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Abstract

Recent autonomous driving research has shown remarkable and promising results.

However, safe, sociable driving in an urban environment still has many challenges

ahead. For realizing safe, interactive driving in complex alley scenario which shares a

narrow area among traffic participants, It is essential to grasp each other’s intention.

Even in the same road environment, safe, and sociable driving policy may differ de-

pending on the intention of the traffic participant agents around the ego vehicle. But

understanding others intention and predicting their trajectories are complicated be-

cause each one basically considers multiple factors; road environment, state of their

surrounding traffic participants at the same time which realized as interaction.

In this thesis dissertation, we propose new trajectory prediction algorithm that con-

siders all the information what each of the traffic participants would consider when

they make a decision. By combining both each of history trajectories and grid map of

surroundings as a latent vector representation, it predicts all the future trajectories of

traffic participant agents around ego vehicle at once.

This dissertation suggests two main module that fuses spatial and temporal in-

formation effectively. We verify the effectiveness of network structure by testing on

the various driving scenario comparing with some network variants through quantita-

tive and qualitative evaluation. Also, the proposed network is verified by applying it

to public pedestrian trajectory prediction dataset to verify usability as a generalized

methodology and to compare it with other SOTA algorithms.

keywords: Autonomous driving, trajectory prediction, neural process

student number: 2017-21304
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Over the past few years, researches for intelligent vehicles and autonomous driv-

ing vehicles have shown significant progress. In order for the autonomous vehicle to

drive safely, high-level of the core competencies software system are required, which

broadly categorized as 4 parts: perception, localization, planning, control.

Deep learning, one of the biggest recent trends in machine learning, have brought

revolutionary advances, especially perception in autonomous driving category. But,

there are still many challenges to utilize this effective feature learning framework into

planning, decision making in highly complex situation.

When human driver make decision while driving, we consider simply call it as

”surroundings”. But, this implies consideration of multiple information, for example,

road environment, traffic rule such as traffic light, road markers and traffic sign, status

and intention of the traffic participants such as vehicles, pedestrian around the ego-

vehicle. Also, in order for autonomous vehicle to be allowed as a substitute of the

human driver, it requires to be highly generalized as well, as we don’t have a limitation

when considering a number of traffic participants, even in the new scene. Since all

the traffic participants are interacting at the same time, existing in the same complex
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scene, grasping its common understanding of surroundings among traffic participants

is difficult but necessary for not to harm the traffic flow.

Figure 1.1: Typical example of ”First mover conflict”

Figure 1.1 shows one kind of typical situation requires autonomous vehicle to inter-

act with traffic participants. The vehicle on the right(denoted as B) and ego vehicle(A)

on the bottom tries to go to the upper side of the road in the figure. For human drivers,

most drivers can decide easily which to proceed first, and the other to follow(yield).

They not only have their own understanding on the current situation, but also implic-

itly share the ”mutual agreement” derived from each of their similar understanding.

Under this assumption, people interact smoothly without harming the traffic flow. But

also all the people have slightly different interpretation depending on the experience,

characteristics, and so on. When people make decision conflicting or disagreement

with others due to a different interpretation of understanding, it results in ”first mover

conflict”, which harms the traffic flow and also cause an accident. Since interaction

happens in many scenarios of driving tasks, conflict also could happen in the same
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tasks such as lane changing, merging, navigating in the parking lot, proceeding in the

intersection and so on.

Figure 1.2 shows three main approaches for autonomous vehicle systems. Either

implicitly or explicitly, all three approaches contain the procedure for trajectory pre-

diction to model the interaction around traffic participants. By forecasting the future

behavior of surroundings, autonomous vehicle can drive safely in complex scenarios.

Also, it is essential to be implemented for interactive high-level path planning.

Figure 1.2: Three main stream approach for autonomous driving system[19]

The dissertation is aiming autonomous vehicle to model ”humans’ common un-

derstanding of driving scene” that enables high levels of interaction. By utilizing both

histories of its traffic participants trajectory information and current scene perception

from ego vehicle sensors, it predicts the future trajectory of each traffic participants

at once including ego vehicle’s future trajectory, assuming ”what would ego vehicle

does if it’s driven by a rational human driver”. As a form of trajectory prediction of

surrounding traffic participants, it can provide useful information for safe and sociable

driving strategy for autonomous driving.
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Chapter 2

Related Work

A research on trajectory prediction, especially for vehicle motion prediction, can be

organized as three levels of classification with an increasing degree of abstraction[3].

Physics-based motion models only depends on past behavior of the vehicle. Typically

it’s limited to only short-term motion prediction and unable to predict unexpected

changes caused by the driver intention. Maneuver-based motion models consider in-

tention on behalf of the physics-based motion. Assuming that the trajectory pattern

implies intention of the drivers, several probabilistic models such as Gaussian Pro-

cess(GP)[5], Dynamic Bayesian Network(DBNs)[6] are employed for handling uncer-

tainty and estimating each drivers behavior. Interaction-aware motion models take into

account the interaction when predicting vehicles’ maneuvers. Even though it gives bet-

ter interpretation of each vehicles’ maneuver, most of the work have done in the only

limited situation such as interaction between only two vehicles[7].

