creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short
Packet Transmission

TAIE AL WA A5 §I9 e AARL o] 3t
54 WE 2o Tt AT
BY

LEE SEUNG-HWAN

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



M.S. THESIS

Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short
Packet Transmission

TAIE AL WA A5 §I9 e AARL o] 3t
54 WE 2o Tt AT
BY

LEE SEUNG-HWAN

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Sparse Vector Decoding using Deep
Neural Network for Ultra Reliable Short

Packet Transmission

20194 24

or
_u_o

ﬁ_n

a7 4

oR

20194 2




Abstract

Ultra-reliable and low latency communication (URLLC) is one of the prospective
service categories in 5G to be useful in the future hyper-connective industrial field.
To support its requirements, 3rd Generation Partnership Project (3GPP) sets an ag-
gressive standard that a packet should be delivered within 1 ms transmission period
with an accuracy of 99.999%. Since the current 4G systems designed to maximize
the coding gain by transmitting capacity achieving long codeblock resulting in an in-
crease of the latency. A recently proposed approach for the short packet transmission is
sparse vector coding (SVC). In SVC, encoding is done by simple sparse mapping and
spreading to formulate the system model into an underdetermined system and replaces
the decoding process with a simple sparse recovery algorithm. In this paper, we pro-
pose a deep neural network-based approach, referred to as deep sparse vector decoding
(deep-SVD), to enhance the performance of SVC to better meet the URLLC’s extreme
requirements. To this end, we reformulate the SVC-decoding process as a multi-label
classification and build the network to learn the highly correlated relationship within
codebook. Numerical results demonstrate that the proposed deep-SVD outperforms

the conventional SVC decoding in both reliability and latency.

keywords: 5G, URLLC, Short packet transmission, SVC, Deep neural network,

Compressed sensing

student number: 2017-22314
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Chapter 1

INTRODUCTION

1.1 Introduction

In preparation of the upcoming fourth industrial revolution, hyper-connectivity is em-
phasized as a core value. Information exchange is spreading beyond the daily life of
individuals and is being extended to the whole area of the industry. In this change,
the next-generation infrastructures require forms of communication services and ap-
plications that are different from traditional human-centric communication in terms of
latency, reliability, energy efficiency, and connection density. Wireless systems from
2G to today’s 4G have been focused on increasing higher data rates. While this trend is
expected to continue in the fifth generation (5G) wireless systems, there are strong in-
dications that 5G will not only be faster than 4G but will also provide services focused
on specific requirements. In response to these needs, International Telecommunica-
tion Union(ITU) has classified 5G services into three categories: ultra-reliable and low
latency communication (URLLC), massive machine-type communication (MMTC),
and enhanced mobile broadband (eMBB) [1]. Each of these services requires extreme
performance with respect to lower latency & higher reliability, massive connectivity,
and better energy efficiency, respectively. Since the current radio access mechanism

cannot support these changes, 3rd Generation Partnership Project (3GPP) introduced



a new air interface referred to as NewRadio (NR) [2]. The primary goal of NR is to
bring entirely new features and technologies that are not compatible with current 4G
systems.

Among the three services mentioned, URLLC has attracted much attention in in-
dustries with its potential in applications where super real-time and reliable connec-
tions are required, e.g. remote medical surgery, factory automation, smart cities, and
autonomous vehicle [3]. This is because the main challenging requirements in URLLC
is ultra-low latency and ultra high reliability. In order to support this new service cate-
gory, according to the 3GPP standards, the desired performance value for URLLC are
the low latency of less than 5ms and accuracy of 99.999% (= 105 error rate) [4]-[5].
To support the reliability in current 4G systems, complex channel coding scheme (e.g.
convolutional coding and turbo coding) is done to maximize the coding gain by trans-
mitting capacity achieving long codeblock resulting in an increase of the latency while
targeting BLER performance is 10~2 to 1073 [6]. One thing to note is that the infor-
mation in the service areas that URLLC expects to be utilized is a short packet unit
of information such as control type information (e.g., move up/down, speed up/down,
and start/stop) or sensing information (e.g. temperature, moisture, and pressure) [7].
Therefore, the coding schemes currently applied in 4G systems are not efficient in the
context of URLLC.

