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Abstract

Vehicle routing problem considering 

reconnaissance and transportation

Byung Jun Ju

Department of Industrial Engineering

The Graduate School

Seoul National University

Troop movement involves transporting military personnel from one location to 

another using available means. To minimize damage from enemies, the military 

simultaneously uses reconnaissance and transportation units during troop 

movements. This thesis proposes vehicle routing problem considering

reconnaissance and transportation (VRPCRT) for troop movements in wartime.

VRPCRT is formulated as a mixed-integer programming model for minimizing the 

completion time of wartime troop movements. For this thesis, an ant colony 

optimization (ACO) algorithm for the VRPCRT was also developed and computational 

experiments were conducted to compare the performance of the ACO algorithm and 

that of the mixed-integer programming model. Furthermore, a sensitivity analysis of 

the change in the number of reconnaissance and transportation vehicles was 

performed, and the effects of each type of vehicle on troop movement were analyzed.

Keywords: Ant colony optimization, Vehicle routing problem, Wartime logistic
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Chapter 1

Introduction

Troop movement involves transportation of military personnel from one location to 

another using available means. In wartime, rapid and efficient troop movement offers 

many benefits in battle. For instance, efficient troop movement saves time and 

resources, which can be used for combat preparation and future operations. To win a 

battle, the commander must concentrate combat power at the opportune place and 

time to achieve a relative advantage over the enemy. Therefore, in the process of 

rearranging troops, efficient and rapid movement is essential. 

The procedure for tactical troop movement in wartime consists of two parts. First, 

the reconnaissance troops patrol the area where the units and equipment will be 

transported. Second, the transportation troops move the units and equipment to the 

area where the reconnaissance troops have patrolled. Because of enemy threats, such 

as an ambush or surprise attack, the reconnaissance troops are deployed to protect 

the vehicle movement undertaken by the transportation unit during an operation. 

Figure 1 represents an example of the procedure for tactical troop movement in 

wartime.



2

⇒

Figure 1. Procedure for tactical troop movement in wartime

Troop movement is usually performed using a ground vehicle or helicopter, and in 

some cases, the troops move on foot. Troop movement using vehicles is associated 

with a pickup and delivery problem (PDP), which is a modified form of a vehicle 

routing problem (VRP). Existing PDPs model realistic situations with constraints on 

vehicles in terms of time windows or capacity. However, for troop movement in 

wartime, more than the transportation vehicle route, as solely needed for existing 

PDPs, must be considered according to tactical troop movements; that is, both 

reconnaissance and transportation plans must be determined simultaneously for 

troop movement, which is essential, during wartime. Despite the importance of troop 

movement, existing transportation studies have limited application to troop 

movement because they have taken into account only transportation vehicles. 

In this thesis, a VRP considering reconnaissance and transportation (VRPCRT) is 

proposed for troop movement in wartime. For the VRPCRT, the procedure of tactical 

troop movement was modeled mathematically and the routes of reconnaissance and 

transportation vehicles were determined simultaneously to complete troop 

movement in the shortest possible time under various constraints. 
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The VRPCRT is NP-hard because it is generalization of PDP. Due to complexity of NP-

hard, many heuristic algorithms were developed to solve it. An ant colony 

optimization (ACO) algorithm based on the ant colony system (ACS) was proposed to 

solve the VRPCRT in this study. 

1.1 Research Motivation and Contribution

The first contribution of the thesis comes from the proposed PDP as applied to the 

military field. PDPs are frequently used in real-life peacetime situations, such as those 

related to transportation or logistic systems. For instance, Chemla et al. [7] studied a 

PDP for a bike-sharing system and Swersey and Ballard [26] introduced a school bus–

routing problem. Yan and Chen [29] applied the PDP to a carpooling system. 

Despite clear applications for wartime, fewer PDPs have been used to study military 

situations compared to the implementation and research of them for peacetime, such 
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as with transportation or logistic systems. For the study described in this thesis, by 

applying a PDP to the military field, procedures of troop movement were modeled 

with a VRPCRT.

For the second contribution, the VRPCRT was extended from the Dial-a-Ride Problem 

(DARP), which represents a multi-occupancy transportation system of door-to-door 

service [28]. Troop movement in wartime is related to a DARP because the origins 

and destinations of each unit are given when planning the transport. In the DARP, 

only transportation vehicle routes are determined, but in the VRPCRT, transportation 

and reconnaissance vehicle routes were determined. Constraints, such as pairing or 

precedence, in a DARP were included in the VRPCRT. Of note, in the VRPCRT, 

transportation vehicle routes were influenced by reconnaissance vehicle routes 

according to the procedure of troop movement; this condition was formulated as a 

time window constraint. 
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1.2 Organization of thesis

This thesis consists of six chapters. In Chapter 2, the literature review is presented. In 

Chapter 3, the mathematical model for the VRPCRT is described. In Chapter 4, the 

ACO algorithm for the VRPCRT is presented. In Chapter 5, the computational results 

are revealed. Finally, in Chapter 6, the conclusion is offered.
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Chapter 2

Literature Review

2.1 Review of the pickup and delivery problem

The PDP has been studied for approximately 30 years and has been used in many 

areas of study. The PDP is classified into three types according to the structure of the 

problem and related constraints. One is the many-to-many (M-M) problem. In the M-

M problem, any node can be an origin or destination for any commodity. For example, 

an M-M problem can be applied to inventory repositioning between retailers. Chemla 

et al. [7] studied an M-M type of PDP for bike-sharing systems. In their study, only one 

commodity and a capacitated single vehicle were allowed to visit a node several 

times. The authors proposed an efficient algorithm for the problem and a theoretical 

result concerning the algorithm. 

