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Abstract

Recent autonomous driving research has shown remarkable and promising results.
However, safe, sociable driving in an urban environment still has many challenges
ahead. For realizing safe, interactive driving in complex alley scenario which shares a
narrow area among traffic participants, It is essential to grasp each other’s intention.
Even in the same road environment, safe, and sociable driving policy may differ de-
pending on the intention of the traffic participant agents around the ego vehicle. But
understanding others intention and predicting their trajectories are complicated be-
cause each one basically considers multiple factors; road environment, state of their
surrounding traffic participants at the same time which realized as interaction.

In this thesis dissertation, we propose new trajectory prediction algorithm that con-
siders all the information what each of the traffic participants would consider when
they make a decision. By combining both each of history trajectories and grid map of
surroundings as a latent vector representation, it predicts all the future trajectories of
traffic participant agents around ego vehicle at once.

This dissertation suggests two main module that fuses spatial and temporal in-
formation effectively. We verify the effectiveness of network structure by testing on
the various driving scenario comparing with some network variants through quantita-
tive and qualitative evaluation. Also, the proposed network is verified by applying it
to public pedestrian trajectory prediction dataset to verify usability as a generalized

methodology and to compare it with other SOTA algorithms.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Over the past few years, researches for intelligent vehicles and autonomous driv-
ing vehicles have shown significant progress. In order for the autonomous vehicle to
drive safely, high-level of the core competencies software system are required, which
broadly categorized as 4 parts: perception, localization, planning, control.

Deep learning, one of the biggest recent trends in machine learning, have brought
revolutionary advances, especially perception in autonomous driving category. But,
there are still many challenges to utilize this effective feature learning framework into
planning, decision making in highly complex situation.

When human driver make decision while driving, we consider simply call it as
”surroundings”. But, this implies consideration of multiple information, for example,
road environment, traffic rule such as traffic light, road markers and traffic sign, status
and intention of the traffic participants such as vehicles, pedestrian around the ego-
vehicle. Also, in order for autonomous vehicle to be allowed as a substitute of the
human driver, it requires to be highly generalized as well, as we don’t have a limitation
when considering a number of traffic participants, even in the new scene. Since all

the traffic participants are interacting at the same time, existing in the same complex



scene, grasping its common understanding of surroundings among traffic participants

is difficult but necessary for not to harm the traffic flow.

Figure 1.1: Typical example of “First mover conflict”

Figure 1.1 shows one kind of typical situation requires autonomous vehicle to inter-
act with traffic participants. The vehicle on the right(denoted as B) and ego vehicle(A)
on the bottom tries to go to the upper side of the road in the figure. For human drivers,
most drivers can decide easily which to proceed first, and the other to follow(yield).
They not only have their own understanding on the current situation, but also implic-
itly share the “mutual agreement” derived from each of their similar understanding.
Under this assumption, people interact smoothly without harming the traffic flow. But
also all the people have slightly different interpretation depending on the experience,
characteristics, and so on. When people make decision conflicting or disagreement
with others due to a different interpretation of understanding, it results in first mover
conflict”, which harms the traffic flow and also cause an accident. Since interaction
happens in many scenarios of driving tasks, conflict also could happen in the same
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tasks such as lane changing, merging, navigating in the parking lot, proceeding in the
intersection and so on.

Figure 1.2 shows three main approaches for autonomous vehicle systems. Either
implicitly or explicitly, all three approaches contain the procedure for trajectory pre-
diction to model the interaction around traffic participants. By forecasting the future
behavior of surroundings, autonomous vehicle can drive safely in complex scenarios.

Also, it is essential to be implemented for interactive high-level path planning.

[ )
. Behavioral Motion Feedback
Perception .
layer planning control
\ J
( )
Sensor . Interactive behavior-aware Feedback Control
0 Perception )
nput planning control ) output
\
-

End-to-end planning

Figure 1.2: Three main stream approach for autonomous driving system[19]

The dissertation is aiming autonomous vehicle to model “humans’ common un-
derstanding of driving scene” that enables high levels of interaction. By utilizing both
histories of its traffic participants trajectory information and current scene perception
from ego vehicle sensors, it predicts the future trajectory of each traffic participants
at once including ego vehicle’s future trajectory, assuming “what would ego vehicle
does if it’s driven by a rational human driver”. As a form of trajectory prediction of
surrounding traffic participants, it can provide useful information for safe and sociable

driving strategy for autonomous driving.



Chapter 2

Related Work

A research on trajectory prediction, especially for vehicle motion prediction, can be
organized as three levels of classification with an increasing degree of abstraction[3].
Physics-based motion models only depends on past behavior of the vehicle. Typically
it’s limited to only short-term motion prediction and unable to predict unexpected
changes caused by the driver intention. Maneuver-based motion models consider in-
tention on behalf of the physics-based motion. Assuming that the trajectory pattern
implies intention of the drivers, several probabilistic models such as Gaussian Pro-
cess(GP)[5], Dynamic Bayesian Network(DBNs)[6] are employed for handling uncer-
tainty and estimating each drivers behavior. Interaction-aware motion models take into
account the interaction when predicting vehicles’ maneuvers. Even though it gives bet-
ter interpretation of each vehicles’ maneuver, most of the work have done in the only
limited situation such as interaction between only two vehicles[7].