Recently, an approach to support a short packet transmission based on the principle
of compressed sensing, called sparse vector coding (SVC), has been proposed [8]. The
main idea of SVC is that the data information is mapped into the position of a sparse
vector and then transmitted after the spreading to formulate the system model into
an underdetermined system. Also, the decoding process is done by finding the non-
zero positions of the sparse vector using any sparse recovery algorithms also known
as compressed sensing [9]-[10]. It has been shown that the BLER of SVC outperforms
the conventional channel coding schemes. While there exist numerous compressed

sensing algorithms, a greedy-based approach is widely used. One potential problem



of the conventional greedy algorithms is that the incorrect non-zero index would be
selected when the internal correlation of the sensing matrix is high, and consequently
leads to the failure of the packet decoding.

In recent studies, the deep learning technique has shown tremendous performance
in classification problems [11]. An aim of this paper is to enhance the performance of
SVC to better meet URLLC’s extremely high performance requirements by applying
deep neural network (DNN). To this end, we reformulate the SVC decoding process as
a multi-label classification where the non-zero positions of the sparse vector are labels
to be classified from received SVC encoded vector. The proposed scheme, referred to
as deep sparse vector decoding (deep-SVD), is a supervised learning of which its input
is the received signal and the output is the SVC encoded sparse vector. In other words,
the proposed scheme utilizes the powerful ability of DNN as a function approximator
to approximates the sparse recovery algorithm [12].

The main structure of deep-SVD is to utilize the residual learning framework
which was first introduced in Resnet [13]. Due to the residual learning framework,
the entire networks are similar to unfolding the conventional iterative sparse recovery
algorithms. The differences and also the advantage of the proposed deep-SVD is to
put the learnable parameters which give more flexibility than conventional sparse re-
covery algorithms that use a fixed sensing matrix at every iteration. This implies that
the optimal parameters achieved during the training phase of networks might help to
alleviate the disruptive correlation of the sensing matrix. In other words, distinguish-
ing between highly correlated codewords in the codebook is more efficient. Therefore,
Deep-SVD not only just approximates the sparse vector recovery functions but also
performs codebook adaptive support detection by learning those correlations compared
to the conventional linearly operating compressed sensing algorithms. In a realistic
scenario, deep-SVD is pre-trained at the receiver by transmitting the virtual data sig-
nals for training before the data transmission is conducted. At the actual data transmis-

sion, pre-trained deep-SVD consists of simple matrix multiplication, making it more



suitable for low latency requirements. From the numerical evaluations, we demonstrate
that the proposed deep-SVC technique outperforms the conventional decoding scheme

based on a greedy algorithm by a large margin in terms of high reliability.



Chapter 2

Short Packet Transmission Using Sparse Vector Coding

In this section, we briefly overview SVC for short packet transmission. We consider
the single-user OFDM system model. In the conventional 4G systems, the transmit
vector x € C™*! is generated via the channel coding and symbol mapping of data

C™*1 is given by

information. After passing the channel, the received vector y &
y = Hx + v, 2.1

where H = diag(h) is the diagonal matrix where h; is the channel frequency response

at the i-th resource, and v ~ CN(0, 021) is the additive Gaussian noise.



2.1 SVC encoding

The first step of sparse vector encoding process is to map the information into the
positions of a sparse vector s. Let w be the b-bit data information, then the sparse
vector mapping o : B® — B maps w to k-sparse binary vector s € B which has k

non-zero position among N. In this mechanism, when we choose & out of N positions,
we can encode |log, |. For example, if s is 9-dimentional binary vector with the

sparsity k = 2, we can encode 5-bit data information, then (see exmple in Table. 2.1)

«

w=[00000 % s=[000000011]

w=[00001 % s=[000000110]

w=[11111 &% s=[110000000].

