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Abstract
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Framework for Elastic Kinematic Chain
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Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

In this thesis, we propose a novel model-free optimal estimation and sensor place-

ment framework for a high-DOF (degree-of-freedom) EKC (elastic kinematic

chain) with only a limited number of IMU (inertial measurement unit) sensors

based on POD (proper orthogonal decomposition) and MAP (maximum a poste-

riori) estimation. First, we (off-line) excite the system richly enough, collect the

data and perform the POD to extract dominant and non-dominant modes. We

then decide the minimum number of IMUs according to the dominant modes,

and construct the prior distribution of the output (i.e., top-end position of EKC)

based on the singular value of each POD mode. We also formulate the MAP

estimation given the prior distribution and different placements of the IMUs

and choose the optimal IMU placement to maximize the posterior probability.

This optimal placement is then used for real-time output estimation of the EKC.

Experiments are also performed to verify the theory.

Keywords: Elastic kinematic chain, Proper orthogonal decomposition, Proper

orthogonal mode, Mode reduction, Maximum a posteriori estimation, Sensor
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Chapter 1

Introduction

This thesis is motivated by the problem of how to estimate the mast top-end

motion (or deflection at the stage) of the telerobotic system as shown in Fig. 1.1,

which consists of a telescoping mast of about ten-meter high, a stage with planar

actuation (i.e., SE(2)) and two industrial manipulators on top of the stage. This

telerobotic system is developed for nuclear power plant maintenance operations

at height. One of the key issues for this telerobotic system is how to allow a remote

user to teleoperate the end-effector of the manipulators while suppressing the

mast vibration, which is induced in turn by the motion of the manipulators (and

the stage). More details on this telerobotic system and the control framework of

simultaneous manipulator tracking and mast vibration suppression are analyzed

in [1].

1



Chapter 1. Introduction 2

For this mast vibration suppression feedback control, it is necessary to estimate

the mast top-end motion (i.e., just beneath the stage). This is achieved with

MOCAP (motion capture) system in [1]. Such external sensors, however, are not

assumable for typical nuclear plant environments due to radiation and onboard

sensing strategy is demanded. For this onboard mast top-end motion estimation

come with the following technical challenges: 1) the mast is a high-DOF (degree-

of-freedom) system (e.g., ten-link mast in Fig. 1.1 modeled as a twenty-DOF

system with universal joints), thus, in many cases, it is infeasible to deploy that

many sensors to measure all its DOFs, and, further, the behavior of mast is usu-

ally “reducible” with some dominant modes as long as the system and the control

are designed reasonably-well; 2) the mast has high-DOF complicated/nonlinear

kinematics and dynamics, thus, often, it is difficult to identify those many sys-

tem parameters (e.g., stiffness, mass, damping, etc.) and solve the high-DOF

kinematic/dynamic equations as accurately and quickly as to be useful for the

vibration suppression control; and 3) due to the implementation cost, effort and

complexity, it is typically desired (or, often, necessary) to minimize the num-

ber of deployed sensors as much as possible while still ensuring the estimation

performance.

To address these challenges, in this thesis, we propose a novel model-free/data-

driven optimal estimation and sensor placement framework for this high-DOF

mast based on mode reduction via proper orthogonal decomposition (POD) [2, 3]

and maximum a posteriori (MAP) estimation [4]. For this, we first model the tele-

scoping mast as an EKC (elastic kinematic chain) system [5] with each segment
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Figure 1.1: Telescoping mast and n-link three-dimensional elastic kinematic
chain system with universal joints with torsional spring and damper.

connected via an universal joint (with pitch, yaw, roll angles) with each other

(see Fig. 1.1). We also adopt IMUs (inertial measurement units with compass) as

onboard sensors due to their high speed, low cost, easy implementation, ability

to measure all three-DOF rotations by one sensor, and availability of many stan-

dard algorithms to process its signal (e.g., [6, 7]). Our framework then proceeds

according to the following orders:

(1) Excite the mast emulating the whole spectrum of “representative” oper-

ations, collect the angle data of all the segments, and perform POD to
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decompose system behavior into dominant and non-dominant modes;

(2) Decide the minimum number of IMUs according to the number of dominant

modes, and construct prior distribution of the output (i.e., mast top-end

motion) with each mode assumed to be excited by zero-mean Gaussian

with its variance proportional to the mode singular value of POD;

(3) Compute MAP given the prior distribution and different placement of the

given number of IMUs (with their sensing uncertainty), choose the optimal

placement of IMUs to optimize this MAP estimation,

(4) Real-time estimate the mast top-end motion by using the IMUs optimally

placed as decided above and the prior distribution of the output.

Here, note that: 1) the steps (1)-(3) are performed off-line, whereas the step

(4) on-line; 2) the framework is model-free, as it does not utilize any (complex)

dynamics model and its (difficult-to-identify) parameters; and 3) validity of (lin-

ear) mode reduction via POD is granted with the suitably-functioning vibration

suppression control of [1]. This framework would be applicable to similar setups

(e.g., continuum manipulators [8]) with different sensors as well (e.g., low-rate

camera, limited-accuracy range-finder, etc.).