As deep learning became one of the most successful methods for machine learn-
ing, it motivated most recent work of the trajectory prediction with interaction-aware
motion model. It can be categorize as two main approach Reinforcement learning(RL)/
Generative Adversarial Imitation Learning(GAIL) approach, and Long Short-Term
Memory(LSTM) approach. For RL methods as an related work for interaction, Lowe,

Ryan, et al.[8] suggested multi-agent actor-critic methods(MADDPG) shows the agents



can learn interaction effectively to perform the tasks requiring mixed cooperative-
competitive actions. Song, Jiaming, et al.[9] extends GAIL as Multi-agent GAIL,
showing that multi-agent can infer interaction from demonstration and learns policy
of each role. As an application to autonomous vehicle domain, Bhattacharyya, Raunak
P, et al.[10] suggested Parameter-Sharing GAIL(PS-GAIL) generates policies as a re-
sult of an interaction of surrounding vehicles simultaneously. However, the proposed
PS-GAIL methods require observation features as a relative information from each of
the agents. And since GAIL methods directly learn policy from the demonstration,
there’s a possibility that policy might fail as a failure of generalization.

One another main stream approach utilizes LSTM encoder-decoder network[13,
14, 15]. Most of the research stem from Alahi, Alexandre, et al.[11], which suggested
social Istm network for pedestrian trajectory prediction effectively considers the in-
teraction between pedestrians using social pooling layer. But their works also share
the problem that LSTM requires longer computation time. In [12], as an improved
version of [11], tried to alleviate the computation time using pooling module which

interconnects the latent variable of each pedestrian.

2.1 Contributions of the Dissertation

In this dissertation, we propose a trajectory prediction method for all traffic partici-
pants around the ego vehicle including pedestrians, by modeling ”humans’ common
understanding of driving scene”. The basic framework regards the position of each
agent as function of time, and motivated from the conditional neural process[1], repre-
sents function as a latent variable. By integrating the past trajectories of all the agents
and current scene into latent variables, the network learns its representation, and pre-
dicts the future movements of each agent. This framework basically shares all the
parameters of the encoder, decoder network of the trajectory, so that it does not have

a limitation on the number of agents around the scene. In addition, unlike the LSTM



encoder-decoder framework, it takes the history trajectory as input at a time and pre-
dicts the entire future trajectory of each participant at once.

The dissertation is organized as follows: In chapter 3, we briefly go through the
basic framework of the conditional neural process[1], including the extension to our
framework. In chapter 4, we present a neural network structure that effectively learns
its surroundings and each participant’s past history as latent variables. In Chapter 5,
we conduct an experiment comparing performance depending on the structure of the
network. It also compares the performance by applying this to a set of pedestrian tra-
jectory prediction data for comparison with other state-of-the-art pedestrian prediction

algorithms.



Chapter 3

Conditional Neural Process

The theorem that the neural networks are universal approximators is one of the theoret-
ical results to justify the use of the neural network as their applications of many fields
of the area. Most of the supervised learning problem utilize neural network as function
approximation given a set of observations, training it from scratch. Let a number of
n dataset as {z;,y;}, 7 = 1,...,n, denoting z; € X as inputs, y; € Y as outputs of
the data. And there is a function mapping from input to output, f : X — Y. In this
perspective, the neural network learns a function g : X — Y as an approximation
of f, by minimizing the loss. For example in a classification problem, the most com-
mon way to train a neural network is formulating the loss as minimizing the negative
log-likelihood, parameter that best describes our dataset. To achieve the performance,
equivalent as approximate f well in the generic domain, it requires a large training set.

However, the Bayesian approach, by assuming a prior distribution and updating the
distribution by observing the data points, it produces posterior distribution efficiently.
This approach shows the probabilistic stance that specifying a distribution over func-
tion. The typical example is GP, as one kind of stochastic processes defines any finite
subset of random variables has a multivariate Gaussian Distribution. These distribu-
tions are parameterized by mean function and covariance function. Especially, the co-

variance function, also known as the kernel function, describes relation between data



points. But Bayesian approach requires high computation or even gets intractable as
the dataset grows.

Garnelo, Marta, et al.[1] suggests CNP directly parameterize conditional stochastic
process with a neural network. Similar to GP[4], it defines conditional distributions
over functions given set of observations. it tries to learn set of data points’ relation as a
latent variable, and predicts target data points given observed data points. This chapter
briefly describes the basic concepts of CNP and formulation onto trajectory prediction

problem with additional assumption.

