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Abstract

Live migration of Virtual Machines (VMs) is an important technique in today’s

data centers. In existing data center management frameworks, complex algo-

rithms are used to determine when, where, and to which host a migration of a

VM is to be performed. However, very little attention is paid to the selection of

the right migration technique depending on which the migration performance

can vary greatly. This performance fluctuation is caused by the different live

migration algorithms, the different workloads that each VM is executing, and

the state of the destination and the source host. Choosing the right migration

technique is a crucial task that has to be made quickly and precisely. Therefore,

a performance model is the best and the right candidate for such a task.

In this thesis, we propose various machine learning models for predicting live

migration metrics of virtual machines. We predict seven different metrics for

twelve distinct migration algorithms. Our models achieve a much higher accu-

racy compared to existing work. For each target metric and algorithm, an input

feature evaluation is conducted and a strictly specific model is generated, lead-

ing to 84 different trained machine learning models. These models can easily be

integrated into a live migration framework. Using the target metric predictions

for each migration algorithm, a framework can easily choose the right migration

algorithm, which can lead to downtime and total migration time reduction and

less service-level agreement violations.

Keywords: machine learning, live migration, virtualization, VM

Student Number: 2017-28499
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Chapter 1

Introduction and Motivation

In present days, virtualization is an important technology used by cloud service

providers allowing them to better utilize their hardware resources. Virtualiza-

tion allows better data utilization and provides an isolation between tenants

that use the same physical resource. Live migration is a key technology in

virtualization, allowing efficient client management of virtualized resources in

data centers. As a result, data centers can migrate VMs between physical servers

transparently without causing a service interruption for the user. Companies like

Google use live migration technology in their data centers for migrating millions

of VMs each month [30, 7]. Other cloud resource management systems adopt live

migration for different purposes [8, 27, 31, 36]. Due to the absence of good and

practical instructions, most of the live migrations are performed using a fixed

live migration algorithm called pre-copy [4]. This migration algorithm works

well for moderately loaded VMs, but often suffers from a long migration time

and a high resource consumption. Therefore, alternative algorithms and opti-

mization techniques have been proposed [9, 10, 11, 13, 14, 18, 20, 22, 33, 36] that
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perform better for specific metrics depending on the workload running inside

the VM and the state of the data center. With these different live migration al-

gorithms being available, guidelines to select the right migration algorithm that

gives the best performance for a specific metric have been proposed [16, 25, 34].

In [12] a machine learning approach using support vector regression (SVR) has

been proposed as a solution of selecting the right technique. SVR performs

well, but we believe it can be outperformed. Again using a machine learning

approach, but this time using neural networks, the prediction accuracy of our

models is better than SVR in almost all target metrics. In this work, we present

a number of models, specifically made for each algorithm and target metric, that

outperform the current state-of-the-art SVR approach [12] and greatly improve

the prediction accuracy. These models can be plugged into a VM migration

framework, that can use the target metrics predictions to easily decide which

migration algorithm will cause the lowest number of service level agreements vi-

olations. Another advantage of our approach is that our work uses the graphics

processing unit (GPU) instead of the central processing unit (CPU) as in [12]

where the training process is much slower.

The remainder of this thesis is organized as follows. Chapter 2 provides the

necessary background on virtualization, live migration, and artificial neural

networks. Chapter 3 introduces related work to this thesis. Chapter 4 gives in-

formation about design choices and an overview of the work. Chapter 5 gives

information about the implementation of the different types of networks tried.

Chapter 6 presents the different evaluation methods and compares the results

with previous work. Chapter 7 gives a presentation and comparison of our

models and the SVR with bagging model. Chapter 8 concludes this thesis and

includes information about related and future work.
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Chapter 2

Background

2.1 Virtualization

Nowadays virtualization is an important technology used in cloud computing

environments. Live migration helps system administrators to better manage

workloads by transforming traditional computing to make it more scalable.

There are seven primary types of virtualization: storage, hardware, network,

administrative, application, server and operating system virtualization. In this

work, our main focus is on operating system virtualization.

Hardware Virtualization is the most common form of virtualization and is a

long-established technology in cloud computing environments that gives the

system administrators abilities to manage their resources, to perform server

consolidation or load balancing, and to increase the system availability. It is a

server virtualization technology that virtualizes hardware components so that

the server can run different operating systems handled by multiple users on a

single computer at the same time as shown in Figure 2.1.
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Figure 2.1: Hardware virtualization

From a VM point of view, the VM is the only one having control over the (vir-

tualized) hardware, while from a physical host prospective each VM is just an

application process. The processes in the virtualized OS environment are iso-

lated and their interactions with the underlying hardware and OS instance are

monitored. These qualities of hardware virtualization has attracted consider-

able interest in recent years, especially from data centers and cluster computing

communities. In our work, we explore a further benefit allowed by virtualization,

that of live OS migration.

2.2 Live Migration

Live migration is the process of transferring a live virtual machine from one

physical host to another without disrupting its normal operation. Live migra-

tion enables the porting of virtual machines and is carried out in a system-

atic manner to ensure minimal operational downtime. Live migration is a key

selling point for the state-of-the-art virtualization technologies, making virtu-

alization of machines an even more appealing technology for the industry. It

allows administrators to consolidate system load, perform maintenance tasks,
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and relocate cluster-wide resources quickly and with minimal downtime. First

of all, migration of the whole OS together with its applications as one unit

is saving many of the difficulties that we may face in process-level migration.

Secondly, migrating the entire virtual machine means that the memory state of

the virtual machine can be transferred as a chunk in a consistent and efficient

way. This way we can migrate a running guest without making its clients recon-

nect, an impossible task for application-level migrations. Lastly, live migration

of virtual machines allows the user or operator not to worry about application

interruption or loss of data during migration. Because of the advantages that

live migration provides, both user and operator benefit. The user is having an

interrupt-free usage of the system and the operator can expect a smooth tran-

sition from the host to the destination virtual machine.

Depending on the time when the state of the virtual machine is transferred,

there are two main approaches to live migration. The first one is called pre-copy

and can be observed when the state is transferred before execution is switched

from the source to the destination host. The second live migration approach is

the opposite: the state is transferred after execution, also called post-copy. In

this work, we will discuss in depth these two types of live migration and we

will see more different types of migration, which we will call hybrid migration

approaches. The hybrid approaches vary depending on many factors explained

later, in Chapter 2.4.3.

Choosing the right type of live migration is an important task. If the wrong

type of migration is selected the total migration time can be prolonged, the user

experience can be slowed down or even interrupted. In this work, we propose an

automatic selection of the best migration technique based on pre-profiling of the

source and destination machine. This approach will predict the best migration

technique.

5



2.3 SLA and SLO

As cloud computing is becoming more popular, an agreement between the ser-

vice provider and client is an important aspect. The requirements from the

client side can have many variations and some of them may not be able to be

fulfilled. Therefore, a balanced agreement has to be made. Such an agreement is

the Service Level Agreement (SLA). In SLAs between a service provider and a

customer, a Service Level Objective (SLO) is a key element. SLOs are agreed as

a means of measuring the performance of the Service Provider and are outlined

as a way of avoiding disputes between the two parties based on a misunder-

standing. While SLA is the entire agreement that specifies what service is to be

provided, how it is supported, times, locations, costs, performance, and respon-

sibilities of the parties involved, SLOs are specific measurable characteristics of

a SLA such as availability, throughput, frequency, response time, or quality.

2.4 Live Migration Techniques

Migration of a running VM transfers the execution of a VM from one host to

another. The execution context includes the entire volatile state of a VM: the

state of the virtual CPUs (registers), the state of the attached virtualized hard-

ware devices and the data stored in the VM’s RAM. During intra-datacenter

migration the permanent storage does not need to be moved since is typi-

cally provided by network-attached storage (NAS), see Figure 2.2. The largest

volatile component of a VM is the memory, which can easily reach several giga-

bytes. Each live migration consists of the following steps: 1) dirty page transfer,

2) suspending of the host machine, 3) transfer of remaining pages 4) resume

work at destination machine. As explained before depending when step two is

performed, live migration can be classified into two approaches: pre-copy and
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Figure 2.2: Live Migration

post-copy migration. In the pre-copy approach, we first copy the memory pages

while the VM keeps running on the source machine, while in post-copy, we first

stop the migrating VM on the source machine, restart it on the destination,

and then transfer the memory pages.

2.4.1 Pre-copy (PRE)

Pre-copy as shown in Figure 2.3 is an iterative type of migration [28], this

is due to the fact that the first stage of pre-copy migration is using an iter-

ative approach. In the first stage, all pages are copied while the VM keeps

running on the source. If a memory page that has already been copied to the

destination host is modified, it is re-transmitted again in one of the following

iterations. The time required for this stage is determined by the page dirty

rate of the VM and the stop-and-copy threshold. The stop-and-copy thresh-

old defines when the number of dirty pages is low enough to terminate that

stage and proceed with stopping the source host VM and copying the remain-
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ing pages. This termination can happen if dirty pages < threshold, but also

if dirty rate > bandwidthmax, where dirty rate = dirty pages
duration . In the first case,

the stop-and-copy threshold is set so that the expected downtime is sufficiently

short, where expected downtime = remaining dirty pages×page size
bandwith [33]. In the sec-

ond case, we are stopping the dirty page transfer because the amount of memory

dirtied is higher than the network transfer rate; this condition would prolong

pre-copy migration infinitely. When the previous stage page transfer terminates,

the stop-and-copy phase starts. The time when this transition is complete is not

trivial since there is a trade-off between total migration and downtime. If the

second stage starts too soon, more data must be sent over the network while

the VM is down, which leads to a longer downtime. If stopped too late, the

time for repeatedly copying dirtied pages is wasted which diminishes the use of

pre-copy. After transferring the CPU state and the remaining dirty pages, the

VM is resumed on the destination host.

Figure 2.3: Pre-copy migration flow.

