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Abstract

Self-Calibrated Visual-Inertial Odometry
for Rover Localization

Jae Hyung Jung

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

This master’s thesis presents a direct visual odometry robust to illumination

changes and a self-calibrated visual-inertial odometry for a rover localization us-

ing an IMU and a stereo camera. Most of the previous vision-based localization

algorithms are vulnerable to sudden brightness changes due to strong sunlight

or a variance of the exposure time, that violates Lambertian surface assump-

tion. Meanwhile, to decrease the error accumulation of a visual odometry, an

IMU can be employed to fill gaps between successive images. However, extrin-

sic parameters for a visual-inertial system should be computed precisely since

they play an important role in making a bridge between the visual and inertial

coordinate frames, spatially as well as temporally. This thesis proposes a buck-

eted illumination model to account for partial and global illumination changes

along with a framework of a direct visual odometry for a rover localization.

Furthermore, this study presents a self-calibrated visual-inertial odometry in

which the time-offset and relative pose of an IMU and a stereo camera are esti-

mated by using point feature measurements. Specifically, based on the extended

Kalman filter pose estimator, the calibration parameters are augmented in the
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filter state. The proposed visual odometry is evaluated through the open source

dataset where images are captured in a Lunar-like environment. In addition to

this, we design a rover using commercially available sensors, and a field testing

of the rover confirms that the self-calibrated visual-inertial odometry decreases

a localization error in terms of a return position by 76.4% when compared to

the visual-inertial odometry without the self-calibration.

Keywords: Rover localization, Direct visual odometry, Visual-inertial naviga-

tion, Self-calibration

Student Number: 2017-25371
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Chapter 1

Introduction

1.1 Motivation and background

Estimating an ego-motion of a camera has been one of the most challenging

tasks for a camera mounted moving platform in global navigation satellite sys-

tem (GNSS) denied environment. One way to tackle this issue is to use visual

odometry (VO) which was coined its name owing to its similarity to wheel

odometry (WO). VO estimates a relative 6-DOF pose between consecutive im-

ages and incrementally obtains its pose and does not suffer from error accumula-

tion caused by wheel slips, a tremendous disadvantage in WO [34]. VO is widely

used in a robot navigation because of cost and space effectiveness of cameras.

VO system was successfully implemented in NASA’s Mars Exploration Rover

(MER) and Mars Science Laboratory Curiosity rover that is shown in Fig. 1.1

[1]. MER’s VO system tracked corner features at Martian terrain and estimated

relative poses between an incoming pair of images by the stereo camera [3]. VO

in a micro aerial vehicle (MAV) application can be found in [6] which exploited

VO with a downward-looking camera attached to the MAV as shown in Fig.

1.2.

VO can be divided into two types of so-called indirect VO (IVO) and direct

VO (DVO), depending on which information is provided to the cost function

in the optimization problem. IVO [31] minimizes a reprojection error defined
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Figure 1.1: Selfie by Curiosity on sols 868 to 884 [1]

as a difference between a feature measurement and an estimated feature lo-

cation, while DVO [37] estimates camera’s pose by minimizing a photometric

error which is intensity difference among consecutive images. DVO is known to

outperform IVO in motion blurred and featureless condition since it does not

utilize feature information but pixel intensities directly in images [37]. However,

DVO has a substantial weakness that it is vulnerable to illumination changes

in a sequence of images. This is because DVO assumes that every object in the

world has the same intensity regardless of the viewer’s position that is known as

the Lambertian surface. The assumption is invalid under practical conditions

where sudden and irregular illumination changes are prevalent in sequences

of images attributable to automatic exposure and gain of a camera or albedo
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Figure 1.2: Micro aerial vehicle equipped with a downward-looking camera [6]

change that is caused by an irregular reflection under outdoor sunlight.

On the other hand, while VO suffers from the well-known error accumula-

tion, visual-inertial odometry (VIO) decreases its rate by filling a gap between

images using inertial measurement unit (IMU) readings [32]. A fusion of a cam-

era and IMU is an attractive solution due to their complementary features;

a camera provides rich information for a localization with low sampling time,

measurements of an IMU give the absolute scale with fast sampling time. More-

over, measurements from a camera provide constraints to a pose of a sensing

platform that reduces unbounded error accumulation caused by consumer-grade

IMU.

