

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short

Packet Transmission

고신뢰짧은패킷전송을위한깊은신경망을이용한
희소벡터복호에관한연구

BY

LEE SEUNG-HWAN

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

M.S. THESIS

Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short

Packet Transmission

고신뢰짧은패킷전송을위한깊은신경망을이용한
희소벡터복호에관한연구

BY

LEE SEUNG-HWAN

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short

Packet Transmission

고신뢰짧은패킷전송을위한깊은신경망을이용한
희소벡터복호에관한연구

지도교수심병효

이논문을공학석사학위논문으로제출함

2019년 2월

서울대학교대학원

전기컴퓨터공학부

이승환

이승환의공학석사학위논문을인준함

2019년 2월

위 원 장:
부위원장:
위 원:

Abstract

Ultra-reliable and low latency communication (URLLC) is one of the prospective

service categories in 5G to be useful in the future hyper-connective industrial field.

To support its requirements, 3rd Generation Partnership Project (3GPP) sets an ag-

gressive standard that a packet should be delivered within 1 ms transmission period

with an accuracy of 99.999%. Since the current 4G systems designed to maximize

the coding gain by transmitting capacity achieving long codeblock resulting in an in-

crease of the latency. A recently proposed approach for the short packet transmission is

sparse vector coding (SVC). In SVC, encoding is done by simple sparse mapping and

spreading to formulate the system model into an underdetermined system and replaces

the decoding process with a simple sparse recovery algorithm. In this paper, we pro-

pose a deep neural network-based approach, referred to as deep sparse vector decoding

(deep-SVD), to enhance the performance of SVC to better meet the URLLC’s extreme

requirements. To this end, we reformulate the SVC-decoding process as a multi-label

classification and build the network to learn the highly correlated relationship within

codebook. Numerical results demonstrate that the proposed deep-SVD outperforms

the conventional SVC decoding in both reliability and latency.

keywords: 5G, URLLC, Short packet transmission, SVC, Deep neural network,

Compressed sensing

student number: 2017-22314

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 INTRODUCTION 1

1.1 Introduction . 1

2 Short Packet Transmission Using Sparse Vector Coding 5

2.1 SVC encoding . 6

2.2 SVC decoding . 10

2.3 Basic Compressed Sensing . 11

3 Sparse Vector Decoding via DNN 14

3.1 Basic Deep Learning . 16

3.2 Deep Sparse Vector Decoding (Deep-SVD) 20

4 SIMULATION 24

4.1 Dataset and Simulation Setup . 24

4.2 Simulation result . 25

ii

5 CONCLUSION 32

Abstract (In Korean) 36

Acknowlegement 37

iii

List of Tables

2.1 Example of mapping between the information w and the sparse vector

s [8] . 7

2.2 The OMP Algorithm . 12

3.1 Batch Normalization . 17

iv

List of Figures

2.1 packet structure of 4G (left) and the URLLC packet (right) 9

3.1 packet structure of 4G (left) and the URLLC packet (right) 15

3.2 Residual learning framework: Direct fitting of desired function (left)

and fitting of residual mapping function (right) 19

3.3 Network structure of deep-SVD for short packet decoding 23

4.1 BLER performance as a function of SNR for AWGN channel 27

4.2 BLER performance as a function of SNR for the fading channel . . . 28

4.3 BLER performance for different measurement size for AWGN channel 29

4.4 BLER performance as a function of SNR for AWGN channel 30

4.5 BLER performance with ensemble technique for the fading channel . 31

v

Chapter 1

INTRODUCTION

1.1 Introduction

In preparation of the upcoming fourth industrial revolution, hyper-connectivity is em-

phasized as a core value. Information exchange is spreading beyond the daily life of

individuals and is being extended to the whole area of the industry. In this change,

the next-generation infrastructures require forms of communication services and ap-

plications that are different from traditional human-centric communication in terms of

latency, reliability, energy efficiency, and connection density. Wireless systems from

2G to today’s 4G have been focused on increasing higher data rates. While this trend is

expected to continue in the fifth generation (5G) wireless systems, there are strong in-

dications that 5G will not only be faster than 4G but will also provide services focused

on specific requirements. In response to these needs, International Telecommunica-

tion Union(ITU) has classified 5G services into three categories: ultra-reliable and low

latency communication (URLLC), massive machine-type communication (MMTC),

and enhanced mobile broadband (eMBB) [1]. Each of these services requires extreme

performance with respect to lower latency & higher reliability, massive connectivity,

and better energy efficiency, respectively. Since the current radio access mechanism

cannot support these changes, 3rd Generation Partnership Project (3GPP) introduced

1

a new air interface referred to as NewRadio (NR) [2]. The primary goal of NR is to

bring entirely new features and technologies that are not compatible with current 4G

systems.