As deep learning became one of the most successful methods for machine learn-

ing, it motivated most recent work of the trajectory prediction with interaction-aware

motion model. It can be categorize as two main approach Reinforcement learning(RL)/

Generative Adversarial Imitation Learning(GAIL) approach, and Long Short-Term

Memory(LSTM) approach. For RL methods as an related work for interaction, Lowe,

Ryan, et al.[8] suggested multi-agent actor-critic methods(MADDPG) shows the agents
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can learn interaction effectively to perform the tasks requiring mixed cooperative-

competitive actions. Song, Jiaming, et al.[9] extends GAIL as Multi-agent GAIL,

showing that multi-agent can infer interaction from demonstration and learns policy

of each role. As an application to autonomous vehicle domain, Bhattacharyya, Raunak

P., et al.[10] suggested Parameter-Sharing GAIL(PS-GAIL) generates policies as a re-

sult of an interaction of surrounding vehicles simultaneously. However, the proposed

PS-GAIL methods require observation features as a relative information from each of

the agents. And since GAIL methods directly learn policy from the demonstration,

there’s a possibility that policy might fail as a failure of generalization.

One another main stream approach utilizes LSTM encoder-decoder network[13,

14, 15]. Most of the research stem from Alahi, Alexandre, et al.[11], which suggested

social lstm network for pedestrian trajectory prediction effectively considers the in-

teraction between pedestrians using social pooling layer. But their works also share

the problem that LSTM requires longer computation time. In [12], as an improved

version of [11], tried to alleviate the computation time using pooling module which

interconnects the latent variable of each pedestrian.

2.1 Contributions of the Dissertation

In this dissertation, we propose a trajectory prediction method for all traffic partici-

pants around the ego vehicle including pedestrians, by modeling ”humans’ common

understanding of driving scene”. The basic framework regards the position of each

agent as function of time, and motivated from the conditional neural process[1], repre-

sents function as a latent variable. By integrating the past trajectories of all the agents

and current scene into latent variables, the network learns its representation, and pre-

dicts the future movements of each agent. This framework basically shares all the

parameters of the encoder, decoder network of the trajectory, so that it does not have

a limitation on the number of agents around the scene. In addition, unlike the LSTM
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encoder-decoder framework, it takes the history trajectory as input at a time and pre-

dicts the entire future trajectory of each participant at once.

The dissertation is organized as follows: In chapter 3, we briefly go through the

basic framework of the conditional neural process[1], including the extension to our

framework. In chapter 4, we present a neural network structure that effectively learns

its surroundings and each participant’s past history as latent variables. In Chapter 5,

we conduct an experiment comparing performance depending on the structure of the

network. It also compares the performance by applying this to a set of pedestrian tra-

jectory prediction data for comparison with other state-of-the-art pedestrian prediction

algorithms.
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Chapter 3

Conditional Neural Process

The theorem that the neural networks are universal approximators is one of the theoret-

ical results to justify the use of the neural network as their applications of many fields

of the area. Most of the supervised learning problem utilize neural network as function

approximation given a set of observations, training it from scratch. Let a number of

n dataset as {xi, yi}, i = 1, . . . , n, denoting xi ∈ X as inputs, yi ∈ Y as outputs of

the data. And there is a function mapping from input to output, f : X → Y . In this

perspective, the neural network learns a function g : X → Y as an approximation

of f , by minimizing the loss. For example in a classification problem, the most com-

mon way to train a neural network is formulating the loss as minimizing the negative

log-likelihood, parameter that best describes our dataset. To achieve the performance,

equivalent as approximate f well in the generic domain, it requires a large training set.

However, the Bayesian approach, by assuming a prior distribution and updating the

distribution by observing the data points, it produces posterior distribution efficiently.

This approach shows the probabilistic stance that specifying a distribution over func-

tion. The typical example is GP, as one kind of stochastic processes defines any finite

subset of random variables has a multivariate Gaussian Distribution. These distribu-

tions are parameterized by mean function and covariance function. Especially, the co-

variance function, also known as the kernel function, describes relation between data
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points. But Bayesian approach requires high computation or even gets intractable as

the dataset grows.

Garnelo, Marta, et al.[1] suggests CNP directly parameterize conditional stochastic

process with a neural network. Similar to GP[4], it defines conditional distributions

over functions given set of observations. it tries to learn set of data points’ relation as a

latent variable, and predicts target data points given observed data points. This chapter

briefly describes the basic concepts of CNP and formulation onto trajectory prediction

problem with additional assumption.

3.1 Conditional Neural Process(CNP) Overview

Let us consider a two set, O, I , as observation and target needs inference respectively.

Observation set O contains pairs of inputs and outputs(labels), O = {(xi, yi)}n−1
i=0 ∈

X × Y . Target set contains points of inputs without outputs, I = {xi}n+m−1
i=n ∈ X .

Also let function f as mapping from inputs to output, f : X → Y , yi = f(xi).

In stochastic process settings, P defines probability distribution over functions f ,

f ∼ P . By definition, P itself defines a joint distribution over the random variables

f(xi)
n+m−1
i=0 , including both set of points. CNP[1] learns the conditional distribution

Qθ(f(I)|O, I) approximating P (f(I)|O, I). This approximation function tries to pre-

dict the output values f(x) for every x ∈ I given O.