After the sparse mapping, the next step is to spread the sparse vector s into m re-
sources using the spreading codebook C. As proposed in [3], we allocate the resources
along the frequency axis, therefore, the transmission latency is efficiently minimized
(see Fig. 2.1). As a result of the spreading process, the transmit vector x takes the
distinctive form since the vector s is sparse. For example, if £k = 2 and its non-zero

position is first and third, the transmit vector x is given by

x = Cs
= s831C€1 + S3C3, 2.2)
where c; is the spreading codeword from the codebook matrix C = [c] ¢z -+ cy].

It is worth mentioning that since the positions of non-zero elements are chosen ran-
domly, the codebook matrix C should be designed such that the transmit vector x
contains enough information to recover the sparse vector s irrespective of the selection
of the non-zero positions. In this work, we consider random Bernoulli sequences for
the codebook design for simplicity. Additional advantages for considering Bernoulli

I ey 1
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Table 2.1: Example of mapping between the information w and the sparse vector s [8]

Input
Size of sparse vector N,
information vector s.
Output

Sparse vector s,

a=20

fori=2to N do
forj=1toi—1do
if @ = (W) (10
s=(2"+27)
end if

a=a+1

end for

end for

Note: (W) (1) is a decimalexpression of
binary vector w and (W), is binary

expression of integer w.



sequences is that the modulation can be performed simultaneously with spreading. For
example, let’s consider QPSK modulation for high reliability in a practical URLLC
scenario. For QPSK modulation, we set £ = 2 for the sparse mapping and put one
of the non-zero elements into 1 and the other into 1j. From (2.2), we can easily
see that the elements of the transmit vector x are mapped to the QPSK symbol (i.e.,

i€ {1+ 1,1 1j, -1+ 15, -1 - 15}.
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2.2 SVC decoding

For the short packet transmission, it is natural to consider resource size m smaller than
information size N. As a result, the overall system can be modeled as an underdeter-
mined sparse system. Therefore, the compressed sensing algorithm, a popular scheme
in sparse vector recovery problem in the underdetermined system, can be utilized for
the decoding process. After transmitting SVC encoded vector, the received signal y is

given by

y = HGCs+v 2.3)

h1 | ‘ 51 U1

Il
A%
(¢]
2
+

P, | | SN Um
The benefit of SVC is that the decoding process of the information vector is done by the
identification of non-zero positions. This also implies that the transmission power or
information is concentrated on the non-zero elements of an information vector. Thus,
effective power per symbol is much higher compared to the conventional system in
which the transmission power is uniformly distributed across entire symbols.

For convenience, (2.3) can be expressed as

y = HGCs+v

= As+v 2.4)
where A € C™*¥ is the sensing matrix of the underdetermined system. The corre-

sponding SVC decoding process can be formulated as the support identification prob-

lem as

. 1
= in — —A 2 2.5
arg min 5 |y — Arsr |3, (2.5)

where I is the set of estimated support. For given A and k, any greedy sparse recovery

algorithms can be used.

10



2.3 Basic Compressed Sensing

In this section, we briefly overview the basic of compressed sensing. Compressed sens-
ing (CS) technique attract much attention as the importance of restoring the original
signal with only a small number of observation are increasingly emphasized [9]. These
problems have been studied and applied to various applications such as wireless mo-
bile communication [10], image processing, machine learning, and radar signal.