Many results have been proposed for this motion/shape estimation problem of

EKC systems. Vision-based shape estimation techniques are presented in [9–11],

yet, the cameras as used there are typically much slower (around 20Hz) than the

IMUs (200Hz) and often need to be mounted externally, thus, not so suitable for
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the vibration suppression control as compared to the IMUs. The scheme of [12]

allow for the configuration estimation of the EKC with a single electromagnetic

sensor, yet, requires to real-time solve the equilibrium of the high-DOF quasi-

static equation of the EKC. Shape reconstruction techniques for flexible structure

using Fiber Bragg Grating (FBG) sensors are studied in [13, 14], yet, those FBG

sensors are typically much more expensive to implement for the large-size as

our mast system with powerful transmitters and boosters necessitated. A novel

framework of model-free optimal output estimation and sensor placement for a

large-size high-DOF EKC system is proposed in [15]. On the extension of [15],

this thesis includes experiment result of large-size mock-up.

The rest of the thesis is organized as follows. Chapter 2 presents the EKC model-

ing of the mast system and problem statement. Chapter 3 explains our proposed

framework, consisting of mode reduction approach with POD, optimal estimation

formulation via maximum a posteriori estimation and optimal sensor placement

based on that. In Chapter 4, we verify our framework via experiments executed

with a small-scale six-link EKC testbed and large-size mock-up. Finally, in Chap-

ter 5, we conclude the thesis with summary and comments on future research.



Chapter 2

System Modeling and Problem

Statement

2.1 System Modeling

In this thesis, we consider n-link EKC system, where each link is connected by

elastic components such as torsional spring and damper. Each joint is modeled

as universal joint, where two-DOF rotational motion is possible. See Fig. 1.1,

where spatial rotation of each joint is described by relative joint angles of each

universal joint q(t) ∈ <2n. The same motion also can be expressed with φi(t) :=

[αi(t), βi(t), γi(t)]
T ∈ <3, where αi(t), βi(t), γi(t) ∈ < are roll, pitch, and yaw

6



Chapter 2. System Modeling and Problem Statement 7

angles of i-th link w.r.t. global frame {O}. Then, we define total configuration

state φ(t) := [φT1 (t), φT2 (t), · · · , φTn (t)]T ∈ <3n.

We may express dynamics and output of the system as following nonlinear equa-

tion φ̈(t)

φ̇(t)

 = f

φ̇(t)

φ(t)

 , u(t)

 , ψ(t) = h(φ(t)) (2.1)

where u(t) ∈ <p and ψ(t) ∈ <s, respectively, denote the input (e.g., external

force), and output of the system. The output ψ(t) can be defined arbitrarily

depending on what user thinks as important factor for scenario (e.g., top-end

motion). We constrain the output ψ(t) to be function of the configuration state

φ(t) for simplicity.

2.2 Problem Statement

Objective of this thesis is to estimate the output of the EKC system. However,

following technical challenges exist:

• system parameters are difficult to obtain, hence real-time dynamics com-

putation may not be feasible or not accurate

• deploying sensors on every link may not be feasible due to high-DOF of

the system, or practical implementation issue
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In this thesis, we propose an optimal output estimation and sensor placement

framework for EKC, given the limited number of practically implementable sen-

sors. We use IMU sensors since the state of the system can be measured utilizing

explicit nonlinear complementary filter [7].



Chapter 3

Optimal Estimation and

Sensor Placement

3.1 Output Estimation

3.1.1 Linearization

We assume small deviation of the state with the vibration suppression control

proposed in [1]. Therefore, we focus on linearized approach near the steady-state.

9
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Then, we can approximate the output equation from (2.1) as

ψ̃(t) ≈ ∂h

∂φ

∣∣∣∣
φ=φss︸ ︷︷ ︸

=:Ŝ

φ̃(t) (3.1)

where ψ̃(t) ∈ <s and φ̃(t) ∈ <3n, respectively, denote the output and the state

deviation from their steady-state. Ŝ ∈ <s×3n is state-output linear relationship

matrix. It can be obtained either analytically or by regression if ground-truth

value of the output is available. The first method is straightforward if one knows

perfect kinematics of the system. For second method , we need matrix optimiza-

tion. If we apply sufficient excitation to the system and obtain measurement data

of the output and the state, Ŝ is obtained from following matrix optimization:

Ŝ = argmin
S

N∑
k=1

‖ψ̃k − Sφ̃k‖22

= argmin
S

tr

[
N∑
k=1

φ̃Tk S
TSφ̃k − 2

N∑
k=1

ψ̃Tk Sφ̃k

]