Since CNP represents observation data as a fixed shape of latent variable, it has

a fixed dimension. This enables CNP to achieve scalable running time complexity of

O(n + m), when n is the number of observations and m is the number of predic-

tions. From this formulation, we can obtain functional flexibility and scalability but it

no longer holds for the mathematical guarantees as a stochastic process. One typical

example of architecture conditioned on observation set via and embedding into fixed

shape latent variable can be formed as follows,
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ri = hθ(xi, yi) ∀(xi, yi) ∈ O

r = r1 ⊕ r2 ⊕ . . .⊕ rn

φi = gθ(xi, r) ∀(xi) ∈ I

(3.1)

hθ(xi, yi) : X × Y → Rd can be seen as embedding procedure of observation data,

and gθ(xi, r) : X×Rd → Re approximates conditional distribution from the formula-

tion. Both h, g are neural networks. To make a varying number of observation point i

as a fixed shape of latent vectors, it applied commutative operations. If the operations

satisfy permutation invariant property, it can be replaced by another operation. For ex-

ample, Qi, Charles R., et al.[16] utilized max operation to achieve similar functionality.

[1] used mean operation.

We can train the network by minimizing the negative conditional log probability.

let N as a number of samples we want to make use as an observation when training

the network. Since whole observation set is O = {(xi, yi)}n−1
i=0 , at every iteration,

N is sampled from uniform distribution 0 to n − 1. We can condition on the subset

ON = (xi, yi)
N
i=0 ∈ O as the first N elements of O. One thing to notice is that at

training phase, by setting target set as total dataset i = 0, ..n − 1, network efficiently

use the data by predicting and propagating the loss from the observation set as well.

L(θ) = −Ef∼P
[
EN
[
logQθ({yi}n−1

i=0 |ON , {xi}
n−1
i=0 )

]]
(3.2)

As same as [2], when calculating the gradient of this loss, expectation term is approx-

imated using Monte Carlo estimation by sampling both f , N .
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3.2 Trajectory Prediction with Scene Information as CNP

When it comes to the trajectory prediction problem considering the interaction be-

tween agents, one should take account not only a trajectory information of each agent

but also the surroundings that the each of them are observing. We use CNP based

network for approximating predictive distribution for the future motion of all the par-

ticipants around the ego vehicle over prediction time.

3.2.1 Formulation

The objective of the trajectory prediction is to jointly reason and predict the future tra-

jectories of all the traffic participants involved in the scene. By adopting a formulation

of CNP into this problem, the network learn the probability distribution over function

mapping future(unseen) time step into position of the each agent. Consider k number

of the traffic participants are in the scene, and we have observed trajectories of all the

agent in the scene ranging from time step −b to 0 as Tpast = {t|t = −b, . . . , 0}. And

there are future time steps we haven’t observed yet in the present, ranging from 1 to e

as Tfuture = {t|t = 1, . . . , e}. Each element of a trajectory, pji = (xji , y
j
i ) is a vector

in R2 representing the coordinate of agent i at time step j.

We formulate the objective as to learn the posterior distribution of the multiple

agents’ future trajectories,

P (f(Tfuture)|Otraj , Oscene, Tfuture), (3.3)

where function of future trajectories f(Tfuture),

f(Tfuture) = {f1, . . . , fk}, (3.4)

and their past trajectories on the given condition Otraj ,

Otraj = {Otraj,1, . . . , Otraj,k}, (3.5)
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and present scene observation Oscene.

The past trajectory of agent i, one of element in Otraj , is defined as set of tuples,

Otraj,i = {(t, pti)|t ∈ Tpast}. (3.6)

In present scene observation, we assume all the participants shares same scene

observation; from ego vehicle sensing, and map information, since most of the in-

teraction scenarios, causing the behavioral change of ego vehicle, happen around the

agents nearby the ego vehicle, cause of each agent action can be enough to be fully

interpreted within the ego vehicle perception algorithm due to its wide coverage. Addi-

tionally, because we have observed the past position of each agent, scene information

would be enough to utilize using the only current frame as well as considering the

computational efficiency.

Procedure of each traffic participants moving in the sharing scene can be regarded

as a functions, we can define conditional distribution of agent i given observation,

P (fi(Tfuture)|Otraj , Oscene, Tfuture) , where fi : Re → R2·e is a function that map-

ping from time to 2d position of all the agents.

One thing to point out is that the function fi composing f shares the parameter

among all f . This corresponds to modeling ”humans’ common understanding of driv-

ing scene”, meaning that ”if the same observations are given to a human, action one

might choose would be mostly the same or at least similar”.

By combining trajectory information and single scene information from each of

observation set, we can embed fused latent vector containing all the information for

trajectory prediction, and the latent vector contains the single representation of the

11



current contextual scene. We use the architecture as follows:

rjtraj,i = hθ1(j, p
j
i ) ∀(j, pji ) ∈ Otraj

rtraj,i = r−btraj,i ⊕ r−b+1
traj,i ⊕ . . . ⊕ r0traj,i

rscene,i = cθ2(Oscene, rtraj,i)

rcontext,i = eθ3(rtraj,i, rscene,i)

φti = gθ4(t, rcontext,i) ∀(t) ∈ Tfuture

Each functions hθ1 , cθ2 , eθ3 , gθ4 are neural networks parameterized each θl, l = 1, . . . , 4.

12



3.2.2 Loss and Training Algorithm

Since we have decided to use only current time scene information for efficient compu-

tation, it is not possible to utilize the observation sampling from the CNP loss, which

could be helpful to alleviate Monte Carlo estimate variance. However following from

[2], the network shaped as the loss function was trainable by setting enough number

of minibatch. Letting ON = {(j,pj)}0j=−b ∈ Otraj where pj = {pj0, p
j
1, . . . , p

j
k} as a

set of positions of all the agents at certain time step j, approximation of true f param-

terized as neural network, Qθ({pj}ej=1|ON , Oscene, Tfuture), loss function defined as

follows:

L(θ) = −Ef∼P
[
logQθ

(
{pi}ei=1|ON , Oscene, {i}ei=1

)]
(3.7)

Followed by the loss function, algorithms for this network can be described similar

to any other neural network.