3.1 Conditional Neural Process(CNP) Overview

Let us consider a two set, O, I, as observation and target needs inference respectively.
Observation set O contains pairs of inputs and outputs(labels), O = {(z;,y;)}'>; €
X X Y. Target set contains points of inputs without outputs, I = {x; ?:t:”_l € X.
Also let function f as mapping from inputs to output, f : X — Y, y; = f(x;).
In stochastic process settings, P defines probability distribution over functions f,
f ~ P. By definition, P itself defines a joint distribution over the random variables
f (xi)?jom_l, including both set of points. CNP[1] learns the conditional distribution
Qo(f(I)|0O, I) approximating P(f(I)|O, I). This approximation function tries to pre-
dict the output values f(x) for every = € I given O.

Since CNP represents observation data as a fixed shape of latent variable, it has
a fixed dimension. This enables CNP to achieve scalable running time complexity of
O(n + m), when n is the number of observations and m is the number of predic-
tions. From this formulation, we can obtain functional flexibility and scalability but it
no longer holds for the mathematical guarantees as a stochastic process. One typical
example of architecture conditioned on observation set via and embedding into fixed

shape latent variable can be formed as follows,



ri = ho(wi,y:)  Y(xi,y:) € O
r=r@or®...06m G.1)

¢i = go(xi,r) V(i) €1

ho(xi,y;) : X XY — R4 can be seen as embedding procedure of observation data,
and gy (x;,7) : X x R? — R approximates conditional distribution from the formula-
tion. Both h, g are neural networks. To make a varying number of observation point ¢
as a fixed shape of latent vectors, it applied commutative operations. If the operations
satisfy permutation invariant property, it can be replaced by another operation. For ex-
ample, Qi, Charles R., et al.[16] utilized max operation to achieve similar functionality.
[1] used mean operation.

We can train the network by minimizing the negative conditional log probability.
let N as a number of samples we want to make use as an observation when training
the network. Since whole observation set is O = {(z;,v;)}/=, at every iteration,
N is sampled from uniform distribution 0 to n — 1. We can condition on the subset
Oy = (zi, yi)i]\;O € O as the first N elements of O. One thing to notice is that at
training phase, by setting target set as total dataset ¢ = 0,..n — 1, network efficiently

use the data by predicting and propagating the loss from the observation set as well.

L(8) = ~Epop [Ex[10g Qo({y:}15 10w, i) (3.2)

As same as [2], when calculating the gradient of this loss, expectation term is approx-

imated using Monte Carlo estimation by sampling both f, N.



3.2 Trajectory Prediction with Scene Information as CNP

When it comes to the trajectory prediction problem considering the interaction be-
tween agents, one should take account not only a trajectory information of each agent
but also the surroundings that the each of them are observing. We use CNP based
network for approximating predictive distribution for the future motion of all the par-

ticipants around the ego vehicle over prediction time.

3.2.1 Formulation

The objective of the trajectory prediction is to jointly reason and predict the future tra-
jectories of all the traffic participants involved in the scene. By adopting a formulation
of CNP into this problem, the network learn the probability distribution over function
mapping future(unseen) time step into position of the each agent. Consider k£ number
of the traffic participants are in the scene, and we have observed trajectories of all the
agent in the scene ranging from time step —b to 0 as Tp,st = {t|t = —b,...,0}. And
there are future time steps we haven’t observed yet in the present, ranging from 1 to e
as Tyture = {t|t = 1,..., e}. Each element of a trajectory, pg = (:Uf , yzj ) is a vector
in R? representing the coordinate of agent 7 at time step j.

We formulate the objective as to learn the posterior distribution of the multiple

agents’ future trajectories,

P(f(Tfuture) |Otraja Oscenea Tfuture)a (33)

where function of future trajectories f(7'fyture ),

f(Truture) = {f1,-- -, fr}, 3.4)

and their past trajectories on the given condition Oy,

Otraj = {Otraj,la R OtTCLj,k}7 (35)

10



and present scene observation Ogcene.-

The past trajectory of agent ¢, one of element in Oy, is defined as set of tuples,

Otraji = {(t, p)|t € Thast}- (3.6)

In present scene observation, we assume all the participants shares same scene
observation; from ego vehicle sensing, and map information, since most of the in-
teraction scenarios, causing the behavioral change of ego vehicle, happen around the
agents nearby the ego vehicle, cause of each agent action can be enough to be fully
interpreted within the ego vehicle perception algorithm due to its wide coverage. Addi-
tionally, because we have observed the past position of each agent, scene information
would be enough to utilize using the only current frame as well as considering the
computational efficiency.

Procedure of each traffic participants moving in the sharing scene can be regarded
as a functions, we can define conditional distribution of agent ¢ given observation,
P(fi(Truture)|Otraj, Oscene, Tfuture) » Where f; : R® — R?* is a function that map-
ping from time to 2d position of all the agents.

One thing to point out is that the function f; composing f shares the parameter
among all f. This corresponds to modeling "humans’ common understanding of driv-
ing scene”, meaning that ”if the same observations are given to a human, action one
might choose would be mostly the same or at least similar”.