Most of the visual-inertial fusion algorithms assume that output data from

a camera and IMU is timely synchronized and the sensors are spatially well

aligned. However, this causes significant estimation errors when time-delay of

a camera is not negligible or a camera-IMU system is not well calibrated since

the measurement model is linearized around the currently available estimate
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referenced at the camera frame. Even if a camera-IMU system is calibrated

in advance, this cannot reflect uncertainties on calibration parameters to an

estimator. In the worst case, calibration parameters could be changed due to

external shocks.

In this paper, we focus on the problem of how to deal with sudden illumi-

nation changes in DVO, and extrinsic calibration parameter issues in a visual-

inertial system. For the first topic, we propose a strategy called bucketed local

illumination model to effectively model brightness changes in captured images.

For the second topic, we exploit the theoretic results of [11], [25] and formu-

late a self-calibrated extended Kalman filter (EKF)-based VIO algorithm using

feature point measurements obtained from the stereo camera.

1.2 Objectives and contributions

The objectives of this study are designing a DVO that is robust to illumination

changes and a self-calibration of a visual-inertial system using point measure-

ments using a stereo camera. The main contributions of this thesis are:

• we propose a patch-based DVO which is robust to illumination changes

at stereo camera images employing the bucketed local illumination model.

In our model, patches centered at feature points have the same affine il-

lumination parameters within the buckets in the image. Therefore, the

proposed model requires less computational cost than the local illumina-

tion model which augments its state vector per a patch. Also, the gen-

erated patches enable the proposed method to work in a more general

environment, since it does not require any artificial planar patches while

accounting for not only global light changes but also local light changes.

• we propose the adaptive prior weight as a function of the previously con-
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verged motion in a constant velocity motion model framework. This re-

flects a physical intuition that the faster a camera moves, the harder it is

to change a velocity—we assign a weight to the constant velocity model

according to the previous motion. In cases where a motion is huge, the

proposed method improves estimation accuracy, as will be seen in Chapter

3.

• we show experimental evidence that the proposed algorithm outperforms

global illumination model in the lunar-like terrain dataset [8] with strong

outdoor sunlight and the MAV dataset [2] where camera’s automatic ex-

posure and gain make sudden and partial illumination changes throughout

image sequences.

• Self-calibration VIO is formulated using point measurements from a stereo

camera. Specifically, temporal and spatial extrinsic parameters of a visual-

inertial system are augmented in the filter state in an EKF-framework. We

experimentally prove that the calibration parameters play an important

role when fusing visual-inertial sensors. We design a testing rover inte-

grated into Robot Operating System (ROS) using a commercially avail-

able platform and sensors.

The remainder of this study is organized as follows. In Chapter 2, we in-

troduce related literatures of VO and VIO. Since a scope of VO and VIO is

too tremendous to cover in this study, we focus on previous works dealing with

brightness change issues and estimating calibration parameters in online. Next,

in Chapter 3, the proposed VO algorithm is presented with its mathemati-

cal derivation and experimental results. Chapter 4 describes the self-calibrated

visual-inertial algorithm using an IMU and a stereo camera, and the rover field

testing. Finally, Chapter 5 summarizes the conclusion of this study.
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Chapter 2

Related Works

In this chapter, we begin with related works on VO. The famous VO algo-

rithms will be introduced, then previous studies dealing with sudden brightness

changes due to strong outdoor sunlight or camera exposure settings especially

for the context of a localization will be reviewed. In what follows, methods

fusing measurements from an IMU and camera will be briefly discussed, and

previous literatures on a self-calibration of the visual-inertial system will be

reviewed.

2.1 Visual odometry

Visual Odometry (VO) minimizes either a reprojection error of tracked feature

points or a photometric error that is not a geometrical distance but an image

intensity. The famous VO pipeline that minimizes the reprojection error is the

work of Geiger et al. [10], and its predecessor, [19] by Kitt et al.

In the work of [19], an iterated sigma point Kalman filter (ISPKF) using

a constant velocity model and a trifocal tensor is proposed. As shown in Fig.

2.1, the preprocessed feature points are fed into the filter where the trifocal

tensor and the constant velocity model is fused in an optimal sense. The trifocal

tensor encapsulates projective geometry between different view points excluding

feature information in the filter state (structureless). In addition to the proposed

6



Figure 2.1: Visual odometry pipeline proposed by Kitt et al. [19]

Figure 2.2: Sample image of bucketing mechanism [19]

estimator, they introduce a feature selection strategy called Bucketing shown

in Fig. 2.2. The grids formed by yellow lines in Fig. 2.2 are buckets and the

certain number of features are distributed in the yellow boxes. It is reported

that a uniform distribution of feature plays an important role in a localization

problem using images.