= argmin
S

tr


(

N∑
k=1

φ̃kφ̃
T
k

)
︸ ︷︷ ︸

=:X

STS − 2

(
N∑
k=1

φ̃kψ̃
T
k

)
︸ ︷︷ ︸

=:Y

S


= argmin

S
L(S)

where L(S) := tr(XSTS − 2Y S) ∈ <. ψ̃k ∈ <s and φ̃k ∈ <3n, respectively,

denote the output and the state data at time step tk. Now, global minimum
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of this optimization is obtained via solving dLV (Ŝ) = 0, ∀V ∈ <s×3n, where

dLV (S) is defined as

dLV (S) := lim
ε→0

1

ε
[L(S + εV )− L(S)]

= lim
ε→0

1

ε
tr
[
X(S + εV )T (S + εV )− 2Y (S + εV )−XSTS + 2Y S

]
= tr

[
XSTV +XV TS − 2Y V

]
= 2 tr

[
(XST − Y )V

]
Therefore, it is straightforward to obtain the global minimum

Ŝ = Y TX−T = Y TX−1

From now on, we will call φ̃(t) as the “state” and ψ̃(t) as the “output” of the

system, omitting “deviation from steady-state” for convenience.

3.1.2 Mode Reduction

To cover wide variety of operation scenarios, let us assume the input is ran-

domly applied to the system. Then, distribution of the state can be assumed

as Gaussian, and its behavior can be decomposed into dominant modes and

non-dominant modes. This decomposition is achieved by proper orthogonal de-

composition (POD) [2]. The method is also known as principal component anal-

ysis (PCA) [16], Karhunen-Loeve method [17], and it is related to controllability
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Gramian [18]. Then, this make us possible to choose minimum number of sensors

according to the dominant modes.

Experimentally, we apply the input to the system, emulating the representative

operations richly enough to cover whole spectrum of the system behavior. Then,

obtain data of the state for sufficiently large time step. If we apply singular value

decomposition to the state data covariance Cφ ∈ <3n×3n, we have

Cφ =
1

N

N∑
k=1

φ̃kφ̃
T
k = UΣUT (3.2)

where φ̃k ∈ <3n denotes the state at time step tk. Σ = diag[σ1, σ2, · · · , σ3n] ∈

<3n×3n is a diagonal matrix, whose singular values of Cφ are ordered in descend-

ing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σ3n. In addition, column vectors of orthogonal

matrix U ∈ <3n×3n are proper orthogonal modes (POMs), which are listed from

dominant to non-dominant mode, of the system corresponding to its singular

value. Then, we can express φ̃(t) as combinations of POMs:

φ̃(t) = Uξ(t) (3.3)

where ξ(t) ∈ <3n is transformed state.

From the result of POD, we can reduce the 3n-dimensional state space into r-

dimensional subspace that preserves most of the “energy” of the original state,

which is known as model reduction [19, 20]. r can be chosen such that
∑r
i=1 σi∑3n
i=1 σi

is larger than certain threshold. It is known that matrix whose columns are
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eigenvectors corresponding to first r greatest eigenvalues of Cφ is projection

matrix that preserves most energy (2-norm) of the state in the r-dimensional

subspace [19]. In other words, if we define projection matrix that projects the

3n-dimensional state to r-dimensional subspace as P ∈ <3n×r with r unit column

vectors, we have following constrained optimization problem to obtain projection

matrix P that preserves most of the 2-norm energy in r-dimensional subspace.

argmax
P

1

N

N∑
k=1

‖φ̃Tk P‖22 subj. to P Ti Pi = 1, i ∈ {1, · · · , r}

where Pi ∈ <3n denotes i-th column of P . Solution of this optimization problem

is as follows using (3.2):

argmax
P

1

N

N∑
k=1

r∑
i=1

(
φ̃Tk Pi

)2
+

r∑
i=1

[
λi
(
1− P Ti Pi

)]
= argmax

P

1

N

N∑
k=1

r∑
i=1

P Ti φ̃kφ̃k
T
Pi +

r∑
i=1

[
λi
(
1− P Ti Pi

)]
= argmax

P

r∑
i=1

[
P Ti CφPi + λi

(
1− P Ti Pi

)]
Consequently, we have the solution

CφPi = λiPi, i ∈ {1, · · · , r}
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This implies each column of P , which is Pi, is eigenvector of Cφ and Lagrange

multiplier λi is its corresponding eigenvalue. Therefore we have

max
P

1

N

N∑
k=1

‖φ̃Tk P‖22 = max
P

r∑
i=1

P Ti CφPi = max
P

r∑
i=1

λi =
r∑
i=1

σi

This means to maximize the cost, or 2-norm energy of the state, we must choose

r greatest eigenvalues, or first r greatest singular values of Cφ. Hence this leads

to following solution of the optimization

U1 = argmax
P

1

N

N∑
k=1

‖φ̃Tk P‖22 subj. to P Ti Pi = 1, i ∈ {1, · · · , r}

where U1 ∈ <3n×r is first r columns of U , which are eigenvectors corresponding

to the first r greatest eigenvalues of Cφ. This implies that projection of the state

to column space of U1 preserves most of the 2-norm energy, and the maximum

value of the energy is sum of the first r singular values of Cφ, which is
∑r

i=1 σi.