Among the three services mentioned, URLLC has attracted much attention in in-

dustries with its potential in applications where super real-time and reliable connec-

tions are required, e.g. remote medical surgery, factory automation, smart cities, and

autonomous vehicle [3]. This is because the main challenging requirements in URLLC

is ultra-low latency and ultra high reliability. In order to support this new service cate-

gory, according to the 3GPP standards, the desired performance value for URLLC are

the low latency of less than 5ms and accuracy of 99.999%(= 10−5 error rate) [4]-[5].

To support the reliability in current 4G systems, complex channel coding scheme (e.g.

convolutional coding and turbo coding) is done to maximize the coding gain by trans-

mitting capacity achieving long codeblock resulting in an increase of the latency while

targeting BLER performance is 10−2 to 10−3 [6]. One thing to note is that the infor-

mation in the service areas that URLLC expects to be utilized is a short packet unit

of information such as control type information (e.g., move up/down, speed up/down,

and start/stop) or sensing information (e.g. temperature, moisture, and pressure) [7].

Therefore, the coding schemes currently applied in 4G systems are not efficient in the

context of URLLC.

Recently, an approach to support a short packet transmission based on the principle

of compressed sensing, called sparse vector coding (SVC), has been proposed [8]. The

main idea of SVC is that the data information is mapped into the position of a sparse

vector and then transmitted after the spreading to formulate the system model into

an underdetermined system. Also, the decoding process is done by finding the non-

zero positions of the sparse vector using any sparse recovery algorithms also known

as compressed sensing [9]-[10]. It has been shown that the BLER of SVC outperforms

the conventional channel coding schemes. While there exist numerous compressed

sensing algorithms, a greedy-based approach is widely used. One potential problem

2

of the conventional greedy algorithms is that the incorrect non-zero index would be

selected when the internal correlation of the sensing matrix is high, and consequently

leads to the failure of the packet decoding.

In recent studies, the deep learning technique has shown tremendous performance

in classification problems [11]. An aim of this paper is to enhance the performance of

SVC to better meet URLLC’s extremely high performance requirements by applying

deep neural network (DNN). To this end, we reformulate the SVC decoding process as

a multi-label classification where the non-zero positions of the sparse vector are labels

to be classified from received SVC encoded vector. The proposed scheme, referred to

as deep sparse vector decoding (deep-SVD), is a supervised learning of which its input

is the received signal and the output is the SVC encoded sparse vector. In other words,

the proposed scheme utilizes the powerful ability of DNN as a function approximator

to approximates the sparse recovery algorithm [12].

The main structure of deep-SVD is to utilize the residual learning framework

which was first introduced in Resnet [13]. Due to the residual learning framework,

the entire networks are similar to unfolding the conventional iterative sparse recovery

algorithms. The differences and also the advantage of the proposed deep-SVD is to

put the learnable parameters which give more flexibility than conventional sparse re-

covery algorithms that use a fixed sensing matrix at every iteration. This implies that

the optimal parameters achieved during the training phase of networks might help to

alleviate the disruptive correlation of the sensing matrix. In other words, distinguish-

ing between highly correlated codewords in the codebook is more efficient. Therefore,

Deep-SVD not only just approximates the sparse vector recovery functions but also

performs codebook adaptive support detection by learning those correlations compared

to the conventional linearly operating compressed sensing algorithms. In a realistic

scenario, deep-SVD is pre-trained at the receiver by transmitting the virtual data sig-

nals for training before the data transmission is conducted. At the actual data transmis-

sion, pre-trained deep-SVD consists of simple matrix multiplication, making it more

3

suitable for low latency requirements. From the numerical evaluations, we demonstrate

that the proposed deep-SVC technique outperforms the conventional decoding scheme

based on a greedy algorithm by a large margin in terms of high reliability.

4

Chapter 2

Short Packet Transmission Using Sparse Vector Coding

In this section, we briefly overview SVC for short packet transmission. We consider

the single-user OFDM system model. In the conventional 4G systems, the transmit

vector x ∈ Cm×1 is generated via the channel coding and symbol mapping of data

information. After passing the channel, the received vector y ∈ Cm×1 is given by

y = Hx + v, (2.1)

where H = diag(h̄) is the diagonal matrix where h̄i is the channel frequency response

at the i-th resource, and v ∼ CN (0, σ2
vI) is the additive Gaussian noise.

5

2.1 SVC encoding

The first step of sparse vector encoding process is to map the information into the

positions of a sparse vector s. Let w be the b-bit data information, then the sparse

vector mapping α : Bb → BN maps w to k-sparse binary vector s ∈ BN which has k

non-zero position amongN . In this mechanism, when we choose k out ofN positions,

we can encode blog2

N
k

c. For example, if s is 9-dimentional binary vector with the

sparsity k = 2, we can encode 5-bit data information, then (see exmple in Table. 2.1)

w = [0 0 0 0 0]
α−→ s = [0 0 0 0 0 0 0 1 1]

w = [0 0 0 0 1]
α−→ s = [0 0 0 0 0 0 1 1 0]

...

w = [1 1 1 1 1]
α−→ s = [1 1 0 0 0 0 0 0 0].

