed models, observe what their advantages and disadvantages
are, and compare them to our proposed approach.

Modeling live migration performance accurately has been a research topic by
many researchers in the past. In [1] a simulation-based live migration model-
ing approach is proposed. In that work, the model has only two target metrics
total time and downtime, also due to missing important input parameters the
prediction accuracy is low. In a similar manner in [21] an online performance
prediction is done. Additionally, to total time, downtime and total traffic in [21]
a power consumption of a migration is predicted. In this work as well impor-

tant input parameters are missing, leading to a not good prediction accuracy.
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The authors of [24] propose more comprehensive model and reveals problems
of twelve existing models [1, 2, 5, 18, 19, 21, 23, 26, 37, 38, 39, 40]. However,
just as in the other works in [24] the predicted metrics are limited to total time,
downtime and total traffic and the prediction accuracy is still not high.

In the current state of the art work for machine learning live migration metric
prediction [12], three regression models were proposed - liner regression, support
vector regression, and support vector regression with bootstrap aggregation also
known as bagging. All three regression models use the sci-kit learn toolkit and
were trained and tested using 10-fold cross-validation.

In [12] linear regression does not achieve good results due to the complex cor-
relation that exists in migration data. A linear approach cannot capture the
complexities that such data has and therefore fails. On the other hand, SVR
and SVR with bagging gave more accurate predictions; this is because they can
capture more of the correlation that this complex data has. SVR with bagging
is showing best results and is outperforming the normal SVR. This is not sur-
prising as it is commonly known that bagging outperforms single models [3].
Comparing to suggested work in [12] and their SVR with bagging model, we
not only achieve a better prediction accuracy, but also add more prediction tar-
get metrics and, most importantly, seven more migration algorithm techniques.
Along with the five migration algorithms (Pre-copy, Post-copy, CPU Throttling,
Delta and Data compression) predicted in [12], we additionally predict seven
more hybrid migration algorithms listed in Table 3.1. This way our work is more
than doubling the possible migration options. Another advantage of our work is
also the additional throughput target metric that we included. Throughput was

added as possible useful target metric in case of future bandwidth prediction.
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Migration Algorithm Description

DLTC POST Delta compression with post-copy.
DLTC DTC Delta and data compression.
THR POST CPU throttling with post-copy.
THR DTC CPU throttling with data compression.
THR DLTC CPU throttling with delta compression.

THR POST DLTC | CPU throttling with post-copy and delta compression.

THR DLTC DTC CPU throttling with delta and data compression.

Table 3.1: Hybrid migration algorithms

The SVR models were trained and tested using a dataset with 40,000 samples.
This dataset was produced by the migration of four identical machines. On the
other hand, our models were trained with more than 130,000 samples on much
more heterogeneous data. For the making of this dataset, four different types of
machines and twelve machines in total were used. Because of this, we are sure
our models are having much bigger chances to perform better than [12].
Besides the advantage that our models have because of the much more diverse
and bigger dataset, we also have more features than the state of the art work.
SVR with bagging model uses 20 input features, on the other hand in our
deep neural network models the feature number vary from 49 and up to 72
features. The number of input variables is different because we found that not
all features are important and give benefit for the targeted metric that will
be predicted. More about this can be seen in the feature importance analysis
section in Overview and Design.

With the stated above, we believe our models are much better trained, more
adjustable to different data variation and offer much more migration techniques

possibility compared to the current state of art.
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Chapter 4

Overview and Design

This chapter gives an overview and discusses the design choices that influenced

our models.

TensorFlow For this thesis, we decided to use the TensorFlow library version
1.5 together with python 3.4 [35]. TensorFlow is an open-source library for
machine learning. In [12] the models were made using scikit-learn and this choice
of machine learning library had some disadvantages. First of all, TensorFlow is a
low-level library that allowed us to build machine learning models using a set of
simple operations like add and matmul, while the scikit-learn is a higher-level
library that includes already an implementation of several machine learning
algorithms, so a model can be defined as in [12] just in a few lines. As a result,
TensorFlow is more difficult to use but allows for more customization and agility
than scikit-learn. The second advantage of using TensorFlow over scikit-learn is
the ability to do automatic differentiation. TensorFlow’s idea is that you build a

computation graph for doing any computation and you always end up working
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on that graph. The nodes on the graph are the different operations and the edges
are the tensors. This way of visualizing a problem allows TensorFlow to provide
automatic differentiation to perform backpropagation easily. TensorFlow also
allows us to use GPU or CPU, which is not possible in scikit-learn, where CPU
is the only available option. As a result model training in TensorFlow is much
faster.

In conclusion, scikit-learn is good for building standard machine learning models
quickly and train classifiers like Logistic Regression or SVR but is not the
right choice for our much more advanced and more customized neural network

models.

Feature Analysis and Selection The collected dataset of VM migration has
90 input features (Appendix A), but not all of them are useful for our prediction.
Some of these features decrease the accuracy of the models and confuse them.
Therefore we built a feature importance classifier program using a scikit-learn
library and Extra Trees Classifier [6]. We ran the importance classifier for each
target metric and for each migration algorithm. This gave us 84 tables with the
weight that each feature has for the specific target metric and specific migration
algorithm. We combined the data of these tables in 7 graphs - one for each
target metric. Each graph has 12 categories one for each migration algorithm
type. These graphs can be seen in Appendix B. We can see the tendency that
depending on the target metric and migration algorithm some features are
more preferable to have more importance than others (Appendix B). Such an
examples can be max bandwidth for Total time, downtime limit when trying
to predict Downtime metric and postcopy start time for all the postcopy or

postcopy like migration algorithms.
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Feature Scaling Because each feature is measured in different scales their
numerical value can vary. If we use raw data and do not scale, then some of
the features will always dominate over the rest and our accuracy will not be
good. Hence, we have to scale the input features in a way so they become easier
to work with but also preserve their information and ratio. For that purpose,
we used the scikit-learn library and the StandartScaler [32]. StandartScaler was
also the scaler chosen for [12]. StandartScaler assumes that the data is normally
distributed within each feature and will scale them such that the distribution is
now centered around 0, with a standard deviation of 1. The mean and standard
deviation are calculated for the feature. After that, the same feature is scaled
using the following formula:

— K

o
1 N
with mean: p = — Z(wl)

N 4
=1

StandartScaler = x

and standard deviation: o0 = | — Z(ml — )2
i=1

This way we transform the data so the variance is unitary and that the mean

of the series is 0.