In the same sense, projection matrix P ′ ∈ <3n×(3n−r) that minimizes 2-norm

energy of the state in (3n− r)-dimensional subspace is

U2 = argmin
P ′

1

N

N∑
k=1

‖φ̃Tk P ′‖22 subj. to P
′T
i P ′i = 1, i ∈ {1, · · · , 3n− r}

where U2 ∈ <3n×(3n−r) is last 3n − r columns of U , which are eigenvectors

corresponding to the 3n− r least eigenvalues of Cφ. And, the minimum value of



Chapter 3. Optimal Estimation and Sensor Placement 15

the energy is

min
P ′

1

N

N∑
k=1

‖φ̃Tk P ′‖22 =
3n∑

i=r+1

σi

Then, let us decouple (3.3) into

φ̃(t) = Uξ(t) = [U1 U2]

ξ1(t)
ξ2(t)


= U1ξ1(t) + U2ξ2(t) (3.4)

where U1 ∈ <3n×r and U2 ∈ <3n×(3n−r), respectively, are first r dominant POMs

and 3n− r non-dominant POMs. ξ1(t) ∈ <r and ξ2(t) ∈ <3n−r, respectively, are

dominant transformed state and non-dominant transformed state. For conve-

nience, we will call ξ1(t) as “dominant state” and ξ2(t) as “non-dominant state.”

Since now we have the decoupled state (3.4), we can obtain covariance of the

dominant state ξ1(t) and the non-dominant state ξ2(t) from (3.2). Substituting

(3.4) into (3.2), we have

Cφ =
1

N

N∑
k=1

φ̃kφ̃
T
k

=
1

N

N∑
k=1

(U1ξ1,k + U2ξ2,k)(U1ξ1,k + U2ξ2,k)
T
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where ξ1,k ∈ <r and ξ2,k ∈ <3n−r, respectively, denote ξ1(t) and ξ2(t) at time

step tk. Using orthonormal property of U ,

UTU = I3n×3n

UT1 U1 = Ir×r, UT2 U2 = I(3n−r)×(3n−r), UT1 U2 = 0r×(3n−r)

it is straightforward to have

Cφ = U1

(
1

N

N∑
k=1

ξ1,kξ
T
1,k

)
︸ ︷︷ ︸

=:Cξ1

UT1 + U2

(
1

N

N∑
k=1

ξ2,kξ
T
2,k

)
︸ ︷︷ ︸

=:Cξ2

UT2 (3.5)

From (3.2), let us partition the diagonal matrix Σ into dominant part and non-

dominant part

UTCφU =

Σ1 0

0 Σ2

 (3.6)

where Σ1 ∈ <r×r is diagonal matrix with its elements composed of singular

values of the dominant POMs and Σ2 ∈ <(3n−r)×(3n−r) is diagonal matrix with

its elements composed of singular values of the non-dominant POMs. From (3.5),

(3.6), and utilizing orthonormality of U , we have covariances of ξ1(t) and ξ2(t)

as follows:

Cξ1 = Σ1, Cξ2 = Σ2
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If no information of measurements is given, we may assume the prior distributions

of the state, the dominant state, and the non-dominant state as φ̃(t) ∼ N (0, Cφ),

ξ1(t) ∼ N (0, Cξ1), and ξ2(t) ∼ N (0, Cξ2), where N (µ,C) denotes the Gaussian

distribution of mean µ and covariance C. Note that, since the diagonal elements

of Σ2 are much smaller than those of Σ1, we may say that the state space can be

reduced to r-dimensional subspace composed of its dominant POMs, and assume

the non-dominant state part as model noise term. In other words, U1ξ1(t) in (3.4)

is reduced state, and U2ξ2(t) can be regarded as model noise. Thanks to POD, we

are now able to choose number of sensors that give us at least more measurements

than order of the dominant state r.

3.1.3 Maximum a Posteriori Estimation

Recall that our objective of this thesis is to estimate user-defined output ψ̃(t)

of the system. However, we only have some “part” of the measurement of the

full state from IMUs. Therefore, we must reconstruct measurement of the output

from the reduced state. Suppose measurement from IMUs are given by

yφ(t) = Hφ̃(t) + ν(t) ∈ <m, ν(t) ∼ N (0, Cν) (3.7)

where H ∈ <m×3n is IMU placement matrix, ν(t) ∈ <m is zero-mean Gaussian

sensor noise with covariance Cν ∈ <m×m, and m ≤ 3n. With the knowledge of

the decomposed state into dominant and non-dominant part, substituting (3.4)
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Figure 3.1: Maximum a posteriori estimation of output

into (3.7), we have

yφ(t) = HU1︸︷︷︸
=:Ũ1

ξ1(t) +HU2︸︷︷︸
=:Ũ2

ξ2(t) + ν(t)
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Now, assuming ξ2(t) ∼ N (0, Cξ2) as noise term, we have least squares solution

of ξ1(t) with m ≥ r

ξ̂1 = argmin
ξ1

1

2
(yφ − Ũ1ξ1)