After the sparse mapping, the next step is to spread the sparse vector s into m re-

sources using the spreading codebook C. As proposed in [3], we allocate the resources

along the frequency axis, therefore, the transmission latency is efficiently minimized

(see Fig. 2.1). As a result of the spreading process, the transmit vector x takes the

distinctive form since the vector s is sparse. For example, if k = 2 and its non-zero

position is first and third, the transmit vector x is given by

x = Cs

= s1c1 + s3c3, (2.2)

where ci is the spreading codeword from the codebook matrix C = [c1 c2 · · · cN].

It is worth mentioning that since the positions of non-zero elements are chosen ran-

domly, the codebook matrix C should be designed such that the transmit vector x

contains enough information to recover the sparse vector s irrespective of the selection

of the non-zero positions. In this work, we consider random Bernoulli sequences for

the codebook design for simplicity. Additional advantages for considering Bernoulli

6

Table 2.1: Example of mapping between the information w and the sparse vector s [8]

Input

Size of sparse vector N ,

information vector s.

Output

Sparse vector s,

α = 0

for i = 2 to N do

for j = 1 to i− 1 do

if α = (w)(10)

s = (2i + 2j)(2)

end if

α = α+ 1

end for

end for

Note: (w)(10) is a decimalexpression of

binary vector w and (w)(e) is binary

expression of integer w.

7

sequences is that the modulation can be performed simultaneously with spreading. For

example, let’s consider QPSK modulation for high reliability in a practical URLLC

scenario. For QPSK modulation, we set k = 2 for the sparse mapping and put one

of the non-zero elements into 1 and the other into 1j. From (2.2), we can easily

see that the elements of the transmit vector x are mapped to the QPSK symbol (i.e.,

xi ∈ {1 + 1j, 1− 1j,−1 + 1j,−1− 1j}).

8

frequency

time

|←|→

|→

Control Transmission

Data Transmission

Pilot
Symbol

frequency

time

|←|→

Pilot
Region

URLLC transmission

Control
Region

Data
Region

m

Figure 2.1: packet structure of 4G (left) and the URLLC packet (right)

9

2.2 SVC decoding

For the short packet transmission, it is natural to consider resource sizem smaller than

information size N . As a result, the overall system can be modeled as an underdeter-

mined sparse system. Therefore, the compressed sensing algorithm, a popular scheme

in sparse vector recovery problem in the underdetermined system, can be utilized for

the decoding process. After transmitting SVC encoded vector, the received signal y is

given by

y = HCs + v (2.3)

=


h̄11

. . .

h̄mm



| |

c1 · · · cN

| |



s1

...

sN

 +


v1

...

vm

 .
The benefit of SVC is that the decoding process of the information vector is done by the

identification of non-zero positions. This also implies that the transmission power or

information is concentrated on the non-zero elements of an information vector. Thus,

effective power per symbol is much higher compared to the conventional system in

which the transmission power is uniformly distributed across entire symbols.

For convenience, (2.3) can be expressed as

y = HCs + v

= As + v (2.4)

where A ∈ Cm×N is the sensing matrix of the underdetermined system. The corre-

sponding SVC decoding process can be formulated as the support identification prob-

lem as

Γ̂ = arg min
|Γ|=k

1

2
‖ y −AΓsΓ ‖22, (2.5)

where Γ̂ is the set of estimated support. For given A and k, any greedy sparse recovery

algorithms can be used.

10

2.3 Basic Compressed Sensing

In this section, we briefly overview the basic of compressed sensing. Compressed sens-

ing (CS) technique attract much attention as the importance of restoring the original

signal with only a small number of observation are increasingly emphasized [9]. These

problems have been studied and applied to various applications such as wireless mo-

bile communication [10], image processing, machine learning, and radar signal.

The basic principle of compressed sensing is to restore the original signal to a small

number of measurement values when the original signal is a sparse signal or when it

is possible to convert it into a sparse signal at a specific basis. We measure the sparsity

by counting the non-zero elements in the signal. For example, we say sparsity k of

s = [3 0 0 1 0 0 0] is 2. Also, we call the set of non-zero element position as support Γ

(Γs = {1, 4})

We begin with a linear system having m equations and N unknowns given by

y = As, (2.6)

where y ∈ Rm is the measurement vector, s ∈ RN is the desired signal vector to be

recovered, and A ∈ Rm×N . In the overdetermined system (m ≥ N), least squares

(LS) is the well known solution that is closest to the original signal:

LS : s∗ = (ATA)−1ATy. (2.7)

While finding the solution in an overdetermined scenario is straightforward and

fairly accurate, in the underdetermined system (m ≤ N), the problem is challenging

since one cannot find out the unique solution in general. However, the fact that the

original signal is sparse gives us a lot of hints. For example, if Γs = {1, 4}, (2.6) can

be expressed as

y = s1a1 + s4a4, , (2.8)

where ai is the i-th column vector of A. Thus, the problem turns to overdetermined

system and the recovery of s is straightforward.