The work by Forster et al. [6, 7] exploits both geometry and intensity infor-

mation of feature points. The flowchart and sample images are shown in Fig.

2.3. They named this pipeline as semi-direct visual odometry (SVO). This is

because the direct method obtains feature correspondences, then the bundle

adjustment minimizes the reprojection error in a given window. SVO aligns ex-

tracted feature patches in an image to estimate a rough initial pose and feature

correspondences (Sparse Model-based Image Alignment) in Fig. 2.3(a). Then,

it adjusts 2D feature locations where they adopt different techniques depending

7



(a)
(b)

Figure 2.3: Flowchart and front-end samples of SVO [7]

on whether it is a corner or an edge (Feature Alignment) in Fig. 2.3(a). Lastly,

the bundle adjustment refines feature positions and camera poses in a given

window.

However, illumination issues are common in image related problems which

directly exploit pixel intensities such as DVO and target tracking algorithms.

Specifically, [30] employed a photometric normalization method for the face

tracking algorithm under illumination changes. Also, [18] proposed the algo-

rithm that recognizes the current illumination level of the environment and

selects one of the pre-built maps with different brightness for the localization.

In VO, [43] formulated the local illumination parameters for each planar patch

and then marginalized out by projecting to the null space in the EKF frame-

work. Also, [13, 20] estimated global illumination parameters with the camera’s

8



poses employing the illumination affine model [12] and the single illumination

offset, respectively from RGB-D images. In [5], the global affine illumination

parameter was estimated in the alternative fashion that fixes the pose and the

illumination parameter in turn to deal with the outliers. To take account of

local illumination changes, [17] selected planar patches sharing the same affine

illumination parameters [12] and jointly optimized the photometric error for the

pose and the affine parameter in RGB-D cameras. However, the images should

have enough planar patches to obtain reliable motion estimation in [17] which

limits application domain into an indoor environment where artificial structures

make rich planar patches for proper motion estimation.

2.2 Visual-inertial odometry

The method for fusing visual and inertial measurements can be broadly di-

vided into optimization based [21, 32] and filtering-based method [28, 43].

The optimization-based algorithms minimize residuals computed from measure-

ments of vision and IMU to obtain optimal solution, while the filtering-based

algorithms sequentially update its state vector usually in extended Kalman fil-

ter (EKF) or unscented Kalman filter (UKF) framework. The filtering-based

approaches can be categorized according to whether the visual feature informa-

tion is included in filter’s state vector: the simultaneous localization and map-

ping (SLAM) and the visual-inertial odometry (VIO) approach. The SLAM

method [33, 36] includes feature positions in its state vector exploiting a geo-

metric constraint with features at the current camera frame. The VIO method

[23, 28], however, marginalizes feature positions in the state vector and instead

possesses the history of camera poses (sliding windows) using feature measure-

ments among multiple camera frames in the EKF-framework. Fig. 2.4 shows an

9



Figure 2.4: Flow chart of multi-state constraint Kalman filter (MSCKF) in

Entry, Descending, and Landing mission [29]

example of a VIO implemented in an entry, descent, and landing mission.

It is known that EKF-SLAM and VIO is the optimal maximum a posterior

(MAP) estimator in a case of linear Gaussian noises [23]. However, the real world

is not the case, therefore, both algorithms exhibit different behavior on the same

dataset. Li et al. [22, 24] proposed the method optimally utilizing SLAM/VIO

algorithm (hybrid) in terms of computational cost, that is motivated by comple-

mentary computational characteristics. It is reported that utilizing information

from long-observed features improve estimator’s accuracy [40, 42]. In particu-

lar, Wu et al. [42] exploited long-observed features in a framework of a square

root inverse filter in order to enhance pose tracking performance. However, the

above-mentioned research focused on monocular vision scenario.
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In contrast to the monocular vision system, the stereo system reliably ini-

tializes feature positions by virtue of the baseline between two cameras, and

several pieces of research [5, 7, 39, 41] have been utilizing a stereo vision for

localizing the sensing platform. Specifically, Sun et al. [39] proposed stereo cam-

era based VIO algorithm and evaluated the algorithm on the fast flight dataset

and publicly available dataset.