2.4.2 Post-copy (POST)

In post-copy, the step in which the memory pages are transferred is moved

behind the stop-and-copy (see Figure 2.4). As a consequence, the host VM

is stopped at the beginning of the migration. A minimal processor state is

copied to the destination host and the work is immediately resumed on the

8



destination node. The remaining pages are fetched from the source while the

VM is running on the destination host. The main advantage of this technique

is that each memory page is transferred at most once, this way the duplication

overhead observed in pre-copy is avoided.

Figure 2.4: Post-copy migration flow.

2.4.3 Hybrid Migration Techniques

The main bottleneck of live migration is the transfer of the memory pages. To

alleviate this problem there are two options. First, reduce the dirty page rate

or, second, reduce the amount of data to be sent over the network. In order for

this to be achieved, there are two main practices: slowing down the CPU of the

host machine and compressing the VM memory that is transferred.

Delta Compression (DLTC)

Even with the constant improvement of network connections, the transfer of

memory pages over the network is several times slower than the random-access

memory (RAM) or disc access [33]. If the page dirty rate is higher than the net-

work throughput, the migration (downtime) can be long. Therefore, in order to

shorten the migration (downtime), the page throughput needs to be increased.

This can be achieved by compressing the memory pages before the transfer.

Delta compression uses XBZRLE (Xor Binary Zero Run-Length-Encoding) to

compress the VM’s memory pages and thus reduce the total live-migration
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time. On the sender side, XBZRLE is implemented as a compact delta encod-

ing of page updates, retrieving the old page content from a Least Recently Used

(LRU) cache. The receiving side uses the existing page content and XBZRLE

to decode the new page content. This technique requires additional memory on

the source host to store the memory pages for future delta computation [12].

Data Compression (DTC)

Delta compression is another technique that employs a standard data compres-

sion algorithm to compress the memory pages before transmitting them over

the network [12]. This method can significantly increase the CPU utilization

and therefore may not be a good option for hosts with high CPU utilization.

CPU Throttling (THR)

In this approach, to enforce convergence of the pre-copy process, the speed of

the virtual CPU of the VM is deliberately reduced in order to reduce the page

dirty rate. This technique typically incurs a significant performance degradation

in the VM which may violate SLOs.

2.5 Live Migration Performance Metrics

In this work we are predicting the metrics proposed in [12] where six target

metrics were suggested and additionally add network throughput as a metric

which we consider useful for evaluating migration performance.

Total migration time (TT) Denotes the elapsed time between the start of a

migration and its completion.

Downtime (DT) Represents the time duration of the stop-and-copy phase,

the phase during which the VM is not available.
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Total traffic (TD) The total amount of transferred data from the source to

the destination machine.

Throughput (THRU) The rate of data sent from the host source to the des-

tination.

Performance degradation (PERF) The relative performance degradation

during live migration in terms of executed instructions per second (IPS).

Host CPU utilization (CPU) CPU load during migration on the source

host.

Host Memory utilization (MEM) Denotes the amount of memory used by

VM on the source host.

These metrics were chosen as important, because total time, total traffic, through-

put, host CPU utilization, and host memory utilization are metrics of interest

to data center operators in order to estimate the required resources for live mi-

gration. On the other hand, downtime and performance degradation may affect

SLAs and the quality of service (QoS) experienced by the user.

2.6 Artificial Neural Networks

The core part of this work is the generated prediction models. These models are

used to predict the aforementioned migration metrics using features collected

during profiling of the VM. This prediction is a core part of the framework

in [12], since based on these predicted values the framework selects the suitable

migration technique based on SLA requirements. In this work, we tried three

different neural networks types and compared the result of the best performing

type with the prediction results from [12].

Artificial neural networks are a set of algorithms designed with similar inten-

tions as the human brain. Their purpose is to recognize patterns in given data.

Based on the provided data the neural networks can be classified as supervised

11



and unsupervised. In supervised neural networks, the data and the expected

answer are provided, while in unsupervised models only the input data is given

and the answer has to be guessed. Each of these two types can be separated

into two other subtypes depending on what is the purpose of the model. If the

model is classifying the input into different categories then the model is called

a classification model. If the model is predicting or approximating an answer

then the model is called a regression model. Every neural network has layers,

depending on the number of layers a network can be classified as deep or not.

2.6.1 Feedforward Neural Network (FNN)

A feedforward neural network is the simplest type of a neural network as shown

in Figure 2.5. As any other neural network, this one also has an input layer with

a size the number of input features x and an output layer with a size the number

of desired output predictions y. As the name suggests, the flow of the data in this

type of network goes only forward. That means the information flows through

the function being evaluated from x, through the intermediate computations,

and finally to the output y. There are no feedback connections in which outputs

of the model are fed back. When feed-forward neural networks are extended

to include feedback relationships, they are called recurrent neural networks.

The layers between the input and the output are called hidden layers. In a

feedforward neural network, the number of hidden layers is one. If the number

of hidden layers is more that one then the network is called a Deep Neural

Network. In theory, a feedforward network with a single layer is sufficient to

represent any function, but in practice, the layer may be infeasibly large and

may fail to learn and generalize correctly. In that case, we need deeper neural

networks to learn and generalize the problem correctly, so the prediction can

become more accurate.
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Figure 2.5: Feedforward neural network structure.

2.6.2 Deep Neural Network (DNN)

A definition for a deep neural network is a neural network which has more

than one hidden layer (Figure 2.6). Deep neural networks are purposed for

more complicated and nonlinear problems. DNNs can be regarded as a sub-

type of FNNs with more layers since the flow of the information also goes in one

direction. DNNs can be more difficult to train, because they have an infinite

number of variations. In this thesis, the networks we trained have different

characteristics: number of input features, depth and width (number of layers and

number of neurons), number of training epochs and more. Each DNN model also

implements backpropagation. Backpropagation is an algorithm for supervised

learning using gradient descent. Given a deep neural network and an error

function, the backpropagation method can calculate the gradient of the error

function with respect to the neural network’s weights. Backpropagation works

in a similar way as the delta rule for a deep neural network. To calculate the
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Figure 2.6: Deep neural network structure.

backpropagation the following three things are required:

1. Labeled dataset (with both the input and the output) denoted as (xi, yi)

where xi is the input and yi is desired output. The set with size N samples

is denoted as X = {(x1, y1), ..., (xN , yN )}

2. A fully connected DNN with weights w and biases b for each layer l. Where

wkij is the weight between the node j in layer lk and node i in layer lk−1

and bias bki , the bias for node i in layer lk, which are collectively denoted

as θ.

3. An error function, E(X, θ) which is defining the error between the ex-

pected output yi and the predicted output ŷi of the DNN on input xi, for

the set of pairs (xi, yi) εX and the particular value of the parameters θ.

Training a neural network with gradient descent requires the calculation of the

gradient of the error function E(X, θ) with respect to the weights wkij and biases
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bki . Then, according to the learning rate α, each iteration of gradient descent

updates the weights and biases according to:

θt+1 = θt − α∂E(X,θ)
∂θ ,

where θt denotes the parameters of the neural network at iteration t in gradient

descent.

2.6.3 Convolution Neural Network (CNN)

Convolutional Neural Networks are known for their ability to recognize patterns

in images. Their architecture makes the implicit assumption that the input is

an image (or just any 2D argument of data). However, in this work, we feed

our CNN with a numerical input and expect a continuous number prediction.

Computers are not able to recognize shapes and patterns; they read the images

as pixels that are arranged as a matrix (height × width × depth). Normally

the layers of a CNN consist of Convolutional, Pooling, Activation and Fully-

Connected layers. A common order of the layers is:

Convolutional → Activation → Pooling → Convolutional → Activation →

Pooling → Fully-Connected.

The convolutional layer has filters that are used to detect a feature or a pattern

in the image. Filters usually have smaller dimensions and are expressed as

matrices. The filter is sliding (convolving) across the picture and at each place

a dot product is computed. Different filters are convolving for different features

on the input data. As a result, a set of activation maps are given as an output.

The output dimension of the convolutional layer is calculated in the following

way:

O = (W−K+2P )
S + 1,
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where O is the output height/length, W is the input height/length, K is the

filter dimension, P is the padding, and S is the stride of the filter. After the

convolutional layer, an activation layer follows. The purpose of this layer is

to nonlinearly transform the input from the previous layer and pass it to the

next layer. The most widely used activation function is Rectified Linear Unit

(ReLU). This function converts all the negative inputs to zero and this way

the neuron does not activate with negative inputs. The activation layer is typ-

ically followed by a pooling layer. The purpose of this layer is to reduce the

number of parameters and computation in the network. Because of the pool-

ing layer, the network spatial size is reduced and the chances of overfitting are

reduced. There are two types of pooling layers: average and maximum pooling

(Figure 2.7). Max-pooling picks the maximum value from every neighborhood

and average pooling computes the average of every neighborhood. The size of

the neighbourhood can vary, but the most common form is a pooling layer with

filters of size 2×2 applied with a stride of 2 downsamples same as in Figure 2.7.

Figure 2.7: Pooling layer types

At the end a fully connected layer is needed to flatten the data and put it into

a vector, then based on each value of this vector a prediction is made.
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Chapter 3

Related Work

Machine learning is a good and powerful tool that can predict and solve com-

plex problems by using past examples. Many researchers have used machine

learning for solving problems in data centers or making quick decisions in a

time-critical task. Such a time-sensitive and important decision can be the de-

cision of the right migration technique. In this chapter, we explore some of the

previously proposed models, observe what their advantages and disadvantages

are, and compare them to our proposed approach.

Modeling live migration performance accurately has been a research topic by

many researchers in the past. In [1] a simulation-based live migration model-

ing approach is proposed. In that work, the model has only two target metrics

total time and downtime, also due to missing important input parameters the

prediction accuracy is low. In a similar manner in [21] an online performance

prediction is done. Additionally, to total time, downtime and total traffic in [21]

a power consumption of a migration is predicted. In this work as well impor-

tant input parameters are missing, leading to a not good prediction accuracy.
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The authors of [24] propose more comprehensive model and reveals problems

of twelve existing models [1, 2, 5, 18, 19, 21, 23, 26, 37, 38, 39, 40]. However,

just as in the other works in [24] the predicted metrics are limited to total time,

downtime and total traffic and the prediction accuracy is still not high.