Cross Validation K-fold cross-validations is a useful technique for assessing
model performance. Cross-validation is used as a way to determine if a change
in the learning/test data is giving a positive or negative impact. In our work, we
use 10-fold cross validation across the whole dataset. That means we divide our
dataset into 10 chunks, train on nine and test on the remaining one, print the
result and clean the TensorFlow graph. If we do not clean the graph after each
testing, the model will keep the values and labels from the previous iteration,

which will lead to retraining the model, a behavior which we do not want. We
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do this iterative train, test and clean the graph ten times, until all the 10 splits
became at least ones a test set (Figure 4.1). A similar approach is used in [12].
Because of cross-validation, we were able to measure how good the model fits,

both for accuracy and variance.

Train Test

-

. = k iterations

Test <« Train >

k parts

Figure 4.1: 10-fold cross validation

Model Selection In order to decide what kind of neural network we need, a
short analysis of the data input and the expected result had to be done. Our
dataset is labeled, that means we have the input features and also the expected
result of the migration. For that reason, we were looking for a supervised neural
network. Second, our input is continuous numbers and our output is a predic-
tion of a continuous number, therefore we needed a regression type of model. As
a 'rule of thumb’ when starting a neural network design from scratch, it has to
start simple and build up complexity and see what improves the network model.
Following this approach, our first model choice was a simple feed-forward net-
work with one layer. This type of model did not give us good results, just as the

linear regression in [12] the network was not capable of finding the correlation

23



between the inputs features and the output. Therefore this type of network was
eliminated as a possible solution. The next step was to make a more compli-
cated network structure. Such an alternative was a DNN. DNNs have many
variations, so we spent a lot of time testing different hyperparameters in order
to find the optimal structure. However, a DNN with simple feed-forwarding was
not minimizing the error and additional improvement was necessary, hence we
included a backpropagation functionality to our DNN model. Due to the back-
propagation, our model improved more than 7 times for pre-copy total time
prediction. The Mean Absolute Error for the network without backpropagation
was approximately 35 seconds and when using back propagation, the Mean
Absolute Error became 5 seconds. In order to expand the work of this thesis
we decide to try another feedforward type of network and for this purpose, we
choose CNN. CNNs are usually used for image input data and their primary
purpose of convolution in the case of a CNN is to extract features from the in-
put image. The convolution in CNNs preserve the spatial relationship between
pixels. In our case, we used a CNN with an input of 90 features by putting them
in a matrix of 9x10 in a similar manner as if we are using 9x10 pixels image.
The results of the CNN were not better than a DNN with backpropagation.
For pre-copy migration with total time as target metric, the CNN gave the best
Geometric Mean Absolute Error (GMAE) prediction of 10 seconds while the
DNN less than 1.4 seconds. We interpret this bad results because CNN was not
able to take advantage of the spatial relationship as it does with picture input.
Hence, we find in this particular case a DNN with backpropagation to be the
best type of model.

Outliers removal In order to compare both the SVR and the DNN models,

we had to use the same dataset for training and testing. Therefore we had
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to adjust our dataset of 131,957 samples to be same as the one the SVR with
bagging has used. Luckily all the features used in [12] were present in our dataset
so such an operation is just a matter of parsing. Because our data is consisting
of 12 different migration techniques, the data that is matching with the same
migration techniques as in [12] was 50 534 samples. When the new data was fed
to the SVR model from [12] the prediction was unreasonably bad. We received
a geometric mean absolute error of approximately 40 seconds for the pre-copy
total time, while our DNN model was having a geometric mean absolute error
of under 1.4 seconds (which is in the usual prediction range). After further
investigation of the problem, we discovered that the SVR was not able to deal
with the little number outliers in our dataset, these outliers were confusing
the SVR model. This is the reason why we had to remove the outliers of each
migration technique, by removing 0.01% of the miss-fitting data. This sample
cleaning cost us in total 792 samples or 0.6% of the total data (Table 4.1). This
problem with SVR was another indication that DNN models are more flexible

and can adjust better.
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Migration Algorithm Type *

Samples Before Refining

Samples After Refining

PRE 9694 9650
POST 10241 10215

DTC 7867 7810
DLTC 10545 10490
POST DLTC 10865 10814
DLTC DTC 10473 10372
THR 12187 12118

THR POST 12098 12057
THR DTC 10583 10485
THR DLTC 12455 12391
THR DLTC POST 12612 12547
THR DLTC DTC 12330 12216
Total 131957 131165

Table 4.1: Number of samples before and after refining
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Chapter 5

Implementation

In this chapter, we describe the different parameters that we have selected to
build our models and the reason behind these decisions.

This chapter is divided into two subsections. In the first part, we explore details
regarding the hyperparameters and the structure of our Deep Neural Network
model. In the second subsection, a discussion about our Convolutional Neural

Network design will be given.

5.1 Deep Neural Network design

Since we have 84 different models we will not talk about each model individu-
ally, but we will discuss the one we find relevant. For all models we used similar
hyperparameters except the number of layers, number of input features, num-
ber of epochs and batch size. Each one of these three parameters was selected
individually for each model after extensive experiments. We found that num-

ber of layers, number of features, number of epochs and batch size can greatly
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) Number Layer Layer Layer Layer Layer Layer Layer
Target Metric

of layers 1 2 3 4 5 6 7
Total Time 7 900 900 900 400 400 400 400
Downtime 5 900 900 850 850 850
Total Traffic 5 900 900 450 450 200
Throughput 5 90 90 90 45 20
Performance 7 90 90 90 90 90 90 90
CPU 5 450 450 450 450 450
CPU Post-copy 5 250 250 250 450 450
CPU - DLTC 5 250 250 250 450 450
CPU - DTC 5 100 150 150 450 450
MEM 7 180 180 180 90 90 90 90

Table 5.1: DNN models structure

improve the prediction accuracy if they are selected correctly.