Another PDP is the one-to-one problem (1-1). In the 1-1 problem, each object is 

assigned a given origin and destination. Dumas et al. [12] studied a pickup and 

delivery problem with time windows (PDPTW), which is a generalized VRP. In the 

problem, a vehicle route satisfies constraints, such as those related to transportation 

requests, capacity, time windows, and precedence. They presented an exact algorithm 

using column generation. Lau and Liang [18] proposed a two-phase-method 

algorithm for a PDPTW. In the first phase, the algorithm was constructed by 

combining an insertion and a sweeping heuristic to obtain an initial solution. In the 

second phase, a tabu search was used for improving the initial solution. Cordeau [9] 

dealt with the DARP. In the problem, various constraints, such as capacity, duration, 
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paring, precedence, and time window constraints, were considered and introduced in 

a mixed-integer programming (MIP) formulation. A branch-and-cut algorithm, based 

on new valid inequalities for the DARP, was introduced. Malapert at el. [20] studied 

the PDP with two-dimensional loading constraints in which items were two-

dimensional rectangles. Männel and Bortfeldt [21] proposed a PDP with three-

dimensional loading constraints (3L-PDP). In the 3L-PDP, the vehicle capacity and 

requests were expressed in the form of a three-dimensional rectangle. Männel and 

Bortfeldt [21] used a hybrid algorithm for the model. Pankratz [24] came up with a 

grouping-genetic algorithm for the PDPTW. In the grouping-genetic algorithm, a gene 

stood for a group of requests instead of a single request. 

The third PDP is the one-to-many-to-one (1-M-1) problem. In the 1-M-1, some 

commodities must be delivered to the customers from the depot, and other 

commodities must be picked up from the customers and delivered to the depot. 

Montané and Galvao [23] dealt with the VRP using simultaneous pickup and delivery 

(VRPSPD) and developed a tabu search algorithm for it. Chen and Wu [8] also studied 

the VRPSDP and suggested a new hybrid heuristic algorithm by combining record-to-

record travel and tabu lists. Çatay [6] introduced an effective ACO algorithm for the 

VRPSPD. 

After the PDP was introduced, heuristic and meta-heuristic algorithms for solving it 

were developed. Tchoupo et al. [27] developed a meta-heuristic based on an ACO 

combined with dedicated local search algorithms for the PDPTW. Lu and Dessouky 

[19] presented a new insertion-based construction heuristic for the PDPTW. The 

crossing-length percentage (CLP), which is used to quantify the visual attractiveness 

of the solution, was introduced in their study. The CLP used in their heuristic 

algorithm improved the quality of the solution. Computational experiments showed 

that the proposed heuristic was better than a sequential-insertion heuristic and a 

parallel-insertion heuristic. Melachrinoudis et al. [22] proposed a double-request 

DARP with soft time windows and suggested a tabu search heuristic as the solution 

method. 
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In this study, transportation and reconnaissance vehicles are considered 

simultaneously and their routes are needed to be coordinated. Bae and Moon [2] 

extended a multi-depot VRP by considering two different types of service vehicles: 

delivery and installation. The service level, which refers to the time interval between 

delivery and installation, was proposed in the model. They also developed a new 

hybrid genetic algorithm. Aldaihani and Dessouky [1] studied the problem, which 

deals with integrating fixed route service (buses) and general PDP (taxis). They 

proposed a three stage heuristic construction algorithm that provide an approximate 

solution. The differences among VRP studies that deal with multi types of vehicles 

performing different task are summarized in Table 1.

2.2 Review of ant colony optimization algorithms

Dorigo et al. [11] introduced the ant system (AS), which was the first ACO algorithm 

used to solve the traveling salesman problem (TSP). They compared it with other 

meta-heuristics, such as the tabu search, simulated annealing, and a genetic 

algorithm. Bullnheimer el al. [5] introduced an AS in which all solutions were ranked 

and pheromone trails were updated according to the ranked solutions. Hu et al. [16] 

proposed the continuous orthogonal ant colony, in which the orthogonal design 

method was used to search the solutions effectively. Dorigo and Gambardella [10] 

introduced the ACS, which was extended from the AS. The local pheromone updating 

rule and new state transition rule were applied to the ACS. Stützle and Hoos [25] 

Table 1. Characteristics of literature review

Authors This thesis Bae and Moon[2]
Aldaihani and 
Dessouky [1]

Application
Troop movement in 

wartime

Delivery and 
installation of 

electronics
Dial a ride

Vehicle types
Reconnaissance and 

transportation vehicle
Delivery and 

installation vehicle
Taxis and buses

Solution 
approach

Ant colony
optimization 

algorithm
Genetic algorithm

Three-stage 
heuristic 

construction 
algorithm
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developed the MAX-MIN ant system (MMAS), which was derived from the AS. Only 

the best ants, found globally, were used to update the pheromone trails, which were 

limited for each solution to avoid stagnation in the MMAS. Blum and Dorigo [4] 

introduced the hyper-cube of the ACO, in which the pheromone value was limited 

between 0 and 1. Favaretto et al. [13] proposed an ACS for the VRP with multiple time 

windows. Fuellerer et al. [14] studied the two-dimensional loading-vehicle routing 

problem and proposed an ACO algorithm based on the AS.
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Chapter 3

Mathematical model

3.1 Problem description

This study was aimed at developing a model for tactical troop movement in wartime. 

