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Abstract

Air pollution is one of the most concerns of big cities. Many countries in the world

have constructed air quality monitoring stations around major cities to collect air pol-

lutants and make the warning to urban citizens about the air pollution around them.

However, air pollution is not uniform in the city, but it is a spatiotemporal problem.

It changes by locations (spatial feature) and by time (temporal feature). Consequently,

citywide air pollution interpolation and prediction is a requirement of urban people to

know the air quality through time and spaces to eliminate the health risks. Moreover,

air pollution is affected by many spatiotemporal factors throughout the whole city.

Among them, meteorology is recognized to be one the most significant effects to air

pollution. Besides that, traffic volume reflects the density of vehicles on roads which

is the primary cause of air pollution. Average driving speed indicates the traffic con-

gestion which also reasonably influences air pollution over the city. Finally, external

air pollution sources from outside areas are claimed to be the reason contributing to

a city’s air pollution problem. In this thesis, we present many spatiotemporal datasets

collected over Seoul city, Korea such as air pollution data, meteorological data, traffic

volume, average driving speed, and air pollution of 3 China areas like Beijing, Shang-

hai, Shandong, which are known to have the effect to Seoul’s air pollution.

Recent research in air pollution has tried to build models to predict air pollution

by locations and in the future time. Nonetheless, they mostly focused on predicting

air pollution in discrete locations or used hand-crafted spatial and temporal features.

Recently, Deep learning models such as Convolutional Neural Network (CNN), Re-

current Neural Network (RNN), and Long-Short Term Memory (LSTM) are known to

be superior in spatial and temporal relating problems. In this thesis, we propose the us-

age of Convolutional Long-Short Term Memory (ConvLSTM) model, a combination

of CNN and LSTM, which efficiently manipulates the spatial and temporal features of
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the data and outperforms other recent research.

keywords: Air pollution, Interpolation, Prediction, Citywide, Spatiotemporal, Deep

Learning
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Chapter 1

INTRODUCTION

1.1 Air pollution description

Outdoor air pollution is now threatening seriously to the human health and life in big

cities, especially to elderly and children [Kampa]. This is not a private problem of one

country but a global problem. Therefore, many countries in the world have constructed

air pollution monitoring stations around major cities to observe air pollutants such as

PM2.5, PM10, CO, NO2, SO2 [Wiki] and alert to their citizens if there is a pollution

index which excesses the country-specific quality threshold. This section describes

these air pollutants and the primary emission sources. PM2.5 is fine atmospheric par-

ticulate matter (PM) that have a diameter of less than 2.5 micrometers. PM10 is coarse

particulate that is 10 micrometers or less in diameter. From [EPA], PM2.5 and PM10

are emitted directly from some sources, such as construction sites, unpaved roads,

fields, smokestacks or fires. Moreover, particles form in the atmosphere as a result of

complex reactions of chemicals such as sulfur dioxide and nitrogen oxides, which are

pollutants emitted from power plants, industries, and automobiles. CO refers to Carbon

Monoxide which is a product of combustion of fuel such as natural gas, coal or wood.

Vehicular exhaust contributes to the majority of carbon monoxide let into our atmo-

sphere. NO2 refers to Nitrogen Oxides, expelled from high-temperature combustion.
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NO2 forms from emissions from cars, trucks and buses, power plants, and off-road

equipment. SO2 is Sulfur Oxides, produced by volcanoes and in various industrial

processes. Coal and petroleum often contain sulfur compounds, and their combus-

tion generates sulfur dioxide [Wiki]. As a result, air pollutants are emitted from many

sources but one of the common reasons are transportation.

1.2 Citywide Air pollution Interpolation and Prediction

Air pollution prediction has emerged as an active research field recently. Much recent

research has pointed out that urban air pollution has both temporal and spatial fea-

tures as in [Wong], [Li], [Le] and so on. It means that air pollution values do not only

change time by time but also differ between different locations in a city. In figure 1,

we show the air pollution (PM10) values by the hour in 2 monitoring stations in Seoul

in January 2017. Two monitoring stations are far apart in locations, one in the west of

Seoul and one in the east. We can see that the air pollution values are changed con-

tinually hour by hour with the maximum value can reach to more than 270 µg/m³ and

the minimum value can down to less than 20 µg/m³. Moreover, although 2 mentioned

stations are both located in Seoul city, the air pollution values indicated by them differ

a lot in some periods. As in figure 1, in some hours around 100, the air pollution value

of one station can be 3 times larger than values of another (150 vs. 50). In the paper

[Zheng2], the authors researched the spatiotemporal features of air pollution in Bei-

jing, China and also discovered similar trends. The reason for these observations is air

pollution depends on a number of factors both by time and by locations. The first one

is meteorological factors, which also change in spatiotemporal form. The temperature,

humidity, raining of different locations and the wind speed, wind direction make air

pollution change from locations to locations. Another critical reason for air pollution

is the traffic volume and traffic congestion. The locations with more traffic volume or

frequent traffic jam occurring will have around air pollution may be worse. One indi-
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cation of the traffic jam is the average driving speed on each road, in which a small

average speed means there might be traffic congestion. The monitoring stations could

help us to have a measurement of air pollution at and around the located points but not

for the whole city. For example, in Seoul, we only have 37 monitoring stations cover-

ing the area of 600 km2. Consequently, we need to interpolate the air pollution in areas

that do not have observation stations nearby. The more accurate interpolation model

we could build, the more chances for urban citizens to manage their urban life better.

The ability to interpolate and forecast air pollution for any locations in the city and in

some time ahead is the citywide Air pollution Interpolation and Prediction function.

This function will be the necessary function of any Air pollution control system for

Urban areas.

Figure 1: Air pollution (PM10) in 2 locations in Seoul in January 2017. Below is all

air pollution and above is a focused, specific time period.

1.3 Spatiotemporal datasets introduction

As described earlier, the air pollution changes in spatiotemporal form and we need

to interpolate and forecast air pollution in the citywide scale. For this thesis, we have

already collected and used many spatiotemporal datasets, specific to Seoul city of Ko-

rea. The period of data time is 3 years, from 2015 to 2017. In summary, we already
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recovered hourly air pollution data of 39 monitoring stations, hourly meteorological

data of 28 observation stations, hourly traffic volume data for about 145 main roads

in Seoul, and hourly average driving speed in more than 4000 speed-surveying points.

Moreover, a recent report from [NIER-NASA] has shown the influence of outside air

pollution sources from China to Seoul. To mimic these effects, we have gathered air

pollution of 3 areas in China like Beijing, Shanghai, and Shandong from 2015 to 2017.

The detail description of each dataset as follows.

The hourly air pollution dataset is quite common in recent research for air pollution

prediction problem. Seoul government has constructed 39 air pollution monitoring

stations to hourly collect air pollutants such as PM10, PM2.5, Ozone gas (O3), NO2,

CO, and SO2. The measurement unit for PM10 and PM2.5 is µg/m³ and for other

pollutants is ppm (parts per million). The stations spread out for all 25 districts in

Seoul (see figure 2). Totally we have 24 hours * 3 years * 39 stations (but 2017 only

has the data until 09/30) is 937,872 rows. Each row contains the date and time, station

address, and the values of 6 air pollutants. Not all stations collect all 6 air pollution

components. Instead, the PM2.5 pollution is presented in only 25 stations. In table 1,

we present the analysis statistic of the air pollution data.