Because we were building our models from scratch, we started with a small num-
ber of layers and neurons and slowly increased them until no further prediction
improvement was possible and our models started overfitting. For models like
total time and downtime we found that it was difficult to get a good prediction
with just a few network layers because of the complexity that these two met-
rics have. As a result, deeper and wider networks were used. Table 5.1 shows
for each target metric the number of layers and neurons per layer. For every
hidden layer in all the models, we have used Rectified Linear Units (ReLu) as
the activation function. This activation function was selected because first of
all ReLu is not a liner, therefore combinations of ReLu are also nonlinear (Fig-
ure 5.2). In ReLu if z is negative or 0 the output is also 0, in the rest of the

cases ReLu gives an output z (see Figure 5.2). Another plus for ReLu compared
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. ReLU

R(z) =maz(0, z)

5 5 0 for <0

r for x>

Table 5.2: Relu

to the other activation functions is that ReLu is more efficient than tanh and
sigmoid because it involves simpler mathematical operations [17]. Because of all
mentioned above reasons we choose ReLu for our models instead of any other
activation function.

In Chapter 4 we analyzed the features and their importance for each target met-
ric and migration type. Not every feature is useful and gives information to our
model, therefore we started excluding the features with the lowest importance.
For example for Pre-copy migration technique total time, the best prediction
accuracy was achieved when only the top 49 features were in use, while for the
other migration techniques we needed 65 input features. This was due to the
fact that these 49 features were concentrating the most essential information
that our model required in order to produce an accurate prediction. For the
rest of the models and how many numbers of input features refer to Table 5.3.
Another parameter that was strictly individual for each model was the number
of epochs. One complete epoch is when the entire dataset is passed forward and
backward through the network once. As the number of epochs increases, the

number of times our weights being updated also increase. If we have not enough
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THR THR
Target DLTC DLTC THR THR THR
PRE POST DTC DLTC THR DLTC DLTC
Metric POST DTC POST DTC DLTC
POST DTC
Total Time 49 65 65 65 65 65 65 65 65 65 65 65
Downtime 65 65 63 65 57 65 65 65 65 65 65 65
Total Traffic | 57 63 56 57 57 57 57 65 57 70 57 60
Throughput | 60 57 67 57 57 57 57 57 57 57 57 66
Performance | 61 57 72 65 56 65 65 57 58 67 59 65
CPU 58 57 65 57 57 57 57 57 57 57 57 57
Memory 66 72 65 65 65 65 65 66 65 65 65 65

Table 5.3: DNN models number of input features

epochs our model may not train well and underfit if we use more than the right
number epochs we may overfit which will lead to good results while training but
our model will not be capable to perform well on new data. Therefore the right
number of epochs has to be selected for each model. Unfortunately, there is no
rule what is the right number of epochs. Epochs are different for the different
data sets and the diversity of the data is a determining factor. Therefore we
ran our models in many different numbers of epochs and analyzed their results.
In the end, the number of epochs that produced the best prediction accuracy
was selected. Table 5.4 shows the different number of epochs for each model.

Batch size is the number of training examples in one iteration. The batch size
can be one of the following three options: batch mode, mini-batch mode and
stochastic. Batch mode is when the batch size is equal to the total dataset, the
number of iteration and epochs is the same. A stochastic model is when the
batch size is equal to one. As a result, the gradient and the neural network
parameters are updated after each sample. Mini-batch mode size when the size
of the batch is greater than one and less than the total data size. For our mod-

els, we tried all three options and mini-batch mode performed best. We tried
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THR THR
Target DLTC DLTC THR THR THR
PRE POST DTC DLTC THR DLTC DLTC
Metric POST DTC POST DTC DLTC
POST DTC

Total Time | 135 165 90 135 105 75 90 150 90 75 100 105

Downtime 90 90 100 75 75 90 75 100 150 165 90 75

Total Traffic | 305 350 320 350 350 240 300 350 350 350 350 300

Throughput | 135 420 150 420 90 150 150 75 150 420 240 320

Performance | 60 75 150 150 60 105 5 60 150 5 5 60

CPU 45 60 120 45 105 90 90 135 120 90 90 120

Memory 120 120 105 150 105 120 200 105 120 150 105 150

Table 5.4: DNN models number of epochs

splitting the dataset into 5, 10, 15 and 20 batches but 10 batch split gave the
best performance for all models. Since our dataset is having a different number
of samples for each migration technique splitting them into 10 splits gave us
different batch size for each migration algorithm. The size of the batch for each

migration algorithm can be seen in the Table 5.5. In machine learning, a cost

THR  THR
Target DLTC DLTC THR THR THR
PRE POST DTC DLTC THR DLTC DLTC
Metric POST DTC POST DTC DLTC
POST DTC

Batch size | 868 919 702 944 973 933 1090 1085 943 1115 1129 1099

Table 5.5: DNN models batch size

function is used to estimate how good a model performs. Since our main goal
was to improve prediction accuracy than the state-of-the-art approach[12] we
decided that the best option for a cost function is the one that can give a good
overview of our model accuracy. Therefore we decided to try two cost functions
mean absolute error and mean absolute relative error. The mean absolute rel-
ative error gave us good results and in comparison with MAE was performing

better. The mean absolute error was giving us with approximately 10% worse

31 15



prediction than the MARE. Hence, we decided the formula for our cost function

to be MARE and it looks like this:

oSt — |PV-TV|
COSt = TV

where TV is the true value and PV is the predicted value.

To make our predictions as correct as possible we need to minimize the cost
function on each iteration. This minimization is done by changes in the param-
eters of our models, which is done by an optimizer. For our models, we decided
to use the Adam optimizer, one of the most popular optimization methods
nowadays[15][29]. Adam is a popular algorithm and commonly used in the field
of deep learning because it is fast and gives good results. In our case, Adam op-
timization gave the best performance among the other options that TensorFlow
has - AdadeltaOptimizer, GradientDescentOptimizer, and AdagradOptimizer.
Table 5.6 shows an example of the different prediction accuracy that each one of
these optimizers produced for the Total Time target metric, which is measured

in milliseconds.

Adam Adadeltar GradientDescent Adagrad
MAE (ms) | 5225 33745 35890 34613

Table 5.6: Optimizer comparison

The learning rate is an important hyperparameter, which controls the weight
adjustment of our network with respect to the loss gradient. If this rate is low
the time we need to converge will be longer, while if the learning rate is too
large we may miss the global optimum and even diverge. A typical learning rate
ranges between 0.1 and 0.001 and typically most models are using a learning

rate around 0.01. This is also our case, we have tried many different learning
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rates from 0.1 until 0.001 but the one giving us the best result was 0.01, therefore

we decided to stay with it.