However, most of the previous VIOs assume that the calibration parameters

are perfectly known from a calibration procedure in advance. Consequently, this

cannot reflect uncertainties on calibration parameters, and in an extreme case,

parameters can be changed due to external shocks. Many efforts to deal with

these problems have been made. The authors of [14] showed that the IMU-

cam extrinsic parameter, the scale factor, and the global gravity is observable

with the global pose measurements. However, the measurement model which

assumes that images output global poses was somewhat unrealistic. Guo et

al. in [11] proved that cam-IMU extrinsic parameter is observable using the

proposed basis functions under the known depth (feature point) assumption.

The work of [25] focused on the temporal calibration of a cam-IMU system.

They theoretically showed that time-offset between cam-IMU system can be

recovered, while practically implemented the online calibration algorithm in the

extended Kalman filter (EKF) framework. Also in [26], camera intrinsics, as well

as IMU intrinsics (misalignment, g-sensitivity) was modeled in the estimator.

11



Chapter 3

Direct Visual Odometry at Outdoor

In this chapter, we present a patch-based direct visual odometry (DVO) that is

robust to illumination changes at a sequence of stereo images. Illumination

change violates the photo-consistency assumption and degrades the perfor-

mance of DVO, thus, it should be carefully handled during minimizing the

photometric error. Our approach divides an incoming image into several buck-

ets, and patches inside each bucket own its unique affine illumination parameter

to account for local illumination changes for which the global affine model fails

to account, then it aligns small patches placed at temporal images. We do not

distribute affine parameters to each patch since this yields huge computational

load. Furthermore, we propose a prior weight as a function of the previous pose

in a constant velocity model which implies that the faster a camera moves,

the more likely it maintains the constant velocity model. Lastly, we show that

the proposed illumination model accounts for both local and global brightness

changes in synthetic image sequences. Furthermore, we verify that the proposed

algorithm outperforms the global affine illumination model at the publicly avail-

able micro aerial vehicle and the planetary rover dataset which exhibit irregular

and partial illumination changes due to the automatic exposure of the camera

and the strong outdoor sunlight, respectively.

12



3.1 Direct visual odometry

3.1.1 Notations

DVO estimates relative poses between a current camera frame, {C2} and a

previous camera frame, {C1} and concatenates them to obtain global poses

referenced at a global frame, {G}. The relative pose, ξ ∈ se(3) is defined as

ξ =
[
C2vT

C1

C2wT
C1

]T
∆ t (3.1)

where ∆t is timestamp interval between {C1} and {C2}, and v and w are linear

and angular velocity, respectively. Throughout this paper, the left superscript

refers to a referenced frame and the right subscript refers to an object frame.

Also, a bold lowercase stands for a vector, while a bold uppercase denotes a

matrix. ξ is mapped to Special Euclidean group, SE(3) through an exponential

mapping,

C2TC1 = exp(ξ̂) ∈ SE(3) (3.2)

where T is a rigid body transformation matrix and the hat operator, ·̂ is defined

as follow with the skew-symmetric matrix operator, [·×]

ξ̂ =

[C2wC1×
]

C2vC1

0 1

 (3.3)

3.1.2 Camera projection model

In this paper, the standard pinhole camera model is adopted and the projection

model for a j-th feature viewed at {C1}, is defined asufj
vfj

 = Π(C1Pfj ) =


fu C1Xfj

C1Zfj

+ cu

fv C1Yfj
C1Zfj

+ cv

 (3.4)
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where C1Pfj =
[
C1Xfj

C1Yfj
C1Zfj

]T
is the location of the j-th feature, Π

is the projection model, fu,v and cu,v are a horizontal (u), and vertical (v) focal

length and a principle point, respectively. A warping is a transformation of a

pixel location from one image plane to another according to a relative motion

between {C1} and {C2}, and the warping function, w(·) for the i-th pixel,

xi ∈ R2 is defined as

w(ξ,xi) = Π(g(C2TC1(ξ), Π−1(xi))) (3.5)

where g(T, p) = p
′ ∈ R3 is a rigid body motion mapping. In other words, the

warping is a projection of the same feature to different image planes of camera

frame according to the their relative pose.

3.1.3 Photometric error

DVO assumes that every object in a image has Lambertian surface property,

i.e. photo-consistency assumption, therefore, the photometric error for the i-th

pixel is defined as

ri(ξ) = I1(xi)− I2(w(ξ,xi)) (3.6)

where I1 : R2 → R and I2 : R2 → R are previous and current grayscale images,

respectively [37]. DVO minimizes the squared sum of photometric errors with

respect to the relative pose.