11

Table 2.2: The OMP Algorithm

Input A, y, and sparsity level k.

Initialize iteration counter t = 0,

estimated support Γ0 = ∅,

and residual vector r0 = y.

While t < K do

t = t+ 1;

(Identify) γt = arg max
i∈{1,··· ,N}

|〈rt−1,ai〉|

(Augment) Γt = Γt−1 ∪ {γt};

(Estimate) ŝt = arg min
u:supp(u)=Γt

‖y −Au‖2;

(Update) rt = y −Aŝt;

End

Output Γ and ŝ.

12

While there are numerous techniques to solve the underdetermined sparse system,

the greedy algorithm is widely used for its simplicity and straightforwardness. By the

greedy algorithm, we mean an algorithm to make a local optimal selection at each

time with a hope to find the global optimum solution in the end. The most popular and

widely used algorithm is perhaps the orthogonal matching pursuit (OMP) [15]. The

principle of the OMP is that we hope to find the one most probable support at every

iteration. Thus, the iteration time is only k. At t-th iteration, we check the correlation

between the residual rt (r0 = y) and A and pick the support that corresponds to the

largest correlation. After that, we estimate the signal ŝt using supports we have found

so far. Then, we update the residual by removing the contribution of ŝt. A more specific

process is summarized in Table. 2.2.

One potential problem of the conventional greedy algorithms is that the incorrect

index (an index not in the true support) would be selected when the internal correlation

of A is high. To be specific, if two column vectors of A are highly correlated, inner

products between the residual r and column vectors are similar. In the worst case, for

example in a noisy scenario, distinguishing between two columns is challenging. One

of the frameworks that quantify the coherence structure of the sensing matrix is the

restricted isometry property (RIP) constant [14]. Given the sensing matrix A, the RIP

constant δk[A] ∈ [0, 1) is the smallest value that satisfies

(1− δk[A])||x||22 ≤ ||Ax||22 ≤ (1 + δk[A])||x||22, (2.9)

for all x ∈ {x : ||x||0 ≤ k}. δk[A] indicates how well the system preserves the energy

of the original sparse signal. If δk[A] ≈ 0, the system matrix is close to orthonormal.

Clearly, the smaller the value of the RIP constant δk[A], the closer any sub-matrix

of A with k columns is being orthogonal. Therefore, the sensing matrix with smaller

δk[A] achieves the better sparse vector estimation.

13

Chapter 3

Sparse Vector Decoding via DNN

As mentioned, the main task of the SVC decoder is to identify the support of the sparse

vector. Considering the decoding process from another point of view, we can reformu-

late the problem as a multi-label classification that classifies k classes out of N total.

Recently, deep learning has achieved tremendous success in classification problems.

In this work, we propose the deep neural network architecture, henceforth referred to

as deep-SVD, which performs the sparse vector recovery by classifying supports. For

a supervised learning, we set the input data as received signal and the non-zero posi-

tions of the sparse vector as labels to be classified. The overall process of the deep-

SVD-based short packet transmission is depicted in Fig. 3.1. In this section, we briefly

review the basic deep learning and explains the detailed architecture of deep-SVD.

14

Input Data
Sparse

Mapping

����

Output Data

Multi-code
Spreading

b bit N symbols

�

� � ��

Fading
Channel

Sparse
De-mapping

Deep-SVD
(Support detection)�̂ y

Encoding at transmitter

Decoding at receiver

Figure 3.1: packet structure of 4G (left) and the URLLC packet (right)

15

3.1 Basic Deep Learning

DNN is a neural network that stacks multiple hidden layers deeply to perform the

specific functional operation for example classification, clustering, regression, and de-

cision. Each hidden layer consists of multiple neurons.

Fully-connected (FC) layer, a basic unit of the DNN, is given by [16]

rl = σl(Wlrl−1 + bl) (3.1)

where (l-1)-th layer rl−1 is mapped to l-th layer rl with training parameters Wl ∈

RNl×Nl−1 and bl ∈ RNl which are weight and bias, respectively. σ is an activation

function to introduce a non-linearity to the layer. Some commonly used activation

functions are sigmoid and rectified linear unit (ReLU) function given by [17]

sigmoid : σ(ri) =
1

1 + e−ri
(3.2)

ReLU : σ(ri) = max(0, ri). (3.3)

Training is a process to obtain the optimal parameters Θ = {W,b} from the train-

ing data set by minimizing the loss function. Commonly used loss functions include

the mean-squared error (MSE) and cross-entropy (CE). Given input as y and output as

x, MSE and CE are expressed as

MSE : L(x,y,Θ) =‖ x− ζ(y,Θ) ‖22 (3.4)

CE : L(x,y,Θ) = −
K∑
k=1

xk log ζ(y,Θ)k. (3.5)

where ζ is the entire process of DNN as a function and K is the number of class in

classification problem. Also, parameters are updated by the stochastic gradient descent

(SGD) and backpropagation.