5.2 Convolutional Neural Network design

Convolutional neural networks are a much more complicated type of networks.
They are primarily used for image classification taking the image as a 3D matrix
where the first 2 dimensions are the size of the image and the third one is the
number of channels. In colored images, we have 3 channels red, green and blue.
Since our input is not an image, but just a matrix of numerical values, we will
have only one channel. Hence, we placed our input in a 2D matrix with size
9 x 10. Since we start our CNN from scratch we decided to build up complexity
with time. We started with two convolutional layers with stride 1 and padding
with extra 0. Stride controls how the filter convolves around our input, we choose
1 because this way our filter will convolve over similar data more frequently and
hoped that this will increase the accuracy. Also, the stride should be set in a way
so that the output volume is a whole number. We decided to use padding with
extra zero because this way we can maintain the spatial dimensions and better
preserve the information around the edges. After each convolutional layer, we
applied a ReLu activation function and a max pooling layer. Pooling layers are
often considered as part of the convolutional layers and are used to reduce the
spatial dimension and select the strongest activation from the grid. After using
convolutional layers to extract the spatial features of our data, we apply a fully
connected layer to for the final output prediction. This way we flattened our
output. After the first run of our two-layer convolutional network, we received
results GMAE 10 seconds - for Pre-copy total time. This was seven times higher

GMAE than our DNN model. Hence, we decided that this is because we have
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too little convolutional layers. We decided to try other variations with more
layers (up to seven convolutional layers), without max-pooling and even with
fully connected layers with bigger depth and width. All these experiments did
not give positive results.

Initially, we were not having high hopes that CNN will work because we knew
that CNN, as explained in Chapter 2, is made for pattern recognition and CNN
works well with data that has spatial information. Our data does not contain
such information, because the order of the input features does not give any
information to the model. We decided to focus more on our DNN models and

try to get more improvement from there instead of CNN.
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Chapter 6

Evaluation metrics

In this chapter, we discuss the evaluation methods we used to compare our work
and [12]. Also, we suggest the use of other evaluation metrics in the future since

they will give a better idea of how accurate the prediction is.

6.1 Geometric Mean Absolute Error (GMAE)

One of the evaluation metrics that [12] uses is the Geometric Mean Absolute

Error. The formula calculating this metric is as follows:

AE), = ||TVi — PV

AE, = ||TV,, — PV, ||

n 1/n
GMAE = <HAEZ-> = {/AE, - AE, - ...- AE,
i=1

Figure 6.1: Geometric mean absolute error formula
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where PV is the predicted value for the specific sample, T'V is the true value for
the specific sample, AF is the absolute error for the specific sample, and n is the
total number of samples. The geometric mean indicates the central tendency or
typical value of a set of numbers by using the product of their values. GMAE
does not give a good understanding of the model accuracy, therefore we believe

is not a good metric for accuracy evaluation.

6.2 Geometric Mean Relative Error (GMRE)

The other evaluation metric used in [12] is the Geometric Mean Relative Error.

The formula calculating this metric is as follows:

vl = | zvi-rv
ae == = [

- PV, || — || TVa=PVa
RE, = 1= ] = [

n 1/”
GMRE = (HRE,) = Y/RE,-RFE>- ...- RE,
=1

Figure 6.2: Geometric mean relative error formula

where PV is the predicted value for the specific sample, TV is the true value
for the specific sample, RE is the relative error for the specific sample, and n
is the total number of samples. As mentioned before in the GMAE section, the
geometric mean can give an overall idea but can mislead about the accuracy that
a model has, since the geometric mean is always smaller than the arithmetic
mean and it gives more a model prediction tendency than a concrete value.
Therefore we believe that the geometric mean is not suitable and the arithmetic

mean should be used for a closeup comparison of the SVR and DNN results.
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6.3 Mean Absolute Error (MAE)

One of the metrics which we believe is giving a better idea of the model’s
accuracy is the Mean Absolute Error. This is the simplest way to represent the
model accuracy of our predictions since is just the average error. The lower the
MAE, the better the prediction accuracy. The formula calculating this metric

is as follows.

AE, = ||TVi — PVA||

AE, = ||TV,, — PV, ||

> AE;
MAE ==L

n

Figure 6.3: Geometric mean absolute error formula

where PV is the predicted value for the specific sample, TV is the true value
for the specific sample, AE is the absolute error for the specific sample, and n

is the total number of samples.

6.4 Weighted Absolute Percentage Error (WAPE)

Another metric with which we can measure model’s performance is the Weighted
Absolute Percentage Error. The WAPE can help us judge the goodness of fit.
The lower the WAPE, the better the prediction accuracy. The formula calcu-

lating this metric is as follows.

AE), = ||TVi — PV
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AE, = ||TV,, — PV, ||

> AE;
WAPE = = x 100

2. TV

1=1

Figure 6.4: Weighted absolute percentage error formula

where PV is the predicted value for the specific sample, TV is the true value
for the specific sample, AF is the absolute error for the specific sample, and n
is the total number of samples. In the next chapter, we will present the results
for SVR and DNN in both MAE and WAPE. A comparison between these two
models using the MAE and WAPE will give a good idea of why our model is
much better than the SVR with bagging.
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Chapter 7

Results

We have conducted a wide range of experiments to evaluate our DNN models.
In this chapter, we show the potential of our models and compare them with
the state-of-the-art SVR with bagging [12] model.

This chapter first starts with presenting the results from our DNN models,
followed by the results of SVR with bagging. Finally, an overall accuracy and
training time comparison for SVR and DNN is given. The results are generated
using 10-fold cross-validation: the dataset is first split into 10 equal-sized sub-
sets. Each set serves as the test set once, while the union of the remaining nine
forms the training dataset. The reported values represent the average of the 10

evaluations.

7.1 Deep Neural Network

We present the prediction accuracy of 84 different DNN models for twelve live-

migration algorithms and the seven target metrics. The results are shown in
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Table 7.1. As explained in Chapter 6 the MAE represents the average divergence
of the predicted value to the actual value in absolute units of the metric (ms,
MB or %). On the other hand, WAPE displays the prediction inaccuracy of our
models in percentage. For both measuring methods, the smaller the value, the

better the prediction accuracy.