By combining trajectory information and single scene information from each of
observation set, we can embed fused latent vector containing all the information for

trajectory prediction, and the latent vector contains the single representation of the

11



current contextual scene. We use the architecture as follows:

J _ ] .

Ttraj,i - h91 (.]7 pz) v(]; pz) S Otraj
. b —b+1 0

Teraji = Ttrags ® Ttraq,i ... 0 Ttraj,i

T'scene,i = Chy (Oscene7 Ttraj,i)

Tcontext,i = €03 (rtraj,iu Tscene,i)

d)f = 904 (ta Tcontext,i) V(t) S Tfuture

12

Each functions hy,, cg,, €g,, go, are neural networks parameterized each 0, [ =1, ...



3.2.2 Loss and Training Algorithm

Since we have decided to use only current time scene information for efficient compu-
tation, it is not possible to utilize the observation sampling from the CNP loss, which
could be helpful to alleviate Monte Carlo estimate variance. However following from
[2], the network shaped as the loss function was trainable by setting enough number
of minibatch. Letting Oy = {(j, p’) ?sz € Otrqj Where p/ = {p%,p{, . ,pi} asa
set of positions of all the agents at certain time step j, approximation of true f param-
terized as neural network, Qg ({p’ }5:1 |ON, Oscene, T'future ), 10ss function defined as

follows:

L(G) = _EfNP [IOg QG ({pi}le |ON7 Oscenea {i}?:l)] 3.7

Followed by the loss function, algorithms for this network can be described similar

to any other neural network.

Algorithm 1 Trajectory prediction network based on CNP training algorithm
1: procedure NETWORK TRAINING

Input: Dataset containing pair of scene, trajectory, prediction time information.
Output: Learned Neural network parameter 6

2: 6 < Initialize parameters

3: for:=1tondo

4: DY « Draw N scene, trajectory data from full dataset

5: g <+ VoL(0; D)

6: 0 + Update network(Qy) parameter using gradient based methods.
7:

return Network parameter ¢

13



Chapter 4

Efficient Network Architecture for Intention Prediction

4.1 Network Overview

The main consideration of designing neural network architectures for our frameworks
were as follows : 1. Fast computation compare to other LSTM based methods. 2. Ef-
ficiently joints both spatial(scene) and temporal(trajectory) information and utilize for
trajectory prediction. To combine each trajectory and scene observation information,
we suggest two modules, both tries to fuse spatial and temporal information; called
Spatio-Temporal Representation Layer(STR), and Side Spatial Extraction Layer(SSE).

STR layer utilizes position information of each subjects’ trajectory latent variable.
It produce sparse feature map by positioning each of the latent variable as depth. By
concatenating with CNN feature map from grid map, network efficiently learns fused
features of the both information.

SSE layer takes side-output features from every downsample part of the CNN mod-
ule. From the spatial feature map, by extracting the depth column where each of agents
lies in the grid map, it extracts spatial information which could be lost from the global
extraction.

Lastly, trajectory decoder concatenate both latent variables and pass decoding mlp,

depending on the number of prediction time points, it returns the same number of mean

14



and variance of the predicted position of each subject. Fig. 3.1 shows overall process

of the network. Each details of the module will be discussed throughout this chapter.

Trajectory Decoder

Trajectory Encoder
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Scene Feature Extraction

Figure 4.1: Network Architecture
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4.2 Trajectory Encoder

Trajectory encoder extract information from the observation trajectory, capture the
agents motion dynamics using MLP. It takes time and the history information of the
each agents as R”*!*3_ where n is the number of agents in the scene, [ is the number of
observation trajectory for each of 2d position and time. The time corresponding to an
each observation is counted sequentially from the lowest negative value from the fur-
thest history to the present the most recent observation, denoted as 0. This mlp shares
the parameter for each of the agents, due to its role as extracting dynamic information
from the observation data. As same manner, to stabilize its training, we normalized
each of the position to the center. After passing 2 layers of mlp with 128 neurons, we
aggregate the number of observation dimension, so that it obtains scalability and also

permutation invariance property. In this framework, we used mean as an aggregator.

Trajectory Encoder

Trajectory Observation mlp(128, 128, shared) Aggregation
(mean)
nxlx3 l—] [nxlx128

(subject x observation nx 128

subject x observation "
X position, time) ) (subject x latent)

X latent)

Spatio-Temporal Representation

(shared)

For each of subjects,

yay &=

1x1x128 4x4x128

Transposed
Conv1
(55,2, 128)
Transposed
Conv2

2,64)

16 x 16 x 64

" =/

120 x 120 x 64

Figure 4.2: Trajectory encoder module
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4.2.1 Spatio-Temporal Representation

Since trajectory information of each subject is embedded as a latent variable, Spatio-
Temporal Representation module tries to matching the latent variable into a spatial
feature map. By matching the latent variable onto a feature map, it feeds into the CNN
network and fuses its information effectively. Figure 4.2 shows procedure for this mod-
ule.