The model was developed on a complete network. The node set, W, is partitioned into 

{J, P, D} for which J = {0} is the depot, P = {1, 2,…, n} is the set of origin nodes, and D 

= {n+1,…, 2n} is the set of destination nodes. Each arc is associated with travel 

time, ��� . For the DARP, a request specifies the locations where people are picked up 

and where they are delivered [3]. The request described for the DARP applies equally 

to the VRPCRT. Each node � ∈ W is associated with the number of troops, �� , and the 

boarding and disembarking time, ��� , such that �� = 0,  ��� = 0, �� = −����  (� =

1, … , �). Each node � ∈ D is associated with the reconnaissance time, ���. Set K 

contains reconnaissance vehicles with a maximum route time, �� , and set S consists 

of transportation vehicles. Each transportation vehicle has capacity, �� , and 

maximum route time, �� . Dual time windows were used for destination nodes. A time 

window [0, ��
�] for the reconnaissance vehicle is associated with node � ∈ D, for 

which ��
� refers to the latest time for reconnaissance. A time window [��+���, ��

�] for 

the transportation vehicle is associated with node � ∈ D for which ��
� , �� , and 

represent the latest time for transportation and arrival time of the reconnaissance 

vehicle, respectively. The time windows for transportation indicate that 

transportation vehicles can visit only destination nodes that have been patrolled by a 

reconnaissance vehicle. 
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The transportation vehicle in the troop movement procedure is similar to that of the 

DARP, which was designed to determine a route and schedule for pickup and delivery 

requests between origin and destination pairs [9]. In a DARP, the route of the 

transportation vehicle satisfies the precedence, pairing, capacity, maximum route 

time, and time window constraints. The precedence constraint means that a vehicle 

visits the origin before moving to a destination, and a pairing constraint is used so 

that the customer’s pickup and delivery request is fulfilled by the same vehicle [28].

Figure 2 shows an example of requests and a vehicle route that satisfies the 

precedence and pairing constraints. 

In the VRPCRT, reconnaissance vehicles visited only the destination nodes and 

necessarily satisfied the time window and maximum route time constraints. This 

reconnaissance activity at a destination during troop movement was performed by 

reconnaissance troops. Transportation vehicles satisfied the constraints of the DARP, 

such as pairing, precedence, capacity, and time window constraints, and thus, was 

used in the VRPCRT to describe the transportation troops that move units and 

equipment from an origin to a destination.

Origin and destination of each request Vehicle routes

Figure 2. Vehicle route satisfying pairing and precedence constraints
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Figure 3 represents the feasible routes for the reconnaissance and transportation 

vehicle in VRPCRT. Figure 3 shows that the transportation vehicle waits at the P1 

node until the reconnaissance vehicle leaves the D1 node, and then it visits the D1 

node after the reconnaissance vehicle at the D1 node has advanced to the D3 node. If 

the reconnaissance vehicle at the D1 node is delayed, then the arrival time for 

transportation vehicle at the D1 node is also delayed. 

Hence, the transportation vehicle route was affected by the reconnaissance vehicle 

route because of the time window constraints of transportation as explained in the 

previous paragraph. In other words, the time windows of the transportation vehicles 

in the VRPCRT were not given as parameters because they depended on the 

reconnaissance vehicle routes.

Figure 3. VRPCRT model

The following assumptions about the model were used to develop the VRPCRT:

(1) Two types of vehicles (reconnaissance and transportation) and two 

     types of nodes (origin and destination) were used.
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(2) All vehicles departed from and returned to the depot.

(3) Destination nodes must be visited exactly once by a reconnaissance vehicle, 

and origin and destination nodes must be visited once by a transportation 

vehicle.

(4) A transportation vehicle can only visit a destination node that has been 

patrolled by a reconnaissance vehicle.

(5) Requests of each troop must be served by a transportation vehicle.

(6) Numbers of troop at all nodes cannot exceed the capacity of the transportation

vehicle.

(7) All vehicles must satisfy the time window constraints of each node and the 

maximum route time constraints.