ξ∗ = argmin
ξ

n∑
i

r2
i (ξ) (3.7)

Eq. (3.7) is also known as the image alignment problem in the sense that the

6-DOF pose, ξ aligns a pair of temporal images.
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3.2 The proposed algorithm

An overview of the proposed algorithm is presented in Fig. 3.1; (a, b) reconstruct

features based on the static stereo baseline, CLTCR
(e) calculate the Jacobian

matrix, JI , residuals, rI , rP and weighting matrices, WI , WP according to (c)

the constant velocity model with the adaptive prior weight and (d) the bucketed

local illumination model under (f) the image pyramid loops. First of all, features

(corner, blob, etc.) are extracted from a pair of stereo images in the bucketed

manner like in [19], and a matching algorithm finds a correspondence for each

feature, then, the matched features are reconstructed by two-view structure-

from-motion optimization. Small patches are generated, which are centered at

the extracted features. Next, the prior pose yields the prior residual and the

adaptive prior weight. We augment the state vector with the affine illumination

parameters and jointly estimate the relative pose and the illumination param-

eters based on the bucketed local illumination model. The current estimate of

the augmented state vector iteratively computes the photometric error term.

To obtain a good initial guess for the estimator, we employ the coarse-to-fine

scheme as in [37]. After solving the optimization problem, the obtained relative

pose is concatenated to calculate the global pose of the camera, GTCk
. The

detailed explanation for the algorithm is given in the following subsections.

3.2.1 Problem formulation

The main objective of this paper is to solve the photometric minimization prob-

lem, Eq. (3.8) to obtain the relative pose between two temporally successive

images. However, Eq. (3.8) might converge to a false minimum or even diverge

under a severe brightness change environment or a large motion of a camera. In

other words, if the brightness change affects the temporal images or the overlap-
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Figure 3.1: The overview of the proposed algorithm

ping region between the consecutive images is not large enough, the nonlinearity

of the cost function is increased so that the estimator might fail. To account for

the issues, we solve the following modified optimization problem,

θ∗ = argmin
θ

[
rT
I rT

P

]WI 0

0 WP

rI

rP

 (3.8)

that is equivalent to the maximum a posterior (MAP) estimator of p(ξ|r, ξP )

where p(r) = p(r1:n) with the independent and identically distributed (iid)

assumption for the measurements and zero mean of photometric errors [16]. We

denote a prior as subscript P in the following sections, for instance, ξP stands

for a pose prior. In Eq. (3.8), θ is the state vector composed of the relative pose

and affine illumination parameters defined as follow

θ =
[
ξT α1 β1 · · · αM βM

]T
∈ R6+2M (3.9)

The affine illumination parameter, αl and βl are contrast and brightness changes,

respectively [12], and M stands for the total number of buckets. In Eq. (3.8),

WI is an image weighting matrix which is determined by the distribution of
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the photometric error. For example, [16] proposed several weighting matrices

such as the T-distribution weighting matrix. Also, rI is vectorized illumination

compensated photometric error, and rP is the residual from the prior pose,

rI =
[
r1,affine r2,affine · · · rn,affine

]T
(3.10)

rP = ξP − ξ (3.11)

A choice of interesting pixels, i.e. the elements of rI in Eq. (3.10) is a crucial

strategy in terms of computational efficiency and estimation accuracy. For in-

stance, [37] uses all pixels whose depth are valid for a motion tracking, and [4]

reduces interesting image region to pixels with non-negligible intensity gradi-

ent. Also, [6] proposes the sparse image alignment that aligns patches centered

at a sparse set of features. We adopt the sparse image alignment proposed by

[6] because we do not triangulate all pixels but corner features from the static

stereo pair. In addition to this, the constant depth assumption in a small patch

is reasonable while reducing computational burden.