In the current state of the art work for machine learning live migration metric

prediction [12], three regression models were proposed - liner regression, support

vector regression, and support vector regression with bootstrap aggregation also

known as bagging. All three regression models use the sci-kit learn toolkit and

were trained and tested using 10-fold cross-validation.

In [12] linear regression does not achieve good results due to the complex cor-

relation that exists in migration data. A linear approach cannot capture the

complexities that such data has and therefore fails. On the other hand, SVR

and SVR with bagging gave more accurate predictions; this is because they can

capture more of the correlation that this complex data has. SVR with bagging

is showing best results and is outperforming the normal SVR. This is not sur-

prising as it is commonly known that bagging outperforms single models [3].

Comparing to suggested work in [12] and their SVR with bagging model, we

not only achieve a better prediction accuracy, but also add more prediction tar-

get metrics and, most importantly, seven more migration algorithm techniques.

Along with the five migration algorithms (Pre-copy, Post-copy, CPU Throttling,

Delta and Data compression) predicted in [12], we additionally predict seven

more hybrid migration algorithms listed in Table 3.1. This way our work is more

than doubling the possible migration options. Another advantage of our work is

also the additional throughput target metric that we included. Throughput was

added as possible useful target metric in case of future bandwidth prediction.
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Migration Algorithm Description

DLTC POST Delta compression with post-copy.

DLTC DTC Delta and data compression.

THR POST CPU throttling with post-copy.

THR DTC CPU throttling with data compression.

THR DLTC CPU throttling with delta compression.

THR POST DLTC CPU throttling with post-copy and delta compression.

THR DLTC DTC CPU throttling with delta and data compression.

Table 3.1: Hybrid migration algorithms

The SVR models were trained and tested using a dataset with 40,000 samples.

This dataset was produced by the migration of four identical machines. On the

other hand, our models were trained with more than 130,000 samples on much

more heterogeneous data. For the making of this dataset, four different types of

machines and twelve machines in total were used. Because of this, we are sure

our models are having much bigger chances to perform better than [12].

Besides the advantage that our models have because of the much more diverse

and bigger dataset, we also have more features than the state of the art work.

SVR with bagging model uses 20 input features, on the other hand in our

deep neural network models the feature number vary from 49 and up to 72

features. The number of input variables is different because we found that not

all features are important and give benefit for the targeted metric that will

be predicted. More about this can be seen in the feature importance analysis

section in Overview and Design.

With the stated above, we believe our models are much better trained, more

adjustable to different data variation and offer much more migration techniques

possibility compared to the current state of art.
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Chapter 4

Overview and Design

This chapter gives an overview and discusses the design choices that influenced

our models.

TensorFlow For this thesis, we decided to use the TensorFlow library version

1.5 together with python 3.4 [35]. TensorFlow is an open-source library for

machine learning. In [12] the models were made using scikit-learn and this choice

of machine learning library had some disadvantages. First of all, TensorFlow is a

low-level library that allowed us to build machine learning models using a set of

simple operations like add and matmul, while the scikit-learn is a higher-level

library that includes already an implementation of several machine learning

algorithms, so a model can be defined as in [12] just in a few lines. As a result,

TensorFlow is more difficult to use but allows for more customization and agility

than scikit-learn. The second advantage of using TensorFlow over scikit-learn is

the ability to do automatic differentiation. TensorFlow’s idea is that you build a

computation graph for doing any computation and you always end up working
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on that graph. The nodes on the graph are the different operations and the edges

are the tensors. This way of visualizing a problem allows TensorFlow to provide

automatic differentiation to perform backpropagation easily. TensorFlow also

allows us to use GPU or CPU, which is not possible in scikit-learn, where CPU

is the only available option. As a result model training in TensorFlow is much

faster.

In conclusion, scikit-learn is good for building standard machine learning models

quickly and train classifiers like Logistic Regression or SVR but is not the

right choice for our much more advanced and more customized neural network

models.

Feature Analysis and Selection The collected dataset of VM migration has

90 input features (Appendix A), but not all of them are useful for our prediction.

Some of these features decrease the accuracy of the models and confuse them.

Therefore we built a feature importance classifier program using a scikit-learn

library and Extra Trees Classifier [6]. We ran the importance classifier for each

target metric and for each migration algorithm. This gave us 84 tables with the

weight that each feature has for the specific target metric and specific migration

algorithm. We combined the data of these tables in 7 graphs - one for each

target metric. Each graph has 12 categories one for each migration algorithm

type. These graphs can be seen in Appendix B. We can see the tendency that

depending on the target metric and migration algorithm some features are

more preferable to have more importance than others (Appendix B). Such an

examples can be max bandwidth for Total time, downtime limit when trying

to predict Downtime metric and postcopy start time for all the postcopy or

postcopy like migration algorithms.
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Feature Scaling Because each feature is measured in different scales their

numerical value can vary. If we use raw data and do not scale, then some of

the features will always dominate over the rest and our accuracy will not be

good. Hence, we have to scale the input features in a way so they become easier

to work with but also preserve their information and ratio. For that purpose,

we used the scikit-learn library and the StandartScaler [32]. StandartScaler was

also the scaler chosen for [12]. StandartScaler assumes that the data is normally

distributed within each feature and will scale them such that the distribution is

now centered around 0, with a standard deviation of 1. The mean and standard

deviation are calculated for the feature. After that, the same feature is scaled

using the following formula:

StandartScaler =
x− µ
σ

with mean: µ =
1

N

N∑
i=1

(xi)

and standard deviation: σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

This way we transform the data so the variance is unitary and that the mean

of the series is 0.

Cross Validation K-fold cross-validations is a useful technique for assessing

model performance. Cross-validation is used as a way to determine if a change

in the learning/test data is giving a positive or negative impact. In our work, we

use 10-fold cross validation across the whole dataset. That means we divide our

dataset into 10 chunks, train on nine and test on the remaining one, print the

result and clean the TensorFlow graph. If we do not clean the graph after each

testing, the model will keep the values and labels from the previous iteration,

which will lead to retraining the model, a behavior which we do not want. We
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do this iterative train, test and clean the graph ten times, until all the 10 splits

became at least ones a test set (Figure 4.1). A similar approach is used in [12].

Because of cross-validation, we were able to measure how good the model fits,

both for accuracy and variance.

Figure 4.1: 10-fold cross validation

Model Selection In order to decide what kind of neural network we need, a

short analysis of the data input and the expected result had to be done. Our

dataset is labeled, that means we have the input features and also the expected

result of the migration. For that reason, we were looking for a supervised neural

network. Second, our input is continuous numbers and our output is a predic-

tion of a continuous number, therefore we needed a regression type of model. As

a ’rule of thumb’ when starting a neural network design from scratch, it has to

start simple and build up complexity and see what improves the network model.

Following this approach, our first model choice was a simple feed-forward net-

work with one layer. This type of model did not give us good results, just as the

linear regression in [12] the network was not capable of finding the correlation
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between the inputs features and the output. Therefore this type of network was

eliminated as a possible solution. The next step was to make a more compli-

cated network structure. Such an alternative was a DNN. DNNs have many

variations, so we spent a lot of time testing different hyperparameters in order

to find the optimal structure. However, a DNN with simple feed-forwarding was

not minimizing the error and additional improvement was necessary, hence we

included a backpropagation functionality to our DNN model. Due to the back-

propagation, our model improved more than 7 times for pre-copy total time

prediction. The Mean Absolute Error for the network without backpropagation

was approximately 35 seconds and when using back propagation, the Mean

Absolute Error became 5 seconds. In order to expand the work of this thesis

we decide to try another feedforward type of network and for this purpose, we

choose CNN. CNNs are usually used for image input data and their primary

purpose of convolution in the case of a CNN is to extract features from the in-

put image. The convolution in CNNs preserve the spatial relationship between

pixels. In our case, we used a CNN with an input of 90 features by putting them

in a matrix of 9×10 in a similar manner as if we are using 9×10 pixels image.

The results of the CNN were not better than a DNN with backpropagation.

For pre-copy migration with total time as target metric, the CNN gave the best

Geometric Mean Absolute Error (GMAE) prediction of 10 seconds while the

DNN less than 1.4 seconds. We interpret this bad results because CNN was not

able to take advantage of the spatial relationship as it does with picture input.

Hence, we find in this particular case a DNN with backpropagation to be the

best type of model.

Outliers removal In order to compare both the SVR and the DNN models,

we had to use the same dataset for training and testing. Therefore we had
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to adjust our dataset of 131,957 samples to be same as the one the SVR with

bagging has used. Luckily all the features used in [12] were present in our dataset

so such an operation is just a matter of parsing. Because our data is consisting

of 12 different migration techniques, the data that is matching with the same

migration techniques as in [12] was 50 534 samples. When the new data was fed

to the SVR model from [12] the prediction was unreasonably bad. We received

a geometric mean absolute error of approximately 40 seconds for the pre-copy

total time, while our DNN model was having a geometric mean absolute error

of under 1.4 seconds (which is in the usual prediction range). After further

investigation of the problem, we discovered that the SVR was not able to deal

with the little number outliers in our dataset, these outliers were confusing

the SVR model. This is the reason why we had to remove the outliers of each

migration technique, by removing 0.01% of the miss-fitting data. This sample

cleaning cost us in total 792 samples or 0.6% of the total data (Table 4.1). This

problem with SVR was another indication that DNN models are more flexible

and can adjust better.
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Migration Algorithm Type * Samples Before Refining Samples After Refining

PRE 9694 9650

POST 10241 10215

DTC 7867 7810

DLTC 10545 10490

POST DLTC 10865 10814

DLTC DTC 10473 10372

THR 12187 12118

THR POST 12098 12057

THR DTC 10583 10485

THR DLTC 12455 12391

THR DLTC POST 12612 12547

THR DLTC DTC 12330 12216

Total 131957 131165

Table 4.1: Number of samples before and after refining
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Chapter 5

Implementation

In this chapter, we describe the different parameters that we have selected to

build our models and the reason behind these decisions.

This chapter is divided into two subsections. In the first part, we explore details

regarding the hyperparameters and the structure of our Deep Neural Network

model. In the second subsection, a discussion about our Convolutional Neural

Network design will be given.