3.2 The model formulation

An MIP model was developed for troop movement in wartime. Sets, parameters, and 

decision variables of the model are described as follows: 

Sets

P : set of origin nodes for requests

P = {1, 2, 3,…, n} where n is the total number of requests

D : set of destination nodes for requests

D = {n+1, n+2,…, 2n} where n is the total number of requests

J : depot, J = {0}

W : set of all nodes, W = P ∪ D ∪ J

K : set of reconnaissance vehicles

S : set of transportation vehicles

U : P ∪ D

Decision variables

��: arrival time of the reconnaissance vehicle at node �              ∀ � ∈ D

��: arrival time of the transportation vehicle at node �              ∀ � ∈ U
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a�� : arrival time of the reconnaissance vehicle at the depot  ∀ � ∈ J, � ∈ K

b��: arrival time of the transportation vehicle at the depot   ∀ � ∈ J, � ∈ S

���� = �
1, if reconnaissance vehicle visits  node � from node �   

0, otherwise                                           

       ∀ �, � ∈ D ∪ J, � ∈ K

���� = �
1, if transportation vehicle visits  node � from node �   

0, otherwise                                           

       ∀ �, � ∈ W, � ∈ S

Q��: number of troops in transportation vehicle S after visiting node �

       ∀ � ∈ U, � ∈ S  

Parameters

��
�: latest time for reconnaissance at node �                        ∀ � ∈ D

��
�: latest time for transportation at node �                       ∀ � ∈ D

���: travel time between nodes � and �                         ∀ �, � ∈ W

�� : number of troops to board at node �                      ∀ � ∈ P

����: number of troops that disembark at node � (−��)            ∀ � ∈ D

���: reconnaissance time at node �                             ∀ � ∈ D

���: boarding and disembarking times at node �                   ∀ � ∈ U

��: maximum route time for vehicle k                           ∀ � ∈ K

��: maximum route time for vehicle s                            ∀ � ∈ S

��: capacity for vehicle s                                      ∀ � ∈ S

M: big M

The formulation of VRPCRT can be stated as follows:

Minimize τ

�� ≤ � ∀ � ∈ W                                               (1)

 � � ����

�∈�∪��∈�

 =  1                                   ∀ � ∈ D                               (2)

 � � ����

�∈��∈�

 =  1                                       ∀ � ∈ U                                (3)
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� ����

�∈�∪�

= � ����

�∈�∪�

                              ∀ � ∈ D ∪ J,  � ∈ K                       (4)

 � ����

�∈�

= � ����

�∈�

                                    ∀ � ∈ W,  � ∈ S                          (5)

 � ����

�∈�

=  1                                             ∀ � ∈ J, � ∈ K                       (6)

� ����

�∈�

=  1                                              ∀ � ∈ J,   � ∈ S                            (7)

� ����

�∈�

= � ����, ��

�∈�

                             ∀ � ∈ P,  � ∈ S                           (8)

  ��  =  ����  −  (�� + ���)                      ∀ � ∈ P,   � ∈ S                           (9)

  ��,���  ≤  ��                                                ∀ � ∈ P,   � ∈ S                          (10)

  ��  ≥ �� + ��� + ��� + � �� ����

�∈�

− 1�                 ∀ � ∈ D ∪ J,   � ∈ D           (11)

 �� ≥ �� + ��� + ��� + � �� ����

�∈�

− 1�                 ∀ � ∈ W,     � ∈ U            (12)

�� ≥ ��� ≥ �� + ��� + ��� + ������ − 1�  ∀ � ∈ D, � ∈ J, � ∈ K         (13)  

�� ≥ ��� ≥ �� + ��� + ��� + ������ − 1�   ∀ � ∈ U, � ∈ J, � ∈ S          (14)  

 �� + ��� ≤ ��
�                                                              ∀ � ∈ D                     (15)

 �� + ��� ≤   ��  ≤ ��
�                                ∀ � ∈ D                     (16)

  ��  ≥  ���  ≥  ��� + �� + ������ − 1� ≥   0        ∀ �, � ∈ W,   � ∈ S             (17)

��  =  �� =   ���  =  ��� =   ����  =   ���� = ��� =  0                           (18)

∀ � ∈ W , � ∈ J, � ∈ K, � ∈ S                                                  

The objective function minimizes the maximum arrival time of any transportation 

vehicle. Constraints (2) represents the destination nodes must be visited exactly once 

by a reconnaissance vehicle. Constraints (3) means that the origin and destination 

nodes must be visited once by a transportation vehicle. Constraints (4) and (5) 
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ensure that the vehicle that visited the node is the same vehicle that is leaving the 

node. Constraints (6) and (7) refer to the reconnaissance and transportation vehicle, 

respectively, that departs from the depot. Constraints (8) indicates that each request 

is served by the same transportation vehicle. Constraints (9) and (10) guarantee that 

the transportation vehicle visits the origin nodes before the destination nodes.

Constraints (11) and (12) represent relationships between the arrival time of the 

reconnaissance and transportation vehicles to nodes. Constraints (13) and (14) are 

related to the maximum route time for the reconnaissance and transportation 

vehicles. Constraints (15) and (16) specify the time window constraints, and 

constraints (17) dictates the vehicle capacity constraint. Constraints (18) represents

the depot time and initial conditions at the depot.

3.3 Numerical example

In this section, the VRPCRT was validated by solving the numerical example through 

Xpress-IVE Version 1.24 optimization software. Small data sets consisting of 7 nodes 

are presented in the numerical example. The nodes in this example consist of three 

origins, three destinations, and one depot. Travel times between each node and the 

parameters for the model are presented in Tables 2 and 3, respectively. All 

parameters for this example were generated randomly. 