Mlgra',tlon Target Metric MAE WAPE
Algorithm
Total Time (ms) 5,055 13%
Downtime (ms) 309 17%
Total Traffic (MB) 212.0 9%
PRE Throughput (Mbps) 31.2 6%
Performance (%) 20.9 18%
CPU (%) 15 20%
Memory (MB) 1.8 111%
Total Time (ms) 5,134 15%
Downtime (ms) 236 17%
Total Traffic (MB) 195.0 10%
POST Throughput (Mbps) 29.1 5%
Performance (%) 54.9 59%
CPU (%) 2.1 34%
Memory (MB) 1.8 124%
Total Time (ms) 14,875 32%
Downtime (ms) 244 20%
Total Traffic (MB) 283.3 22%
DTC Throughput (Mbps) 35.1 15%
Performance (%) 24.1 19%
CPU (%) 39.8 13%
Memory (MB) 2.4 84%
Total Time (ms) 5,073 14%
Downtime (ms) 321 19%
Total Traffic (MB) 194.4 9%
DLTC Throughput (Mbps) 29.4 5%
Performance (%) 19.8 17%
CPU (%) 1.7 21%
Memory (MB) 21.6 16%
40 -



Migration

Algorithm Target Metric MAE WAPE
Total Time (ms) 5,608 16%

Downtime (ms) 250 20%
POST Total Traffic (MB) 179.6 9%
DLTC Throughput (Mbps) 29.8 6%
Performance (%) 53.9 61%

CPU (%) 2.1 32%

Memory (MB) 34.8 24%

Total Time (ms) 10,561 21%

Downtime (ms) 350 27%

DLTC Total Traffic (MB) 220.3 15%
DTC Throughput (Mbps) 35.9 14%
Performance (%) 18.9 16%

CPU (%) 53.3 21%

Memory (MB) 27.9 19%

Total Time (ms) 7,252 13%

Downtime (ms) 346 19%
Total Traffic (MB) 262.7 9%
THR Throughput (Mbps) 26.7 5%
Performance (%) 17.3 16%

CPU (%) 1.6 22%

Memory (MB) 2.1 131%

Total Time (ms) 6,643 14%

Downtime (ms) 278 19%
THR Total Traffic (MB) 234.9 9%
POST Throughput (Mbps) 27.4 5%
Performance (%) 50.9 59%

CPU (%) 2.0 33%

Memory (MB) 2.1 133%

Total Time (ms) 20,404 29%

Downtime (ms) 282 20%

THR Total Traffic (MB) 334.1 17%
DTC Throughput (Mbps) 35.6 15%
Performance (%) 18.0 16%

CPU (%) 183 17%

Memory (MB) 2.8 94%
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Mlgra:tlon Target Metric MAE WAPE
Algorithm

Total Time (ms) 6,455 13%
Downtime (ms) 373 23%
THR Total Traffic (MB) 226.7 9%
DLTC Throughput (Mbps) 26.8 5%
Performance (%) 22.0 20%
CPU (%) 1.6 22%
Memory (MB) 20.0 14%
Total Time (ms) 6,547 14%
Downtime (ms) 290 22%
THR Total Traffic (MB) 216.7 9%
DLTC Throughput (Mbps) 27.6 5%
POST Performance (%) 49.4 60%
CPU (%) 2.1 31%
Memory (MB) 32.2 23%
Total Time (ms) 11,361 18%
Downtime (ms) 379 28%
THR Total Traffic (MB) 282.3 14%
DLTC Throughput (Mbps) 33.2 12%
DTC Performance (%) 16.6 15%
CPU (%) 417 19%
Memory (MB) 26.5 19%

Table 7.1: Accuracy of the different DNN algorithms for the twelve live

migration algorithms and the seven target metrics.

7.2 SVR with bagging

The current state-of-the-art in the live migration performance modeling is the
work presented by Jo et al. in 2017 [12]. Using the same technique on our dataset
as in [12], SVR with bagging give us the results show in Table 7.2. Jo et al’s
work only make predictions for pre-copy, CPU-throttling, delta compression,
data compression and post-copy migration algorithms and the six target metrics

total time, downtime, total traffic, performance, CPU and memory.
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Mlgra',tlon Target Metric MAE WAPE
Algorithm
Total Time (ms) 7,082 19%
Downtime (ms) 967 52%
PRE Total Traffic (MB) 295.0 13%
Performance (%) 21.1 18%
CPU (%) 2.3 31%
Memory (MB) 2.4 142%
Total Time (ms) 9,391 2%
Downtime (ms) 1,063 76%
Total Traffic (MB) 456.8 22%
POST Performance (%) 61.7 67%
CPU (%) 5.3 89%
Memory (MB) 2.3 155%
Total Time (ms) 21,506 46%
Downtime (ms) 657 54%
DTC Total Traffic (MB) 332.4 26%
Performance (%) 254 20%
CPU (%) 96.7 32%
Memory (MB) 2.7 94%
Total Time (ms) 7,841 21%
Downtime (ms) 955 58%
Total Traffic (MB) 352.7 16%
DLTC Performance (%) 19.1 17%
CPU (%) 25 31%
Memory (MB) 103.2 76%
Total Time (ms) 11,392 20%
Downtime (ms) 938 51%
THR Total Traffic (MB) 490.0 16%
Performance (%) 16.9 15%
CPU (%) 24 33%
Memory (MB) 2.6 161%

Table 7.2: Accuracy of the SVR with bagging algorithm for the five live

migration algorithms and the six target metrics.
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7.3 DNN vs. SVR comparison

The presented in [12] is limited to five migration algorithms and six metrics.
However, for comparison purposes we additionally used SVR to predict the
seven migration algorithm techniques proposed by our DNN models. From Fig-
ure 7.1 to Figure 7.7 we compare the DNN and the SVR models for the specific
target metric and specific migration technique using MAE metric. From Fig-
ure 7.8 to Figure 7.14 we compare the DNN and the SVR models for the specific
target metric and specific migration technique using WAPE metric. The lower

the MAE and the WAPE, the better the prediction accuracy.