The basic principle of compressed sensing is to restore the original signal to a small
number of measurement values when the original signal is a sparse signal or when it
is possible to convert it into a sparse signal at a specific basis. We measure the sparsity
by counting the non-zero elements in the signal. For example, we say sparsity k of
s=[3001000]is 2. Also, we call the set of non-zero element position as support I'
(Ts = {1,4})

We begin with a linear system having m equations and /N unknowns given by
y = As, (2.6)

where y € R™ is the measurement vector, s € RY is the desired signal vector to be
recovered, and A € R™*N _ In the overdetermined system (m > N), least squares

(LS) is the well known solution that is closest to the original signal:
LS : s* = (ATA) ATy, (2.7)

While finding the solution in an overdetermined scenario is straightforward and
fairly accurate, in the underdetermined system (m < N), the problem is challenging
since one cannot find out the unique solution in general. However, the fact that the
original signal is sparse gives us a lot of hints. For example, if I's = {1,4}, (2.6) can

be expressed as
y = s1a1 + sqay,, (2.8)

where a; is the ¢-th column vector of A. Thus, the problem turns to overdetermined

system and the recovery of s is straightforward.

11



Table 2.2: The OMP Algorithm

Input A, y, and sparsity level k.
Initialize iteration counter ¢t = 0,
estimated support 'Y = (),
and residual vector r’ = y.
While t< K do
t=t+1;

(Identify) +' = argmax |[(r*~1 a;)|

(Augment) T? = Tt-1 U {~};

(Estimate) 8! = argmin [y — Au
u:supp(u)=I't

(Update) r' =y — Asl;

25

End
Output T and s.

12



While there are numerous techniques to solve the underdetermined sparse system,
the greedy algorithm is widely used for its simplicity and straightforwardness. By the
greedy algorithm, we mean an algorithm to make a local optimal selection at each
time with a hope to find the global optimum solution in the end. The most popular and
widely used algorithm is perhaps the orthogonal matching pursuit (OMP) [15]. The
principle of the OMP is that we hope to find the one most probable support at every
iteration. Thus, the iteration time is only k. At ¢-th iteration, we check the correlation
between the residual r’ (r® = y) and A and pick the support that corresponds to the
largest correlation. After that, we estimate the signal &’ using supports we have found
so far. Then, we update the residual by removing the contribution of 8. A more specific
process is summarized in Table. 2.2.

One potential problem of the conventional greedy algorithms is that the incorrect
index (an index not in the true support) would be selected when the internal correlation
of A is high. To be specific, if two column vectors of A are highly correlated, inner
products between the residual r and column vectors are similar. In the worst case, for
example in a noisy scenario, distinguishing between two columns is challenging. One
of the frameworks that quantify the coherence structure of the sensing matrix is the
restricted isometry property (RIP) constant [14]. Given the sensing matrix A, the RIP

constant d;[A] € [0, 1) is the smallest value that satisfies
(1= ax[ADIIx[[3 < [|Ax][3 < (1 + 6k [A])]|x[3, (2.9)

forall x € {x : ||x||o < k}. 6x[A] indicates how well the system preserves the energy
of the original sparse signal. If 0;[A] ~ 0, the system matrix is close to orthonormal.
Clearly, the smaller the value of the RIP constant J;[A], the closer any sub-matrix
of A with k£ columns is being orthogonal. Therefore, the sensing matrix with smaller

0 [A] achieves the better sparse vector estimation.

13



Chapter 3

Sparse Vector Decoding via DNN

As mentioned, the main task of the SVC decoder is to identify the support of the sparse
vector. Considering the decoding process from another point of view, we can reformu-
late the problem as a multi-label classification that classifies k classes out of N total.
Recently, deep learning has achieved tremendous success in classification problems.
In this work, we propose the deep neural network architecture, henceforth referred to
as deep-SVD, which performs the sparse vector recovery by classifying supports. For
a supervised learning, we set the input data as received signal and the non-zero posi-
tions of the sparse vector as labels to be classified. The overall process of the deep-
SVD-based short packet transmission is depicted in Fig. 3.1. In this section, we briefly

review the basic deep learning and explains the detailed architecture of deep-SVD.

14
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3.1 Basic Deep Learning

DNN is a neural network that stacks multiple hidden layers deeply to perform the
specific functional operation for example classification, clustering, regression, and de-
cision. Each hidden layer consists of multiple neurons.