Table 2. Travel times between nodes in the numerical example

P1 P2 P3 D1 D2 D3 Depot

P1 0 49 42 69 41 30 54

P2 49 0 78 49 69 62 102

P3 42 78 0 70 14 67 45

D1 69 49 70 0 56 95 110

D2 41 69 14 56 0 69 58

D3 30 62 67 95 69 0 58
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The routes and arrival times of each vehicle are described in Table 4 and illustrated 

Figure 4. The optimal value provided by the model was 228, which refers to the 

completion time of the troop movement. Transportation vehicles satisfied the 

precedence, paring, and capacity constraints in the numerical example, and both 

transportation and reconnaissance vehicles satisfied the time window and the 

maximum route time constraints in the numerical example.

The main feature of the VRPCRT is that the reconnaissance vehicle route affects the 

route of the transportation vehicle. In other words, transportation vehicles must visit 

the destination nodes that the reconnaissance vehicles have patrolled. In this 

example, all transportation vehicles visited the destination nodes after the 

reconnaissance vehicles completed the assignment such that transportation vehicle 1 

waited at the P1 node until after the reconnaissance vehicle completed duty at the D1 

node.

Table 3. Parameters in the numerical example

ᆞNumber of reconnaissance vehicles: 1

ᆞNumber of transportation vehicles: 2

ᆞBoarding and disembarking time: 3

ᆞReconnaissance time: 15

ᆞLatest time for reconnaissance at destination node: 250

ᆞLatest time for transportation at destination node: 300

ᆞMaximum route time for reconnaissance vehicle: 400

ᆞMaximum route time for transportation vehicle: 400

ᆞCapacity of transportation vehicle: 50

ᆞNumber of troops to board: P1(10), P2(15), P3(25)

Depot 54 102 45 110 58 58 0
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Figure 4. Each vehicle route in the numerical example

Table 4. Results from the numerical example

Reconnaissance 
vehicle 1

Depot D3 D2 D1 Depot

Arrival time 58 142 213

Transportation 
vehicle 1

Depot P3 D3 P1 D1 Depot

Arrival time 45 115 148 228

Waiting time 8

Transportation
Vehicle 2

Depot P2 D2 Depot

Arrival time 102 174
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Chapter 4

Ant colony optimization algorithm

In this section, the proposed ACO algorithm for the VRPCRT is described. The ACO 

algorithm is a meta-heuristic developed to solve combinatorial optimization 

problems, such as the TSP or VRP. The ACO algorithm was based on the idea that ants 

leave pheromone trails when they are searching for food. The pheromone affects the 

way the ants move, so it is an important factor for the ACO algorithm. In the natural 

world, the pheromone accumulates along the route of ants searching for food or 

evaporates over time. Similarly, the pheromone accumulates or evaporates according 

to the parameters and rules of the ACO algorithm.

The proposed ACO algorithm for the VRPCRT in the study is based on the ACS 

algorithm that featuring local pheromone updating and transition rule that differ 

from the AS [11]. The proposed ACO algorithm was also modified by considering 

characteristics of the VRPCRT. 

The process for running an ACO algorithm for the VRPCRT consists of three steps. 

The first step involves construction of a solution such that the ants (vehicles) selects

each node probabilistically and repeats this process until feasible solutions (routes)

were generated. The second step requires local pheromone updating. Whenever ants

constructed a feasible solution, local pheromone updating was performed to change 

the probability that the ants would choose each node. In the third step, the global 

pheromone updating is performed. It affected the probability that ants would select 

each node according to the best solution, which had been constructed in the first step.
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The three steps of the proposed ACO algorithm were repeated as described to 

discover and improve feasible solutions

4.1 Construction of a solution

In this section, the process of construction of a solution is described. For the DARP, 

only the routes of the transportation vehicles are considered as the feasible solutions. 

Meanwhile, the model presented in this thesis takes into account both 

reconnaissance and transportation vehicles simultaneously, so the feasible solution 

refers to route pairs of reconnaissance and transportation vehicles that satisfy the 

constraints.

For the creation of a feasible solution for the VRPCRT, a reconnaissance vehicle route 

was made. Then, the transportation vehicle route was determined according to the 

reconnaissance vehicle route. Because the time window constraints of the 

transportation vehicle were affected by the reconnaissance vehicle route, the 

reconnaissance vehicle route must be fixed first to determine the transportation 

vehicle route.

In the ACO algorithm, vehicles are represented by ants. Therefore, for this study, 

reconnaissance and transportation ants represent reconnaissance and transportation 

vehicles, respectively. The reconnaissance route was made as follows: the number of 

ants (vehicles) was given as a parameter, and every reconnaissance ant was located

at the depot. One of the ant is selected randomly. It selects one of the feasible nodes 

that can visit from its current node through transition rule and adds the feasible node 

to its route. The next ant, also selected randomly, moves to a feasible node and 

creates a route, different from the first ant, by adding feasible nodes. This process 

was repeated until the reconnaissance ants (vehicles) visit all the destination nodes 

and satisfy all the constraints at the same time. The reconnaissance routes were thus 

created by the time the process was ended. After the reconnaissance routes were 

made, transportation routes were made in the same way.
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Whenever it adds a feasible node to its route, the ant (vehicle) follows the transition 

rule for constructing a route [15]: The ant selects the node with the highest 

[���]� ∙ [���]� value with probability ��. If the node with the highest [���]� ∙ [���]�

value is not selected(with probability 1-��), then the ant selects another node j with 

probability P�� as follows: 

��� =

⎩
⎪
⎨

⎪
⎧ [���]� ∙ [���]�

∑ [���]� ∙ [���]�
�∈��

�

,   �� � ∈ ��
�      

0                 otherwise

   

In this equation, ��
�represents the set of feasible nodes when ant k is positioned at 

node i. The term ��� stands for a pheromone between node i and j. The ��� value is 

a heuristic reciprocal of the time value for travel between node i and j. The 

parameters are ��, α, and �. In addition, several feasible solutions were generated 

by repeating the first step in each iteration of the ACO algorithm.