MAE Total Time
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10000

“il | 1l I|I il |
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POST THR THR DLTC THR DLTC
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EDNN 5055 5134 14875 5073 5608 10561 7252 6643 20404 6215 6548 11362
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Figure 7.1: Total time - Mean absolute error
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Figure 7.3: Total traffic - Mean absolute error
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Figure 7.5: Performance degradation - Mean absolute error
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MAE CPU
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Figure 7.6: CPU utilization - Mean absolute error
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As it can be seen from the figures above there are a few cases where the MAE for
a specific migration algorithm is much bigger compared to the other migration
algorithms. Such an example can be seen in Figure 7.1 where both DNN and
SVR are having an increased MAE. We believe that this big MAE, for both
SVR and DNN, is due to the dataset that the models are trained with. We
believe our dataset is missing an important feature and therefore the models
do not predict well the total time for migration algorithms that use DTC. In
Figure 7.6 we can see that the accuracy for models that have DTC are having
the highest MAE for both SVR and DNN. This behaviour is because of the
migration technique itself. As explained in Chapter 2.4.2 this type of migration
can increase significantly the CPU utilization which is difficult to predict. An-
other value that is distinctive compared the rest is the prediction accuracy of
memory utilization for migrations that use DLTC. This is because DLTC needs
additional memory, for storing the old pages in order to perform a XBZRLE
compression. Due to this both models are having increased MAE. Lastly, we can
see that the performance prediction accuracy for migrations that use post-copy
is significantly increased, compared to the other migration techniques. This be-
haviour is due to the post-copy way of migration. As explained in Chapter 2.4.2
in case of post-copy migration initially a minimal processor state is copied to
the destination host and then the work is immediately resumed on the destina-
tion host. As a result, not all memory pages are transferred on the destination
host, therefore in case a page that is not yet transferred from the source to the
destination host is required, the destination host should stop its work retrieve
that page from the source host and resume work. This process can cause an
increase on the performance degradation which can be difficult to predict.

Another result that worth mentioning is the is the fact that our DNN models

were able to perform much better in all target metrics except one. As it can be
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seen in Figure 7.5 when predicting the performance utilization our DNN mod-
els predicted equally good or same as SVR except in the following three cases
DLTC, THR and THR DLTC where our DNN prediction is with slightly worse
prediction accuracy than the SVR. We assume this is due to the fact how the
data for performance utilization is created. The performance utilization label
is created as a median value of the whole migration performance utilization,
because of this median transformation it is possible that some of the feature
correlation be lost.

As explained in Chapter 6.4 WAPE can give us an overall idea of the goodness
of the model. The lower the WAPE the better the prediction accuracy. As it
can be seen from the WAPE results our model is better than the SVR in all
migration metrics except in performance utilization where a few predictions of

SVR are slightly better than the predictions of our DNN models.
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Figure 7.8: Total time - WAPE
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Figure 7.10: Total traffic - WAPE
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Figure 7.13: CPU utilization - WAPE
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7.4 Overhead

This experiment was done to give an overview idea of how long the training

process for each model takes. For this experiment, we used Intel i5-7500 CPU

with processor base frequency of 3.40GHz and GPU Nvidia GeForce GTX 750.

For the training of the SVR models we were using the CPU, since sckit learn

can work only on CPU. On the other hand for the DNN models we used GPU.

In Figure 7.15 a training time for each migration algorithm and target metric

is presented. In 18 out of the 30 different models DNN is training faster. The

reason why DNN is not as fast as the SVR is because of the different number

of epochs and different models structure. An example can be total traffic Fig-

ure 7.15f where our models require the most number of epochs and train slower

than the SVR. The rest of the training times can be seen in 7.15.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work, we presented 84 deep neural network models that can predict
important VM live migration metrics. We discussed the input that these models
get and their relevance for each model. The reason and technique for selecting
the right hyperparameters were discussed and explained. The proposed models
achieve high prediction accuracy for all target metrics and migration algorithms.
Compared to the state of the art, our models attain a significant prediction
accuracy improvement over almost all the targeted metrics. We believe that if
the presented work becomes part of a live migration framework, the proposed

models will reduce the number of SLA and SLO violations.

8.2 Future Work

For a future work a model training on more heterogeneous and bigger dataset,
that involves more complex migration scenarios can be done. If a creation of
new dataset is done, adding timestamps can be useful for training other types

of networks like Recurrent Neural Networks (LSTMs).

55 -



Appendices

56



Appendix A

List of Features

# | Name Description
0 | SRC.d Id of the source node
1 | DST.d Id of the destination node
2 | auto-converge Cpu-throttling migration technique 0:disabled 1:enabled.
3 | xbzrle Delta compression migration technique 0:disabled 1:enabled.
4 | compress Data compressio nmigration technique 0O:disabled 1:enabled.
5 postcopy-ram Post-copy migration technique 0:disabled 1:enabled.
6 cpu-throttle-increment | Throttling step of auto-converge technique.
7 | cpu-throttle-initial Initial throttling level of auto-converge technique.
Cache size of delta compression technique. Old data is stored in
8 | xbzrle_cache_size
this memory and used later to compute delta.
Compression level, from 0 to 10. Higher number gives better com-
9 compress-level ) )
pression ratio.
10 | compress-threads Number of threads to compress data.
11 | decompress-threads Number of thread to decompress data.
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Name

Description

When to start postcopy ex) 0: start postcopy immediately 1: do

12 | postcopy_start_time precopy for one iteration and enable postcopy in the second iter-

ation.

Requested downtime from user. Iterative precopy only proceed to
13 | downtime-limit stop-and-copy phase only the expected downtime is less than the

downtime-limit.
14 | max-bandwidth Reverved bandwidth for vm live migration.
15 | total_pages Total pages of the VM.
16 | working_set_pages Total working set pages of the VM.

Total non-working set pages of the VM (total_pages = work-
17 | non_working_set_pages

ing-set_pages + non_working_set_pages)
18 | zero_pages The number of pages which contents are zero.
19 | pdr Page dirty rate.
20 | mwpp Average number of modified words (1-byte) per a page.

Entropy of working set (0.0 ~1.0). lower entropy gives better com-
21 | wse

pressibility.

Entropy of non working set (0.0 ~1.0). lower entropy gives better
22 | nwse

compressibility.

Percentage of time that the destination node CPU or CPUs were
23 | DST cpu.idle

idle and the system did not have an outstanding disk I/O request.

Percentage of time that the destination node CPU or CPUs were
24 | DST _cpu-io

idle during which the system had an outstanding disk I/O request.

Percentage of destination node CPU utilization that occurred
25 | DST _cpu_system

while executing at the system level (kernel).

Percentage of the destination CPU utilization that occurred while
26 | DST _cpu_user

executing at the user level (application).

Total amount of data read from the destination node devices in
27 | DST.io_bread

blocks per second, blocks has size - 512 bytes.