Fully-connected (FC) layer, a basic unit of the DNN, is given by [16]
r; = oy(Wirp_1 + by) (3.1

where ([-1)-th layer r;_; is mapped to [-th layer r; with training parameters W; €
RNxNi—1 and b; € RM which are weight and bias, respectively. o is an activation
function to introduce a non-linearity to the layer. Some commonly used activation

functions are sigmoid and rectified linear unit (ReLU) function given by [17]

_ 1
l4eTi
ReLU : o(r;) = max(0,7;). (3.3)

sigmoid : o(r;) (3.2)

Training is a process to obtain the optimal parameters @ = {W, b} from the train-
ing data set by minimizing the loss function. Commonly used loss functions include
the mean-squared error (MSE) and cross-entropy (CE). Given input as y and output as

x, MSE and CE are expressed as
MSE : L(x,y,0)=|x-((y.0) 3 (3.4

K
CE : L(X,y,@)z—Za:klogC(y,@)k (3.5)
k=1

where ( is the entire process of DNN as a function and K is the number of class in
classification problem. Also, parameters are updated by the stochastic gradient descent
(SGD) and backpropagation.

Batch normalization is one of the most powerful methods or layer that alleviate
the difficulty of training very deep models [18]. Normalization is a well known pre-

processing technique in data pre-processing which helps network training convergence

16



Table 3.1: Batch Normalization

Input Values of = over a mini-batch: B = {z1,_m}.
Parameters to be trained: vy, .

Output y;.

1 m
1B 4= 5 D oieq Ti

‘7123’ A % oy (@ — 1B)?

5. Li—HB
T; =

v J%+E
yi =& + B

faster. Taking advantage of these benefits, batch normalization applies a feature-wise
normalization at each layer, especially before activation function, thus, it reduces the

internal covariate shift problem.:

(K) _ E[z®)
g0 = 2 Bl (3.6)
Var[z(%)]

where k denotes the feature index. Also, in order to address the representation capacity
decrease problem by simple normalization, authors in [18] introduce a pair of trainable

parameters «y and (3, which scales and shift the normalized value:
y® =2® + (3.7)

Table. 3.1 summarizes the procedure for batch normalization.

17



Resnet is a network based on the residual learning framework which showed a
tremendous improvement in classification performance in the ImageNet Challenge
[13]. The main idea of residual learning framework is to put the direct identity con-
nection between few stacked hidden layers. Instead of hoping every few stacked layers
directly fit the desired function, the authors explicitly let these layers fit a residual
mapping function, which is assumed to be easier for optimization (See Fig. 3.2). To
be specific, denoting the input as y and the underlying desired function as H(y), the
residual mapping is defined as F(y) = H(y) — y, and a residual block structure is

thus:

H(y) = h(y) + F(y, ©), (3.8)

where h(y) is an identity mapping: h(y) = y. Due to this identity mapping, it is easy
to optimize the residual mapping function F(y) than to optimize the original under-
lying desired function H(y). Therefore, it is shown in [resnet] that identity mapping

connection eases the training of very deep models.

18



x=H(y) =y+F(y)

Figure 3.2: Residual learning framework: Direct fitting of desired function (left) and

fitting of residual mapping function (right)
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3.2 Deep Sparse Vector Decoding (Deep-SVD)

Our goal is to train the deep-SVD as a powerful function approximator to estimate
the sparse vector. In this regard, the support identification problem in (2.5) can be

expressed as
I=((y,A,0), (3.9)

where O is the desired optimal parameter to be trained for support identification pro-
cess. As a basic unit, we use a residual block (RB) to facilitate the residual learning
framework to ease the training of deep networks and stack them to construct the overall

networks.

Residual Block

In the RB, we put two FC layers with batch normalization and ReLu for activation
function. Before operation of RB, we concatenate the input of the current RB with
the sensing matrix. For the residual learning framework, before passing the activation
function of the last layer, we add the output of the previous RB (also the input of the
current RB). With the help of the identity mapping connection for the deeper network,
another approach to make the network to have the lager representation capacity is
to increase the network width (or dimension) [19]. We simply increase the network
width by 10V in each layer of RB to increase the layer-wise representation capacity.
The detailed structure of RB is depicted in Fig. 3.3.