5.1 Deep Neural Network design

Since we have 84 different models we will not talk about each model individu-

ally, but we will discuss the one we find relevant. For all models we used similar

hyperparameters except the number of layers, number of input features, num-

ber of epochs and batch size. Each one of these three parameters was selected

individually for each model after extensive experiments. We found that num-

ber of layers, number of features, number of epochs and batch size can greatly
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Target Metric
Number

of layers

Layer

1

Layer

2

Layer

3

Layer

4

Layer

5

Layer

6

Layer

7

Total Time 7 900 900 900 400 400 400 400

Downtime 5 900 900 850 850 850

Total Traffic 5 900 900 450 450 200

Throughput 5 90 90 90 45 20

Performance 7 90 90 90 90 90 90 90

CPU 5 450 450 450 450 450

CPU Post-copy 5 250 250 250 450 450

CPU - DLTC 5 250 250 250 450 450

CPU - DTC 5 100 150 150 450 450

MEM 7 180 180 180 90 90 90 90

Table 5.1: DNN models structure

improve the prediction accuracy if they are selected correctly.

Because we were building our models from scratch, we started with a small num-

ber of layers and neurons and slowly increased them until no further prediction

improvement was possible and our models started overfitting. For models like

total time and downtime we found that it was difficult to get a good prediction

with just a few network layers because of the complexity that these two met-

rics have. As a result, deeper and wider networks were used. Table 5.1 shows

for each target metric the number of layers and neurons per layer. For every

hidden layer in all the models, we have used Rectified Linear Units (ReLu) as

the activation function. This activation function was selected because first of

all ReLu is not a liner, therefore combinations of ReLu are also nonlinear (Fig-

ure 5.2). In ReLu if x is negative or 0 the output is also 0, in the rest of the

cases ReLu gives an output x (see Figure 5.2). Another plus for ReLu compared
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f(x) =

 0 for x < 0

x for x ≥ x



Table 5.2: Relu

to the other activation functions is that ReLu is more efficient than tanh and

sigmoid because it involves simpler mathematical operations [17]. Because of all

mentioned above reasons we choose ReLu for our models instead of any other

activation function.

In Chapter 4 we analyzed the features and their importance for each target met-

ric and migration type. Not every feature is useful and gives information to our

model, therefore we started excluding the features with the lowest importance.

For example for Pre-copy migration technique total time, the best prediction

accuracy was achieved when only the top 49 features were in use, while for the

other migration techniques we needed 65 input features. This was due to the

fact that these 49 features were concentrating the most essential information

that our model required in order to produce an accurate prediction. For the

rest of the models and how many numbers of input features refer to Table 5.3.

Another parameter that was strictly individual for each model was the number

of epochs. One complete epoch is when the entire dataset is passed forward and

backward through the network once. As the number of epochs increases, the

number of times our weights being updated also increase. If we have not enough
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Target

Metric
PRE POST DTC DLTC

DLTC

POST

DLTC

DTC
THR

THR

POST

THR

DTC

THR

DLTC

THR

DLTC

POST

THR

DLTC

DTC

Total Time 49 65 65 65 65 65 65 65 65 65 65 65

Downtime 65 65 63 65 57 65 65 65 65 65 65 65

Total Traffic 57 63 56 57 57 57 57 65 57 70 57 60

Throughput 60 57 67 57 57 57 57 57 57 57 57 66

Performance 61 57 72 65 56 65 65 57 58 67 59 65

CPU 58 57 65 57 57 57 57 57 57 57 57 57

Memory 66 72 65 65 65 65 65 66 65 65 65 65

Table 5.3: DNN models number of input features

epochs our model may not train well and underfit if we use more than the right

number epochs we may overfit which will lead to good results while training but

our model will not be capable to perform well on new data. Therefore the right

number of epochs has to be selected for each model. Unfortunately, there is no

rule what is the right number of epochs. Epochs are different for the different

data sets and the diversity of the data is a determining factor. Therefore we

ran our models in many different numbers of epochs and analyzed their results.

In the end, the number of epochs that produced the best prediction accuracy

was selected. Table 5.4 shows the different number of epochs for each model.

Batch size is the number of training examples in one iteration. The batch size

can be one of the following three options: batch mode, mini-batch mode and

stochastic. Batch mode is when the batch size is equal to the total dataset, the

number of iteration and epochs is the same. A stochastic model is when the

batch size is equal to one. As a result, the gradient and the neural network

parameters are updated after each sample. Mini-batch mode size when the size

of the batch is greater than one and less than the total data size. For our mod-

els, we tried all three options and mini-batch mode performed best. We tried
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Target

Metric
PRE POST DTC DLTC

DLTC

POST

DLTC

DTC
THR

THR

POST

THR

DTC

THR

DLTC

THR

DLTC

POST

THR

DLTC

DTC

Total Time 135 165 90 135 105 75 90 150 90 75 100 105

Downtime 90 90 100 75 75 90 75 100 150 165 90 75

Total Traffic 305 350 320 350 350 240 300 350 350 350 350 300

Throughput 135 420 150 420 90 150 150 75 150 420 240 320

Performance 60 75 150 150 60 105 75 60 150 75 75 60

CPU 45 60 120 45 105 90 90 135 120 90 90 120

Memory 120 120 105 150 105 120 200 105 120 150 105 150

Table 5.4: DNN models number of epochs

splitting the dataset into 5, 10, 15 and 20 batches but 10 batch split gave the

best performance for all models. Since our dataset is having a different number

of samples for each migration technique splitting them into 10 splits gave us

different batch size for each migration algorithm. The size of the batch for each

migration algorithm can be seen in the Table 5.5. In machine learning, a cost

Target

Metric
PRE POST DTC DLTC

DLTC

POST

DLTC

DTC
THR

THR

POST

THR

DTC

THR

DLTC

THR

DLTC

POST

THR

DLTC

DTC

Batch size 868 919 702 944 973 933 1090 1085 943 1115 1129 1099

Table 5.5: DNN models batch size

function is used to estimate how good a model performs. Since our main goal

was to improve prediction accuracy than the state-of-the-art approach[12] we

decided that the best option for a cost function is the one that can give a good

overview of our model accuracy. Therefore we decided to try two cost functions

mean absolute error and mean absolute relative error. The mean absolute rel-

ative error gave us good results and in comparison with MAE was performing

better. The mean absolute error was giving us with approximately 10% worse
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prediction than the MARE. Hence, we decided the formula for our cost function

to be MARE and it looks like this:

cost = |PV−TV |
TV

where TV is the true value and PV is the predicted value.

To make our predictions as correct as possible we need to minimize the cost

function on each iteration. This minimization is done by changes in the param-

eters of our models, which is done by an optimizer. For our models, we decided

to use the Adam optimizer, one of the most popular optimization methods

nowadays[15][29]. Adam is a popular algorithm and commonly used in the field

of deep learning because it is fast and gives good results. In our case, Adam op-

timization gave the best performance among the other options that TensorFlow

has - AdadeltaOptimizer, GradientDescentOptimizer, and AdagradOptimizer.

Table 5.6 shows an example of the different prediction accuracy that each one of

these optimizers produced for the Total Time target metric, which is measured

in milliseconds.

Adam Adadeltar GradientDescent Adagrad

MAE (ms) 5225 33745 35890 34613

Table 5.6: Optimizer comparison

The learning rate is an important hyperparameter, which controls the weight

adjustment of our network with respect to the loss gradient. If this rate is low

the time we need to converge will be longer, while if the learning rate is too

large we may miss the global optimum and even diverge. A typical learning rate

ranges between 0.1 and 0.001 and typically most models are using a learning

rate around 0.01. This is also our case, we have tried many different learning
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rates from 0.1 until 0.001 but the one giving us the best result was 0.01, therefore

we decided to stay with it.

5.2 Convolutional Neural Network design

Convolutional neural networks are a much more complicated type of networks.

They are primarily used for image classification taking the image as a 3D matrix

where the first 2 dimensions are the size of the image and the third one is the

number of channels. In colored images, we have 3 channels red, green and blue.

Since our input is not an image, but just a matrix of numerical values, we will

have only one channel. Hence, we placed our input in a 2D matrix with size

9×10. Since we start our CNN from scratch we decided to build up complexity

with time. We started with two convolutional layers with stride 1 and padding

with extra 0. Stride controls how the filter convolves around our input, we choose

1 because this way our filter will convolve over similar data more frequently and

hoped that this will increase the accuracy. Also, the stride should be set in a way

so that the output volume is a whole number. We decided to use padding with

extra zero because this way we can maintain the spatial dimensions and better

preserve the information around the edges. After each convolutional layer, we

applied a ReLu activation function and a max pooling layer. Pooling layers are

often considered as part of the convolutional layers and are used to reduce the

spatial dimension and select the strongest activation from the grid. After using

convolutional layers to extract the spatial features of our data, we apply a fully

connected layer to for the final output prediction. This way we flattened our

output. After the first run of our two-layer convolutional network, we received

results GMAE 10 seconds - for Pre-copy total time. This was seven times higher

GMAE than our DNN model. Hence, we decided that this is because we have
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too little convolutional layers. We decided to try other variations with more

layers (up to seven convolutional layers), without max-pooling and even with

fully connected layers with bigger depth and width. All these experiments did

not give positive results.

Initially, we were not having high hopes that CNN will work because we knew

that CNN, as explained in Chapter 2, is made for pattern recognition and CNN

works well with data that has spatial information. Our data does not contain

such information, because the order of the input features does not give any

information to the model. We decided to focus more on our DNN models and

try to get more improvement from there instead of CNN.
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Chapter 6

Evaluation metrics

In this chapter, we discuss the evaluation methods we used to compare our work

and [12]. Also, we suggest the use of other evaluation metrics in the future since

they will give a better idea of how accurate the prediction is.

6.1 Geometric Mean Absolute Error (GMAE)

One of the evaluation metrics that [12] uses is the Geometric Mean Absolute

Error. The formula calculating this metric is as follows:

AE1 = ‖TV1 − PV1‖

...