Total amount of data written to destination node devices in blocks
28 | DST_io_bwrtn

per second.
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# | Name Description

Total number of read requests per second issued to physical de-
29 | DST.io_rtps

vices.

Total number of transfers per second that were issued to physical
30 | DST.io_tps

devices.

Total number of write requests per second issued to physical de-
31 | DST io_wtps

vices.
32 | DST_kbmemfree Amount of free memory available on destination node in kilobytes.
33 | DST_kbmemused Amount of used memory on destination node in kilobytes.
34 | DST_memused Percentage of used memory on destination node.

Utilization percentage of the network interface on destination
35 | DST_net_manage_ifutil

node.

Total number of kilobytes received per second on the destination
36 | DST_net_manage_rxkb

node.

Total number of kilobytes transmitted per second on destination
37 | DST_net_manage_txkb

node.

Number of page faults (major + minor) made by the system per
38 | DST_paging_fault

second for on destination node.

Number of major faults the system has made per second, those
39 | DST_paging majflt which have required loading a memory page from disk for desti-

nation node.

Total number of kilobytes the system paged in from disk per sec-
40 | DST_paging_pgpgin

ond for destination node.

Total number of kilobytes the system paged out to disk per second
41 | DST_paging_pgpgout

for destination node.
42 | DST_processor_cores Number of processor cores of destination node.
43 | DST_processor_speed Processor clock speed of destination node.
44 | DST_processor_threads | Number of processor threads of destination node.
45 | DST_ram_size Ram size of destination node.
46 | DST_ram_speed Ram clock speed of destination node.
47 | DST_swap_kbswapfree Size of free swap memory for the destination node.
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Name

Description

48 | DST_swap_kbswapused | Size of used swap memory for the destination node.
49 | DST_swap_swpused Amount of used swap space in kilobytes for the destination node.

Percentage of time that the source node CPU or CPUs were idle
50 | SRC_cpu-idle

during which the system had an outstanding disk 1/O request.

Percentage of time that the source node CPU or CPUs were idle
51 | SRC_cpu_io

during which the system had an outstanding disk I/O request.

Percentage of source node CPU utilization that occurred while
52 | SRC_cpu_system

executing at the system level (kernel).

Percentage of source node CPU utilization that occurred while
53 | SRC_cpu_user

executing at the user level (application).

Total amount of data read from the source node devices in blocks
54 | SRC_io_bread

per second, blocks has size - 512 bytes.

Total amount of data written to source node devices in blocks per
55 | SRC_io_bwrtn

second.

Total number of read requests per second issued to physical de-
56 | SRC_io_rtps

vices.

Total number of transfers per second that were issued to physical
57 | SRC_io_tps

devices.

Total number of write requests per second issued to physical de-
58 | SRC_io_wtps

vices.
59 | SRC_kbmemfree Amount of free memory available on source node in kilobytes.
60 | SRC_kbmemused Amount of used memory on source node in kilobytes.
61 | SRC_memused Percentage of used memory on source node.
62 | SRC_net_manage_ifutil | Utilization percentage of the network interface on source node.
63 | SRC_net_manage._rxkb Total number of kilobytes received per second on the source node.
64 | SRC_net_manage_txkb | Total number of kilobytes transmitted per second on source node.

Number of page faults (major + minor) made by the system per
65 | SRC_paging_fault

second for on source node.

Number of major faults the system has made per second, those
66 | SRC_paging_majflt which have required loading a memory page from disk for source

node.
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Name

Description

Total number of kilobytes the system paged in from disk per sec-

67 | SRC_paging_pgpgin
ond for source node.
Total number of kilobytes the system paged out to disk per second
68 | SRC_paging_pgpgout
for source node.
69 | SRC_processor_cores Number of processor cores of source node.
70 | SRC_processor_speed Processor clock speed of source node.
71 | SRC_processor_threads | Number of processor threads of source node.
72 | SRC_ram_size Ram size of source node.
73 | SRC_ram_speed Ram clock speed of source node
74 | SRC_swap_kbswapfree Size of free swap memory for the source node.
75 | SRC_swap_kbswapused | Size of used swap memory for the source node.
76 | SRC_swap_swpused Amount of used swap space in kilobytes for the source node.
77 | SRC_vm_cpu_baseline Source node CPU baseline.
78 | SRC_vm_mem_baseline | Source node memory baseline.
vm_perf_LLC-load-
79 ) Average number of last level cache load misses of VM per a second.
misses
80 | vm_perf LLC-loads Average number of last level cache loads of VM per a second.
81 | vm_perf_cache-misses Average number of cache misses of VM per a second.
vm_perf_cache-
82 Average number of cache references of VM per a second.
references
83 | vm_perf_cycles Average number of cpu cycles of VM per a second.
84 | vm_perf_instructions Average number of executed instructions of VM per a second.
85 | RPTR Relative page transfer rate.
86 | DLTC_ benefit Expected benefit of delta compression.
87 | THR_ benefit Expected benefit of delta compression.
88 | ewss Expected size of wss after compression.
89 | enwss Expected size of nwss after compression.

Table A.1: Features name and description.
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Appendix B