TC−1yφ (yφ − Ũ1ξ1)

= (ŨT1 C
−1
yφ
Ũ1)
−1ŨT1 C

−1
yφ︸ ︷︷ ︸

=:Ũ†
1

yφ (3.8)

where Cyφ := Ũ2Cξ2Ũ
T
2 + Cν ∈ <m×m and Ũ †1 ∈ <r×m is generalized inverse

satisfying Ũ1Ũ
†
1 Ũ1 = Ũ1. Utilizing linearization relationship from (3.1) and esti-

mated dominant state from (3.8), we have reconstruction of output measurement

yψ(t) ∈ <s with reduced dominant state as

yψ(t) = ŜU1ξ̂1(t) = ŜU1Ũ
†
1yφ (3.9)

Then, error and covariance of the reconstructed output measurement are given

by

eyψ := ψ̃(t)− yψ(t)

= Ŝφ̃− ŜU1Ũ
†
1(Hφ̃+ ν)

= (Ŝ − ŜU1Ũ
†
1H )︸ ︷︷ ︸

=:Mφ

φ̃− ŜU1Ũ
†
1︸ ︷︷ ︸

=:Mν

ν

Ceyψ = MφCφM
T
φ +MνCνM

T
ν
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With the information of the prior distribution of the state from (3.2) and linear

relationship between the state and the output from (3.1), we have prior distri-

bution of the output as follows:

ψ̃(t) ∼ N (0, Cψ), Cψ := ŜCφŜ
T (3.10)

Now, utilizing the prior distribution (3.10) and reconstructed measurement (3.9),

optimal output estimation is obtained with maximum a posteriori estimation

ˆ̃
ψ = argmax

ψ̃

p(ψ̃|yψ) (3.11)

= argmax
ψ̃

p(yψ|ψ̃)p(ψ̃)

= argmax
ψ̃

1√
(2π)2s|Ceyψ ||Cψ|

exp

[
−1

2
(yψ − ψ̃)TC−1eyψ(yψ − ψ̃)− 1

2
ψ̃TC−1ψ ψ̃

]

= argmin
ψ̃

1

2
(yψ − ψ̃)TC−1eyψ(yψ − ψ̃) +

1

2
ψ̃TC−1ψ ψ̃

= (C−1eyψ + C−1ψ )−1C−1eyψyψ (3.12)

See Fig. 3.1, which illustrates the MAP estimation of the output. Note that if we

choose Ŝ = I3n×3n, where I3n×3n ∈ <3n×3n is identity matrix, we have estimation

of the state itself.
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3.2 Sensor Placement Optimization

Given limited number of sensors due to practical feasibility, decision of sensor

placement is necessary. With the information of covariance of the output esti-

mation error, we can optimize the sensor placement that minimizes the trace of

the error covariance. From, (3.1), (3.7), (3.9), and (3.11), the output estimation

error is given by

eψ(t) := ψ̃ − ˆ̃
ψ

= Ŝφ̃− (C−1eyψ + C−1ψ )−1C−1eyψyψ

= Ŝφ̃− (C−1eyψ + C−1ψ )−1C−1eyψ ŜU1Ũ
†
1(Hφ̃+ ν)

=
[
Ŝ − (C−1eyψ + C−1ψ )−1C−1eyψ ŜU1Ũ

†
1H
]

︸ ︷︷ ︸
=:M ′

φ

φ̃− (C−1eyψ + C−1ψ )−1C−1eyψ ŜU1Ũ
†
1︸ ︷︷ ︸

=:M ′
ν

ν

Consequently, covariance of eψ is given by

Ceψ = M ′φCφM
′T
φ +M ′νCνM

′T
ν (3.13)

Note that Ceψ is function of sensor placement matrix H. Therefore, the optimal

sensor placement matrix H∗ ∈ <m×3n can be obtained such that minimizes the
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trace of the estimation error covariance Ceψ as follows:

H∗ = argmin
H

tr(Ceψ)

= argmin
H

tr
[
M ′φCφM

′T
φ +M ′νCνM

′T
ν

]
subj. to H ∈ Ω (3.14)

where Ω is defined as set of all possible H with limited number of sensors and

practical feasibility. tr(·) denotes trace of a matrix.



Chapter 4

Experiments

4.1 Testbed

4.1.1 Setup

We verified our estimation framework proposed in Chapter 3 via experiments.