4.2 Pheromone updating 

The pheromone affects how ants move in the natural world. Therefore, for the ACO 

algorithm, the pheromone affects the node selection of ants (vehicles). Because the

probability of node selection in construction of a solution depends on the pheromone, 

the probability of node selection changes as the pheromone updating progresses. For 

the VRPCRT, ���
� and ���

� refer to the respective pheromones between node i and j

for the reconnaissance and transportation ants. The pheromones are distinguished in 

the ACO algorithm to create various feasible solutions in the first step. Pheromones 
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for reconnaissance and transportation ants are updated, independently. Two types of 

pheromone updating were used for the ACO algorithm: local and global. 

Local pheromone updating was performed whenever a feasible solution was 

generated in the first step. When the reconnaissance and transportation ants visit 

node j from node i along the feasible solution (route), local pheromone updating was 

performed as follows [15]: 

���
� ← (1 − ��) ⋅ ���

� + �� ⋅ ��
�

���
� ← (1 − ��) ⋅ ���

� + �� ⋅ ��
�

The initial pheromone for the reconnaissance and transportation ant (vehicle) is ��
�

and ��
� , respectively, and �� is a parameter to control the evaporation rate during 

local pheromone updating. The first step and local pheromone updating were 

repeated several times for each iteration. When first step and local pheromone 

updating finished in an iteration, the global pheromone updating was performed. 

When global pheromone updating is processed, only the best solution is required. 

The best solution is the feasible solution which has the minimum objective value 

among the feasible solutions generated from the iteration.

Therefore, global pheromone updating was executed only once for each iteration. 

When the reconnaissance and transportation ant (vehicle) visits node j from node i

using the best solution (the best route), global pheromone updating was performed 

as follows [15]: 

���
� ← �1 − ��� ⋅ ���

� +  �/��

���
� ← �1 − ��� ⋅ ���

� +  �/��

Q is a parameter and �� means the objective function value of the best route in the 

kth iteration.
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Procedure of ACO Algorithm for the VRPCRT
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Input parameters for ACO algorithm(�� , ��, �, �, �, q�)

       ��
�, ��

�: initial pheromones

I: number of iterations that algorithm repeated

A: number of feasible solutions in each iteration 

         

Output final_sol, final_value

1: begin algorithms

2: initialize  final_sol, final_value, ��
�, ��

�

3: for � = 1 to I 

4:     initialize �� , best_sol, best_value

5:     for � = 1 to A                         // Construction of a solution

6:          while do         // Construction of reconnaissance vehicle route

7:                Select one of reconnaissance ant k

8:                Move ant k to a feasible node with transition rule      

9:          until ��
� = { } for all k ∈ K

10:         while do          // Construction of transportation vehicle route

11:               Select one of transportation ant s

12:               Move ant s to a feasible node with transition rule      

13:         until ��
� = { } for all s ∈ S

14:         Get feasible value and feasible solution // 

15:         Local pheromone update // updating based on feasible solution

16:         If �� ≥ feasible value then

17:               �� ⟵ feasible value

18:               best_sol ⟵ feasible solution

19:     end for

20:     best_value ⟵ ��

21:     Global pheromone update    // updating based on best_sol

22:     If final_value ≥ best_value

23:         final_value ⟵ best_value  

24:         final_sol ⟵ best_sol

25: end for  

26: End algorithm

Chapter 5
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Computational experiment

In this section, the computational experiment for the model is presented. The 

discussion consists of two parts. First, a comparison is described for the performance 

between the proposed ACO algorithm and a MIP model. The MIP model was solved 

with Xpress-IVE Version 1.24, and the ACO algorithm was coded by JAVA Eclipse.

Second, a sensitivity analysis on the changes in the number of vehicles is explained.

All computational experiments were conducted by a computer featuring 8GB RAM 

and Intel(R) Core(TM) i5-3470 CPU with 3.20GHz.

5.1 Experiment 1

For the first part of the experiment, the performance of the proposed ACO algorithm

was verified. Data sets for the computational experiment were randomly generated. 

Parameters of the ACO are presented in Table 5, and the results of the computational 

experiment are shown in Table 6, 7, and 8. Each experiment consisted of 10 instances. 

The ACO algorithm was run 10 times for each instance.