AEn = ‖TVn − PVn‖

GMAE =

(
n∏
i=1

AEi

)1/n

≡ n
√
AE1 ·AE2 · ... ·AEn

Figure 6.1: Geometric mean absolute error formula
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where PV is the predicted value for the specific sample, TV is the true value for

the specific sample, AE is the absolute error for the specific sample, and n is the

total number of samples. The geometric mean indicates the central tendency or

typical value of a set of numbers by using the product of their values. GMAE

does not give a good understanding of the model accuracy, therefore we believe

is not a good metric for accuracy evaluation.

6.2 Geometric Mean Relative Error (GMRE)

The other evaluation metric used in [12] is the Geometric Mean Relative Error.

The formula calculating this metric is as follows:

RE1 =
∥∥∥1− PV1

TV1

∥∥∥ ≡ ∥∥∥TV1−PV1TV1

∥∥∥
...

REn =
∥∥∥1− PVn

TVn

∥∥∥ ≡ ∥∥∥TVn−PVnTVn

∥∥∥

GMRE =

(
n∏
i=1

REi

)1/n

≡ n
√
RE1 ·RE2 · ... ·REn

Figure 6.2: Geometric mean relative error formula

where PV is the predicted value for the specific sample, TV is the true value

for the specific sample, RE is the relative error for the specific sample, and n

is the total number of samples. As mentioned before in the GMAE section, the

geometric mean can give an overall idea but can mislead about the accuracy that

a model has, since the geometric mean is always smaller than the arithmetic

mean and it gives more a model prediction tendency than a concrete value.

Therefore we believe that the geometric mean is not suitable and the arithmetic

mean should be used for a closeup comparison of the SVR and DNN results.
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6.3 Mean Absolute Error (MAE)

One of the metrics which we believe is giving a better idea of the model’s

accuracy is the Mean Absolute Error. This is the simplest way to represent the

model accuracy of our predictions since is just the average error. The lower the

MAE, the better the prediction accuracy. The formula calculating this metric

is as follows.

AE1 = ‖TV1 − PV1‖

...

AEn = ‖TVn − PVn‖

MAE =

n∑
i=1

AEi

n

Figure 6.3: Geometric mean absolute error formula

where PV is the predicted value for the specific sample, TV is the true value

for the specific sample, AE is the absolute error for the specific sample, and n

is the total number of samples.

6.4 Weighted Absolute Percentage Error (WAPE)

Another metric with which we can measure model’s performance is the Weighted

Absolute Percentage Error. The WAPE can help us judge the goodness of fit.

The lower the WAPE, the better the prediction accuracy. The formula calcu-

lating this metric is as follows.

AE1 = ‖TV1 − PV1‖
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...

AEn = ‖TVn − PVn‖

WAPE =

n∑
i=1

AEi

n∑
i=1

TVi

× 100

Figure 6.4: Weighted absolute percentage error formula

where PV is the predicted value for the specific sample, TV is the true value

for the specific sample, AE is the absolute error for the specific sample, and n

is the total number of samples. In the next chapter, we will present the results

for SVR and DNN in both MAE and WAPE. A comparison between these two

models using the MAE and WAPE will give a good idea of why our model is

much better than the SVR with bagging.
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Chapter 7

Results

We have conducted a wide range of experiments to evaluate our DNN models.

In this chapter, we show the potential of our models and compare them with

the state-of-the-art SVR with bagging [12] model.

This chapter first starts with presenting the results from our DNN models,

followed by the results of SVR with bagging. Finally, an overall accuracy and

training time comparison for SVR and DNN is given. The results are generated

using 10-fold cross-validation: the dataset is first split into 10 equal-sized sub-

sets. Each set serves as the test set once, while the union of the remaining nine

forms the training dataset. The reported values represent the average of the 10

evaluations.

7.1 Deep Neural Network

We present the prediction accuracy of 84 different DNN models for twelve live-

migration algorithms and the seven target metrics. The results are shown in
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Table 7.1. As explained in Chapter 6 the MAE represents the average divergence

of the predicted value to the actual value in absolute units of the metric (ms,

MB or %). On the other hand, WAPE displays the prediction inaccuracy of our

models in percentage. For both measuring methods, the smaller the value, the

better the prediction accuracy.

Migration

Algorithm
Target Metric MAE WAPE

PRE

Total Time (ms) 5,055 13%

Downtime (ms) 309 17%

Total Traffic (MB) 212.0 9%

Throughput (Mbps) 31.2 6%

Performance (%) 20.9 18%

CPU (%) 1.5 20%

Memory (MB) 1.8 111%

POST

Total Time (ms) 5,134 15%

Downtime (ms) 236 17%

Total Traffic (MB) 195.0 10%

Throughput (Mbps) 29.1 5%

Performance (%) 54.9 59%

CPU (%) 2.1 34%

Memory (MB) 1.8 124%

DTC

Total Time (ms) 14,875 32%

Downtime (ms) 244 20%

Total Traffic (MB) 283.3 22%

Throughput (Mbps) 35.1 15%

Performance (%) 24.1 19%

CPU (%) 39.8 13%

Memory (MB) 2.4 84%

DLTC

Total Time (ms) 5,073 14%

Downtime (ms) 321 19%

Total Traffic (MB) 194.4 9%

Throughput (Mbps) 29.4 5%

Performance (%) 19.8 17%

CPU (%) 1.7 21%

Memory (MB) 21.6 16%
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Migration

Algorithm
Target Metric MAE WAPE

POST

DLTC

Total Time (ms) 5,608 16%

Downtime (ms) 250 20%

Total Traffic (MB) 179.6 9%

Throughput (Mbps) 29.8 6%

Performance (%) 53.9 61%

CPU (%) 2.1 32%

Memory (MB) 34.8 24%

DLTC

DTC

Total Time (ms) 10,561 21%

Downtime (ms) 350 27%

Total Traffic (MB) 220.3 15%

Throughput (Mbps) 35.9 14%

Performance (%) 18.9 16%

CPU (%) 53.3 21%

Memory (MB) 27.9 19%

THR

Total Time (ms) 7,252 13%

Downtime (ms) 346 19%

Total Traffic (MB) 262.7 9%

Throughput (Mbps) 26.7 5%

Performance (%) 17.3 16%

CPU (%) 1.6 22%

Memory (MB) 2.1 131%

THR

POST

Total Time (ms) 6,643 14%

Downtime (ms) 278 19%

Total Traffic (MB) 234.9 9%

Throughput (Mbps) 27.4 5%

Performance (%) 50.9 59%

CPU (%) 2.0 33%

Memory (MB) 2.1 133%

THR

DTC

Total Time (ms) 20,404 29%

Downtime (ms) 282 20%

Total Traffic (MB) 334.1 17%

Throughput (Mbps) 35.6 15%

Performance (%) 18.0 16%

CPU (%) 48.8 17%

Memory (MB) 2.8 94%
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Migration

Algorithm
Target Metric MAE WAPE

THR

DLTC

Total Time (ms) 6,455 13%

Downtime (ms) 373 23%

Total Traffic (MB) 226.7 9%

Throughput (Mbps) 26.8 5%

Performance (%) 22.0 20%

CPU (%) 1.6 22%

Memory (MB) 20.0 14%

THR

DLTC

POST

Total Time (ms) 6,547 14%

Downtime (ms) 290 22%

Total Traffic (MB) 216.7 9%

Throughput (Mbps) 27.6 5%

Performance (%) 49.4 60%

CPU (%) 2.1 31%

Memory (MB) 32.2 23%

THR

DLTC

DTC

Total Time (ms) 11,361 18%

Downtime (ms) 379 28%

Total Traffic (MB) 282.3 14%

Throughput (Mbps) 33.2 12%

Performance (%) 16.6 15%

CPU (%) 41.7 19%

Memory (MB) 26.5 19%

Table 7.1: Accuracy of the different DNN algorithms for the twelve live

migration algorithms and the seven target metrics.

7.2 SVR with bagging

The current state-of-the-art in the live migration performance modeling is the
work presented by Jo et al. in 2017 [12]. Using the same technique on our dataset
as in [12], SVR with bagging give us the results show in Table 7.2. Jo et al ’s
work only make predictions for pre-copy, CPU-throttling, delta compression,
data compression and post-copy migration algorithms and the six target metrics
total time, downtime, total traffic, performance, CPU and memory.
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Migration

Algorithm
Target Metric MAE WAPE

PRE

Total Time (ms) 7,082 19%

Downtime (ms) 967 52%

Total Traffic (MB) 295.0 13%

Performance (%) 21.1 18%

CPU (%) 2.3 31%

Memory (MB) 2.4 142%

POST

Total Time (ms) 9,391 27%

Downtime (ms) 1,063 76%

Total Traffic (MB) 456.8 22%

Performance (%) 61.7 67%

CPU (%) 5.3 89%

Memory (MB) 2.3 155%

DTC

Total Time (ms) 21,506 46%

Downtime (ms) 657 54%

Total Traffic (MB) 332.4 26%

Performance (%) 25.4 20%

CPU (%) 96.7 32%

Memory (MB) 2.7 94%

DLTC

Total Time (ms) 7,841 21%

Downtime (ms) 955 58%

Total Traffic (MB) 352.7 16%

Performance (%) 19.1 17%

CPU (%) 2.5 31%

Memory (MB) 103.2 76%

THR

Total Time (ms) 11,392 20%

Downtime (ms) 938 51%

Total Traffic (MB) 490.0 16%

Performance (%) 16.9 15%

CPU (%) 2.4 33%

Memory (MB) 2.6 161%

Table 7.2: Accuracy of the SVR with bagging algorithm for the five live

migration algorithms and the six target metrics.
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7.3 DNN vs. SVR comparison

The presented in [12] is limited to five migration algorithms and six metrics.

However, for comparison purposes we additionally used SVR to predict the

seven migration algorithm techniques proposed by our DNN models. From Fig-

ure 7.1 to Figure 7.7 we compare the DNN and the SVR models for the specific

target metric and specific migration technique using MAE metric. From Fig-

ure 7.8 to Figure 7.14 we compare the DNN and the SVR models for the specific

target metric and specific migration technique using WAPE metric. The lower

the MAE and the WAPE, the better the prediction accuracy.