Batch normalization is one of the most powerful methods or layer that alleviate

the difficulty of training very deep models [18]. Normalization is a well known pre-

processing technique in data pre-processing which helps network training convergence

16

Table 3.1: Batch Normalization

Input Values of x over a mini-batch: B = {x1,...,m}.

Parameters to be trained: γ, β.

Output yi.

µB ← 1
m

∑m
i=1 xi

σ2
B ←

1
m

∑m
i=1(xi − µB)2

x̂i = xi−µB√
σ2
B+ε

yi = γx̂i + β

faster. Taking advantage of these benefits, batch normalization applies a feature-wise

normalization at each layer, especially before activation function, thus, it reduces the

internal covariate shift problem.:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(3.6)

where k denotes the feature index. Also, in order to address the representation capacity

decrease problem by simple normalization, authors in [18] introduce a pair of trainable

parameters γ and β, which scales and shift the normalized value:

y(k) = γx̂(k) + β (3.7)

Table. 3.1 summarizes the procedure for batch normalization.

17

Resnet is a network based on the residual learning framework which showed a

tremendous improvement in classification performance in the ImageNet Challenge

[13]. The main idea of residual learning framework is to put the direct identity con-

nection between few stacked hidden layers. Instead of hoping every few stacked layers

directly fit the desired function, the authors explicitly let these layers fit a residual

mapping function, which is assumed to be easier for optimization (See Fig. 3.2). To

be specific, denoting the input as y and the underlying desired function as H(y), the

residual mapping is defined as F(y) = H(y) − y, and a residual block structure is

thus:

H(y) = h(y) + F(y,Θ), (3.8)

where h(y) is an identity mapping: h(y) = y. Due to this identity mapping, it is easy

to optimize the residual mapping function F(y) than to optimize the original under-

lying desired function H(y). Therefore, it is shown in [resnet] that identity mapping

connection eases the training of very deep models.

18

�

����

� � ����

�

����

� � � � � � � ����

�

Figure 3.2: Residual learning framework: Direct fitting of desired function (left) and

fitting of residual mapping function (right)

19

3.2 Deep Sparse Vector Decoding (Deep-SVD)

Our goal is to train the deep-SVD as a powerful function approximator to estimate

the sparse vector. In this regard, the support identification problem in (2.5) can be

expressed as

Γ̃ = ζ(y,A,Θ), (3.9)

where Θ is the desired optimal parameter to be trained for support identification pro-

cess. As a basic unit, we use a residual block (RB) to facilitate the residual learning

framework to ease the training of deep networks and stack them to construct the overall

networks.

Residual Block

In the RB, we put two FC layers with batch normalization and ReLu for activation

function. Before operation of RB, we concatenate the input of the current RB with

the sensing matrix. For the residual learning framework, before passing the activation

function of the last layer, we add the output of the previous RB (also the input of the

current RB). With the help of the identity mapping connection for the deeper network,

another approach to make the network to have the lager representation capacity is

to increase the network width (or dimension) [19]. We simply increase the network

width by 10N in each layer of RB to increase the layer-wise representation capacity.

The detailed structure of RB is depicted in Fig. 3.3.

One interesting point to find is that due to the residual learning framework in RB,

the entire structure is similar to that of unfolding the conventional iterative sparse

recovery algorithm. To be specific, one single RB operation in the deep-SVD is similar

to a single iteration in OMP. In OMP as described in Table 2.2, the residual calculated

in the previous iteration is used in the next iteration for the support identification. In

deep-SVD, let y be the input of the current RB andH(y,A) be the underlying desired

20

function. From (3.8), our underlying desired functionH(y,A) is given by

H(y,A) = h(y) + F(y,A,Θ)

= h(y)−F(y,A,Θ′)

= y −F(y,A,Θ′), (3.10)

where F(y,A,Θ′) = −F(y,A,Θ) = y − H(y,A) is the residual mapping using

learning parameters Θ′. This implies that the underlying desired function H(y,A) is

the residual of RB and also the input of the next RB.

The difference between OMP and the proposed deep-SVD comes from the learn-

able parameters. As mentioned in 3.1, the fundamental weakness of the greedy-based

algorithms like OMP is that their performance is affected by the inner correlation of

the sensing matrix. Thus, using the sensing matrix with the bad property for every

iteration is likely to pick the wrong support. This motivates us to design a network

structure that can alleviate the bad property of the given sensing matrix by taking

learnable parameters. From (3.10), we fit the residual mapping F(y,A,Θ′) which is

parameterized by Θ′ at each RB. By taking Θ′, deep-SVD gives more flexibility than

conventional greedy algorithms that use a fixed sensing matrix at every iteration. Let

A′ = Q(A,Θ′) be a abstract concept of learned sensing matrix obtained from learn-

ing process of RB. We call it abstract because the RB is composed of multiple layers

and non-linear activation functions, making it impossible to represent a single matrix.