Table 1: Analysis statistic of Air pollution data

SO2 CO O3 NO2 PM10 PM2.5

count 913,320 912,951 913,896 912,923 909,477 578,694

mean 0.00527 0.56261 0.02150 0.03726 49.0 25.0

min 0.00000 0.00000 0.00000 0.00000 1.0 1.0

max 0.04700 4.10000 0.17800 0.34000 1160.0 175.0

The hourly meteorological data is also popular among air pollution prediction re-

search. In this thesis, we got the meteorological data from the Korea Meteorological

Administration agency. Currently, there are total 28 meteorological observation sta-
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tions in Seoul which observe following information of weather per hour: temperature

(Celsius degree), wind direction (degree), wind speed (m/s), precipitation (mm), low-

est air pressure (hPa), highest air pressure (hPa), humidity (%). The locations of all

stations are illustrated on the map in figure 2. We can see that at least one district have

one observation station. The analysis statistic of meteorological data is shown in table

2.

Table 2: Analysis statistic of Meteorological data

Temperature Wind speed Precipitation Lowest air

pressure

Highest air

pressure

Humidity

count 734,891 734,740 730,928 55,418 55,418 475,265

mean 13.5 1.64 0.1 1012 1015 60

min -25.2 0.00 0.0 1005 1008 0

max 37.6 11.20 63.0 1035 1037 99.9

The traffic volume of main roads is a new dataset within all known air pollution-

related research. The Seoul Metropolitan Government has installed the vehicles detec-

tor at many survey points and collected the traffic volume every hour. Figure 3 shows

the locations of these checkpoints on major roads in Seoul map. There are 4 types of

analysis roads in Seoul: the inner roads (도 심): 24, the border roads (시 계): 22 (in

2015), 36 (in 2016 and 2017), the crossroads (간 선): 32 (in 2015), 54 (in 2016 and

2017), the bridge roads (교량): 12 (in 2015), 22 (in 2016 and 2017), the city highways

(도시고속): 0 (in 2015), 9 (in 2016 and 2017). Totally, the number of analysis roads in

2015 is 90 and in 2016 and 2017 is 145 roads. The collected data has a column shows

the inflow or outflow direction along the survey road and 24 columns which contain

the traffic volume for each hour in a day. There are many statistics from the Seoul

Government’s annual report, but in this thesis, we only focus on the general statistic

of the data as shown in table 3.
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Figure 2: The location of Air pollution monitoring stations (markers) and Meteorolog-

ical observation stations (circle markers) in Seoul.

Table 3: Analysis statistic of Traffic volume data

Traffic volume information

count 4,697,888 rows

mean 1,510 (turns/hr)

min 638 (turns/hr)

max 38,908 (turns/hr)
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Figure 3: The location of traffic volume survey points (small circles) on major roads

in Seoul.
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The average driving speed data is also a novel air pollution relating dataset. The

Seoul Government has investigated the speed of general vehicles and buses for all

primary roads in Seoul. The car roads in the analysis are 487 roads covering the length

of 1,434.5 km. The analyzed bus routes are 364. The data is collected in each hour. In

figure 4, we show the locations of all survey points of vehicles speed. As we can see,

the speed checkpoints are dense and cover quite good the area of Seoul map compared

to the air pollution monitoring stations (in markers). The analysis statistic of vehicles

speed data is in table 4.

Table 4: Analysis statistic of Average driving speed data

Average driving speed information

count 102,453,700 rows

mean 29.6 (km/h)

min 0.6 (km/h)

max 308 (km/h)

The last collected dataset in this thesis is PM2.5 air pollution from 3 areas in

China as Beijing, Shanghai, and Shandong. The data is collected from Berkeley Earth

research website (http://berkeleyearth.lbl.gov/air-quality/local/China) and is crossed

check with PM2.5 data from the US. Department of State Air Quality Monitoring Pro-

gram (for Beijing and Shanghai data). The data is also collected hourly and has a total

of 78,912 rows.

1.4 Thesis contributions

This thesis has three (3) main contributions. Firstly, we claim that citywide Air pol-

lution Interpolation and Prediction is an indispensable function for any Air pollution

control system. Secondly, we introduce many spatiotemporal datasets which relate to
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Figure 4: The location of driving speed survey points on all roads in Seoul (small

circles).
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air pollution. The last contribution is that we present a Deep Learning based Spatiotem-

poral prediction model for Air pollution. Recently, Deep Learning based algorithms

such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) have

many successes on spatial and temporal related problems such as image classification,

object detection, sequence to sequence prediction and so on. Spatiotemporal air pollu-

tion data has both spatial and temporal features, and naturally, CNN and RNN based

models are suitable for this problem. For RNN, a more prosperous and more com-

mon used variation is Long-Short Term Memory (LSTM) model. In [Shi], the authors

proposed a novel combination model of CNN and LSTM called Convolutional LSTM

(ConvLSTM) in predicting precipitation satellite images. In this research, we leverage

the using of ConvLSTM for Air pollution Interpolation and Forecasting problem with

input data of spatiotemporal datasets. ConvLSTM helps us to process the spatial and

temporal features of input data at the same time and automatically, surpassing recent

research which much relied on hand-crafted spatial and temporal features.
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Chapter 2

RELATED WORK

Urban Air pollution research has been started for a long time. In paper [Mage], the

authors have talked about the history of the urban air pollution problem. In 1972, the

UN Conference on the Environment in Stockholm stressed finding solutions for all

global environmental pollution problems. In 1974, The United Nations Environment

Programme (UNEP) and World Health Organization (WHO) collaborated in the initi-

ation of a Global Environment Monitoring System (GEMS) urban air pollution moni-

toring network (GEMS/Air). Nowadays, urban air pollution is one of the most worries

for any cities in the world, especially for big cities including Seoul, Korea. Urban Air

pollution prediction has emerged active research to better control air quality and pro-

tect city people’s health. In this chapter, we present some of the most related research

to the thesis’s content.

2.1 Spatiotemporal Air pollution interpolation

In this section, we will introduce some Air pollution interpolation research which tried

to interpolate Air pollution at locations where are lack of monitoring stations.

In paper [Wong], the authors tried to compare spatial interpolation methods for

estimating air quality data. Their used data was the US ambient air pollutants dataset of
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6 components like PM10, O3, CO, NO2, SO2, and Lead (Pb). They proposed the usage

of 4 basic interpolation models. The first was Spatial averaging which was proposed

by Schwartz in 1989. In here, 10 miles was used as the neighborhood distance to

average. The second one was the Nearest neighbor method which assigned the air

concentration level of the monitoring station nearest to its centroid. The third algorithm

was Inverse distance weighting (IDW), in which interpolation weights were computed

as a function of the distance between observed sample sites and the site at which the

prediction had to be made. And the last method was Kriging, which used the Gaussian

process to compute weights, minimizing the variance in the estimated value. Among

4 methods, the authors claimed that Kriging might be more suitable for chosen Air

pollution dataset. Regarding our evaluation, these are basic and simple interpolation

algorithms which often used as baselines for more advanced/complex methods.