Features Importance

Fentire Namme AVG | AVG | AVG | AVG| AVG | AVG | AVG

TT | DT | TD | THRU| PERF| CPU | MEM
SRC_id 0.8 0.6 0.7 0.8 0.8 0.6 0.8
DST_id 0.8 0.9 0.7 1.0 0.8 1.0 0.9
auto-converge 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xbzrle 0.0 0.0 0.0 0.0 0.0 0.0 0.0
compress 0.0 0.0 0.0 0.0 0.0 0.0 0.0
postcopy-ram 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cpu-throttle-increment 1.7 1.8 1.7 1.8 1.4 1.7 1.7
cpu-throttle-initial 1.8 1.8 1.7 1.8 1.4 1.7 1.6
xbzrle_cache._size 1.7 1.7 1.7 1.7 1.4 1.6 3.8
compress-level 1.6 1.7 1.6 1.8 1.3 1.7 1.6
compress-threads 1.7 1.7 1.6 1.8 1.4 2.2 2.7
decompress-threads 1.6 1.7 1.6 1.7 1.3 1.7 1.6
postcopy_start_time 15 2.6 15 1.6 1.7 1.8 1.7
downtime-limit 1.8 2.0 1.8 1.9 1.8 1.7 1.7
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etmres e AVG | AVG | AVG AVG | AVG | AVG | AVG
TT DT TD | THRU| PERF| CPU | MEM
max-bandwidth 1.8 1.8 1.7 2.6 1.5 3.8 1.9
total_pages 0.0 0.0 0.0 0.0 0.0 0.0 0.0
working_set_pages 1.8 1.7 1.8 1.7 3.3 1.7 1.9
non_working_set_pages 1.8 1.7 1.7 1.7 3.0 1.7 2.0
Z€ero_pages 1.7 1.7 1.8 1.7 3.5 1.7 2.1
pdr 1.7 1.7 1.8 1.7 2.2 1.7 1.7
mwpp 1.5 1.5 1.6 1.4 1.2 1.4 1.4
wse 1.7 1.8 1.7 1.8 1.8 1.7 1.7
nwse 1.7 1.7 1.8 1.7 1.5 1.6 1.6
DST_cpu-idle 1.7 1.7 1.7 1.7 1.2 1.6 1.5
DST _cpu-io 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST _cpu_system 1.7 1.7 1.7 1.7 1.2 1.6 1.6
DST _cpu_user 1.7 1.7 1.7 1.7 1.2 1.6 1.5
DST.io_bread 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST_io_bwrtn 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST.io_rtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST io_tps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST.io_wtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST kbmemfree 1.7 1.7 1.8 1.7 1.2 1.6 1.4
DST _kbmemused 1.7 1.7 1.8 1.7 1.2 1.7 1.6
DST_memused 1.7 1.7 1.8 1.7 1.2 1.6 1.5
DST _net_manage._ifutil 1.6 1.6 1.6 1.6 1.2 1.6 1.5
DST _net_manage_rxkb 1.6 1.6 1.6 1.6 1.3 1.6 1.6
DST _net_manage_txkb 1.6 1.6 1.6 1.6 1.2 1.5 1.4
DST _paging_fault 1.6 1.5 1.7 1.5 1.2 1.5 1.6
DST_paging_majflt 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST_paging_pgpgin 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DST_paging_pgpgout 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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T NS AVG | AVG | AVG | AVG | AVG | AVG | AVG
TT DT TD | THRU| PERF| CPU | MEM
DST _processor_cores 0.5 0.6 0.5 0.7 0.6 0.7 0.7
DST _processor_speed 1.7 1.7 1.6 1.7 1.4 1.7 1.6
DST _processor_threads 0.6 0.7 0.5 0.8 0.6 0.8 0.7
DST _ram_size 0.3 0.4 0.3 0.4 0.4 0.4 0.4
DST _ram_speed 0.8 0.8 0.7 0.9 0.7 0.9 0.9
DST _swap_kbswapfree 1.4 1.4 1.4 1.4 1.0 1.3 1.2
DST _swap_kbswapused 1.4 1.3 1.4 1.3 1.0 1.3 1.3
DST _swap_swpused 1.4 1.3 1.3 1.3 1.0 1.3 1.3
SRC_cpu_idle 1.7 1.7 1.7 1.7 1.3 1.7 1.5
SRC_cpu-io 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_cpu_system 1.7 1.7 1.7 1.7 1.3 1.6 1.6
SRC_cpu_user 1.7 1.7 1.7 1.7 1.4 1.7 1.6
SRC_io_bread 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_io_bwrtn 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC.io_rtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC.io_tps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_io_wtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_kbmemfree 1.7 1.7 1.8 1.7 1.2 1.7 1.6
SRC_kbmemused 1.7 1.7 1.8 1.7 1.3 1.7 1.7
SRC_memused 1.7 1.7 1.7 1.7 1.2 1.7 1.7
SRC_net_manage_ifutil 1.5 1.6 1.6 1.5 1.2 1.5 14
SRC_net_manage_rxkb 1.5 1.5 1.6 1.5 1.2 1.5 1.4
SRC_net_manage_txkb 1.6 1.5 1.6 1.6 1.3 1.6 1.5
SRC_paging_fault 1.6 1.6 1.7 1.6 1.2 1.5 1.8
SRC_paging_majflt 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_paging_pgpgin 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_paging_pgpgout 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SRC_processor_cores 0.5 0.4 0.5 0.6 0.4 0.2 0.6
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etmres e AVG | AVG | AVG AVG | AVG | AVG | AVG
TT DT TD | THRU| PERF| CPU | MEM
SRC_processor_speed 1.7 1.9 1.6 1.7 2.0 3.1 1.6
SRC_processor_threads 0.6 0.5 0.5 0.7 0.6 0.2 0.6
SRC_ram_size 0.3 0.3 0.3 0.3 0.3 0.1 0.3
SRC_ram_speed 0.7 0.6 0.6 0.8 0.6 0.5 0.7
SRC_swap_kbswapfree 1.4 1.3 1.4 1.3 1.1 1.3 1.1
SRC_swap_kbswapused 1.3 1.3 1.4 1.3 1.0 1.2 1.2
SRC_swap_swpused 1.4 1.3 1.3 1.3 1.0 1.2 1.2
SRC_vm_cpu_baseline 1.4 1.4 1.5 1.4 3.7 1.5 1.4
SRC_vm_mem_baseline 1.8 1.7 1.7 1.8 3.2 1.6 2.0
vm_perf_LLC-load-misses 1.7 1.7 1.7 1.6 1.5 1.7 1.6
vm_perf_LLC-loads 1.7 1.7 1.8 1.6 1.6 1.6 1.5
vm_perf_cache-misses 1.7 1.7 1.8 1.6 1.8 1.6 1.6
vm_perf_cache-references 1.7 1.7 1.8 1.6 2.3 1.6 1.5
vm_perf_cycles 1.7 1.7 1.8 1.6 3.2 1.6 1.5
vm_perf_instructions 1.7 1.7 1.7 1.6 3.4 1.6 1.5
RPTR 1.7 1.7 1.7 1.7 2.1 1.7 1.9
DLTC_benefit 1.5 1.5 1.6 1.4 1.3 1.5 14
THR_benefit 1.5 1.4 1.6 1.4 2.1 1.4 1.4
ewss 1.7 1.7 1.7 1.7 1.9 1.6 1.8
enwss 1.7 1.7 1.8 1.7 1.8 1.6 1.8
TOTAL % 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Table B.1: Average percentage importance for each

feature, for each target metric.

The following figures present the importance of each feature for each target metric for specific

migration technique.
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