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 5055 5134 14875 5073 5608 10561 7252 6643 20404 6215 6548 11362
SVR 7082 9391 21506 7841 9090 19587 11392 16020 31090 14758 16248 23873
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m
s

MAE Total Time

Figure 7.1: Total time - Mean absolute error
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PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 309 236 244 321 250 350 346 278 282 373 290 379
SVR 967 1063 657 955 1003 772 938 1077 704 1045 1057 822
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m
s

MAE Downtme

Figure 7.2: Downtime - Mean absolute error

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 212.0 195.0 283.3 194.4 179.6 220.3 262.7 234.9 334.1 226.7 216.7 282.3
SVR 295.0 456.8 332.4 352.7 429.5 364.9 490.0 750.4 497.0 624.0 759.6 641.9

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

M
B

MAE Total Traffic

Figure 7.3: Total traffic - Mean absolute error
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PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 31.2 29.1 35.1 29.4 29.8 35.9 26.7 27.4 35.6 26.8 27.6 33.2
SVR 43.5 42.9 63.1 45.3 43.1 71.5 45.8 44.2 63.6 36.6 42.2 68.6
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Figure 7.4: Throughput - Mean absolute error

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 20.9 54.9 24.1 19.8 53.9 18.9 17.3 50.9 18.0 22.0 49.4 16.6
SVR 21.1 61.7 25.4 19.1 61.2 20.1 16.9 57.1 18.6 19.4 57.7 17.4
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Figure 7.5: Performance degradation - Mean absolute error

46



PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 1.5 2.1 39.8 1.7 2.1 53.3 1.6 2.0 48.8 1.6 2.1 41.7
SVR 2.3 5.3 96.7 2.5 5.5 103.5 2.4 5.1 95.7 2.5 5.1 100.1
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Figure 7.6: CPU utilization - Mean absolute error

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 1.8 1.8 2.4 21.6 34.8 27.9 2.1 2.1 2.8 20.0 32.2 26.5
SVR 2.4 2.3 2.7 103.2 145.8 112.2 2.6 2.6 3.1 116.8 138.2 132.0
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Figure 7.7: Memory utilization - Mean absolute error

47



As it can be seen from the figures above there are a few cases where the MAE for

a specific migration algorithm is much bigger compared to the other migration

algorithms. Such an example can be seen in Figure 7.1 where both DNN and

SVR are having an increased MAE. We believe that this big MAE, for both

SVR and DNN, is due to the dataset that the models are trained with. We

believe our dataset is missing an important feature and therefore the models

do not predict well the total time for migration algorithms that use DTC. In

Figure 7.6 we can see that the accuracy for models that have DTC are having

the highest MAE for both SVR and DNN. This behaviour is because of the

migration technique itself. As explained in Chapter 2.4.2 this type of migration

can increase significantly the CPU utilization which is difficult to predict. An-

other value that is distinctive compared the rest is the prediction accuracy of

memory utilization for migrations that use DLTC. This is because DLTC needs

additional memory, for storing the old pages in order to perform a XBZRLE

compression. Due to this both models are having increased MAE. Lastly, we can

see that the performance prediction accuracy for migrations that use post-copy

is significantly increased, compared to the other migration techniques. This be-

haviour is due to the post-copy way of migration. As explained in Chapter 2.4.2

in case of post-copy migration initially a minimal processor state is copied to

the destination host and then the work is immediately resumed on the destina-

tion host. As a result, not all memory pages are transferred on the destination

host, therefore in case a page that is not yet transferred from the source to the

destination host is required, the destination host should stop its work retrieve

that page from the source host and resume work. This process can cause an

increase on the performance degradation which can be difficult to predict.

Another result that worth mentioning is the is the fact that our DNN models

were able to perform much better in all target metrics except one. As it can be
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seen in Figure 7.5 when predicting the performance utilization our DNN mod-

els predicted equally good or same as SVR except in the following three cases

DLTC, THR and THR DLTC where our DNN prediction is with slightly worse

prediction accuracy than the SVR. We assume this is due to the fact how the

data for performance utilization is created. The performance utilization label

is created as a median value of the whole migration performance utilization,

because of this median transformation it is possible that some of the feature

correlation be lost.

As explained in Chapter 6.4 WAPE can give us an overall idea of the goodness

of the model. The lower the WAPE the better the prediction accuracy. As it

can be seen from the WAPE results our model is better than the SVR in all

migration metrics except in performance utilization where a few predictions of

SVR are slightly better than the predictions of our DNN models.

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 13% 15% 32% 14% 16% 21% 13% 14% 29% 13% 14% 18%
SVR 19% 27% 46% 21% 26% 39% 20% 33% 44% 29% 36% 39%
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Figure 7.8: Total time - WAPE
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PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 17% 17% 20% 19% 20% 27% 19% 19% 20% 23% 22% 28%
SVR 52% 76% 54% 58% 79% 60% 51% 72% 49% 77% 79% 61%
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Figure 7.9: Downtime - WAPE

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 9% 10% 22% 9% 9% 15% 9% 9% 17% 9% 9% 14%
SVR 13% 22% 26% 16% 22% 24% 16% 28% 26% 23% 31% 31%
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Figure 7.10: Total traffic - WAPE
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PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 6% 5% 15% 5% 6% 14% 5% 5% 15% 5% 5% 12%
SVR 8% 8% 27% 8% 8% 28% 9% 8% 27% 7% 8% 26%
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Figure 7.11: Throughput - WAPE

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 18% 59% 19% 17% 61% 16% 16% 59% 16% 20% 60% 15%
SVR 18% 67% 20% 17% 70% 17% 15% 67% 16% 17% 70% 15%
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Figure 7.12: Performance degradation - WAPE
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PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 20% 34% 13% 21% 32% 21% 22% 33% 17% 22% 31% 19%
SVR 31% 89% 32% 31% 83% 41% 33% 84% 33% 33% 77% 45%
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Figure 7.13: CPU utilization - WAPE

PRE POST DTC DLTC POST
DLTC DLTC DTC THR THR POST THR

DTC THR DLTC THR DLTC
POST

THR DLTC
DTC

DNN 111% 124% 84% 16% 24% 19% 131% 133% 94% 14% 23% 19%
SVR 142% 155% 94% 76% 99% 76% 161% 159% 104% 102% 100% 96%
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Figure 7.14: Memory utilization - WAPE
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7.4 Overhead

This experiment was done to give an overview idea of how long the training

process for each model takes. For this experiment, we used Intel i5-7500 CPU

with processor base frequency of 3.40GHz and GPU Nvidia GeForce GTX 750.

For the training of the SVR models we were using the CPU, since sckit learn

can work only on CPU. On the other hand for the DNN models we used GPU.

In Figure 7.15 a training time for each migration algorithm and target metric

is presented. In 18 out of the 30 different models DNN is training faster. The

reason why DNN is not as fast as the SVR is because of the different number

of epochs and different models structure. An example can be total traffic Fig-

ure 7.15f where our models require the most number of epochs and train slower

than the SVR. The rest of the training times can be seen in 7.15.

(a) Total time (b) Downtime

(c) CPU (d) Performance
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(e) Memory (f) Total traffic

Figure 7.15: Training time for each migration algorithm and target metric
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work, we presented 84 deep neural network models that can predict

important VM live migration metrics. We discussed the input that these models

get and their relevance for each model. The reason and technique for selecting

the right hyperparameters were discussed and explained. The proposed models

achieve high prediction accuracy for all target metrics and migration algorithms.

Compared to the state of the art, our models attain a significant prediction

accuracy improvement over almost all the targeted metrics. We believe that if

the presented work becomes part of a live migration framework, the proposed

models will reduce the number of SLA and SLO violations.

8.2 Future Work

For a future work a model training on more heterogeneous and bigger dataset,

that involves more complex migration scenarios can be done. If a creation of

new dataset is done, adding timestamps can be useful for training other types

of networks like Recurrent Neural Networks (LSTMs).
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Appendix A

List of Features

# Name Description

0 SRC id Id of the source node

1 DST id Id of the destination node

2 auto-converge Cpu-throttling migration technique 0:disabled 1:enabled.

3 xbzrle Delta compression migration technique 0:disabled 1:enabled.

4 compress Data compressio nmigration technique 0:disabled 1:enabled.

5 postcopy-ram Post-copy migration technique 0:disabled 1:enabled.

6 cpu-throttle-increment Throttling step of auto-converge technique.

7 cpu-throttle-initial Initial throttling level of auto-converge technique.

8 xbzrle cache size
Cache size of delta compression technique. Old data is stored in

this memory and used later to compute delta.

9 compress-level
Compression level, from 0 to 10. Higher number gives better com-

pression ratio.

10 compress-threads Number of threads to compress data.

11 decompress-threads Number of thread to decompress data.
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# Name Description

12 postcopy start time

When to start postcopy ex) 0: start postcopy immediately 1: do

precopy for one iteration and enable postcopy in the second iter-

ation.

13 downtime-limit

Requested downtime from user. Iterative precopy only proceed to

stop-and-copy phase only the expected downtime is less than the

downtime-limit.

14 max-bandwidth Reverved bandwidth for vm live migration.

15 total pages Total pages of the VM.

16 working set pages Total working set pages of the VM.

17 non working set pages
Total non-working set pages of the VM (total pages = work-

ing set pages + non working set pages)

18 zero pages The number of pages which contents are zero.

19 pdr Page dirty rate.

20 mwpp Average number of modified words (1-byte) per a page.

21 wse
Entropy of working set (0.0 ∼1.0). lower entropy gives better com-

pressibility.

22 nwse
Entropy of non working set (0.0 ∼1.0). lower entropy gives better

compressibility.

23 DST cpu idle
Percentage of time that the destination node CPU or CPUs were

idle and the system did not have an outstanding disk I/O request.

24 DST cpu io
Percentage of time that the destination node CPU or CPUs were

idle during which the system had an outstanding disk I/O request.

25 DST cpu system
Percentage of destination node CPU utilization that occurred

while executing at the system level (kernel).