Table 5. Parameters of the ACO algorithm in experiment 1

� � � q� �� �� A I

0.25 0.97 70 0.5 0.05 0.0003 250 400

Table 6. Experiment 1 results with 13 nodes
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Table 7. Experiment 1 results with 15 nodes

MIP
(optimal)

MIP
(feasible)

Time
(seconds)

ACO
(best)

ACO
(average)

Gap

15-1 253 - 483 265 268.6 4.74%

15-2 - 312 7200 255 268.6 -

15-3 258 - 927 260 272.6 0.78%

15-4 - 265 7200 265 269.8 -

15-5 253 - 369 254 255.3 0.40%

15-6 230 - 2452 230 239.0 0%

15-7 262 - 5459 269 275.5 2.67%

15-8 - 229 7200 203 203.0 -

15-9 280 - 5820 282 288.2 0.71%

15-10 217 - 249 217 225.7 0%

Table 8. Experiment 1 results with 17 nodes

MIP
(optimal)

MIP
(feasible)

Time
(seconds)

ACO
(best)

ACO
(average)

Gap

MIP
(optimal)

ACO
(best)

ACO
(average)

Gap

13-1 211 211 211.0 0%
13-2 222 222 222.3 0%
13-3 199 199 199.0 0%
13-4 231 231 231.6 0%
13-5 226 226 226.3 0%
13-6 219 219 219.0 0%
13-7 219 221 221.3 0.91%
13-8 196 196 196.9 0%
13-9 230 230 230.4 0%

13-10 238 238 241.2 0%
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17-1 - 228 7200 227 232.0 -

17-2 - 321 7200 295 303.1 -

17-3 216 3185 216 221.4 0%

17-4 - 313 7200 298 308.6 -

17-5 - 287 7200 288 290.1 -

17-6 - 261 7200 245 255.0 -

17-7 - 255 7200 250 256.9 -

17-8 - 252 7200 255 274.0 -

17-9 - 246 7200 231 245.5 -

17-10 - 239 7200 225 239.4 -

As shown in Table 6, the optimal value of each instance was found by the MIP Model 

through Xpress-IVE. The optimal solution was acquired within 30 seconds, and the 

ACO algorithm solution was found immediately. The gap between the optimal value 

and the value found by the ACO was within 1%. 

For the case of 15 nodes, the computational experiment time was limited to 7,200 

seconds per instance, and the optimal solution was obtained for 7 of 10 instances. 

The optimal value and experiment time for the MIP, conducted through Xpress-IVE,

are presented in Table 7. The ACO algorithm found a feasible solution within 20 

seconds for all instances and the gap was within 5% for the instance in which the 

optimal solution was obtained. The ACO algorithm found better solutions than the 

feasible solutions obtained by the MIP model using Xpress-IVE within 7,200 seconds 

for the instances that did not reach an optimal solution (instance 15-2, 8)

The computational experiment time also was limited to 7,200 seconds for the case of 

17 nodes. The results are presented in Table 8. The optimal solution was obtained for 

only 1 of 10 instances (instance 17-3), and feasible solutions were found for the 

other instances. The ACO algorithm found the solution within 60 seconds and found 

the optimal solution in instance 17-3. In some instances (17-1, 2, 4, 6, 7, 9, 10), ACO 

algorithm found better feasible solutions than the MIP model that was conducted 

using Xpress-IVE.
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5.2 Experiment 2

The second experiment was a sensitivity analysis related to the changing number of 

vehicles. The change in the number of vehicles can be divided into three cases: 1) the 

number of reconnaissance vehicles remained constant and the number of 

transportation vehicles changed 2) the number of transportation vehicles remained

constant and the number of reconnaissance vehicles changed, and 3) the total 

number of vehicles remained constant and the ratio of reconnaissance to

transportation vehicles changed. The ACO algorithm was used for sensitivity analysis. 

Data sets and parameters for this experiment were randomly generated. Cases 1 and 

2 each featured 21 nodes, and the Case 3 featured 51 nodes. The parameters for the 

ACO are presented in Table 9. The computational experiments for the sensitivity 

analysis were limited to 300 seconds.

Table 9. Parameters for the ACO algorithm for experiment 2

� � � q� �� �� A I

0.25 0.97 70 0.5 0.05 0.0003 100 200

Table 10 shows the results of the sensitivity analysis for Case 1 and Figure 5 presents 

graphs showing the average results of Case 1: As the number of transportation 

vehicles increased, the completion time for troop movements also decreased. Also, 

the rate of change of the completion time for the troop movement decreased as the 

number of transportation vehicles increased. 

Table 10. Sensitivity analysis results for Case 1

Number of 
transportation

Vehicles

ACO(Instance 1) ACO(Instance 2) ACO(Instance 3)
Number of 

reconnaissance 
vehicles

Number of 
reconnaissance 

vehicles

Number of 
reconnaissance 

vehicles

1 3 5 1 3 5 1 3 5
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1 637 603 591 556 519 490 663 639 604

2 406 367 353 327 287 281 434 341 341

3 340 312 295 252 225 230 319 261 259

4 312 269 256 241 200 198 313 233 226

5 312 236 214 226 172 175 295 215 212

Figure 5. Sensitivity analysis results for Case 1
Table 11 shows the sensitivity analysis results for Case 2, and Figure 6 features 

graphs showing the average results of Case 2: As the number of reconnaissance 

vehicles increased, the completion time for troop movement also decreased. However, 

the rate of change of completion time for the troop movement did not change 

significantly when the number of reconnaissance vehicles was increased. 