One interesting point to find is that due to the residual learning framework in RB,
the entire structure is similar to that of unfolding the conventional iterative sparse
recovery algorithm. To be specific, one single RB operation in the deep-SVD is similar
to a single iteration in OMP. In OMP as described in Table 2.2, the residual calculated
in the previous iteration is used in the next iteration for the support identification. In

deep-SVD, let y be the input of the current RB and #(y, A ) be the underlying desired

20



function. From (3.8), our underlying desired function H(y, A) is given by

H(y,A) = h(y)+F(y,A )
= h(y) - f(y7Aa G)/)

= y—F(y, A ©), (3.10)

where F(y,A,0') = —F(y,A,®) =y — H(y, A) is the residual mapping using
learning parameters ©'. This implies that the underlying desired function H(y, A) is
the residual of RB and also the input of the next RB.

The difference between OMP and the proposed deep-SVD comes from the learn-
able parameters. As mentioned in 3.1, the fundamental weakness of the greedy-based
algorithms like OMP is that their performance is affected by the inner correlation of
the sensing matrix. Thus, using the sensing matrix with the bad property for every
iteration is likely to pick the wrong support. This motivates us to design a network
structure that can alleviate the bad property of the given sensing matrix by taking
learnable parameters. From (3.10), we fit the residual mapping F(y, A, ©®') which is
parameterized by ©' at each RB. By taking @', deep-SVD gives more flexibility than
conventional greedy algorithms that use a fixed sensing matrix at every iteration. Let
A’ = Q(A, ©’) be a abstract concept of learned sensing matrix obtained from learn-
ing process of RB. We call it abstract because the RB is composed of multiple layers
and non-linear activation functions, making it impossible to represent a single matrix.

Using the RIP constnat, if we can find the appropriate parameters @’ that satisfies
Sk[A'] < O[A], (3.11)

we can estimate the sparse vector more accurately than the conventional. From the
empirical results in 4, we can observe that the proposed deep-SVD outperforms the
conventional greedy algorithms which imply that the learned parameters actually help
to alleviate the inner coherency of the sensing matrix. Thus, in most cases, the learned

sensing matrix A’ satisfies (3.11).

21



To construct the overall network, we stack multiple RBs and put an another FC
layer at last which outputs /NV-dimentional vector. For multi-class and multi-label clas-
sification, the softmax layer generates N values representing the probability of being

the support element,

Tn
softmax : o(r), = —x—— (3.12)

Zn:l e"‘n
For support identification at the actual packet decoding process, we take positions of
k largest probable elements among N values. Fig. 3.3 depicts the entire structure of

deep-SVD.
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Figure 3.3: Network structure of deep-SVD for short packet decoding



Chapter 4

SIMULATION

4.1 Dataset and Simulation Setup

In this section, we examine the performance of the proposed deep-SVD scheme. Our
simulation is based on the single user orthogonal frequency division multiplexing
(OFDM) systems. As a channel model, we use AWGN and the fading channel with
[ channel taps. For comparison, we used conventional SVC with OMP for the decod-
ing process. We also investigate the performance of the PDCCH of LTE-Advanced
system, and AWGN lower bound [8]. In the simulation, we generate a single random
binary spreading codebook that has specific mutual coherence and fixed it for both
training and testing. Mutual coherence p[A], the largest off-diagonal elements in the
Gram matrix AT A, is an another popularly used measurements that quantify the co-
herence properties of the sensing matrix[10]. Similar to the RIP constant, the smaller
the u[A], the smaller the coherency. For modulation, we use a QPSK signal, thus, the
number of supports & is 2. We apply L(= 8) times repetition which is commonly used
in URLLC for guaranteed reliability. We use BLER of the codeblocks as a performance
measure.