We designed EKC testbed with aluminum profiles of cross-section dimension

2cm×2cm. The system is constructed as six-link three-dimensional EKC. See

Fig. 4.1. Each length of the link is 25cm and total height is 1.64m, which is

about the height of a person. Links are connected with other short aluminum

profiles and brackets. The testbed has desirable properties for EKC. However

we tighten the connection between adjoining links, little gaps generated from

23
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Figure 4.1: Six-link three-dimensional EKC testbed designed with aluminum
profiles.

dimension of tolerance are unavoidable. Therefore they act as universal joints

with stiff elastic components, which are the key properties of EKC we mentioned

in Chapter 2.1. Links are numbered from 1 to 6 starting from bottom to top.
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Figure 4.2: First six dominant mode shapes of the testbed. (a) mode 1, (b)
mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6.

For IMU, we use InvenSense MPU-9250, which is one of the commonly-used low-

cost IMU. We have chosen this sensor because it is 9-axis IMU, so it can measure

not only pitch (β), yaw (γ) of each link, but also roll (α) with magnetometer.

We implemented explicit nonlinear complementary filter [7] to obtain the Euler

angles of the links. Also, since we need 6 IMUs to be deployed on every link of
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our testbed to obtain state covariance and apply POD in (3.2), low-cost IMUs

were suitable.

In addition, we utilize OptiTrack, a motion capture system, to measure ground-

truth value of our output ψ̃(t), top-end motion, to verify performance of our

framework. It is also used to calculate state-output linear relationship matrix Ŝ

by regression as mentioned in (3.1).

Since the testbed is six-link EKC system, the dimension of the state is φ̃(t) ∈

<18. We are interested in top-end motion of the system, which is important

factor for control of dual-arm height operation telerobotic system in [1]. For this

reason, we choose the output ψ̃(t) = [ψ̃y(t), ψ̃z(t)]
T ∈ <2, where ψ̃y(t) and ψ̃z(t),

respectively, are top-end position deviation from its steady-state along y-axis and

z-axis w.r.t. global frame {O} in Fig. 4.1.

4.1.2 Output Estimation Result

To obtain the state data samples as mentioned in (3.2), we applied external

force at the top-end along y-axis and z-axis. Then, applying POD, we obtained

singular values of Cφ as shown in Table 4.1. We set our threshold of
∑r
i=1 σi∑3n
i=1 σi

to

be larger than 0.95. Therefore, we choose r = 6, which makes the ratio 0.989.

First six dominant mode shapes (i.e., first six columns of U in (3.2)) are shown

in Fig. 4.2. Since each IMU gives three measurements (i.e., roll, pitch, yaw of the

attached link), we determined to use two IMUs, which give us equal number of
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Figure 4.3: Testbed output estimation performance of three cases with least
tr(Ceψ ) : IMUs on link 1, 2 (top), IMUs on link 1, 3 (middle), IMUs on link 2,

4 (bottom).
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Figure 4.4: Testbed output estimation performance of three cases with great-
est tr(Ceψ ) : IMUs on link 3, 4 (top), IMUs on link 4, 5 (middle), IMUs on link

4, 6 (bottom).
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Figure 4.5: Set of all possible sensor placement matrices for six-link EKC.

measurements to the dimension of the reduced state r = 6. Therefore, possible

set of IMU placement matrix Ω defined in Chapter 3.2 have fifteen elements,

i.e., Ω = {H12, H13, H14, · · · , H45, H46, H56}. Hij ∈ <6×18 denotes the sensor

placement matrix corresponding to the measurement matrix when IMUs are

located at i-th link and j-th link as shown in Fig. 4.5. For example, H12 is

H12 =

I3×3 03×3 03×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3 03×3
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σ1 σ2 σ3

7.365 ×10−4 6.046 ×10−4 6.146 ×10−5

σ4 σ5 σ6

3.571 ×10−5 2.233 ×10−5 1.268 ×10−5

σ7 σ8 σ9

9.055 ×10−6 3.717 ×10−6 1.840 ×10−6

σ10 σ11 σ12

9.903 ×10−7 5.590 ×10−7 3.770 ×10−7

σ13 σ14 σ15

2.092 ×10−7 1.079 ×10−7 8.429 ×10−8

σ16 σ17 σ18

5.342 ×10−8 2.951 ×10−8 2.192 ×10−8

Table 4.1: Testbed singular values of Cφ obtained from POD (diagonal
elements of Σ)

To verify the performance of our proposed estimator (3.11), we applied random

external force on y and z direction at the system top-end. Then, we compared

estimated output to the ground-truth value obtained from motion capture sys-

tem. See Fig. 4.3 and Fig. 4.4. RMS of output estimation error norm ‖eψ‖2 and

trace of its covariance (3.13) for each IMU placement is listed in the Table 4.2.