26 DST cpu user
Percentage of the destination CPU utilization that occurred while

executing at the user level (application).

27 DST io bread
Total amount of data read from the destination node devices in

blocks per second, blocks has size - 512 bytes.

28 DST io bwrtn
Total amount of data written to destination node devices in blocks

per second.

58



# Name Description

29 DST io rtps
Total number of read requests per second issued to physical de-

vices.

30 DST io tps
Total number of transfers per second that were issued to physical

devices.

31 DST io wtps
Total number of write requests per second issued to physical de-

vices.

32 DST kbmemfree Amount of free memory available on destination node in kilobytes.

33 DST kbmemused Amount of used memory on destination node in kilobytes.

34 DST memused Percentage of used memory on destination node.

35 DST net manage ifutil
Utilization percentage of the network interface on destination

node.

36 DST net manage rxkb
Total number of kilobytes received per second on the destination

node.

37 DST net manage txkb
Total number of kilobytes transmitted per second on destination

node.

38 DST paging fault
Number of page faults (major + minor) made by the system per

second for on destination node.

39 DST paging majflt

Number of major faults the system has made per second, those

which have required loading a memory page from disk for desti-

nation node.

40 DST paging pgpgin
Total number of kilobytes the system paged in from disk per sec-

ond for destination node.

41 DST paging pgpgout
Total number of kilobytes the system paged out to disk per second

for destination node.

42 DST processor cores Number of processor cores of destination node.

43 DST processor speed Processor clock speed of destination node.

44 DST processor threads Number of processor threads of destination node.

45 DST ram size Ram size of destination node.

46 DST ram speed Ram clock speed of destination node.

47 DST swap kbswapfree Size of free swap memory for the destination node.
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# Name Description

48 DST swap kbswapused Size of used swap memory for the destination node.

49 DST swap swpused Amount of used swap space in kilobytes for the destination node.

50 SRC cpu idle
Percentage of time that the source node CPU or CPUs were idle

during which the system had an outstanding disk I/O request.

51 SRC cpu io
Percentage of time that the source node CPU or CPUs were idle

during which the system had an outstanding disk I/O request.

52 SRC cpu system
Percentage of source node CPU utilization that occurred while

executing at the system level (kernel).

53 SRC cpu user
Percentage of source node CPU utilization that occurred while

executing at the user level (application).

54 SRC io bread
Total amount of data read from the source node devices in blocks

per second, blocks has size - 512 bytes.

55 SRC io bwrtn
Total amount of data written to source node devices in blocks per

second.

56 SRC io rtps
Total number of read requests per second issued to physical de-

vices.

57 SRC io tps
Total number of transfers per second that were issued to physical

devices.

58 SRC io wtps
Total number of write requests per second issued to physical de-

vices.

59 SRC kbmemfree Amount of free memory available on source node in kilobytes.

60 SRC kbmemused Amount of used memory on source node in kilobytes.

61 SRC memused Percentage of used memory on source node.

62 SRC net manage ifutil Utilization percentage of the network interface on source node.

63 SRC net manage rxkb Total number of kilobytes received per second on the source node.

64 SRC net manage txkb Total number of kilobytes transmitted per second on source node.

65 SRC paging fault
Number of page faults (major + minor) made by the system per

second for on source node.

66 SRC paging majflt

Number of major faults the system has made per second, those

which have required loading a memory page from disk for source

node.
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# Name Description

67 SRC paging pgpgin
Total number of kilobytes the system paged in from disk per sec-

ond for source node.

68 SRC paging pgpgout
Total number of kilobytes the system paged out to disk per second

for source node.

69 SRC processor cores Number of processor cores of source node.

70 SRC processor speed Processor clock speed of source node.

71 SRC processor threads Number of processor threads of source node.

72 SRC ram size Ram size of source node.

73 SRC ram speed Ram clock speed of source node

74 SRC swap kbswapfree Size of free swap memory for the source node.

75 SRC swap kbswapused Size of used swap memory for the source node.

76 SRC swap swpused Amount of used swap space in kilobytes for the source node.

77 SRC vm cpu baseline Source node CPU baseline.

78 SRC vm mem baseline Source node memory baseline.

79
vm perf LLC-load-

misses
Average number of last level cache load misses of VM per a second.

80 vm perf LLC-loads Average number of last level cache loads of VM per a second.

81 vm perf cache-misses Average number of cache misses of VM per a second.

82
vm perf cache-

references
Average number of cache references of VM per a second.

83 vm perf cycles Average number of cpu cycles of VM per a second.

84 vm perf instructions Average number of executed instructions of VM per a second.

85 RPTR Relative page transfer rate.

86 DLTC benefit Expected benefit of delta compression.

87 THR benefit Expected benefit of delta compression.

88 ewss Expected size of wss after compression.

89 enwss Expected size of nwss after compression.

Table A.1: Features name and description.
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Appendix B

Features Importance

Feature Name
AVG

TT

AVG

DT

AVG

TD

AVG

THRU

AVG

PERF

AVG

CPU

AVG

MEM

SRC id 0.8 0.6 0.7 0.8 0.8 0.6 0.8

DST id 0.8 0.9 0.7 1.0 0.8 1.0 0.9

auto-converge 0.0 0.0 0.0 0.0 0.0 0.0 0.0

xbzrle 0.0 0.0 0.0 0.0 0.0 0.0 0.0

compress 0.0 0.0 0.0 0.0 0.0 0.0 0.0

postcopy-ram 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cpu-throttle-increment 1.7 1.8 1.7 1.8 1.4 1.7 1.7

cpu-throttle-initial 1.8 1.8 1.7 1.8 1.4 1.7 1.6

xbzrle cache size 1.7 1.7 1.7 1.7 1.4 1.6 3.8

compress-level 1.6 1.7 1.6 1.8 1.3 1.7 1.6

compress-threads 1.7 1.7 1.6 1.8 1.4 2.2 2.7

decompress-threads 1.6 1.7 1.6 1.7 1.3 1.7 1.6

postcopy start time 1.5 2.6 1.5 1.6 1.7 1.8 1.7

downtime-limit 1.8 2.0 1.8 1.9 1.8 1.7 1.7
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Feature Name
AVG

TT

AVG

DT

AVG

TD

AVG

THRU

AVG

PERF

AVG

CPU

AVG

MEM

max-bandwidth 1.8 1.8 1.7 2.6 1.5 3.8 1.9

total pages 0.0 0.0 0.0 0.0 0.0 0.0 0.0

working set pages 1.8 1.7 1.8 1.7 3.3 1.7 1.9

non working set pages 1.8 1.7 1.7 1.7 3.0 1.7 2.0

zero pages 1.7 1.7 1.8 1.7 3.5 1.7 2.1

pdr 1.7 1.7 1.8 1.7 2.2 1.7 1.7

mwpp 1.5 1.5 1.6 1.4 1.2 1.4 1.4

wse 1.7 1.8 1.7 1.8 1.8 1.7 1.7

nwse 1.7 1.7 1.8 1.7 1.5 1.6 1.6

DST cpu idle 1.7 1.7 1.7 1.7 1.2 1.6 1.5

DST cpu io 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST cpu system 1.7 1.7 1.7 1.7 1.2 1.6 1.6

DST cpu user 1.7 1.7 1.7 1.7 1.2 1.6 1.5

DST io bread 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST io bwrtn 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST io rtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST io tps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST io wtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST kbmemfree 1.7 1.7 1.8 1.7 1.2 1.6 1.4

DST kbmemused 1.7 1.7 1.8 1.7 1.2 1.7 1.6

DST memused 1.7 1.7 1.8 1.7 1.2 1.6 1.5

DST net manage ifutil 1.6 1.6 1.6 1.6 1.2 1.6 1.5

DST net manage rxkb 1.6 1.6 1.6 1.6 1.3 1.6 1.6

DST net manage txkb 1.6 1.6 1.6 1.6 1.2 1.5 1.4

DST paging fault 1.6 1.5 1.7 1.5 1.2 1.5 1.6

DST paging majflt 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST paging pgpgin 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DST paging pgpgout 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Feature Name
AVG

TT

AVG

DT

AVG

TD

AVG

THRU

AVG

PERF

AVG

CPU

AVG

MEM

DST processor cores 0.5 0.6 0.5 0.7 0.6 0.7 0.7

DST processor speed 1.7 1.7 1.6 1.7 1.4 1.7 1.6

DST processor threads 0.6 0.7 0.5 0.8 0.6 0.8 0.7

DST ram size 0.3 0.4 0.3 0.4 0.4 0.4 0.4

DST ram speed 0.8 0.8 0.7 0.9 0.7 0.9 0.9

DST swap kbswapfree 1.4 1.4 1.4 1.4 1.0 1.3 1.2

DST swap kbswapused 1.4 1.3 1.4 1.3 1.0 1.3 1.3

DST swap swpused 1.4 1.3 1.3 1.3 1.0 1.3 1.3

SRC cpu idle 1.7 1.7 1.7 1.7 1.3 1.7 1.5

SRC cpu io 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC cpu system 1.7 1.7 1.7 1.7 1.3 1.6 1.6

SRC cpu user 1.7 1.7 1.7 1.7 1.4 1.7 1.6

SRC io bread 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC io bwrtn 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC io rtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC io tps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC io wtps 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC kbmemfree 1.7 1.7 1.8 1.7 1.2 1.7 1.6

SRC kbmemused 1.7 1.7 1.8 1.7 1.3 1.7 1.7

SRC memused 1.7 1.7 1.7 1.7 1.2 1.7 1.7

SRC net manage ifutil 1.5 1.6 1.6 1.5 1.2 1.5 1.4

SRC net manage rxkb 1.5 1.5 1.6 1.5 1.2 1.5 1.4

SRC net manage txkb 1.6 1.5 1.6 1.6 1.3 1.6 1.5

SRC paging fault 1.6 1.6 1.7 1.6 1.2 1.5 1.8

SRC paging majflt 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC paging pgpgin 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC paging pgpgout 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SRC processor cores 0.5 0.4 0.5 0.6 0.4 0.2 0.6
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Feature Name
AVG