The feature map has a size of 120x120 when latent variable matches on to it.
It actually occupies Im x 1m of space for each pixel in the real world. If the latent
variables are matched by a depth axis corresponding center point of the object, this
spatio-temporal feature map contains a large sparsity. To mitigate this problem, latent
variable with 1x1 occupancy is spatially inflated to 16x 16 by utilizing transposed
convolution layer. It also appears to be a reasonable assumption considering the fact
that the area in which each agent actually affects each other can be assumed around
16m x 16m. If the result of inflated feature map overlaps in the same pixel, each activa-
tion value is just summed. As a result, agents’ trajectory information can eventually be

converted to a feature map of 120x 120 size that is also embedding its each position.
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4.3 Scene Feature Extraction

Scene Feature Extraction module takes grid map as an input. Grid map is an discrete
representation of surroundings around the ego vehicle. Each grid cell contains spatial
information of 25cmXx25cm. In this environment, we discretize surroundings to a grid
map of 480x480 pixels in total by dividing the area surrounding the vehicle into 120
meters by horizontal and vertical. 480x480 pixels of This grid map composed of 16

labels, collection of data from perception and map information. labels are as follows:

‘ Index ‘ Label ‘ Index ‘ Label
0 Background 8 Traffic light
1 Line 9 Traffic signal
2 Center lane 10 Pedestrian
3 Stop line 11 Vehicle
4 Road boundary 12 motorcycle
5 Crossroad 13 Unknown object
6 Speed bump 14 | Velocity x direction
7 Crossroad2 15 Velocity y direction

Figure 4.3: (a) Table of labels, (b) Grid map representation

Since all the road marker on the ground contains different semantic meanings, it
is divided into separate layers. In addition, the velocity of each axis labels are placed
which denote the velocity of occupying object on each grid to include dynamics in-
formation of the objects. As with most image classification networks, for the first raw
image, the network is structured in a form that passes through a vanilla CNN structure

with pooling module.

4.3.1 Side Spatial Extraction

For side spatial extraction module, we utilized Resnet-34 layers[17] as a backbone net-
work, one of state-of-the-art network realized deep network using skip connection. As

feature map goes deeper each pixel contains larger area information. Naturally, CNN

18
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layer name output size filter shape side-output
convl 240x240x32 | 7x7, 32, stride 2
maxpooll 120x120x32 stride 2
conv_fusion | 120x120x96
conv2 60x60x64 | 3x3,64,stride 2 | side_outl
resl 30x30x128 | resblock(34) x 3 | side_out2
res2 15x15%256 | resblock(34) x 4 | side_out3
res3 8x8x512 resblock(34) x 6 | side_out4
res4 8x8x512 resblock(34) x 3
avgpool 1x1x512
fel 1x1x1024 global_out

Table 4.1: CNN Network architecture

module including Resnet constantly shrinking its size and getting deeper the depth,

its the local details are lost and only the most significant global feature remains even

though its spatial information is embedded into depth part. To alleviate this problem,

similar to the opposite direction of Spatio-Temporal Representation module, we re-

versely extract column features from the feature map for each of subjects correspond-

ing location. In this way, each agents’ spatial latent variable contains the detailed local

information and the important global information of the whole scene. The same vec-

tors are copied and appended as for the last global feature output. Fig 4.4 depicts the

procedure.
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4.4 Trajectory Decoder

The trajectory decoder module decodes the fused latent variable information to per-
form trajectory prediction. For decoder to predict the position of certain time step of
the each agent, it expands extra dimension copying latent variables p times, which rep-
resents the number of predicting time steps. A vector filled with each of the future time
step is added onto the latent variables dimension starting from 1 to p.

From the perspective of autonomous driving system utilizes a trajectory predic-
tion module, probability distribution of each prediction points must be precise. Since
Gaussian distribution defined only by mean, variance, representing trajectory predic-
tion result as Gaussian would be useful. So they are constructed in the form of means
and variances for x and y coordinates respectively. Fig 4.5 depicts the decoding pro-

CESs.

Trajectory Decoder

n x 256 nxp x 257

) (subject x prediction
(subject x fused latent) time x fused latent, time)

nx 128
(subject x observation mlip(256, 192,|128, 4 shared)
x latent)
(;1

e Concatenate Trajectory|Prediction

] \;"‘\5\‘:?—;\;\\ )
— ) C— ) C— ) nxpx

T : T 7 (subject x Prediction

- . ) C - 1 L ] x Position)

nx 128

(subject x latent)

Figure 4.5: Trajectory decoder module
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Chapter 5

Experiment

This chapter describes the experimental results of two datasets to evaluate network per-
formance: driving environment dataset, public pedestrian dataset. Driving environment
data is divided into two distinctive driving environments, urban roads and alleys. In the
case of trajectory prediction in the driving environment, semantic information such as
lane, stop sign, etc. and history information about the past trajectories of neighboring
agents are should be all considered. In order to verify that the proposed network effec-
tively utilizes the two types of information, we compared the performance by trying
each module.