Algorithm 1 Trajectory prediction network based on CNP training algorithm
1: procedure NETWORK TRAINING

Input: Dataset containing pair of scene, trajectory, prediction time information.

Output: Learned Neural network parameter θ

2: θ ← Initialize parameters

3: for i = 1 to n do

4: DN ← Draw N scene, trajectory data from full dataset

5: g ← ∇θL(θ;DN )

6: θ ← Update network(Qθ) parameter using gradient based methods.

7:
return Network parameter θ
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Chapter 4

Efficient Network Architecture for Intention Prediction

4.1 Network Overview

The main consideration of designing neural network architectures for our frameworks

were as follows : 1. Fast computation compare to other LSTM based methods. 2. Ef-

ficiently joints both spatial(scene) and temporal(trajectory) information and utilize for

trajectory prediction. To combine each trajectory and scene observation information,

we suggest two modules, both tries to fuse spatial and temporal information; called

Spatio-Temporal Representation Layer(STR), and Side Spatial Extraction Layer(SSE).

STR layer utilizes position information of each subjects’ trajectory latent variable.

It produce sparse feature map by positioning each of the latent variable as depth. By

concatenating with CNN feature map from grid map, network efficiently learns fused

features of the both information.

SSE layer takes side-output features from every downsample part of the CNN mod-

ule. From the spatial feature map, by extracting the depth column where each of agents

lies in the grid map, it extracts spatial information which could be lost from the global

extraction.

Lastly, trajectory decoder concatenate both latent variables and pass decoding mlp,

depending on the number of prediction time points, it returns the same number of mean

14



and variance of the predicted position of each subject. Fig. 3.1 shows overall process

of the network. Each details of the module will be discussed throughout this chapter.

Figure 4.1: Network Architecture
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4.2 Trajectory Encoder

Trajectory encoder extract information from the observation trajectory, capture the

agents motion dynamics using MLP. It takes time and the history information of the

each agents as Rn×l×3, where n is the number of agents in the scene, l is the number of

observation trajectory for each of 2d position and time. The time corresponding to an

each observation is counted sequentially from the lowest negative value from the fur-

thest history to the present the most recent observation, denoted as 0. This mlp shares

the parameter for each of the agents, due to its role as extracting dynamic information

from the observation data. As same manner, to stabilize its training, we normalized

each of the position to the center. After passing 2 layers of mlp with 128 neurons, we

aggregate the number of observation dimension, so that it obtains scalability and also

permutation invariance property. In this framework, we used mean as an aggregator.

Figure 4.2: Trajectory encoder module
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4.2.1 Spatio-Temporal Representation

Since trajectory information of each subject is embedded as a latent variable, Spatio-

Temporal Representation module tries to matching the latent variable into a spatial

feature map. By matching the latent variable onto a feature map, it feeds into the CNN

network and fuses its information effectively. Figure 4.2 shows procedure for this mod-

ule.

The feature map has a size of 120×120 when latent variable matches on to it.

It actually occupies 1m × 1m of space for each pixel in the real world. If the latent

variables are matched by a depth axis corresponding center point of the object, this

spatio-temporal feature map contains a large sparsity. To mitigate this problem, latent

variable with 1×1 occupancy is spatially inflated to 16×16 by utilizing transposed

convolution layer. It also appears to be a reasonable assumption considering the fact

that the area in which each agent actually affects each other can be assumed around

16m×16m. If the result of inflated feature map overlaps in the same pixel, each activa-

tion value is just summed. As a result, agents’ trajectory information can eventually be

converted to a feature map of 120×120 size that is also embedding its each position.
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4.3 Scene Feature Extraction

Scene Feature Extraction module takes grid map as an input. Grid map is an discrete

representation of surroundings around the ego vehicle. Each grid cell contains spatial

information of 25cm×25cm. In this environment, we discretize surroundings to a grid

map of 480×480 pixels in total by dividing the area surrounding the vehicle into 120

meters by horizontal and vertical. 480×480 pixels of This grid map composed of 16

labels, collection of data from perception and map information. labels are as follows:

Index Label Index Label

0 Background 8 Traffic light

1 Line 9 Traffic signal

2 Center lane 10 Pedestrian

3 Stop line 11 Vehicle

4 Road boundary 12 motorcycle

5 Crossroad 13 Unknown object

6 Speed bump 14 Velocity x direction

7 Crossroad2 15 Velocity y direction

Figure 4.3: (a) Table of labels, (b) Grid map representation

Since all the road marker on the ground contains different semantic meanings, it

is divided into separate layers. In addition, the velocity of each axis labels are placed

which denote the velocity of occupying object on each grid to include dynamics in-

formation of the objects. As with most image classification networks, for the first raw

image, the network is structured in a form that passes through a vanilla CNN structure

with pooling module.