In paper [Li], the authors investigated Spatiotemporal Interpolation methods for

Air pollution exposure health problems. The dataset was the daily US PM2.5 air pol-

lution data in 2009. They used Shape Function (SF) based spatiotemporal interpola-

tion method focusing on spatiotemporal interpolation problems in the domain of 2-D

space (x, y) and 1-D time (z=t). In the result part, they claimed that SF methods better

than IDW and Kriging methods but there were no empirical comparisons supplied. By

our evaluation, this is another basic baseline for Spatial air pollution interpolation in-

spired from Geographic Information System (GIS). Nevertheless, no empirical results

in comparison with other methods.

2.2 Machine Learning/Neural Networks based Air pollution

prediction models

In this section, we mention a number of recent research which used Machine Learn-

ing/Neural Networks based models in predicting Air pollution. The common point of

this research is both using China air pollution datasets.
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In paper [Zheng1], the authors proposed a model called U-Air, in which they

tried to infer air pollution values in a grid-based map. Their used datasets are 5 data

sources consisting of the Point-Of-Interests (POIs); Road networks like highway and

city roads length; Meteorological data; air quality records of Beijing and Shanghai,

and the last is the GPS trajectories generated by over 30,000 taxis in Beijing to anal-

ysis travel speed, human activities. Their presented model was a co-training-based

semi-supervised learning approach, which leverages unlabeled data to improve the in-

ference accuracy. For detail, they built 2 separated classifiers called Spatial Classifier

and Temporal Classifier to classify Air pollution value into Air Quality Index (AQI)

level like Good, Moderate, Unhealthy, and Hazard.

The newer paper [Zheng2] also emphasized Air pollution Big Data but tried to

forecast fine-grained air quality. They used dataset was China air quality dataset of

2,296 stations in 302 cities in China from 8/2012 to 5/2015. The Meteorological data

was 3,514 locations, consisting of rain levels, temperature, humidity, wind speed, wind

direction. They also used Weather forecasting data with a 3-hour interval of the next

3 days. Their model comprised of four major components: a linear regression-based

temporal predictor, a neural network-based spatial predictor to model spatial factors,

a dynamic aggregator (Regression Tree) combining the predictions of the spatial and

temporal predictors according to meteorological data, and an inflection predictor to

capture sudden changes in air quality, such as sudden drop instances from historical

data. The model predicted for 1-6 hours (hourly) and min-max values for a 3-time

interval: 7-12, 13-24, 25-48 hours ahead. It predicted ΔAQI (not AQI itself).

The paper by [Hsieh] stated a new problem in urban air quality control. Their

objective was to suggest locations in a city to build new monitoring stations to get the

most efficient performance. The dataset was Air Quality Records of Beijing dataset,

PM2.5 + PM10, 22 stations, 8/2012 10/2013. Missing data were treated as unobserved

data to infer. Other datasets were the Meteorological Data in Beijing, hourly; POIs

data of categories and density, with 12 POI types; and Road networks data. In their
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model, to infer AQI values, they divided Beijing city into disjointed grids of 1km*1km.

They proposed a semi-supervised learning algorithm including 4 stages. Regard to

recommend locations for building new monitoring stations, they suggested Greedy-

based Entropy Minimization (GEM) algorithm which aims at ranking locations based

on their capability to reduce uncertainty.

Another surveyed papers are 2 new papers in 2018. The first one [Qi] is quite

similar to our approach in this thesis. In [Qi], the authors proposed a model named

Deep Air Learning (DAL) which was used to interpolate, predict and analyze input

features for fine-grained air quality. The authors also used data of Air pollution and

Meteorological data of Beijing city. They introduced Spatiotemporal Semi-supervised

Learning in Neural Network which used both labeled and unlabeled data to interpolate

and predict a grid’s pollution value. Loss function was a spatial and temporal loss value

of neighbor grid-cells. They manually chose training features of the size of spatial and

temporal neighbors (e.g., chosen as 2).

The second paper [Cheng] has leveraged the usage of Attention Model in Ur-

ban Air Pollution problem by learning the weights of monitoring stations in inferring

air pollution from neighbor stations dynamically. About the model, they suggested

a generic neural attention model, named ADAIN (Attentional Deep Air quality Infer-

ence Network), for spatially fine-grained urban air quality inference. They explored the

using of deep neural networks (DNNs) for modeling heterogeneous data in a unified

way, and learning complex feature interactions without expensive handcrafted feature

engineering.

Regarding our evaluation of above mentioned related work, some research pro-

posed grid-based air pollution interpolation or prediction. Nevertheless, they only fo-

cused on discrete locations, not considering the whole city to be an image as in our

approach. Furthermore, they used much hand-crafted spatial and temporal features

which were difficult to generalize to other similar problems.
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2.3 Spatiotemporal Deep Learning models

In this section, we survey general Spatiotemporal Deep Learning algorithms. In [Shi],

the authors have proposed a Convolutional LSTM (ConvLSTM) model and used for

precipitation forecasting. In the paper, the authors have discussed a number of mod-

els for forecasting spatiotemporal problems. Fully Connected LSTM (FC-LSTM) is a

common LSTM architecture which uses full connections in input-to-state and state-

to-state transitions, no spatial information is encoded. Therefore, this model have dif-

ficulty in predicting spatiotemporal values. ConvLSTM uses convolution operators in

both state-to-state and input-to-state transitions, leverages both spatial and temporal

features in the input data. As a result, ConvLSTM is suitable for the spatiotemporal

problem. In the paper, the authors also demonstrated that ConvLSTM was better than

FC-LSTM in spatiotemporal problems like moving MNIST and weather radar echo

images of Hong Kong for precipitation forecasting.

The spatiotemporal problem is also fit for crowd flows prediction problem. In

[Zhang2], the authors presented a Deep Neural Network (DNN) Spatiotemporal (DeepST)

for predicting Crowd flows in Beijing and New York. They proposed the DeepST

model based on Convolutional Neural Network for 3 sequences of data: 1) tempo-

ral closeness; 2) period; 3) seasonal trend. Residual Units (as in ResNet) were used

to leverage very deep network to capture more citywide dependencies. And the last

layers were Fusion layers to combine deep network results with external factors (such

as meteorology, holidays).

Zhongjian et al. in a paper from JICAI 2018 has proposed a model named LC-RNN

for Traffic Speed Prediction [Zhongjian]. Their model consisted of a Lookup Convo-

lution Layer to extract spatial information of road networks and some LSTM layers to

learn temporal information with a fusion layer to combine other traffic speed’s period-

city and context extraction information with LC-RNN’s output. Similar ConvLSTM,

their model also was a combination of CNN and LSTM but in 2 separate steps.
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Chapter 3

SPATIOTEMPORAL DEEP LEARNING MODEL

In this chapter, we present our proposed model for citywide Air pollution Interpolation

and Prediction based on Spatiotemporal Deep Learning. Firstly, we talk about CNN

and LSTM models which are proved working efficiently with spatial and temporal

problems. Next, we propose the usage of ConvLSTM which is the combination of

CNN and LSTM and claim its suitability for spatiotemporal Air pollution problem.

Finally, in the last section, we show the complete Spatiotemporal Deep Learning model

for our citywide Air Pollution Interpolation and Prediction.

3.1 CNN and LSTM models

Convolutional Neural Networks (CNN) is one of the most successful Deep Learning

algorithms, especially in image classification, object detection. Some of the most well-

known CNN models are AlexNet (2012), ZFNet (2013), GoogleNet/Inception (2014),

VGGNet (2014), and ResNet (2015). In figure 5, the architecture of AlexNet show

us the fundamental modules of a CNN model. A CNN model typically consists of

many Convolution layers to extract features from the input image, many Pooling layers

to reduce the output size and make the filter more robust, some dropout layers for

regularization and one or some fully connected layers at last to produce the final output.
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The input to a CNN is usually an image with 3 dimensions: width, height, and depth

(or channel). If the image channel is 3, then we have a Red-Green-Blue (RGB) image.