In the recent work of trajectory prediction for highly interactive agents, public
pedestrian trajectory prediction datasets were mainly used for validation. These datasets
are composed of real human trajectories data with video from a fixed camera. These
are relatively less dependent on semantic information than the driving environment
datasets, but also the behavior of pedestrians are more diverse even in similar situa-
tions. we evaluate our network on these datasets with state-of-the-art baseline meth-
ods[11, 12]

For training the network, we used Adam optimizer for total 50 epochs with batch
size 64. The initial learning rate was 0.002 with decaying. Each layer used a dropout

with a keep ratio of 0.8. We trained the network with TensorFlow and GTX1080 GPU.
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We compare the method quantitatively using the commonly known metric, Aver-
age Displacement Error (ADE) and the Final Displacement Error (FDE). ADE com-
putes the mean euclidean distance between prediction and ground truth. FDE computes
the euclidean distance between last point of prediction and ground truth. ADE and
FDE are defined as follows where p! is the ground truth position i, p} is the predicted

position at time ¢, 7" is the prediction horizon, N as total number of agents.

\/ Pl —pi

N T
Zizl Zt:l

2

ADE =
NxT
(5.1)
Yl VPl -Bt
FDE = 2
N

5.1 Driving Environment Dataset

Since the driving pattern of the human drivers and pedestrians’ moving behavior are
very different for each urban road and alley scenarios, we divided the driving environ-
ment dataset into two categories according to the scenarios. For the following section,
We describe the data acquisition procedure to generate the large driving environment
dataset and analyze the result acquired from two driving environments qualitatively,

and also quantitatively.

5.1.1 Data Acquisition Method

To gather large driving data, by incorporating all the information gathered from au-
tonomous vehicle, such as lidar-camera perception algorithms including tracking and
localization, after some filtering, we gathered dataset in semi-supervised way. The
dataset collected from the above procedures contain some noise, and only moving ob-
jects and semantic information were collected to reduce the noise. We set the overall

length up to 30 frames, and divided into two parts: observation and prediction(target).
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The length of observation were determined randomly by sampling from uniform dis-
tribution around (5....,25). For example, if the observation length set to be 10 frames,
then the prediction length automatically set to be 20 frames, and the scene information
is stored at time step 10. Through this process, 60,000 frames of data were acquired,
mixed with urban and alley driving, and an additional 10,000 frames were tested to
compare performance. The testset consists of 6231 frames of alleys environment and
3869 frames of urban roads. For performance evaluation we fixed prediction time as 2

seconds(20 frames), given 1 seconds of observation(10 frames).

5.1.2 Overview

In the driving scenario, we tested the variants of the network to demonstrate the effec-
tiveness of the proposed module. Network variants are as follows : Network 1 : without
using Side Spatial Extraction(SSE) Network 2 : without using Spatio-Temporal Rep-
resentation(STR), Network 3 : using both SSE and STR module.

Table 5.1 shows the overall result of the experiment on the driving environment
dataset combined both urban roads and alleys. Due to inefficient implementation of
GPR[4], running time measure is omitted. Lack of scene information makes GPR pre-
dicts less accurate compared to network that fully utilize history information as well as
scene information. Network 2, which didn’t apply STR module gained big advantage
on running time because scene, and trajectory latent vector can be calculated parallel.

But also it’s loss of performance is enormous especially FDE.

5.1.3 Alley Scenario

Compared to driving in urban scenario, driving in alleys is a bit more detailed and care-
ful. Pedestrians move more freely, and vehicles move more carefully because they do
not have sufficient safety distance from the surrounding pedestrians and other vehicles
on the narrower road. Since the narrow space is shared by many actors, each partici-

pant’s choice becomes narrow, but the process of decision making is very interactive
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Network 1 | Network 2 | Network 3
Metric | Road Scenario | GPR[4] (STR only) | (SSE only) | (STR+SSE)
STR | SSE | STR | SSE | STR | SSE
(¢} X X (0] (6} (¢}
Urban 0.931 0.718 0.622 0.523
ADE | Alley 1.301 1.111 0.979 0.772
Combined 1.171 0.970 0.851 0.683
Urban 1.379 1.113 1.143 0.914
FDE | Alley 2.115 1.778 1.994 1.631
Combined 1.851 1.539 1.685 1.370
runtime(s) - ~0.024 ~0.013 ~0.030

Table 5.1: Overall experiment result of the trajectory prediction in driving datasets

and complex. Table 5.2 shows the results of an experiment in an alley. Compared to the

overall results in table 5.1, the performance has declined, which is due to the results of

implicit decision making between participants’ in the alley situations.