3.2.2 Bucketed illumination model

The number of the illumination parameters in Eq. (3.9) is directly related to the

dimension of the state vector. Therefore, assigning the parameters to each pixel

is computationally impractical. For instance, in a 640×480 resolution image, its

state vector has 614,406 dimensions. On the other hand, a global illumination

model as in [20] where M = 1 assumes that whole pixels in an image undergo

the same intensity changes with the single pair of the parameter. However,

this assumption is violated in practical applications due to partial illumination

changes in the image. To address this issue, we propose a local illumination

model that accounts for both global and local brightness changes.
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To deal with sudden and partial illumination changes that violate the photo-

consistency assumption, we distribute the unique affine illumination parameters

to the sparse patches in each bucket. Note that a bucket in an image is a region

divided by the grids as shown in Fig. 3.1d, for instance, M = 24 in case of Fig.

3.1d. Accordingly, similar to [20], the photometric error is modified as follow

ri,affine(θ) = I1(xi)− [(αl + 1)I2(w(ξ,xi)) + βl] (3.12)

and the linearized photometric error of Eq. (3.7) is

rI(θk+1) ∼= rI(θk) + JI(θk)∆ θ (3.13)

where the augmented state vector yields the following modified Jacobian matrix,

JI = −
[
∂rI,affine

∂ξ
∂rI,affine

∂α1

∂rI,affine

∂β1
· · · ∂rI,affine

∂αM

∂rI,affine

∂βM

]
(3.14)

∂rI,affine

∂αi
=
[
0 · · · −I2(w(ξ,xi))|ξk · · · 0

]T
(3.15)

∂rI,affine

∂βi
=
[
0 · · · −1 · · · 0

]T
(3.16)

∂rI,affine

∂ξ
=
[
(α1 + 1) · · · (αM + 1)

]T
Jξ(ξk) (3.17)

where Jξ is the Jacobian matrix of the photometric error that is computed by

the chain rule from Eq. (3.5) as follows,

Jξ(ξk) =
∂I2

∂Π

∣∣∣∣
Πk

∂Π

∂g

∣∣∣∣
gk

∂g

∂C2TC1

∣∣∣∣
Tk

∂C2TC1

∂ξ

∣∣∣∣
ξk

(3.18)

where ∂I2/∂Π is an image gradient, ∂Π/∂g is a derivative of a pixel position

to its 3-D position, ∂g/∂T is a derivative of a 3-D position of a feature to a

rigid body motion, and ∂T/∂ξ is a derivative of a rigid body motion to a twist.
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These Jacobian matrices are derived in Appendix A in detail. Then, a normal

equation is obtained after solving the first order necessary condition for Eq.

(3.7),

∆ θ = (JT
I WIJI + WP )−1(−JT

I WIrI + WP rP ) (3.19)

Lastly, the relative pose is updated through exponential and logarithm mapping

with the hat operator defined in Eq. (3.2),

ξ̂k+1 = log(exp(∆ ξ̂) · exp(ξ̂k)) (3.20)

We suppose that each patch located in the same bucket possesses its own

affine parameter to account for local illumination changes, and name this model

as the bucketed local illumination model. Note that since a pair of the parameter

adds two additional states to the state vector, θ in Eq. (3.9), we do not distribute

affine parameters to each patch but to patches that belong to each bucket for

reducing computational burden while accounting for local illumination changes.

Also, pixels in each patch share the same parameters because of the fact that

the small patches, e.g. 3 × 3, can be approximated locally tangent plane in a

smooth surface showing similar intensity changes to illumination changes [12].

Also, in a temporal sequence of images, we suppose that patches stay within the

same buckets without loss of generality because camera’s frame rate (10-60 fps)

is high enough to make patches stay in their bucket in general. By assigning a

large number of small patches rather than few large patches as in [17], we do

not need planar patch fitting and all depth value inside each patch. Also, since

the proposed algorithm does not align artificial planar patches, it can operate

in both outdoor and indoor environments.
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3.2.3 Adaptive prior weight

The prior weight, WP indicates how certain we believe the constant velocity

model in the total cost function, Eq. (3.7), i.e. the inverse of prior’s uncertainty

in the MAP estimator. To deal with this weighting matrix in the absence of

additional sensor like IMU or odometry, [15] conducts parametric studies and

obtains the best constant diagonal weighting matrix at its given dataset in a

heuristic manner. However, in this paper, we suppose the system model as the

1st order Markov model and propose the weighting matrix as a function of pre-

viously converged velocity. More specifically, the weighting matrix is calculated

as follow,

WP = α||ξP ||2I6 (3.21)

where α is a constant slope and I6 is 6 by 6 identity matrix. We are motivated

by the fact that the faster a camera moves, the more feasible it is affected by

the previous pose because of its inertial force. Under a usual camera operation,

the camera gathers images at a rate of 10-60 fps. Therefore, the time interval

between incoming images is short enough to assume that the current estimator

is highly influenced by how fast the previous pose was.
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3.3 Experimental results