Alternatively, if the channel is 1, then we have a gray-scale image. The most important

layer for a CNN model is Convolution layer which helps extract spatial features from

image input. Convolution layer uses a convolution operator which keep the spatial

relationship between image pixels. In the convolution layer, we have a set of learnable

filters. Each filter is small spatially along width and height but extends through the

full depth of the input volume. For example, with a typical filter of size 3×3×3 (it

means the width and height of the filter is 3, and the depth is 3 because the image input

has 3 channels), we will slide (or convolve) each filter across the width and height

of the input and compute the dot products between the entries of the filter and the

input at any position. The output is then activated by a non-linear activation function

such as sigmoid, Rectifier Linear Unit (ReLU) or tanh and make an activation map.

We will stack these activation maps along the depth dimension and make the output

volume. The described convolution operator allows CNN to identify spatial patterns of

the input image such as edges, shading changes, shapes, objects, and so on. In figure

6, also from AlexNet paper ([Kriz]), the authors showed the spatial features learned

by Convolution filters. Back to our Air pollution Interpolation problem, we need to

predict air pollution for any locations throughout a city. If we divide the city map into

a grid and consider each grid-cell a pixel of an image then we will have an image with

the channel is 1 which means a gray-scale image. As in figure 7, we have already made

this transformation for Seoul city by dividing the rectangle which covers the city map

into a 32×32 image; each dimension is divided by 32 equal parts.

Long-Short Term Memory (LSTM) is a special kind of Recurrent Neural Network

(RNN), which recently works as a standard Deep Learning algorithm for sequence

predicting problems like speech recognition, language translation, and so on. The ar-
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Figure 5: AlexNet Convolutional Neural Network architecture.

Figure 6: Spatial features from input images learned by CNN filters.

18



Figure 7: The grid-map of Seoul city (32×32).
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chitecture of an LSTM layer is as follows [Colah] and is illustrated in figure 8. At

any time t, the input to an LSTM cell is actual data input xt and the hidden state from

previous cell ht-1. The first step in an LSTM is to decide which information we are

going to output from the cell state. This decision is made by a sigmoid layer called

the “forget gate layer”. It looks at ht-1 and xt, and outputs a number between 0 and 1

for each number in the cell state Ct-1. A 1 represents “completely keep this” while a

0 represents “completely get rid of this.”. The equation for the above statement is in

equation (1).

ft = (Wf ∗ [ht−1, xt] + bf ) (1)

ft is the output of the forget gate, Wf and bf are corresponding weights and biases. * is

the matrix-vector multiplication.

The next step is to decide what new information we are going to store in the cell

state. This step has two parts. First, a sigmoid layer called the “input gate layer” de-

cides which values we will update. Next, a tanh layer creates a vector of new candidate

values, C̃t, that could be added to the state. In the next step, we combine these two to

create an update to the state. The equations are in equation (2) and (3).

it = (Wi ∗ [ht−1, xt] + bi) (2)

Ct = tanh(WC ∗ [ht−1, xt] + bC) (3)

We multiply the old state by ft, forgetting the things we decided to forget earlier.

Then we add it � C̃t with � is the Hadamard product or element-wise matrix-matrix

multiplication. This is the new candidate values, scaled by how much we decided to

update each state value, as shown in equation (4).

Ct = ft�Ct−1 + it�C̃t (4)

Finally, we need to decide what we are going to output. This output will be based

on our cell state but will be a filtered version. First, we run a sigmoid layer which

decides what parts of the cell state we are going to bring out. Then, we put the cell state
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through tanh (to push the values to be between 1 and 1) and multiply it by the output

of the sigmoid gate, so that we only produce the parts we decided to. The equations in

(5) and (6) show these transformations.

ot = (Wo ∗ [ht−1, xt] + bo) (5)

ht = ot�tanh(Ct) (6)

The output ot in (5) and the hidden state ht in (6) is the output of the current cell,

and they will be the inputs of the next cell in the LSTM loop.

Figure 8: The architecture of a common LSTM layer.

3.2 ConvLSTM model

In this section, we introduce our proposal for citywide Air pollution Interpolation and

Prediction. As presented in sections above, Urban Air pollution has both spatial and

temporal characteristics. Therefore, to efficiently predict air pollution anywhere (inter-

polation) and at any time (prediction), we need a model which leverages both spatial

and temporal features. Moreover, we also stated that CNN and LSTM are 2 Deep

Learning models which give high performance on spatial and temporal problems. A
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combination of both CNN and LSTM model will capture better spatiotemporal fea-

tures and therefore is suitable for our addressing Air pollution problem. In 2015, X. Shi

et al. from Hong Kong University of Science and Technology had proposed a model

for precipitation forecasting named Convolutional LSTM Network which was an ex-

tension of LSTM model but tried to catch spatial features to have a better prediction on

a spatiotemporal problem like precipitation [Shi]. As our Air pollution problem is also

spatiotemporally based, we propose to use ConvLSTM for our Air pollution research

and claim that this model gives superior performance compared to other solutions. For

this section, we describe in detail the ConvLSTM model, and then in the next section,

we show how to apply it to Air pollution Interpolation and Prediction.

In [Shi], the input is a spatial region represented by an M x N grid which con-

sists of M rows and N columns. Inside each grid-cell, there are P measurements which

change by time. Therefore, the observation at any time can be represented by a ten-

sor X ∈ RP×M×N, where R denotes the domain of the observed features. If we record

the observations periodically, we will get a sequence of tensors X̂1, X̂2,. . . , X̂t. The

spatiotemporal sequence forecasting problem is to predict the most likely length-K se-

quence in the future given the previous J observations which include the current one,

as in equation (7).

X̃t+1, ..., X̃t+K = argmax
Xt+1,...,Xt+K

p(Xt+1, ..., Xt+K |X̂t−J+1, ..., X̂t) (7)

Commonly, LSTM networks are used for a uni-variate variable where we have a

single variable input. In this case, we use 6 equations from (1) to (6) introduced in the

above section. In the spatiotemporal sequence forecasting, we can see it as a multi-

variate version of LSTM where the input, cell output, and states are all 1D vectors. In

[Shi], the authors called this FC-LSTM (Fully Connected LSTM) with the following

equations.

ft = (Wxfxt +Whfht−1 +Wcf�ct−1 + bf ) (8)

it = (Wxixt +Whiht−1 +Wci�ct−1 + bi) (9)
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ct = ft�ct−1 + it�tanh(Wxcxt +Whcht−1 + bc) (10)

ot = (Wxoxt +Whoht−1 +Wco�ct + bo) (11)

ht = ot�tanh(Ct) (12)

Although the FC-LSTM layer has proven powerful for handling temporal correla-

tion, it lacks the support for spatial features. To address this problem, [Shi] proposed

an extension of FC-LSTM which has convolutional structures in both the input-to-state

and state-to-state transitions. All the inputs X1,. . . , Xt, cell outputs C1,. . . , Ct, hidden

states H1,. . . , Ht, and gates it, ft, ot of the ConvLSTM are 3D tensors whose last two

dimensions are spatial dimensions (rows and columns). The ConvLSTM determines

the future state of a particular cell in the grid by the inputs and past states of its local

neighbors. This can be achieved by using a convolution operator in the state-to-state

and input-to-state transitions as shown in figure 9. The equations for ConvLSTM are

shown from (13) to (17) with * is now the convolution operator and � is still element-

wise matrix-matrix multiplication.