For the dataset, we generate numerous sparse pattern based on (2.4). We used

{y, A} for input data and s for label. To process the sensing matrix A, we simply

24



reshape it to a single vector. We set the learning rate to 0.0001, the size of a batch
to 10000, and stack 6 RBs. The simulation environment is implemented using the
tensorflow, a popular deep learning library [20]. In order to process the complex value

c € CV, we merge the real part Re{c} € R" and imaginary part Im{c} € R¥ into
RN
HN

e RV,

4.2 Simulation result

In Fig. 4.1, we investigate the BLER performance of the proposed deep-SVD methods
and competing schemes under AWGN channel condition. We set m to 42, N to 96,
1[C] t0 0.619, and L to 8. We observe that the proposed deep-SVD technique outper-
forms the conventional SVD decoding and the PDCCH schemes, achieving 1dB gain
over the conventional SVD decoding and about 4dB gain over the conventional PD-
CCH at 10~ BLER point. From this results, the learned parameters actually help to
alleviate the inner coherency of the given sensing matrix.

The training issue in the proposed deep-SVD is that in the fading channel model
the sensing matrix A = HC changes due to channel statistics. When the randomness
of the received signal is high, learning parameters might not converge and thus the test
performance of the learned network would be poor. To reduce the degree of random-
ness, we assume the number of channel tap is small. This is reasonable assumption for
the short packet transmission [21]. In this paper, we set the number of channel tap to 2.
In Fig. 4.2, we investigate the BLER performance under the fading channel condition.
We set N to 40, m to 20, 4[C] to 0.73, and L to 8. Even in the fading channel scenario,
we observe that the proposed deep-SVD technique achieves about 4dB gain over the
conventional SVC decoding at 10~° BLER point.

In Fig. 4.3, we evaluate the BLER performance of the SVC decoding and the deep-
SVD as a function of SNR for various measurement size (m = 30, and 42). We can

observe that as the measurement size decreases, the degree of performance degradation
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becomes smaller in the proposed deep-SVD at 10~ BLER point. This demonstrates
that the proposed deep-SVD method is more robust in terms of resource limitation.

In Fig. 4.4, we evaluate the BLER performance for more smaller data information
with m = 20 and N = 40, 50. We observe that the proposed deep-SVD technique
outperforms the conventional SVD decoding achieving more than 8dB gain over the
conventional SVD decoding at 10~° BLER point.

One another advantage of using a learning-based scheme over a linearly operating
conventional scheme is that we can utilize the ensemble technique. The ensemble tech-
nique uses multiple learning models to obtain better predictive performance than could
be obtained from any of the constituent learning models alone [16]. In this simulation,
we separately trained three different deep-SVD for the ensemble. In Fig. 4.5, we can
observe that through the ensemble technique we could achieve 3dB gain over single

deep-SVD at 10~° BLER point.
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Figure 4.1: BLER performance as a function of SNR for AWGN channel
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Figure 4.2: BLER performance as a function of SNR for the fading channel
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Figure 4.3: BLER performance for different measurement size for AWGN channel
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Figure 4.4: BLER performance as a function of SNR for AWGN channel
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Figure 4.5: BLER performance with ensemble technique for the fading channel
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Chapter 5

CONCLUSION

In this paper, we have proposed the DNN-based decoding schemes for URLLC. The
key idea behind the proposed deep-SVD is to reformulate the SVC decoding process as
a multi-label classification where the non-zero positions of the sparse vector are labels
to be classified from received SVC encoded vector. To perform supervised learning,
we construct the dataset which is composed of the received signal as the input and
the SVC encoded sparse vector as the output. We built the entire model using resid-
ual mapping framework for stable training of deep networks. We demonstrated from
the numerical evaluations that the proposed deep-SVD scheme is very efficient in the
URLLC scenario in terms of high reliability. In this paper, we restricted our atten-
tion to the wireless communication scenario but we expect that there are many other

applications that can be applied where the principle of CS is used.
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