3.3.1 Synthetic image sequences

In this section, we evaluate how much illumination changes our method can

tolerate in EuRoC dataset [2]. Since it is not clear to quantify the amount

of illumination changes, to test our method, we follow the 2 evaluation proce-

dures. First, we compare the pose estimation performance from the conventional

method (global illumination model) and the proposed method using a pair of

temporal images illuminated by randomly generated brightness changes. Sec-

ond, we test our method increasing a global brightness in a pair of temporal

images.

For the first evaluation, we generate images randomly illuminated by 2x2

buckets. The sample images are shown in Fig. 3.2. Please note that, we run

the simulation at the 1 temporally paired image (tk−1, tk), and we add the

illumination change to the image at tk. Since we know the exact ground truth

pose at the sample pair, we can evaluate estimation performance. We ran 100

times for the given sequence with 3x3 and 5x5 buckets, and the results are

plotted in Fig. 3.3. Also, we calculate the relative pose error (RPE) for each

method. Note that the proposed method outperforms the conventional method

at the above synthesized pair as shown in Table. 3.1.

Table 3.1: Performance comparison at the synthetic pair.

Conventional method Proposed (3x3) Proposed (5x5)

RPE RMSE [m/s] 0.007881 0.001578 0.001578
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Figure 3.2: Synthetic image sequence to simulate local brightness change

Figure 3.3: Robustness to a local brightness change
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Next, we evaluate the proposed method (3x3 buckets) globally increasing

intensities of the image; we generate synthetic images which contains user-

defined illumination changes (deterministic). The sample images are shown in

Fig. 3.4. In this setup, the illumination parameters α, β are set to 0.2g and 5g,

respectively, and g is a variable that varies from 0 to 25 with 0.1 interval. Please

note that, we run the simulation at the 1 temporally paired image tk−1, tk,

and we add the illumination change to the image at tk. Since we know the

exact ground truth, we can evaluate how the bucketed illumination model deals

with the illumination change. Fig. 3.5 shows RPE as the brightness increases.

Roughly speaking, the error increases rapidly after g = 15.
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Figure 3.4: Synthetic image sequence to simulate global brightness change

Figure 3.5: Robustness to a global brightness change
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3.3.2 MAV datasets

The algorithm is evaluated at the real-world dataset, EuRoC dataset which is

recorded by the stereo camera mounted at the MAV [2]. We have to mention

that even if the image sequences are successive, there exist substantial illu-

mination changes violating the photo-consistency assumption. Fig. 3.6a shows

sample buckets extracted at the pair of temporally consecutive images with

the interval of 50 ms. Specifically, Ai and Bi are buckets at the timestamp

ti (i = 1, 2), for example, the pair of A1, A2 corresponds to the same bucket

at the different instance. To verify illumination changes, we draw the intensity

difference histogram for the pair of Ai and Bi in Fig. 3.6b. We observe that

intensity differences are not negligible, also the histograms for the bucket pairs

are not identical to each other in Fig. 3.6b. Therefore, to obtain reliable pose

of the MAV, local and global illumination changes should be considered.

For implementation details, we obtain feature correspondences between the

left and right stereo image using minimum eigenvalue feature detection [35] and

Kanade Lucas Tomasi (KLT) tracker [27]. Note that the KLT tracker does not

track features at temporal images but features at static stereo images where

extrinsic parameter, C2TC1 is calibrated in advance. Also, we maintain 100-150

number of 3 × 3 patches in 5 × 5 buckets at 20 fps image sequence, and to

suppress large photometric errors, we employ T-distribution image weighting

matrix as in [16]. Lastly, we iteratively solve the optimization problem using the

Levenberg-Marquardt algorithm, and the proposed algorithm is implemented

in MATLAB.

The ground truth trajectory and attitude are provided by a motion cap-

ture system, and the MAV flies 63.2-meter long trajectory for 110 seconds. We

compare five different cases, i.e. sparse image alignment (sia), ‘sia’ with con-
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stant temporal prior weights (constant prior), ‘sia’ with adaptive temporal prior

weights (adaptive prior), ‘sia’ with global affine illumination model (global) and

the proposed algorithm (proposed). Three error metrics used for evaluating per-

formance of each case are the root mean square error (RMSE) of the relative

pose error (RPE) where the step size is equal to one that measures the local

accuracy of the given trajectory, RMSE of the absolute trajectory error (ATE)

and the final position error divided by the whole length of the ground truth

trajectory (% dt). RPE and ATE are proposed by [38] and broadly used for

evaluating VO algorithms.