ft = (Wxf ∗Xt +Whf ∗Ht−1 +Wcf�Ct−1 + bf ) (13)

it = (Wxi ∗Xt +Whi ∗Ht−1 +Wci�Ct−1 + bi) (14)

Ct = ft�Ct−1 + it�tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (15)

ot = (Wxo ∗Xt +Who ∗Ht−1 +Wco�Ct + bo) (16)

Ht = ot�tanh(Ct) (17)

For the spatiotemporal sequence forecasting problem, [Shi] suggested using the

structure shown in figure 10 which consists of two networks, an encoding, and a fore-

casting network. The initial states and cell outputs of the forecasting network are repli-

cated from the last state of the encoding network. Both networks are formed by stack-

ing several ConvLSTM layers. As the prediction target has the same dimension as the

input, to generate the final prediction, all the states in the forecasting network are con-

catenated and feed them into a 1 × 1 convolution layer. In the next section, we present
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how we use ConvLSTM for our citywide Air pollution Interpolation and Prediction

problem.

Figure 9: Inner structure of a ConvLSTM network, taken from [Shi].

Figure 10: Encoding-Forecasting ConvLSTM structure for spatiotemporal sequence

predicting, taken from [Shi].

3.3 Air Pollution Interpolation and Prediction

We need to interpolate Air pollution for Everywhere in a city based on the existed

monitoring stations. We divide the city’ covering rectangle into a grid of width x height

cells and assign monitoring stations into grid-cells. The air pollution value in a grid-

cell is the aggregated value of all assigned stations’ values at a time stamp t. The
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grid-cell which has no assigned monitoring stations stores value 0. That means we

do not have information of air pollution at that point and it will not participate in the

training process later. Thus, at any time t, we have a gray-scale image of dimension

width x height representing for the city and the pixel values are the aggregated air

pollution values at that time. Figure 11 shows these gray-scale images of PM2.5 air

pollution for the Seoul city in 3 consecutive hours h = 0, 1, 2. We can see the number

of pixels which have the value greater than 0 is quite small compared to zero-value

pixels. We need to predict the missing values as good as possible via interpolating. As

discussed, the air pollution in a city depends on many factors like meteorology, traffic

volume, average driving speed or external air pollution sources. These factors are also

represented by the grid map as air pollution. For meteorological data, we assigned the

weather observation stations into the corresponding grid-cells, and average values like

in air pollution case. For traffic volume and driving speed, the survey point’s locations

were used to assign them to the grid-cell, and the traffic’s volume and speed are also

aggregated. With external air pollution sources, because they are cannot be assigned

directly to the grid-cell, we embed them into grid-map via pre-training mechanism.

Consequently, we have many sequences of “images” which we can apply spatiotem-

poral Deep Learning model to them. In figure 12, we present the general architecture

for our proposal prediction model. With many spatiotemporal input datasets, using our

prediction model plus some forecasting datasets such as meteorology or traffic, we can

predict air pollution everywhere (citywide scale) and at any time (forecasting).

The spatiotemporal Deep Learning prediction model is a ConvLSTM model as in

[Shi] which was described in the previous section. In our case, we do not use patch size

to make 3D input images but using gray-scale images as 2D input tensors with MxN

dimension. The input tensors are not only air pollution values but are the combina-

tion of air pollution values and other influential factors’ values at corresponding cells.

Denotes Xa ∈ Ra
Pa×M×N is the air pollution input tensor, where Ra is the air pollution

domain, Pa is the range of air pollution values. Similarly, Xm ∈ Rm
Pm×M×N is the me-
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Figure 11: Gray-scale images of PM2.5 air pollution for the Seoul city in 3 consecutive

hours h = 0, 1, 2.

teorological input tensor, Xt ∈ Rt
Pt×M×N is the transportation traffic input tensor, Xs ∈

Rs
Ps×M×N is the vehicles average speed input tensor, and Xo ∈ Ro

Po×M×N is the outside

air pollution input tensor. In which Rm, Rt, Rs, and Ro are the meteorological, traffic,

speed and outside air pollution domain, respectively, and Pa, Pt, Pm, and Po are the

meteorological, traffic, speed and outside air pollution range of values, respectively.

Then the input tensor X of the model is a concatenation of all described input tensors:

X = Xa + Xm + Xt + Xs + Xo, in which + is a vector concatenation operator. Therefore,

for our interpolation and prediction problem, if we want to forecast for K hours, the

equation will similar in equation (7).

X̃t+1, ..., X̃t+K = argmax
Xt+1,...,Xt+K

p(Xt+1, ..., Xt+K |X̂t−J+1, ..., X̂t) (18)

In equation (18), K = 1 is our interpolation and K > 1 is the prediction problem.

The complete model is shown in figure 13 where we show how we embed the Outside

air pollution sources to be the spatiotemporal input of the model. The output of the
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Figure 12: General spatiotemporal prediction model for Air pollution Interpolation and

Prediction.
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ConvLSTM is then fed into a 1×1 convolution layer to produce the final output. 1×1

convolution is called a “feature pooling” technique where it allows us to sum pooling

the features across the depth channel while still keep the spatial characteristic of the

feature map. Using 1×1 convolution at the last layer before the output layer, we can

transform the ConvLSTM network’s output volume into the final output with the same

2D dimension, but the channel is the out channel of the prediction image. The output

also has the grid-based form like the input, and we can use it to determine air pollution

everywhere in the city.

Figure 13: The complete spatiotemporal Deep Learning model for interpolating and

predicting Air pollution in a citywide scale.
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Chapter 4

EXPERIMENTS AND EVALUATIONS

In this chapter, we present our experiments with proposal dataset and model. We also

evaluate our model with related baselines to show our superior results. The first section

is the baseline description.

4.1 Baselines description

Among the recent research which was shown in the related works chapter, Deep Air

Learning (DAL) model in [Qi] is the most relevant model to our approach. The au-

thors also divided the studying city (in their case was Beijing) into the grid and tried to

interpolate the air pollution in grid-cells which have no monitoring stations informa-

tion. Those authors also claimed that their model was able to predict air pollution in

some time ahead. The most relevant part of their research to ours is that they leveraged

the using of spatial and temporal features of the input data. Nevertheless, they still

used hand-crafted spatial and temporal features for their model. On the other hand, we

use ConvLSTM network, which automatically finds the relationship of the spatial and

temporal features while training with the spatiotemporal input data.

In the DAL model, we only interest the spatiotemporal semi-supervised neural

network as shown in figure 14. The authors stated that the information contained in
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unlabeled examples could be utilized to better exploit the geometric structure of the

data, especially for the spatiotemporal data. They said that an essential statistical char-

acteristic of spatiotemporal data is that nearby (in space and time) observations tend to

be more alike than those far apart. Based on this characteristic, they proposed a novel

method which embeds spatiotemporal semi-supervised learning in the output layer of

the neural network by minimizing the following loss function between the nearby ob-

servations over the labeled and unlabeled training set. The nearby features were chosen

manually as 2 for both spatial and temporal neighbors.