Note that as we could predict from sensor placement optimization (3.14), RMS

of the output estimation error norm is the smallest for case 1 in Table 4.2, which

is the case with smallest tr(Ceψ). On the other hand, the bad cases (RMS over

10 mm) also could be predicted from (3.14), where tr(Ceψ) are the greatest.
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Case IMU Loc. RMS(‖eψ‖2) tr(Ceψ)

1 1, 2 2.330 mm 4.252 ×10−6

2 1, 3 3.352 mm 1.775 ×10−5

3 1, 4 4.761 mm 3.690 ×10−5

4 1, 5 4.136 mm 2.024 ×10−5

5 1, 6 8.381 mm 7.934 ×10−5

6 2, 3 7.196 mm 3.874 ×10−5

7 2, 4 3.977 mm 1.430 ×10−5

8 2, 5 5.051 mm 2.080 ×10−5

9 2, 6 5.862 mm 3.194 ×10−5

10 3, 4 15.20 mm 2.136 ×10−4

11 3, 5 15.54 mm 2.117 ×10−4

12 3, 6 13.19 mm 1.749 ×10−4

13 4, 5 15.54 mm 2.596 ×10−4

14 4, 6 14.70 mm 2.273 ×10−4

15 5, 6 14.05 mm 1.612 ×10−4

Table 4.2: Testbed RMS of output estimation error and trace of its covariance.
Case 1 has the least RMS, which can be predicted from its trace of output
estimation error covariance

4.2 Mock-up

4.2.1 Setup

Furthermore, we conducted experiment on six-link EKC mock-up as shown in

Fig. 4.6. Length of each link is 0.815m, and total height is about 6m including
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Figure 4.6: Six-link three-dimensional large-size EKC mock-up.

the fixed base. Also, two manipulators and one stage are placed on top-end of

the mock-up.

E2Box EBIMU24GV4 wireless IMUs are used for measurement of the Euler
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Figure 4.7: First four dominant modes of mock-up. (a) mode 1, (b) mode 2,
(c) mode 3, (d) mode 4.

angles. Wireless IMUs were more convenient to deploy on the large-size mock-

up than the wired ones. Unlike small-scale testbed, utilizing magnetometer to

obtain roll (α) was infeasible for the large-size mock-up because magnetometer
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Figure 4.8: Mock-up output estimation performance of three cases with least
tr(Ceψ ) : IMUs on link 1, 6 (top), IMUs on link 3, 5 (middle), IMUs on link 4,

5 (bottom).
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Figure 4.9: Mock-up output estimation performance of three cases with great-
est tr(Ceψ ) : IMUs on link 1, 2 (top), IMUs on link 1, 3 (middle), IMUs on link

2, 4 (bottom).
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data became inaccurate due to its harsh environment and metallic, electronic

components near the sensors. However, roll values can be considered zero around

the steady-state. Since the EKC is modeled with universal joints, the state of the

system φ̃ ∈ <18 and the relative joint angles q ∈ <12 have following linearized

relation around steady-state

φ̃ ≈ ∂φ

∂q

∣∣∣∣
qss

q̃

where q̃ := q − qss ∈ <12 is relative joint angle deviation from its steady-state.

The mock-up has steady-state qss = 0, which implies

∂φ

∂q

∣∣∣∣
qss=0

=



M 03×2 03×2 03×2 03×2 03×2

M M 03×2 03×2 03×2 03×2

M M M 03×2 03×2 03×2

M M M M 03×2 03×2

M M M M M 03×2

M M M M M M


∈ <18×12

where

M :=


0 0

1 0

0 1

 ∈ <3×2
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Therefore it is straightforward to have following linearized approximation around

the zero steady-state assuming small deviation of q̃

φ̃i =


α̃i

β̃i

γ̃i

 ≈


0∑i
j=1 q̃2j−1∑i
j=1 q̃2j

 for i = 1, · · · , 6 (4.1)

which implies magnetometers are not needed to measure roll value since it can

be approximated as zero.

HTC Vive was used to measure top-end motion of the mock-up in alternative

of OptiTrack, because OptiTrack system was infeasible to be installed at such

harsh environment. HTC Vive only requires a base station and a tracker to obtain

position value. Considering the zero steady-state φss = 0, from (3.1), we have

Ŝ :=
∂h

∂φ

∣∣∣∣
φss

=

0 0 l1 · · · 0 0 l6

0 −l1 0 · · · 0 −l6 0

 ∈ <2×18

where li denotes length of i-th link.

4.2.2 Output Estimation Result

Similar to the testbed experiment, we applied external force at the top-end along

y-axis and z-axis of the mock-up to obtain singular values of Cφ via POD as

shown in Table 4.3. In addition, σ13, · · · , σ18 = 0, because we assumed roll values



Chapter 4. Experiments 38

zero from (4.1). We set our threshold of
∑r
i=1 σi∑3n
i=1 σi

to be larger than 0.95. Therefore,

we choose r = 4, which makes the ratio 0.987. First four dominant modes are

depicted in Fig. 4.7. Without magnetometer, IMU gives two measurements (i.e.,

pitch, yaw of the attached link), therefore we determined to use two IMUs, which

give us equal number of measurements as number of the dominant modes r =

4. Hence possible set of IMU placement matrix Ω is defined same as that in

Chapter 4.1.2, except that now the dimension of the sensor placement matrix

H ∈ <4×18 with measurement of only pitch and yaw from each IMU.