Metric | axis | GPR[4]

Network 1

Network 2

Network 3

(ours)

STR | SSE | STR | SSE | STR | SSE

O X X 0} O 0}
X 1.517 1.246 1.094 0.929
ADE
y 1.084 0.976 0.864 0.615
X 2.398 1.970 2.115 1.818
FDE
y 1.831 1.587 1.873 1.445

Table 5.2: Experiment result of the trajectory prediction in alley driving environment

As mentioned above, since pedestrians and vehicles share spaces in narrow areas,
many interactions occur in alley scenarios. In this section, we analyze the predictions

the our network made in three scenarios ; vehicle to vehicle, pedestrian to vehicle,

pedestrian to pedestrian.

The figure in 5.1 shows pedestrians passing through narrow streets caused by ve-
hicles. Network models the behavior between pedestrians keeping their own distance.

Conventional methods were modeled in the form of potential energy or distance func-
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Figure 5.1: Interaction between pedestrians, (left) variance visualization, (upper-right)

trajectory visualization onto grid map, (bottom-right) trajectory visualization

tions. However, without knowledge about the social force or any model that describes
interaction, result shows that network can model interaction between pedestrian only
given a data.

For situations where interaction between pedestrians and vehicles occurs, in figure
5.2, network expected pedestrian agent to yield the car behind(cyan) to move on and
pass the street. First few scene where trajectory prediction is done in narrow areas
with limited direction is accurate to some extent, but there is a relatively large error
when the pedestrian reaches a space that relatively more free to move according to the
goal the agent is heading for(last 2 time step in the figure 5.2). Network expected the
pedestrian to keep more distance to the vehicle agent, however, because everyone has
a slightly different boundary of safety distance, this caused error. This is also related
to mode collapse, when multiple decisions are available, the network converges only
one mode in the most generic form.

Intersection between vehicles is also the most frequent occurrence of alley driving.

In the case of figure 5.3, This is when A(yellow) and B(gray) are both moving straight
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Figure 5.2: Interaction between pedestrian and vehicle, (upper-right) trajectory visual-

ization onto grid map, (bottom-right) trajectory visualization

ahead and B rapidly accelerates. In this situation, it is difficult for A to respond to ex-
isting history-based trajectory prediction. However, network contextually recognized

the situation as ’first mover conflict’, and predict the agent A to stop.
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@ : Predicted trajectory(mean) : Human driver

@ : History trajectory
: True trajectory(ground truth)

Only moving agents are displayed.
: Autonomous vehicle

Figure 5.3: Interaction between vehicles, (left) trajectory prediction per time

step(number) with grid map, (right) trajectory prediction per time step

5.1.4 Urban Scenario

Driving scene in the urban traffic is mostly following the lane with less pedestrians.
In this urban environment, driver interaction is almost unnecessary. However, in order
for the network to operate as a generalized risk assessment module with both trajec-
tory prediction and intention understanding, it must be able to accurately predict the
movements of each object. Table 5.3 shows quantitative evaluation in urban driving
scenarios. Compared to the previous quantitative assessment results, the performance
is relatively high, due to the fact that most urban driving situations are achieved most
of the time only within simple regulations.

The following figure shows the results of trajectory prediction for different driving
situations encountered in typical urban driving situations. Since network learns its rule
that vehicle normally keep driving in lane, it predicts trajectory of vehicles well, also
same as pedestrian crossing the crossroads. Figure shows that the network has learned
that the driver follows the rule that vehicle should be driven between lanes. One thing
to point out is that in the case of two vehicles predicted on the left side of the im-
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Network 3
Network 1 | Network 2
(ours)
STF | SSE | STF | SSE | STF | SSE

(0] X X O O O

Metric | axis | GPR[4]

X 1.298 0.980 0.861 0.770
ADE

y 0.564 0.455 0.383 0.276

X 2.077 1.648 1.795 1.397
FDE

y 0.682 0.578 0.491 0.431

Table 5.3: Experiment result of the trajectory prediction in urban driving environment

age (c), they are actually moving several lanes at once, moving to turn right and left,
respectively. In most case, the network has trained or seen the data only one lane to
change, so in both cases the actual movement appears to the outside of the lane while
the prediction is directed toward the center of the lane. In this regard, the network
trained some traffic laws without any other applications. However, some results are
not predictable for drivers who does not comply with the law.

This shows the limitations of the current framework. Similar to the Variational In-
ference, when we try to approximate the complex distributions with already known
simple functions, because the model fit into only some part of actual complex distribu-
tion. In fact, this is less problematic in alleys where people’s interaction is more active
because there are only a limited number of cases people can choose from in narrow
alleys. However, if we directly learn the true distribution, there is no way to utilize it
without a post process such as sampling. Therefore, it is necessary to research for a

future work to complement the two opposing views on this part.

5.2 Public Pedestrian Dataset

For the purpose of the relative comparison of the network between SOTA algorithm
and verification in general other data, experiments were conducted on the public pedes-
trian trajectory prediction[21] which contains homography matrix for utilizing camera

1] !'|E
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Figure 5.4: Various driving scenario in the urban area

data. We set a random interval of 20% for each data to the test set, training each net-
work to the rest of the training set, and verified the performance.