4.3.1 Side Spatial Extraction

For side spatial extraction module, we utilized Resnet-34 layers[17] as a backbone net-

work, one of state-of-the-art network realized deep network using skip connection. As

feature map goes deeper each pixel contains larger area information. Naturally, CNN
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Figure 4.4: Scene feature extraction module

layer name output size filter shape side-output

conv1 240×240×32 7×7, 32, stride 2

maxpool1 120×120×32 stride 2

conv fusion 120×120×96

conv2 60×60×64 3×3, 64, stride 2 side out1

res1 30×30×128 resblock(34) × 3 side out2

res2 15×15×256 resblock(34) × 4 side out3

res3 8×8×512 resblock(34) × 6 side out4

res4 8×8×512 resblock(34) × 3

avgpool 1×1×512

fc1 1×1×1024 global out

Table 4.1: CNN Network architecture

module including Resnet constantly shrinking its size and getting deeper the depth,

its the local details are lost and only the most significant global feature remains even

though its spatial information is embedded into depth part. To alleviate this problem,

similar to the opposite direction of Spatio-Temporal Representation module, we re-

versely extract column features from the feature map for each of subjects correspond-

ing location. In this way, each agents’ spatial latent variable contains the detailed local

information and the important global information of the whole scene. The same vec-

tors are copied and appended as for the last global feature output. Fig 4.4 depicts the

procedure.
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4.4 Trajectory Decoder

The trajectory decoder module decodes the fused latent variable information to per-

form trajectory prediction. For decoder to predict the position of certain time step of

the each agent, it expands extra dimension copying latent variables p times, which rep-

resents the number of predicting time steps. A vector filled with each of the future time

step is added onto the latent variables dimension starting from 1 to p.

From the perspective of autonomous driving system utilizes a trajectory predic-

tion module, probability distribution of each prediction points must be precise. Since

Gaussian distribution defined only by mean, variance, representing trajectory predic-

tion result as Gaussian would be useful. So they are constructed in the form of means

and variances for x and y coordinates respectively. Fig 4.5 depicts the decoding pro-

cess.

Figure 4.5: Trajectory decoder module
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Chapter 5

Experiment

This chapter describes the experimental results of two datasets to evaluate network per-

formance: driving environment dataset, public pedestrian dataset. Driving environment

data is divided into two distinctive driving environments, urban roads and alleys. In the

case of trajectory prediction in the driving environment, semantic information such as

lane, stop sign, etc. and history information about the past trajectories of neighboring

agents are should be all considered. In order to verify that the proposed network effec-

tively utilizes the two types of information, we compared the performance by trying

each module.

In the recent work of trajectory prediction for highly interactive agents, public

pedestrian trajectory prediction datasets were mainly used for validation. These datasets

are composed of real human trajectories data with video from a fixed camera. These

are relatively less dependent on semantic information than the driving environment

datasets, but also the behavior of pedestrians are more diverse even in similar situa-

tions. we evaluate our network on these datasets with state-of-the-art baseline meth-

ods[11, 12]

For training the network, we used Adam optimizer for total 50 epochs with batch

size 64. The initial learning rate was 0.002 with decaying. Each layer used a dropout

with a keep ratio of 0.8. We trained the network with TensorFlow and GTX1080 GPU.
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We compare the method quantitatively using the commonly known metric, Aver-

age Displacement Error (ADE) and the Final Displacement Error (FDE). ADE com-

putes the mean euclidean distance between prediction and ground truth. FDE computes

the euclidean distance between last point of prediction and ground truth. ADE and

FDE are defined as follows where pti is the ground truth position i, p̂ti is the predicted

position at time i, T is the prediction horizon, N as total number of agents.

ADE =

∑N
i=1

∑T
t=1

∥∥∥∥√pti − p̂it∥∥∥∥
2

N ∗ T

FDE =

∑N
i=1

∥∥∥∥√pTi − p̂iT∥∥∥∥
2

N

(5.1)

5.1 Driving Environment Dataset

Since the driving pattern of the human drivers and pedestrians’ moving behavior are

very different for each urban road and alley scenarios, we divided the driving environ-

ment dataset into two categories according to the scenarios. For the following section,

We describe the data acquisition procedure to generate the large driving environment

dataset and analyze the result acquired from two driving environments qualitatively,

and also quantitatively.

5.1.1 Data Acquisition Method

To gather large driving data, by incorporating all the information gathered from au-

tonomous vehicle, such as lidar-camera perception algorithms including tracking and

localization, after some filtering, we gathered dataset in semi-supervised way. The

dataset collected from the above procedures contain some noise, and only moving ob-

jects and semantic information were collected to reduce the noise. We set the overall

length up to 30 frames, and divided into two parts: observation and prediction(target).
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The length of observation were determined randomly by sampling from uniform dis-

tribution around (5,...,25). For example, if the observation length set to be 10 frames,

then the prediction length automatically set to be 20 frames, and the scene information

is stored at time step 10. Through this process, 60,000 frames of data were acquired,

mixed with urban and alley driving, and an additional 10,000 frames were tested to

compare performance. The testset consists of 6231 frames of alleys environment and

3869 frames of urban roads. For performance evaluation we fixed prediction time as 2

seconds(20 frames), given 1 seconds of observation(10 frames).

5.1.2 Overview

In the driving scenario, we tested the variants of the network to demonstrate the effec-

tiveness of the proposed module. Network variants are as follows : Network 1 : without

using Side Spatial Extraction(SSE) Network 2 : without using Spatio-Temporal Rep-

resentation(STR), Network 3 : using both SSE and STR module.