Figure 14: The graph of the spatiotemporal semi-supervised neural network of DAL

model from [Qi].

To make this model for our baseline comparison, we re-implemented it for our

datasets of Seoul city. In their paper, they used a pre-trained auto-encoder for input

data and then tuned with their proposed spatiotemporal loss. We also trained an auto-

encoder with 4 layers and used the pre-trained model for next phase training. We im-

plemented DAL for both interpolation and prediction tasks.
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Figure 15: The loss function and its description of DAL model, taken from [Qi].

In addition to the DAL baseline, we also make other 2 baselines of Deep Learning

based models to show how ConvLSTM is better in both spatial and temporal features

exploring. The first model in a CNN Encoder-Decoder model which focuses on spatial

features learning and the second one is a Stacked FC-LSTM model which is good for

temporal features recovering.

4.2 Experiments and Evaluations

First of all, we describe how we pre-processed the collected datasets for our experi-

ments. To make these datasets to be the input of our model, we need to translate them

by the grid map of Seoul. The Seoul city is covered by the rectangle which has the

latitude and longitude coordinates are 37.701 for the maximal latitude (north), 37.435

for the minimal latitude (south), 126.767 for the minimal longitude (west) and 127.812

for the maximal longitude (east). We divide the Seoul city map into 32 cells each di-

rection that means we have a grid map of 32×32 or 1024 cells. As a result, the cell

area is approximate 1 square km in the real scale. In following, we illustrate how to fit

these datasets into this 32×32 grid map.
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The air pollution data has 6 air pollutants for each row, which are SO2, CO, O3,

NO2, PM10, and PM25. Each row is represented for an hour and belongs to a monitor-

ing station. We assigned each monitoring station to the corresponding grid-cell by its

latitude and longitude coordinates. Some grid-cells are having more than 1 assigned

stations and some have no station. The grid-cell with more than 1 stations belonged

to have value is the average values of all stations and the grid-cell with no stations

keeps storing value 0. Thus, we received a gray-scale image of dimension 32×32 for

one hour in 3 years. Because each type of air pollutants has a different distribution, we

save 6 datasets of air pollution input and train different models for each dataset inspire

of using the same model architecture. In figure 11 we already showed the gray-scale

image of PM25 pollution for 3 hours. For all experiments in this thesis, we use only

PM2.5 pollution datasets to demonstrate for our proposed model and its results. The

grid-based air pollution data is then normalized to the range [0-1] by using Min-Max

normalization.

The making of the meteorological grid-based image is similar. We also put weather

observation stations into grid-cells based on their latitude and longitude values. With

meteorological data, for each row, we have 7 values like temperature, wind speed,

wind direction, rainfall, lowest air pressure, highest air pressure, and humidity. We

only can aggregate the value of 5 numeric feature like temperature, wind speed, air

pressure, and humidity. Wind direction is a categorical feature such as North, South,

West-North, and so on. With wind direction, we did not average but chose one of the

values if there are many stations put into a grid-cell. Moreover, in contrast with the air

pollution data pre-processing mechanism, we do not store value 0 to grid-cell which

do not have the station information. Instead, we tried to fill the missing grid-cell by

a spatial interpolating method. We chose the nearest neighbor method by interpolat-

ing a missing cell by its nearest neighbor which was previously assigned a weather

observation station. This method can apply to both numeric and categorical features.

The chosen interpolation method was acceptable because following [Beek], the mete-
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orological conditions do not change much in a range of 50 km. The resulting data is

then normalized to the range [0-1] by using Min-Max normalization except for wind

direction field which we use One-Hot Encoding to encode. The finally processed mete-

orological data has 21 columns (wind direction field is encoded to a 16-column one-hot

encoding vector).

The grid-based transformation for traffic volume and average driving speed is sim-

ilar to air pollution. The geometric coordinates of each survey point for traffic volume

and speed are used to determine its cell in the grid-map. The value is averaged if there

is a cell having more than 1 point and if there is a cell having no points then we still

keep its value to 0 because we do not have a solid theory as in the meteorological data.

Furthermore, it makes sense that for a location which we do not have its data then

it will not contribute to the prediction of air pollution at that point. The data is also

normalized to the range [0-1] with Min-Max normalization.

The outside air pollution of 3 areas in China is kept untouched because we use an

additional model to pre-train their spatiotemporal affection to Seoul air pollution as

mentioned in chapter 3.

For experiments and evaluations, we split the datasets into the training set and test

set. The training set is 2 years, 2015 and 2016 and the test set is the year 2017. With

this splitting mechanism, the training set is quite larger than test set (2 times larger)

which helps us to get enough data for training. More important, choosing the training

set is 2 years, and test set is 1 remaining year ensure the training and test set have

the same distribution and still make our model to have a good generalization. We also

split training set into dev set and validation set. The validation set was chosen as 3 last

months of 2016 which means 92*24 = 2208 rows. The dev set length is 15,336 rows

and the test set length is 6504 rows.

Regarding the forecasting task, we chose to predict for 12 hours. That means we

can predict from 1 to 12 hours in the future.

We used Tensorflow Deep Learning framework ([Abadi]) from Google to build the
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baselines and our model. Tensorflow has supported for Neural Network, CNN, RNN,

LSTM, and ConvLSTM network. If not explicitly stated, all experiments in this thesis

used the learning rate is 0.001, batch size is 128, training steps are 200, L2 regular-

ization with beta value is 0.01 and the dropout ratio is 0.5. We used Adam optimizer

which adapts the learning rate for each parameter by performing smaller updates for

frequent parameters and more substantial updates for infrequent parameters for all of

our training. The metric for the test set’s result is the root mean squared error (RMSE)

between the actual air pollution values and the prediction/interpolation values. This

is a metric which is commonly used in the regression problem like our Air pollution

Interpolation and Prediction. RMSE is only calculated for the pixels which have mon-

itoring stations assigned. If RMSE is smaller then the model’s performance is better.

We trained all baselines and our model on a DGX station server with 4 Nvidia Tesla

V100 GPU of 16 GB memory each. Using GPU helps us to decrease our training time

to less than 5 minutes compare to some hours when using CPU.

4.2.1 Air pollution Interpolation: experiments and evaluations

DAL interpolation

The DAL interpolation implementation has the input time step is 1 current hour and

the output time lag is also 1 hour ahead. The number of Auto-Encoder weights for each

layer is 2000. In the paper [Qi], the authors use 2 hyper-parameters called alpha and

beta to control the effect of spatial and temporal loss respectively. In their paper, alpha

and beta are chosen as 10 and 15 but in our own implementation, we found that the

original values did not give very good results so we tested around and determined the

values of alpha and beta are 2 and 3 respectively. After training Auto-Encoder model

and save to a checkpoint, we restore the pre-trained checkpoint for Spatiotemporal

Semi-supervised regression model training. For the spatial and temporal loss, we did

not compute the loss separately for each pair of actual and prediction values but we

tried to make 2 large tensors by concatenating all actual and all prediction values into

34



each tensor. Then we only need 1 computation to compute the loss for spatial or tem-

poral neighbors. The final loss is the combination of labeled loss, weighted spatial loss

and temporal loss of all labeled and unlabeled data. The RMSE result on the test set is

shown in table 5.