Using the RIP constnat, if we can find the appropriate parameters Θ′ that satisfies

δk[A
′] ≤ δk[A], (3.11)

we can estimate the sparse vector more accurately than the conventional. From the

empirical results in 4, we can observe that the proposed deep-SVD outperforms the

conventional greedy algorithms which imply that the learned parameters actually help

to alleviate the inner coherency of the sensing matrix. Thus, in most cases, the learned

sensing matrix A′ satisfies (3.11).

21

To construct the overall network, we stack multiple RBs and put an another FC

layer at last which outputs N -dimentional vector. For multi-class and multi-label clas-

sification, the softmax layer generates N values representing the probability of being

the support element,

softmax : σ(r)n =
ern∑N
n=1 e

rn
(3.12)

For support identification at the actual packet decoding process, we take positions of

k largest probable elements among N values. Fig. 3.3 depicts the entire structure of

deep-SVD.

22

Figure 3.3: Network structure of deep-SVD for short packet decoding

23

Chapter 4

SIMULATION

4.1 Dataset and Simulation Setup

In this section, we examine the performance of the proposed deep-SVD scheme. Our

simulation is based on the single user orthogonal frequency division multiplexing

(OFDM) systems. As a channel model, we use AWGN and the fading channel with

l channel taps. For comparison, we used conventional SVC with OMP for the decod-

ing process. We also investigate the performance of the PDCCH of LTE-Advanced

system, and AWGN lower bound [8]. In the simulation, we generate a single random

binary spreading codebook that has specific mutual coherence and fixed it for both

training and testing. Mutual coherence µ[A], the largest off-diagonal elements in the

Gram matrix ATA, is an another popularly used measurements that quantify the co-

herence properties of the sensing matrix[10]. Similar to the RIP constant, the smaller

the µ[A], the smaller the coherency. For modulation, we use a QPSK signal, thus, the

number of supports k is 2. We apply L(= 8) times repetition which is commonly used

in URLLC for guaranteed reliability. We use BLER of the codeblocks as a performance

measure.

For the dataset, we generate numerous sparse pattern based on (2.4). We used

{y,A} for input data and s for label. To process the sensing matrix A, we simply

24

reshape it to a single vector. We set the learning rate to 0.0001, the size of a batch

to 10000, and stack 6 RBs. The simulation environment is implemented using the

tensorflow, a popular deep learning library [20]. In order to process the complex value

c ∈ CN , we merge the real part Re{c} ∈ RN and imaginary part Im{c} ∈ RN intoRN

IN

 ∈ R2N .

4.2 Simulation result

In Fig. 4.1, we investigate the BLER performance of the proposed deep-SVD methods

and competing schemes under AWGN channel condition. We set m to 42, N to 96,

µ[C] to 0.619, and L to 8. We observe that the proposed deep-SVD technique outper-

forms the conventional SVD decoding and the PDCCH schemes, achieving 1dB gain

over the conventional SVD decoding and about 4dB gain over the conventional PD-

CCH at 10−5 BLER point. From this results, the learned parameters actually help to

alleviate the inner coherency of the given sensing matrix.

The training issue in the proposed deep-SVD is that in the fading channel model

the sensing matrix A = HC changes due to channel statistics. When the randomness

of the received signal is high, learning parameters might not converge and thus the test

performance of the learned network would be poor. To reduce the degree of random-

ness, we assume the number of channel tap is small. This is reasonable assumption for

the short packet transmission [21]. In this paper, we set the number of channel tap to 2.

In Fig. 4.2, we investigate the BLER performance under the fading channel condition.

We setN to 40,m to 20, µ[C] to 0.73, and L to 8. Even in the fading channel scenario,

we observe that the proposed deep-SVD technique achieves about 4dB gain over the

conventional SVC decoding at 10−5 BLER point.

In Fig. 4.3, we evaluate the BLER performance of the SVC decoding and the deep-

SVD as a function of SNR for various measurement size (m = 30, and 42). We can

observe that as the measurement size decreases, the degree of performance degradation

25

becomes smaller in the proposed deep-SVD at 10−5 BLER point. This demonstrates

that the proposed deep-SVD method is more robust in terms of resource limitation.

In Fig. 4.4, we evaluate the BLER performance for more smaller data information

with m = 20 and N = 40, 50. We observe that the proposed deep-SVD technique

outperforms the conventional SVD decoding achieving more than 8dB gain over the

conventional SVD decoding at 10−5 BLER point.