Table 5.1 shows the overall result of the experiment on the driving environment

dataset combined both urban roads and alleys. Due to inefficient implementation of

GPR[4], running time measure is omitted. Lack of scene information makes GPR pre-

dicts less accurate compared to network that fully utilize history information as well as

scene information. Network 2, which didn’t apply STR module gained big advantage

on running time because scene, and trajectory latent vector can be calculated parallel.

But also it’s loss of performance is enormous especially FDE.

5.1.3 Alley Scenario

Compared to driving in urban scenario, driving in alleys is a bit more detailed and care-

ful. Pedestrians move more freely, and vehicles move more carefully because they do

not have sufficient safety distance from the surrounding pedestrians and other vehicles

on the narrower road. Since the narrow space is shared by many actors, each partici-

pant’s choice becomes narrow, but the process of decision making is very interactive
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Metric Road Scenario GPR[4]

Network 1

(STR only)

Network 2

(SSE only)

Network 3

(STR+SSE)

STR SSE STR SSE STR SSE

O X X O O O

ADE

Urban 0.931 0.718 0.622 0.523

Alley 1.301 1.111 0.979 0.772

Combined 1.171 0.970 0.851 0.683

FDE

Urban 1.379 1.113 1.143 0.914

Alley 2.115 1.778 1.994 1.631

Combined 1.851 1.539 1.685 1.370

runtime(s) - ∼0.024 ∼0.013 ∼0.030

Table 5.1: Overall experiment result of the trajectory prediction in driving datasets

and complex. Table 5.2 shows the results of an experiment in an alley. Compared to the

overall results in table 5.1, the performance has declined, which is due to the results of

implicit decision making between participants’ in the alley situations.

Metric axis GPR[4]

Network 1 Network 2
Network 3

(ours)

STR SSE STR SSE STR SSE

O X X O O O

ADE
x 1.517 1.246 1.094 0.929

y 1.084 0.976 0.864 0.615

FDE
x 2.398 1.970 2.115 1.818

y 1.831 1.587 1.873 1.445

Table 5.2: Experiment result of the trajectory prediction in alley driving environment

As mentioned above, since pedestrians and vehicles share spaces in narrow areas,

many interactions occur in alley scenarios. In this section, we analyze the predictions

the our network made in three scenarios ; vehicle to vehicle, pedestrian to vehicle,

pedestrian to pedestrian.

The figure in 5.1 shows pedestrians passing through narrow streets caused by ve-

hicles. Network models the behavior between pedestrians keeping their own distance.

Conventional methods were modeled in the form of potential energy or distance func-
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Figure 5.1: Interaction between pedestrians, (left) variance visualization, (upper-right)

trajectory visualization onto grid map, (bottom-right) trajectory visualization

tions. However, without knowledge about the social force or any model that describes

interaction, result shows that network can model interaction between pedestrian only

given a data.

For situations where interaction between pedestrians and vehicles occurs, in figure

5.2, network expected pedestrian agent to yield the car behind(cyan) to move on and

pass the street. First few scene where trajectory prediction is done in narrow areas

with limited direction is accurate to some extent, but there is a relatively large error

when the pedestrian reaches a space that relatively more free to move according to the

goal the agent is heading for(last 2 time step in the figure 5.2). Network expected the

pedestrian to keep more distance to the vehicle agent, however, because everyone has

a slightly different boundary of safety distance, this caused error. This is also related

to mode collapse, when multiple decisions are available, the network converges only

one mode in the most generic form.

Intersection between vehicles is also the most frequent occurrence of alley driving.

In the case of figure 5.3, This is when A(yellow) and B(gray) are both moving straight
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Figure 5.2: Interaction between pedestrian and vehicle, (upper-right) trajectory visual-

ization onto grid map, (bottom-right) trajectory visualization

ahead and B rapidly accelerates. In this situation, it is difficult for A to respond to ex-

isting history-based trajectory prediction. However, network contextually recognized

the situation as ’first mover conflict’, and predict the agent A to stop.
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Figure 5.3: Interaction between vehicles, (left) trajectory prediction per time

step(number) with grid map, (right) trajectory prediction per time step

5.1.4 Urban Scenario

Driving scene in the urban traffic is mostly following the lane with less pedestrians.

In this urban environment, driver interaction is almost unnecessary. However, in order

for the network to operate as a generalized risk assessment module with both trajec-

tory prediction and intention understanding, it must be able to accurately predict the

movements of each object. Table 5.3 shows quantitative evaluation in urban driving

scenarios. Compared to the previous quantitative assessment results, the performance

is relatively high, due to the fact that most urban driving situations are achieved most

of the time only within simple regulations.

The following figure shows the results of trajectory prediction for different driving

situations encountered in typical urban driving situations. Since network learns its rule

that vehicle normally keep driving in lane, it predicts trajectory of vehicles well, also

same as pedestrian crossing the crossroads. Figure shows that the network has learned

that the driver follows the rule that vehicle should be driven between lanes. One thing

to point out is that in the case of two vehicles predicted on the left side of the im-
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Metric axis GPR[4]

Network 1 Network 2
Network 3

(ours)

STF SSE STF SSE STF SSE

O X X O O O

ADE
x 1.298 0.980 0.861 0.770

y 0.564 0.455 0.383 0.276

FDE
x 2.077 1.648 1.795 1.397

y 0.682 0.578 0.491 0.431

Table 5.3: Experiment result of the trajectory prediction in urban driving environment

age (c), they are actually moving several lanes at once, moving to turn right and left,

respectively. In most case, the network has trained or seen the data only one lane to

change, so in both cases the actual movement appears to the outside of the lane while

the prediction is directed toward the center of the lane. In this regard, the network

trained some traffic laws without any other applications. However, some results are

not predictable for drivers who does not comply with the law.