We applied external force on top-end of the mock-up, and compared our proposed

estimation result with HTC Vive as shown in Fig. 4.8 and Fig. 4.9. RMS of

the output estimation error norm ‖eψ‖2 and trace of its covariance for each

IMU location is listed in Table 4.4. As we could predict from sensor placement

optimization (3.14), case 11, 13 have the best performance with RMS under

3mm. On the other hand, case 1, 2, 4, 6, 7, 10 have poor performance with RMS

over 7mm, which also could be predicted from our sensor placement optimization

algorithm.
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σ1 σ2 σ3

6.906 ×10−5 6.975 ×10−6 2.639 ×10−6

σ4 σ5 σ6

9.353 ×10−7 4.368 ×10−7 2.386 ×10−7

σ7 σ8 σ9

1.575 ×10−7 7.614 ×10−8 5.742 ×10−8

σ10 σ11 σ12

3.977 ×10−8 3.112 ×10−8 1.399 ×10−8

Table 4.3: Mock-up singular values of Cφ obtained from POD (diagonal
elements of Σ)
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Case IMU Loc. RMS(‖eψ‖2) tr(Ceψ)

1 1, 2 8.012 mm 1.967 ×10−4

2 1, 3 8.570 mm 1.624 ×10−4

3 1, 4 6.528 mm 3.536 ×10−5

4 1, 5 8.270 mm 4.293 ×10−5

5 1, 6 3.678 mm 7.491 ×10−6

6 2, 3 9.914 mm 1.146 ×10−4

7 2, 4 7.138 mm 2.273 ×10−4

8 2, 5 6.417 mm 3.056 ×10−5

9 2, 6 3.663 mm 1.387 ×10−5

10 3, 4 7.437 mm 5.868 ×10−5

11 3, 5 2.822 mm 4.050 ×10−6

12 3, 6 4.928 mm 1.322 ×10−5

13 4, 5 2.829 mm 2.668 ×10−6

14 4, 6 4.054 mm 1.466 ×10−5

15 5, 6 3.625 mm 1.018 ×10−5

Table 4.4: Mock-up RMS of output estimation error and trace of its covari-
ance. The two cases (11, 13) with RMS under 3mm have the least tr(Ceψ ).
On the other hand, six cases (1, 2, 4, 6, 7, 10) with RMS over 7mm have the
greatest tr(Ceψ ).
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Conclusion and Future Work

5.1 Conclusion

In this thesis, we proposed a novel framework of model-free output estimation

for high-DOF EKC (elastic kinematic chain) with limited number of sensors.

Dominant modes of the system are obtained via POD (proper orthogonal de-

composition) with richly excited state data. Thanks to mode reduction, we could

choose minimum number of sensors to reconstruct measurement of user-defined

output (e.g., top-end motion). Then, with the measurement and the prior prob-

ability of the output, we could apply maximum a posteriori (MAP) estimation

to obtain optimal estimation. We could also analyze optimal sensor placement

that minimizes the trace of the output estimation error covariance. Then, we

41
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verified our framework with six-link three-dimensional small-scale EKC testbed

and large-size mock-up.

5.2 Future Work

Future work includes the verification through the experiment of EKC system

with higher DOF (i.e., more than six-link system). Although we focused on EKC

system and IMU sensors because of simplicity, our framework can also be used for

other similar setups, where each joint is connected by elastic components. Also,

various sensors (e.g., camera, LiDAR, etc.) could be included to our framework.

In addition, linear approximation around the steady-state could be relaxed if we

apply some nonlinear techniques, however we spare it for the future research.
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요약

본논문에서는데이터기반주성분분석기법및최대사후확률추정기법을활용하여

제한된 개수의 관성센서만을 사용하는 고자유도 유연 시스템의 모델프리 최적 추정

및 센서 배치 최적화 프레임워크를 개발하였다. 우선, 사전에 유연 시스템을 대표적

인 시나리오에 대하여 충분히 가진하여 얻은 데이터로부터 주성분분석을 적용시켜

우세 모드와 열세 모드로 분할하였다. 이렇게 구한 각 모드의 특이값을 기반으로

필요한 최소한의 관성센서 개수를 정할 수 있었으며 시스템 끝단의 위치와 같은

출력의 사전 분포를 구할 수 있었다. 출력의 사전 분포와 관성센서의 위치에 따른

최대 사후 확률 추정을 할 수 있었으며, 추정 성능을 최대화하기 위한 센서 배치 최

적화기법 또한 제시하였다. 그리하여 최적화된 센서 배치로 유연 시스템의 실시간

출력 최적 추정이 가능하였다. 최종적으로 본 논문에서 제시한 추정 및 센서 배치

최적화 프레임워크를 실험을 통하여 검증하였다.

주요어: Elastic kinematic chain, Proper orthogonal decomposition, Proper or-

thogonal mode, Mode reduction, Maximum a posteriori estimation, Sensor place-

ment optimization

학번: 2017-28758
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