ConvLSTM interpolation

The implementation of ConvLSTM interpolation is similar with 1-hour time step as

input and 1 hour ahead as interpolation. The number of layers for ConvLSTM network

is 1 encoder layer and 1 forecasting layer with the output channels are 64. The kernel

size for each encoder and forecasting layer is 3×3. The output size is the grid map size

which means 1024. In contrast to DAL model, we do not use any spatial or temporal

loss for ConvLSTM model but only the loss on labeled data and let the model find the

spatial and temporal relationships automatically.

Stacked FC-LSTM and CNN Encoder-Decoder interpolation

Besides the baseline is DAL model, we also implemented 2 more models based on

Stacked FC-LSTM and CNN Encoder-Decoder to check how our proposed ConvL-

STM better on both spatial and temporal features exploration. For Stacked FC-LSTM

model (or FC-LSTM for short), we also use the input as the gray-scale image of 1024

pixel values. The time step input and output are the same as above models. We picked

the number of hidden units for an LSTM cell is 2000 and stacked 3 LSTM cells to raise

the model’s capacity. The output of LSTM cells is then flowed through a fully con-

nected neural network (FCNN) to produce the final output. Regarding CNN Encoder-

Decoder model (or CNN for short), we applied an Encoder-Decoder network with the

encoder is a convolution layer and decoder is a deconvolution layer similar to [Badri-

narayanan]. To be comparable with ConvLSTM, we also used 1 encoder and 1 decoder

layer with the same parameters as ConvLSTM (filter size is 3×3 and the number of out-

put channels is 128). The RMSE results of CNN and LSTM model on the test set are
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shown in table 5. For additional comparison, we implemented ConvLSTM with the

spatiotemporal loss as in DAL model and show the result in table 5.

Table 5: Compare RMSE results on the test set of 4 interpolation models

Interpolation models RMSE on test set

ConvLSTM 8.31466

DAL 11.77393

CNN Encoder-Decoder 9.42967

Stacked FC-LSTM 12.01648

ConvLSTM + Spatiotemporal Loss 8.09817

From table 5, we can see that ConvLSTM model achieves the best RMSE among

other baselines. Moreover, ConvLSTM model with spatiotemporal loss has better RMSE

than pure ConvLSTM. It can be inferred that spatiotemporal loss is a good improve-

ment for our addressing air pollution problem.

Evaluations

The most critical evaluation for this part is to evaluate the citywide air pollution Inter-

polation. It means, how well the predicted output image reflects the air pollution of the

whole city. In this part, we propose some techniques to evaluate this result.

Firstly, a model is better in the citywide interpolation if it can produce well air

pollution values at existed monitoring stations’ locations. That means the RMSE is

small. It is easy to realize that the RMSE on the test set of proposed ConvLSTM is the

best then following is CNN Encoder-Decoder and 2 last positions are DAL model and

Stacked FC-LSTM.

The evaluation technique mentioned above is useful for quantitative evaluation but

does not show us the overall picture of the interpolation result because the existing

monitoring stations are sparse compared to the whole city. In figure 16, we plot the
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output images of DAL, ConvLSTM, CNN and FC-LSTM model to see the distribu-

tion of air pollution interpolation’s values. Intuitively, the FC-LSTM model shows

worst distribution output with all of the pixels except the existing monitoring stations

have the same value because FC-LSTM network does not learn the spatial features

well and thus does not give good interpolation output. For the remaining 3 models,

ConvLSTM and DAL model show pretty good air pollution distribution compared to

the CNN model. We propose some metrics to prove that ConvLSTM produces the

better air pollution interpolation distribution compared to other baselines. To examine

the goodness of interpolation distribution, we compare it with the actual air pollution

values distribution. Here, we suggest using 2 metrics: the distribution variance and the

Chi-squared test between distributions.

The first metric, variance, is the expectation of the squared deviation of a distri-

bution from its mean. A high variance indicates that the data points are very spread

out from the mean, and from one another. While a small variance indicates that the

data points tend to be close to the mean and each other. For each evaluated model, we

calculate the variance of actual air pollution values and the variance of interpolation

values, do for 10 samples each and draw to the graph. From the graph in figure 17, we

can see that the variance of interpolation distribution of ConvLSTM model is the clos-

est to the variance of actual air pollution values distribution. That means ConvLSTM

model outcomes better interpolation than DAL or CNN model.

The second metric, Chi-squared test, is used to determine whether there is a sig-

nificant difference between the expected frequencies and the observed frequencies in

a categorical variable. We can consider air pollution values are frequencies and check

the chi-squared test between interpolated values and actual values. We also check for

10 samples of output for each model and compute the Chi-squared test between actual

air pollution values distribution and interpolated values distribution. The results are

shown in figure 18 and once again, ConvLSTM shows the smallest Chi-squared test

against 2 remaining models, DAL and CNN Encoder-Decoder.
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Figure 16: The plotting of interpolated output images of 4 interpolation models.

Figure 17: The Variance of actual values and interpolated values distribution of Con-

vLSTM and DAL model.
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Figure 18: The Chi-squared test between interpolated and actual distribution of DAL,

ConvLSTM, and CNN Encoder-Decoder model.
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Interpolation with air pollution influence factors

In this part, we show the experiment’s results of air pollution interpolating with spa-

tiotemporal air pollution impact factors like meteorology, transportation traffic and

average speed, and outside air pollution sources. We did the experiments with follow-

ing models: ConvLSTM (ConvLSTM with only air pollution data), ConvLSTM + Met

(air pollution and meteorological data), ConvLSTM + Traffic (air pollution and trans-

portation traffic data), ConvLSTM + Speed (air pollution and vehicles average speed

data), ConvLSTM + Outside (air pollution and outside air pollution data), ConvLSTM

+ All (air pollution and all related factors). The RMSE results on the test set of pure

ConvLSTM and other combination models are shown in table 6.

Table 6: Compare RMSE and spRMSE for air pollution interpolation of ConvLSTM

network and its combination with other spatiotemporal factors

Model RMSE spRMSE

ConvLSTM 8.31466 15.48715

ConvLSTM + Met 6.58092 14.40496

ConvLSTM + Traffic 8.30858 15.47893

ConvLSTM + Speed 8.91373 15.17757

ConvLSTM + Outside 6.63926 14.46107

ConvLSTM + All 7.17028 11.02544

Following table 6, ConvLSTM + Met has the best RMSE which is intuitively rea-

sonable because, in real, meteorology has the most significant impact to the air pol-

lution. We also see that the RMSE of ConvLSTM + Speed model is not better than

ConvLSTM. It can be explained that the average driving speed does not have signifi-

cant fluctuations during the day.

To evaluate how other spatiotemporal factors impact the air pollution interpola-
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tion’s efficiency we propose to use the following test: removing one of the existing air

pollution values from input test data but still keep the values of other spatiotemporal

data and then check the error of interpolated air pollution value with the existing one.

If the error is small then we can infer that other spatiotemporal data has a remarkable

effect on air pollution interpolation. To measure the error, we alternately set the air

pollution value of each existing test input pixel to zero, keep other data unchanging,

running the trained model on this modified input test data and calculate the RMSE

between the inferred value with an actual same pixel value. The final error is the mean

of all errors after doing this procedure with all test input pixels. We call this error

spRMSE which means the RMSE caused by spatiotemporal factors. The experiment’s

results are shown in table 6. It can be seen that ConvLSTM + Speed model has a

better spRMSE than ConvLSTM in spite of its worse RMSE which means the driv-

ing speed effects to air pollution in spatiotemporal form. ConvLSTM + All model has

the best spRMSE which means we can improve the citywide interpolation with more

spatiotemporal data.