This shows the limitations of the current framework. Similar to the Variational In-

ference, when we try to approximate the complex distributions with already known

simple functions, because the model fit into only some part of actual complex distribu-

tion. In fact, this is less problematic in alleys where people’s interaction is more active

because there are only a limited number of cases people can choose from in narrow

alleys. However, if we directly learn the true distribution, there is no way to utilize it

without a post process such as sampling. Therefore, it is necessary to research for a

future work to complement the two opposing views on this part.

5.2 Public Pedestrian Dataset

For the purpose of the relative comparison of the network between SOTA algorithm

and verification in general other data, experiments were conducted on the public pedes-

trian trajectory prediction[21] which contains homography matrix for utilizing camera
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(a) numerous vehicles heading vari-

ous direction

(b) U-turn while pedestrians are

passing

(c) multiple lane change (d) wide intersection

Figure 5.4: Various driving scenario in the urban area

data. We set a random interval of 20% for each data to the test set, training each net-

work to the rest of the training set, and verified the performance.

To easily adapt to the original framework, we simply resized the image to 480×480,

and calculated the pixel position of each agents using homography matrix. And instead

of using grid map image, We simply used raw image data. For training, similar to the

procedure on driving scenario data described at the beginning of chapter 5, we sampled

random number from uniform[5,...,15], the total length of data as 30.

For testing, we follow a similar methodology as [11]. The network makes the pre-

diction for steps of 8(3.2 seconds) and 12(4.8 seconds) given observation steps of 8(3.2
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seconds). Table 5.4 shows the result of ADE, FDE of the each data set. The predicted

results of 8 seconds and 12 seconds are separated by parentheses. tpred = 8(12).

Metric Dataset S-LSTM[10] S-GAN[11] Ours

ADE
ETH 0.79(1.20) 0.68(0.94) 0.57(0.103)

HOTEL 0.57(0.92) 0.51(0.84) 0.48(0.94)

FDE
ETH 1.61(2.52) 1.24(1.77) 1.12(1.58)

HOTEL 1.16(1.85) 1.01(1.63) 0.94(1.71)

runtime(s) 1.16(1.97) 0.07(0.11) 0.031(0.034)

Table 5.4: Experiment result of the trajectory prediction in ETH, HOTEL dataset[21]

Compared to other networks utilizing the history information only, our network

showed better performance by utilizing the scene information presented as an image

still with faster inference time. Also, our network can increase the length of prediction

time by a small change of computation time, while LSTM-based network shows a

significant change in computing times depending on the length of prediction time.

But when it comes to longer prediction(12 seconds) as in the parentheses in the

table, S-GAN showed better performance. When the prediction time gets longer, the

influence of the latent variables at the starting time step is reduced. In lstm-based net-

works, latent variables are updated together as prediction proceeds by dealing with

sequential output data. In the case of S-GAN, it is expected that the module considers

interactions such as social pooling can be repeatedly applied to the updated latent vari-

able as a sequence of prediction(output) and the accuracy is improved in the prediction

for longer time.

We consider two common scenarios where many people walk in the opposite di-

rection. Figure 5.5 depicts the scenarios with past trajectory for 3.2 seconds, and future

trajectory prediction for 4.8 seconds with the ground truth. Road in front of the door

of the building or in roads people walking towards different destination are typical

example where similar scenarios frequently happens. When people recognize others

coming from in front, people takes avoiding action while walking unless opponent
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Figure 5.5: Interaction between vehicles, (left) trajectory prediction per time

step(number) with grid map, (right) trajectory prediction per time step

gets too close. It could be change of the walking direction in slightly detouring way, or

slow down and waits for others to detour. People choose the action depending on the

context or intention of the people around them. In the left side of the figure 5.5 shows

the one example, where B and A are walking towards each other. Our model is able

to predict evasive behavior of B(purple), slightly different from ground truth(yellow)

still one of valid action. As mentioned in the last part of the 5.1.4, our model tries to

learn the generalized behavior of the agents. Compared to the driving dataset, behavior

of pedestrian diverse with more various ways. Due to its limitation of representation,

predicted trajectories tend to be smoothed with low curvature. Another common sce-

nario is when multiple people walking across by others opposite direction. The model

predicts the dividing behavior of the groups from the past trajectory information and

their final destination from the scene information.
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Chapter 6

Conclusion

This dissertation suggests neural network structure for multi-agent trajectory predic-

tion. In order to obtain a high-performance trajectory prediction result, the ability to

consider interactions among surrounding agents must be considered together with spa-

tial information in addition to temporal dynamics information.

To achieve this, we proposed the Spatio-Temporal Representation layer to match a

latent variable that extracted from trajectory encoder onto feature map extracted from

the grid map. It matches each agent’s temporal latent variable onto the feature map of

the actual position of each agent by concatenating a depth direction. This process con-

tains the problem that activation maps are extremely sparse. To alleviate this problem,

before it concatenated with a depth direction, we applied transposed convolutional net-

work to stretch the feature into width, height direction considering the actual distance

each agents would affect.