To easily adapt to the original framework, we simply resized the image to 480x480,
and calculated the pixel position of each agents using homography matrix. And instead
of using grid map image, We simply used raw image data. For training, similar to the
procedure on driving scenario data described at the beginning of chapter 5, we sampled
random number from uniform[3,...,15], the total length of data as 30.

For testing, we follow a similar methodology as [11]. The network makes the pre-

diction for steps of 8(3.2 seconds) and 12(4.8 seconds) given observation steps of 8(3.2

gl
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seconds). Table 5.4 shows the result of ADE, FDE of the each data set. The predicted

results of 8 seconds and 12 seconds are separated by parentheses. ¢p,..q = 8(12).

Metric Dataset | S-LSTM[10] | S-GAN[11] Ours
ETH 0.79(1.20) 0.68(0.94) | 0.57(0.103)
ADE HOTEL | 0.57(0.92) 0.51(0.84) 0.48(0.94)
ETH 1.61(2.52) 1.24(1.77) 1.12(1.58)
e HOTEL | 1.16(1.85) 1.01(1.63) 0.94(1.71)
runtime(s) 1.16(1.97) 0.07(0.11) | 0.031(0.034)

Table 5.4: Experiment result of the trajectory prediction in ETH, HOTEL dataset[21]

Compared to other networks utilizing the history information only, our network
showed better performance by utilizing the scene information presented as an image
still with faster inference time. Also, our network can increase the length of prediction
time by a small change of computation time, while LSTM-based network shows a
significant change in computing times depending on the length of prediction time.

But when it comes to longer prediction(12 seconds) as in the parentheses in the
table, S-GAN showed better performance. When the prediction time gets longer, the
influence of the latent variables at the starting time step is reduced. In Istm-based net-
works, latent variables are updated together as prediction proceeds by dealing with
sequential output data. In the case of S-GAN, it is expected that the module considers
interactions such as social pooling can be repeatedly applied to the updated latent vari-
able as a sequence of prediction(output) and the accuracy is improved in the prediction
for longer time.

We consider two common scenarios where many people walk in the opposite di-
rection. Figure 5.5 depicts the scenarios with past trajectory for 3.2 seconds, and future
trajectory prediction for 4.8 seconds with the ground truth. Road in front of the door
of the building or in roads people walking towards different destination are typical
example where similar scenarios frequently happens. When people recognize others

coming from in front, people takes avoiding action while walking unless opponent
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Figure 5.5: Interaction between vehicles, (left) trajectory prediction per time

step(number) with grid map, (right) trajectory prediction per time step

gets too close. It could be change of the walking direction in slightly detouring way, or
slow down and waits for others to detour. People choose the action depending on the
context or intention of the people around them. In the left side of the figure 5.5 shows
the one example, where B and A are walking towards each other. Our model is able
to predict evasive behavior of B(purple), slightly different from ground truth(yellow)
still one of valid action. As mentioned in the last part of the 5.1.4, our model tries to
learn the generalized behavior of the agents. Compared to the driving dataset, behavior
of pedestrian diverse with more various ways. Due to its limitation of representation,
predicted trajectories tend to be smoothed with low curvature. Another common sce-
nario is when multiple people walking across by others opposite direction. The model
predicts the dividing behavior of the groups from the past trajectory information and

their final destination from the scene information.
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Chapter 6

Conclusion

This dissertation suggests neural network structure for multi-agent trajectory predic-
tion. In order to obtain a high-performance trajectory prediction result, the ability to
consider interactions among surrounding agents must be considered together with spa-
tial information in addition to temporal dynamics information.

To achieve this, we proposed the Spatio-Temporal Representation layer to match a
latent variable that extracted from trajectory encoder onto feature map extracted from
the grid map. It matches each agent’s temporal latent variable onto the feature map of
the actual position of each agent by concatenating a depth direction. This process con-
tains the problem that activation maps are extremely sparse. To alleviate this problem,
before it concatenated with a depth direction, we applied transposed convolutional net-
work to stretch the feature into width, height direction considering the actual distance
each agents would affect.

Also, to resolve the known problem that losing local features as CNN network goes
deeper, we construct side output. It is opposite process from spatio-temporal represen-
tation layer. Every time a downsample of feature map is made, by extracting features
from the feature map for each of agents corresponding location. When the flow reaches
the last layer of 1x1 FCN, its extracted neurons were concatenated. So that it extracts

local and global feature efficiently. In this way, we fused the latent variable for space
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and the latent variable for dynamics. Lastly, the decoder predicts the mean and variance
of path of all objects around the time step user requested.

By modeling the process of handling data similar to a human driver, we tried to
model the "humans’ common understanding of driving scene”. As a result, network
achieved good performance where the driving scenario requires a high level of inter-
action. However, this network possess structural limitation in which it can only predict
one option when multiple decisions are available. This is due to having output in the
form of a Gaussian distribution to facilitate the practical use of trajectory prediction.

Future work would focus on solving multi-modal problem.
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