One another advantage of using a learning-based scheme over a linearly operating

conventional scheme is that we can utilize the ensemble technique. The ensemble tech-

nique uses multiple learning models to obtain better predictive performance than could

be obtained from any of the constituent learning models alone [16]. In this simulation,

we separately trained three different deep-SVD for the ensemble. In Fig. 4.5, we can

observe that through the ensemble technique we could achieve 3dB gain over single

deep-SVD at 10−5 BLER point.

26

-12 -10 -8 -6 -4 -2 0

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

B
LE

R

m = 42, N = 96, AWGN, 8 repetition

Lower bound
Deep-SVD
SVC decoding (OMP)
PDCCH

Figure 4.1: BLER performance as a function of SNR for AWGN channel

27

5 10 15 20 25 30 35 40

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

B
LE

R

m = 20, N = 40, Fading Channel, 8 repetition

SVC decoding
Deep-SVD

Figure 4.2: BLER performance as a function of SNR for the fading channel

28

-12 -10 -8 -6 -4 -2 0

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

B
LE

R

N = 96, AWGN, 8 repetition

SVC decoding (m = 42)
Deep-SVD (m = 42)
SVC decoding (m = 30)
Deep-SVD (m = 40)

Figure 4.3: BLER performance for different measurement size for AWGN channel

29

-8 -6 -4 -2 0 2 4 6 8

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

B
LE

R

m = 20, AWGN, 8 repetition

SVC decoding (N = 40)
Deep-SVD (N = 40)

Figure 4.4: BLER performance as a function of SNR for AWGN channel

30

5 10 15 20 25 30 35

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

B
LE

R

40 seq, m = 20, Fading channel, 8 repetition

Deep-SVD (ensemble = 1)
Deep-SVD (ensemble = 3)

Figure 4.5: BLER performance with ensemble technique for the fading channel

31

Chapter 5

CONCLUSION

In this paper, we have proposed the DNN-based decoding schemes for URLLC. The

key idea behind the proposed deep-SVD is to reformulate the SVC decoding process as

a multi-label classification where the non-zero positions of the sparse vector are labels

to be classified from received SVC encoded vector. To perform supervised learning,

we construct the dataset which is composed of the received signal as the input and

the SVC encoded sparse vector as the output. We built the entire model using resid-

ual mapping framework for stable training of deep networks. We demonstrated from

the numerical evaluations that the proposed deep-SVD scheme is very efficient in the

URLLC scenario in terms of high reliability. In this paper, we restricted our atten-

tion to the wireless communication scenario but we expect that there are many other

applications that can be applied where the principle of CS is used.

32

Bibliography

[1] ITU-R Rec. M.2083-0, “IMT vision - Framework and overall objectives of the

future development of IMT for 2020 and beyond,” Sept. 2015.

[2] 3GPP Technical Report 38.913, “Study on scenarios and requirements for next

generation access technologies (Release 14),” v14.2.0, 2017.

[3] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Ultra reliable and low latency

communications in 5G: Physical layer aspects,” IEEE Wireless Commun., vol. 26,

no.2, pp.100-107, June, 2018.

[4] 3GPP Technical Report 38.913, “Study on scenarios and requirements for next

generation access technologies (Release 14),” v14.2.0, 2017.

[5] C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic, and

A. Dekorsy, “Massive machine-type communications in 5G: Physical and MAC-

layer solutions,” IEEE Commun. Mag., vol. 54, no. 9, pp. 59-65, Sep 2016.

[6] S. Sesia, M. Baker, and I. Toufik, LTE-the UMTS long term evolution: from the-

ory to practice, John Wiley & Sons., 2012.

[7] 3GPP Technical Report 38.802, “Study on new radio access technology physical

layer aspects (Release 14),” v14.1.0, 2017.

33

[8] H. Ji, S. Park, and B. Shim, “Sparse vector coding for ultra reliable and low

latency communications,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp.

6693-6706, Oct 2018.

[9] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.

1289-1306, April 2006

[10] J. W. Choi, B. Shim, Y. Ding, B. Rao, and D. I. Kim, “Compressed sensing for

wireless communications: Useful tips and tricks,” IEEE Commun. Survey and

Tutorials, vol.19, pp.1527-1550, Feb 2017.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105.

[12] K.Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal nets,” Neural networks, vol. 2, no. 5, pp.359- 366, 1989.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Computer Vision and Pattern Recognition (CVPR), 2016.

[14] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and

inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207-

1223, Aug. 2006.

[15] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via

orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-

4666, Dec. 2007.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, MA:

MIT Press, 2016.

34

[17] V. Nair and G. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” In Proceedings of the 27th International Conference on Machine Learn-

ing (ICML-10), pp. 807-814, 2010.

[18] S. Loffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv:1502.03167 [cs], Mar 2015.

[19] S. Zagoruyko, N. Komodakis, “Wide residual networks” in , Nov. 2016, [online]

Available: https://arxiv.org/abs/1605.07146.