TT

AVG

DT

AVG

TD

AVG

THRU

AVG

PERF

AVG

CPU

AVG

MEM

SRC processor speed 1.7 1.9 1.6 1.7 2.0 3.1 1.6

SRC processor threads 0.6 0.5 0.5 0.7 0.6 0.2 0.6

SRC ram size 0.3 0.3 0.3 0.3 0.3 0.1 0.3

SRC ram speed 0.7 0.6 0.6 0.8 0.6 0.5 0.7

SRC swap kbswapfree 1.4 1.3 1.4 1.3 1.1 1.3 1.1

SRC swap kbswapused 1.3 1.3 1.4 1.3 1.0 1.2 1.2

SRC swap swpused 1.4 1.3 1.3 1.3 1.0 1.2 1.2

SRC vm cpu baseline 1.4 1.4 1.5 1.4 3.7 1.5 1.4

SRC vm mem baseline 1.8 1.7 1.7 1.8 3.2 1.6 2.0

vm perf LLC-load-misses 1.7 1.7 1.7 1.6 1.5 1.7 1.6

vm perf LLC-loads 1.7 1.7 1.8 1.6 1.6 1.6 1.5

vm perf cache-misses 1.7 1.7 1.8 1.6 1.8 1.6 1.6

vm perf cache-references 1.7 1.7 1.8 1.6 2.3 1.6 1.5

vm perf cycles 1.7 1.7 1.8 1.6 3.2 1.6 1.5

vm perf instructions 1.7 1.7 1.7 1.6 3.4 1.6 1.5

RPTR 1.7 1.7 1.7 1.7 2.1 1.7 1.9

DLTC benefit 1.5 1.5 1.6 1.4 1.3 1.5 1.4

THR benefit 1.5 1.4 1.6 1.4 2.1 1.4 1.4

ewss 1.7 1.7 1.7 1.7 1.9 1.6 1.8

enwss 1.7 1.7 1.8 1.7 1.8 1.6 1.8

TOTAL % 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.1: Average percentage importance for each

feature, for each target metric.

The following figures present the importance of each feature for each target metric for specific

migration technique.
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Figure B.2: Feature importance downtime.

6
7



S
R

C
_

id

D
S
T

_
id

a
u

to
-c

o
n

v
e

rg
e

x
b

z
rl

e

c
o

m
p

re
ss

p
o

st
c
o

p
y
-r

a
m

c
p

u
-t

h
ro

tt
le

-i
n

c
re

m
e

n
t

c
p

u
-t

h
ro

tt
le

-i
n

it
ia

l

x
b

zr
le

_
c
a

c
h

e
_

s
iz

e

c
o

m
p

re
ss

-l
e

v
e

l

c
o

m
p

re
ss

-t
h

re
a

d
s

d
e

c
o

m
p

re
ss

-t
h

re
a

d
s

p
o

st
c
o

p
y
_

st
a

rt
_

ti
m

e

d
o

w
n

ti
m

e
-l

im
it

m
a

x
-b

a
n

d
w

id
th

to
ta

l_
p

a
g
e

s

w
o

rk
in

g
_

s
e

t_
p

a
g

e
s

n
o

n
_

w
o

rk
in

g
_

s
e

t_
p

a
g

e
s

z
e

ro
_

p
a

g
e

s

p
d

r

m
w

p
p

w
se

n
w

se

D
S
T

_
c
p

u
_

id
le

D
S

T
_

c
p

u
_

io

D
S
T

_
c
p

u
_

sy
s
te

m

D
S
T

_
c
p

u
_

u
se

r

D
S
T

_
io

_
b

re
a

d

D
S
T

_
io

_
b

w
rt

n

D
S
T

_
io

_
rt

p
s

D
S
T

_
io

_
tp

s

D
S
T

_
io

_
w

tp
s

D
S

T
_

k
b

m
e

m
fr

e
e

D
S
T

_
k
b

m
e

m
u

se
d

D
S

T
_

m
e

m
u

se
d

D
S
T

_
n

e
t_

m
a

n
a

g
e

_
if

u
ti

l

D
S
T

_
n

e
t_

m
a

n
a

g
e

_
rx

k
b

D
S
T

_
n

e
t_

m
a

n
a

g
e

_
tx

k
b

D
S

T
_

p
a

g
in

g
_

fa
u

lt

D
S
T

_
p

a
g
in

g
_

m
a

jf
lt

D
S
T

_
p

a
g

in
g

_
p

g
p

g
in

D
S

T
_

p
a

g
in

g
_

p
g
p

g
o

u
t

D
S

T
_

p
ro

c
e

ss
o

r_
c
o

re
s

D
S
T

_
p

ro
c
e

ss
o

r_
s
p

e
e

d

D
S

T
_

p
ro

c
e

ss
o

r_
th

re
a

d
s

D
S

T
_

ra
m

_
si

z
e

D
S

T
_

ra
m

_
s
p

e
e

d

D
S
T

_
sw

a
p

_
k

b
s
w

a
p

fr
e

e

D
S
T

_
s
w

a
p

_
k

b
sw

a
p

u
se

d

D
S

T
_

sw
a

p
_

sw
p

u
se

d

S
R

C
_

c
p

u
_

id
le

S
R

C
_

c
p

u
_

io

S
R

C
_

c
p

u
_

sy
s
te

m

S
R

C
_

c
p

u
_

u
se

r

S
R

C
_

io
_

b
re

a
d

S
R

C
_

io
_

b
w

rt
n

S
R

C
_

io
_

rt
p

s

S
R

C
_

io
_

tp
s

S
R

C
_

io
_

w
tp

s

S
R

C
_

k
b

m
e

m
fr

e
e

S
R

C
_

k
b

m
e

m
u

se
d

S
R

C
_

m
e

m
u

se
d

S
R

C
_

n
e

t_
m

a
n

a
g

e
_

if
u

ti
l

S
R

C
_

n
e

t_
m

a
n

a
g

e
_

rx
k

b

S
R

C
_

n
e

t_
m

a
n

a
g
e

_
tx

k
b

S
R

C
_

p
a

g
in

g
_

fa
u

lt

S
R

C
_

p
a

g
in

g
_

m
a

jf
lt

S
R

C
_

p
a

g
in

g
_

p
g

p
g

in

S
R

C
_

p
a

g
in

g
_

p
g
p

g
o

u
t

S
R

C
_

p
ro

c
e

ss
o

r_
c
o

re
s

S
R

C
_

p
ro

c
e

ss
o

r_
s
p

e
e

d

S
R

C
_

p
ro

c
e

ss
o

r_
th

re
a

d
s

S
R

C
_

ra
m

_
si

z
e

S
R

C
_

ra
m

_
s
p

e
e

d

S
R

C
_

sw
a

p
_

k
b

s
w

a
p

fr
e

e

S
R

C
_

s
w

a
p

_
k
b

sw
a

p
u

se
d

S
R

C
_

sw
a

p
_

sw
p

u
se

d

S
R

C
_

v
m

_
c
p

u
_

b
a

se
li
n

e

S
R

C
_

v
m

_
m

e
m

_
b

a
s
e

li
n

e

v
m

_
p

e
rf

_
L
L
C

-l
o

a
d

-m
is

se
s

v
m

_
p

e
rf

_
L
L
C

-l
o

a
d

s

v
m

_
p

e
rf

_
c
a

c
h

e
-m

is
se

s

v
m

_
p

e
rf

_
c
a

c
h

e
-r

e
fe

re
n

c
e

s

v
m

_
p

e
rf

_
c
y

c
le

s

v
m

_
p

e
rf

_
in

s
tr

u
c
ti

o
n

s

R
P

T
R

D
L
T

C
_

b
e

n
e

fi
t

T
H

R
_

b
e

n
e

fi
t

e
w

s
s

e
n

w
ss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Traffic

PRE POST DTC DLTC POST DLTC DLTC DTC THR THR POST THR DTC THR DLTC THR DLTC POST THR DLTC DTC

Figure B.3: Feature importance total traffic.
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Figure B.4: Feature importance throughput.
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Figure B.5: Feature importance performance.
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Figure B.6: Feature importance CPU.
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Figure B.7: Feature importance memory.
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요약

오늘날 데이터 센터에서 가상머신의 라이브 마이그레이션 기술은 매우 중요하게

사용된다. 현존하는 데이터 센터 관리 프레임워크에서는 복잡한 알고리즘을 이용

하여언제,어디서,어디로가상머신의마이그레션을실행할지를결정한다.하지만

어떤 마이그레이션 방법을 사용하는지에 따라서 성능이 크게 차이가 날 수 있음에

도 불구하고 이에 대한 논의는 주요하게 다뤄지지 않았다. 이러한 성능의 차이는

라이브 마이그레이션 알고리즘의 차이나 가상머신에 할당된 워크로드의 양의 차

이 그리고 마이그레이션을 하는 곳과 목적 host의 상태 차이에 의하여 일어난다.

빠르고 정확하게 올바른 마이그레이션 방법을 정하는 것은 필수적인 과제이다.

이러한 과제를 performance model을 이용하여 해결할 것이다.

본 논문에서는, 가상머신의 라이브 마이그레이션 성능을 예측하는 여러 머신 러

닝 모델을 제시한다. 여기서 12개의 서로 다른 마이그레이션 알고리즘에 대해 7

가지의 다른 metric들을 예측한다. 이 모델은 기존 연구에 비해 훨씬 정확한 예측

을 성공하였다. 각각의 target metric과 여러 알고리즘들에 대하여 input feature

evaluation을수행하였고각각의특성에맞는모델을만들어 84개의서로다른머신

러닝 모델들을 훈련시켰다. 이러한 모델들은 실제 라이브 마이그레이션 프레임워

크에 쉽게 적용 가능하다. 각각의 마이그레이션 알고리즘에 대하여 target metric

예측을 사용함으로써 올바른 마이그레이션 알고리즘을 쉽게 결정할 수 있고 이는

결과적으로 다운타임과 마이그레이션에 소요되는 총 시간의 감소 효과를 볼 수

있다.

주요어: 머신 러닝, 라이브 마이그레이션, 가상화, 가상머신

학번: 2017-28499
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