Table 11. Sensitivity analysis results for Case 2

Number of
reconnaissanc

e
vehicles

ACO(Instance 1) ACO(Instance 2) ACO(Instance 3)
Number of 

transportation 
vehicles

Number of 
transportation 

vehicles

Number of 
transportation 

vehicles

1 3 5 1 3 5 1 3 5

1 637 340 312 556 252 226 663 319 295
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2 633 313 264 535 239 183 624 310 231

3 603 312 236 519 225 172 639 261 215

4 597 299 226 511 222 172 616 264 215

5 591 295 214 490 230 175 604 259 212

Figure 6. Sensitivity analysis results for Case 2
Table 12 and Figure 7 present the sensitivity analysis results for Case 3. As shown in 

Figure 7, the experimental results of Case 3 generally took a convex shape. The 

proportion of the transportation vehicle was confirmed as necessarily greater than 

the reconnaissance vehicle proportion to minimize the completion time for troop 

movement when the total number of vehicles remained constant. The completion 

time for troop movement increased as the number of transportation vehicles 

decreased when the proportion of the reconnaissance vehicles was greater than the 

proportion of transportation vehicles. According to the sensitivity analysis results, 

the completion time for troop movement decreased as the total number of vehicles 

increased, and the number of transportation vehicles was found to have exerted 

greater influence on the completion time of troop movement than did the number of 
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reconnaissance vehicles.

Table 12. Sensitivity analysis results for Case 3

Number of 
reconnaissance

vehicles

Number of 
transportation

vehicles

ACO

Instance 1 Instance 2 Instance 3 average

1 9 596 608 596 600
2 8 392 478 439 436
3 7 452 437 451 447
4 6 460 426 440 442
5 5 486 456 435 459
6 4 556 543 509 536
7 3 690 649 656 665
8 2 995 892 857 915
9 1 1593 1563 1699 1618

Figure 7. Sensitivity analysis results for Case 3
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Chapter 6

Conclusion

In a major contribution from this study, the new model for troop movement in 

wartime was developed by extending the DARP. The following differences 

characterize the DARP and VRPCRT: In the DARP, only transportation vehicles are 

considered, and the transportation vehicle routes are determined using various 

constraints. Time windows for transportation vehicles at each node are deterministic 

as parameters in DARP. In VRPCRT, as proposed in this study, reconnaissance and 

transportation vehicles were considered, and both vehicle routes were determined 

simultaneously. In the VRPCRT, the earliest time that a transportation vehicle arrives 
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at destination node was determined according to the arrival time of the 

reconnaissance vehicle.

6.1 Findings

In this study, VRPCRT which is the mathematical model for determining tactical troop 

movements and the ACO algorithm were developed. The performance of the ACO 

algorithm was tested through computational experiments and was shown to yield 

excellent results even for the real-sized problem. The sensitivity analysis on the 

number of vehicles was performed using the ACO algorithm developed for the model, 

and troop movement in wartime was shown to be sensitive to the number of 

transportation vehicles. 

6.2   Future direction

In this thesis, the performance of the ACO algorithm was tested and confirmed 

through computational experiments. The performance of the ACO algorithm was

influenced greatly by the chosen parameters. Although the ACO algorithm performed 

well in the computational experiment, the best parameters must be found through 

the sensitivity analysis and used to improve the ACO algorithm.

In this study, a sensitivity analysis related to the number of vehicles was performed, 

and it confirmed that the transportation vehicles affected troop movement more than 

the reconnaissance vehicles did. If the size of the input data for computational 

experiments is increased or the maximum running time for solving the problem is 

extended, it could be thought that a better insight may be derived. Also the sensitivity 

of various parameters must be analyzed to obtain insights that can help a 

commander move troops. The mathematical model proposed in this study focused on 

the movement of ground troops. Also, aircraft and ships are used to carry people and 
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goods in wartime. Therefore, it is necessary to develop a new model considering not 

only vehicles but also aircrafts and ships for troop movement in wartime
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국문초록

전시 부대 이동이란 전시에 모든 가용 수단을 이용해 지휘관이 원하는 시간과

장소에 부대를 이동시키는 것을 의미한다. 전시 부대이동 시, 적의

위협으로부터 피해를 최소화하기 위해, 정찰 부대가 중요 지형지물 및 부대의

목적지에 대한 정찰을 실시한 이후, 수송 부대에 의해 병력들이 수송된다.

본 연구에서는 전시 부대 이동 완료 시간을 최소화하는 혼합정수계획법(MIP) 

모형 기반의 ‘정찰 및 수송차량 경로 결정 문제’을 제시한다. 또한 MIP모형의

단점인 높은 계산 복잡도를 극복하기 위해 합리적인 시간 안에 근사 최적해를
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제공하는 개미 군집 알고리즘을 개발하였다. 본 논문에서는 개미 군집

알고리즘의 성능 비교를 위한 수치 예제 실험을 진행하였으며, 정찰 및

수송차량 수에 대한 민감도 분석을 통해 각 정찰 및 수송차량이 부대 이동에

미치는 영향을 분석하였다.

주요어: 개미 군집 알고리즘, 차량경로문제, 전시 물류

학번: 2017-23130
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