[20] M. abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous

systems,” 2015, software available from tensorflow.org. [Online]. Available:

http://tensorflow.org/

[21] D. Tse and P. Viswanath, Fundamentals of wireless communication, Cambridge

University Press, 2005.

35

초록

URLLC (Ultra Reliability and Low Latency Communication)는 미래의 초연결

산업분야에서주목받는 5G서비스카테고리중하나이다. 3GPP (Third Generation

Partnership Project)는 URLLC을 실현하기 위한 요구조건으로 1ms 전송 시간 내에

99.999%의정확도로패킷을전송해야한다는다소까다로운기준을설정하였다.현

재의 4G무선통신시스템에서는복잡하고긴코드블록을전송함으로써코딩이득

을최대화하도록설계하여정확성을높이지만그로인하여지연시간이길어진다는

단점이 있다. 최근 URLLC를 대상으로 짧은 패킷 전송을 위한 SVC (Sparse Vector

Coding)기법이제안되었다. SVC에서의인코딩은단순한희소신호매핑및확산을

하여패킷을전송하며디코딩은간단한희소벡터복원알고리즘으로대체한다.이

논문에서는 URLLC의높은요구조건을만족하기위해서깊은신경망기반의 deep

sparse vector decoding (Deep-SVC) 기법을 제안한다. 이를 위해서, 우리는 SVC의

디코딩과정을다중레이블분류 (multi-label classification)으로재구성한다.그리고

깊은 신경망을 구성하여 코드북 내의 높은 상관관계를 학습하여 SVC 디코딩 과정

의 성능을 끌어올린다. 실험을 통하여 우리는 제안하는 Deep-SVD 기법이 기존의

SVC디코딩기법보다더좋은정확성을갖음을보인다.

주요어: 5G, URLLC, Short packet transmission, SVC, Deep neural network, Com-

pressed sensing

학번: 2017-22314

36

ACKNOWLEGEMENT

2년이라는짧다면짧고길다면길다할수있는석사과정을마치게되었습니다.

그과정에서많은사람들에게도움을얻어이렇게감사의글을남깁니다.

먼저 저의 지도교수이신 심병효 교수님께 감사 드립니다. 부족한 저를 받아주

시고 2년간세심한지도와끝없는지원으로제가이렇게무사히학위과정을마치게

되었습니다. 연구 이외에도 항상 좋은 말씀으로 격려해주시고 사회를 살아가는 방

법에대한주옥같은말씀을많이해주셔서앞으로의대학원이후의인생에서정말

큰도움이될것같습니다.다시한번감사드립니다.

2년간 연구실에서 많은 사람들을 만났습니다. 제 2의 지도교수님처럼 많은 것

을 알려주신 형주형, 연구실의 엄마 같은 존재인 선호형, 301동 주민 상태형, 가장

부러운원준이형,유일한동갑내기술친구구영이,세상에서제일착한진홍이,동기

이지만 연구에 있어서는 선배처럼 알려주고 같이 고민해주는 우수 연구자 준한이,

몸도 마음도 듬직한 현규, 갓승년이, 범접할 수 없는 5차원 매력 광진이, 그냥 이상

한용준이,알쓸신잡준원이,뉴욕커선우,힘내라루옹,훠궈좋아하는탕박사까지

좋은인연으로 2년간재미있게잘지내서행복했고감사합니다.

마지막으로 항상 저를 응원해주시고 울타리처럼 지켜주는 사랑하는 가족들에

게감사합니다.어떤일이든제편에서서함께해주었기에 2년간든든하게생활할

수있었습니다.그리고사랑하는여자친구이수현에게도감사합니다.

37

	1 INTRODUCTION
	1.1 Introduction .

	2 Short Packet Transmission Using Sparse Vector Coding
	2.1 SVC encoding .
	2.2 SVC decoding .
	2.3 Basic Compressed Sensing .

	3 Sparse Vector Decoding via DNN
	3.1 Basic Deep Learning .
	3.2 Deep Sparse Vector Decoding (Deep-SVD)

	4 SIMULATION
	4.1 Dataset and Simulation Setup .
	4.2 Simulation result .

	5 CONCLUSION
	Abstract (In Korean)
	Acknowlegement

<startpage>10
1 INTRODUCTION 1
 1.1 Introduction . 1
2 Short Packet Transmission Using Sparse Vector Coding 5
 2.1 SVC encoding . 6
 2.2 SVC decoding . 10
 2.3 Basic Compressed Sensing . 11
3 Sparse Vector Decoding via DNN 14
 3.1 Basic Deep Learning . 16
 3.2 Deep Sparse Vector Decoding (Deep-SVD) 20
4 SIMULATION 24
 4.1 Dataset and Simulation Setup . 24
 4.2 Simulation result . 25
5 CONCLUSION 32
Abstract (In Korean) 36
Acknowlegement 37
</body>