4.2.2 Air pollution Forecasting: experiments and evaluations

Deep Air Learning (DAL) forecasting model

Firstly, we describe the baseline model for Air pollution forecasting, which is DAL

forecasting model. DAL forecasting model has the same structure as DAL for inter-

polation but the input time steps are 24 hours before and the prediction time lags are

12 hours. We still pre-train an Auto-Encoder and then use it to train the prediction

model. The spatial loss is computed by summing up the spatial loss for each 12 output

image plates. The temporal loss is also the sum of the loss between 1 image slice with

2 neighbor image slices of the output (the DAL paper chose temporal neighbor size is

2). The final loss is the total of labeled loss and spatial and temporal loss.
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ConvLSTM forecasting model

The predicting ConvLSTM network also predicts 12 hours ahead from 12 previous

hours as the input time steps. The number of encoder layers is 3 as the same number

for forecasting layers. The output channels are 16, 16 and 32 respectively.

CNN and FC-LSTM forecasting model

Similar to the interpolation experiment part, we also make 2 forecasting models based

on CNN and FC-LSTM. The CNN model has 3 layers for encoder and 3 layers for

the decoder part which is similar to ConvLSTM predicting model. To see how is the

goodness of other spatiotemporal Deep Learning based models to our studying prob-

lem, we also implemented the LC-RNN model from [Zhongjian] paper which consists

of some convolution layers following by a stacked LSTM. This model is also a combi-

nation of CNN and LSTM but in 2 continuous steps, not in 1 uniform model as in the

ConvLSTM model.

Table 7 shows the RMSE of experimental models on the test set. As expected,

ConvLSTM model gives the best RMSE, following is the CNN model and the last

positions are DAL, LC-RNN and FC-LSTM.

Table 7: Compare RMSE of the forecasting models

Interpolation model RMSE on test set

ConvLSTM 8.59883

DAL 9.44042

CNN Encoder-Decoder 9.16437

Stacked FC-LSTM 21.22256

LC-RNN 15.07063

42



Forecasting with air pollution influence factors

Next, we conduct experiments with air pollution spatiotemporal related factors. The

examining models are: ConvLSTM (as baseline), ConvLSTM + Met (air pollution

and meteorological data), ConvLSTM + Traffic (air pollution and transportation traffic

data), ConvLSTM + Speed (air pollution and vehicles average speed data), ConvLSTM

+ Outside (air pollution and outside air pollution data), ConvLSTM + All (air pollution

and all related factors). Table 8 shows the RMSE of each examined models on the test

set.

Table 8: RMSE of ConvLSTM model with spatiotemporal air pollution relating factors

Model RMSE

ConvLSTM 8.59883

ConvLSTM + Met 8.43047

ConvLSTM + Traffic 8.53342

ConvLSTM + Speed 8.58124

ConvLSTM + Outside 8.53036

ConvLSTM + All 8.46117

Following table 8, the ConvLSTM + Met model has the best RMSE and ConvL-

STM + All model takes the second position. Therefore, we still see the demonstration

of affection of spatiotemporal factors into air pollution, especially by the meteorology.

For the last experiments’ result, we produce the air pollution forecasting results of

every hours from 1 to 12 hours. The results are shown in the graph in figure 19.
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Figure 19: Air pollution forecasting results for every hours from 1 to 12 hours.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this chapter, we sum up all of our works so far on citywide Air pollution Interpola-

tion and Prediction based on spatiotemporal Deep Learning models. We also evaluate

our results and suggest the future extensions from this thesis’s research.

5.1 Conclusions

To conclude, in this thesis, we have introduced 3 main contributions. Firstly, we have

described and leveraged the citywide scale Air Pollution Interpolation and Predic-

tion problem by considering a whole city to be one image. Secondly, we pointed out

many spatiotemporal factors, which have affections to air pollution throughout the

city. Lastly, we proposed a spatiotemporal Deep Learning based model for citywide

air pollution interpolation and prediction. We have proved that the proposed ConvL-

STM model does not only outperform state-of-the-art models but also works better

than CNN and LSTM themselves in spatial and temporal features analysis. The com-

bination of ConvLSTM and other spatiotemporal factors gives us a powerful model in

interpolating and forecasting air pollution over the city.
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5.2 Future work

In the future, we will try to improve the performance of the proposed model, both

in the accuracy and the speed. Moreover, we can add more air pollution monitoring

stations around the city or using real-time air pollution monitoring sensors installed on

public transportation to better monitor air pollution for the whole city. The introduced

solution is naturally fit to this new update through transfer learning with pre-trained

models.

Our proposed ConvLSTM model for air pollution is also suitable for other urban

spatiotemporal based predictions such as traffic volume prediction or crowd flow pre-

diction. In the future, we will extend this spatiotemporal research on predicting urban

traffic volume and driving speed to foresee traffic congestion and other urban relating

problems.
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초록

대기 오염은 대도시에서 가장 큰 문제 중 하나이다. 많은 국가들은 주요 도시

주변에 대기 오염 모니터링 센터를 건설하여 대기 오염 물질을 수집하고 해당 지

역의 시민들에게 대기 오염을 경고한다. 그러나 도시에서의 대기 오염은 균일하지

않으며시공간 (spatiotemporal)적인문제이다.대기오염은위치 (공간적특성)과시

각 (시간적 특성)에 따라 달라진다. 따라서, 도시 전체의 대기 오염 보간과 예측은

시민들이 시간과 공간에 대해 대기의 질을 파악하고, 나아가 건강에 대한 위협을

제거하기위한필요조건이다.대기오염은도시전역의여러시공간적요인에의해

영향을받는것으로알려져있다.그중,기상이대기오염에가장큰영향을주는것

으로인식되고있다.그외에,교통량은대기오염의주요원인인도로의차량밀도를

반영한다.평균주행속도는도시대기오염에영향을준다고판단되는교통체증을

나타낸다.마지막으로,외부대기오염원은도시대기오염문제의근원중하나라고

주장된다.본논문에서는서울시의대기오염데이터,기상데이터,교통량,평균주

행속도와같은많은시공간적데이터와서울의대기오염에영향을준다고알려진

중국의 3개지방(베이징,상하이,산동)의대기오염데이터를제시하였다.

대기오염에대한최근의연구에서는특정위치와시간의대기오염예측모델을

구축하려고 시도해왔다. 그러나 대부분 연속되지 않은 위치에대한 대기 오염을 예

측하거나 직접 만든 공간 및 시간적 특성을 사용하는 데 중점을 두었다. 최근 CNN

(Convolutional Neural Network), RNN (Recurrent Neural Network)및 LSTM (Long-

Short Term Memory)과 같은 딥러닝 모델이 공간 및 시간 관련 문제에서 우수하다

고 알려져있다. 본 논문에서는 CNN과 LSTM을 결합한 ConvLSTM (Convolutional
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Long-Short Term Memory)모델을제안하였으며,이를통해데이터의공간및시간

적 특성을 효율적으로 처리하고 최근의 다른 연구 결과보다 뛰어난 성능을 달성하

였다.

주요어:대기오염,보간,예측,도시전체,시공간,딥러닝

학번: 2016-27885
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