Also, to resolve the known problem that losing local features as CNN network goes

deeper, we construct side output. It is opposite process from spatio-temporal represen-

tation layer. Every time a downsample of feature map is made, by extracting features

from the feature map for each of agents corresponding location. When the flow reaches

the last layer of 1×1 FCN, its extracted neurons were concatenated. So that it extracts

local and global feature efficiently. In this way, we fused the latent variable for space
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and the latent variable for dynamics. Lastly, the decoder predicts the mean and variance

of path of all objects around the time step user requested.

By modeling the process of handling data similar to a human driver, we tried to

model the ”humans’ common understanding of driving scene”. As a result, network

achieved good performance where the driving scenario requires a high level of inter-

action. However, this network possess structural limitation in which it can only predict

one option when multiple decisions are available. This is due to having output in the

form of a Gaussian distribution to facilitate the practical use of trajectory prediction.

Future work would focus on solving multi-modal problem.
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초록

자율주행차량이안전하면서도,교통흐름을방해하지않는인간수준의 interac-

tive한주행을실현하기위해서는주변운전자와보행자를포함한교통참여자들의

의도를파악하는것이필수적이다.동일한도로환경에서도주변의교통참여자들이

어떤의도를가지고이동하고있는가에따라서적합한주행전략은매번달라진다.

특히 좁은 공간을 많은 에이전트들이 공유하고 있는 골목길 상황에서는 각 에이전

트들의선택은제한되지만,각에이전트들의의사결정과정은그들간의상호작용이

고려되어 매우 복잡하다. 이런 상황에 맞는 경로예측은 과거의 궤적, 현재 인식하

고있는도로환경,주변교통참여자의상태등을고려하여수행되어야한다.또한

일반화된 대부분의 환경에서 수행되려면, 빠른 러닝 타임과 동시에 고려하는 교통

참여자의숫자에대한제약이적어야한다.

이논문에서는각교통참여자들의과거궤적과현재위치상황,도로상황을동

시에 고려하여 모든 참여자들의 상호작용이 고려된 경로예측 방법을 제안한다. 각

물체들의 과거 궤적과 동시에 자율주행 차량이 인식하고 있는 도로와 주변 물체를

입력으로하고,이두개의임베딩결과를혼합하여모든물체들에대한경로예측을

동시에 수행한다. 이 과정에서 네트워크 구조 내부에서 각각 물체들의 임베딩 결

과를 위치 정보에 매칭시킴으로써 효과적으로 주변 상황과 과거의 궤적을 동시에

고려하는 경로 예측을 학습할 수 있는 구조를 제안한다. 몇가지 네트워크 구조에

따른 성능 비교와 함께, 다양한 주행 환경에서 정량적인 평가와 정성적인 평가로

유효성을 입증한다. 또한 보행자 경로예측 데이터에 테스트를 진행함으로써 타 알

고리즘과의성능을비교한다.

37



주요어:자율주행,경로예측,뉴럴프로세스

학번: 2017-21304

38



ACKNOWLEGEMENT

39


	1 INTRODUCTION
	1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . .

	2 Related Work
	2.1 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . .

	3 Conditional Neural Process
	3.1 Conditional Neural Process(CNP) Overview . . . . . . . . . . . . . .
	3.2 Trajectory Prediction with Scene Information as CNP . . . . . . . . .
	3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2.2 Loss and Training Algorithm . . . . . . . . . . . . . . . . . .


	4 Efficient Network Architecture for Intention Prediction
	4.1 Network Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2 Trajectory Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2.1 Spatio-Temporal Representation . . . . . . . . . . . . . . . .

	4.3 Scene Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . .
	4.3.1 Side Spatial Extraction . . . . . . . . . . . . . . . . . . . . .

	4.4 Trajectory Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . .

	5 Experiment
	5.1 Driving Environment Dataset . . . . . . . . . . . . . . . . . . . . . .
	5.1.1 Data Acquisition Method . . . . . . . . . . . . . . . . . . . .
	5.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1.3 Alley Scenario . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1.4 Urban Scenario . . . . . . . . . . . . . . . . . . . . . . . . .

	5.2 Public Pedestrian Dataset . . . . . . . . . . . . . . . . . . . . . . . .

	6 Conclusion
	Abstract (In Korean)
	Acknowlegement


<startpage>10
1 INTRODUCTION 1
 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
2 Related Work 4
 2.1 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . 5
3 Conditional Neural Process 7
 3.1 Conditional Neural Process(CNP) Overview . . . . . . . . . . . . . . 8
 3.2 Trajectory Prediction with Scene Information as CNP . . . . . . . . . 10
  3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
  3.2.2 Loss and Training Algorithm . . . . . . . . . . . . . . . . . . 13
4 Efficient Network Architecture for Intention Prediction 14
 4.1 Network Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 4.2 Trajectory Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
  4.2.1 Spatio-Temporal Representation . . . . . . . . . . . . . . . . 17
 4.3 Scene Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 18
  4.3.1 Side Spatial Extraction . . . . . . . . . . . . . . . . . . . . . 18
 4.4 Trajectory Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Experiment 21
 5.1 Driving Environment Dataset . . . . . . . . . . . . . . . . . . . . . . 22
  5.1.1 Data Acquisition Method . . . . . . . . . . . . . . . . . . . . 22
  5.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
  5.1.3 Alley Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 23
  5.1.4 Urban Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 27
 5.2 Public Pedestrian Dataset . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion 32
Abstract (In Korean) 37
Acknowlegement 39
</body>