The experimental results are summarized in Table 3.2. It reports that the

proposed algorithm attains the most accurate pose estimation result. In partic-

ular, the proposed method has decreased RMSE RPE by 43.5%, RMSE ATE

by 54.6%, and % dt by 58.8% on average of other methods in Table 1. We

observe that ‘adaptive prior’ and ‘constant prior’ show almost the same results

as ‘sia’ case. This is because the frame rate (20 fps) relative to the motion

is high enough to prevent the state vector from falling into a false minimum.

Fig. 3 shows the L2 norm of RPE and ATE throughout the flight. At the pair

of images in Fig. 3.7, the proposed algorithm shows 0.02 m/s of RPE norm

whereas ‘sia’ shows 0.0308 m/s and ‘global’ shows 0.0312 m/s that is seen at

105.6 seconds elapsed time in Fig. 3.7a.

It is noteworthy to mention that the proposed method further reduces the

pose estimation error by modeling local brightness changes the global model

fails to account for. Also, the proposed method only requires 1.5-1.8 times

computation time when compared to ‘sia’ case in MATLAB environment. As a

result of the concatenation of relative poses, all five VO algorithms accumulates

the ATE as in Fig. 3.7b. However, the proposed algorithm has reduced the

accumulation by considering partial brightness changes.
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(a) sample bucket pairs

(b) intensity difference histogram

Figure 3.6: MH02 EuRoC dataset sample bucket pairs which are extracted at

t1 and t2, and their intensity differences histogram
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(a) L2 norm of RPE versus flight time.

(b) L2 norm of ATE versus flight time.

Figure 3.7: Pose estimation accuracy at EuRoC MH02 dataset, ‘sia’, ‘constant

prior’ and ‘adaptive prior’ are almost identical.
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Table 3.2: Performance comparison at the EuRoC MH02 dataset.

RMSE RPE [m/s] RMSE ATE [m] % dt [%]

sia 0.0711 0.3213 0.93

constant prior 0.0710 0.3213 0.93

adaptive prior 0.0711 0.3212 0.93

global 0.0710 0.2256 0.62

proposed 0.0398 0.1350 0.25
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3.3.3 Planetary rover datasets

We evaluate the proposed algorithm at the planetary rover dataset, ASRL

dataset. It is recorded by sensors equipped on the rover at Devon island lo-

cated at Canadian High Arctic which exhibits strong geological terrains with

no artificial objects and structures. Due to its diverse geological terrains with-

out vegetation, it is utilized for planetary exploration field tests [8]. The dataset

provides grayscale images at 3 fps with ground truth initial attitude and syn-

chronized differential global positional system (DPGS) positions.

Fig. 3.8, 3.9 shows sample images from the dataset featuring strong outdoor

sunlight and large motion due to its low sampling time. More specifically, (a)

and (b) in Fig. 3.8 are captured when the rover turned to the right, and only

three-quarters of the previous image, Fig. 3.8a remains overlapped with the

current image, Fig. 3.8b. Also, (a) and (b) in Fig. 3.6 exhibit partial illumination

changes occurred by the projection of the outdoor sunlight into the lens even

though Fig. 3.9(c,d) are temporally successive. Therefore, local illumination

changes and motion priors should be considered in order to accurately estimate

rover’s pose. The parameter settings are the same as the MAV test except

for bigger patch size (5 × 5) and fewer buckets (3 × 3). Also, note that we

decide to employ Huber image weighting matrix [16] after trial and error to

suppress large photometric errors. The ground truth and estimated trajectories

are plotted in Fig. 5a and the rover drives 413-meter long trajectory for 11

minutes. We compare five algorithms as in the MAV dataset, and select error

metrics as 3D position RMSE and % dt since the true attitude is not available

in the dataset.

Table 3.3 summarizes the evaluation result that the proposed method out-

performs the conventional methods; the proposed illumination model and the
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adaptive prior weights have lowered the position RMSE by 79.5 % with regards

to ‘sia’ case. Fig. 3.10 shows the evaluation results and several interesting ob-

servations. First, the large motion of the rover degrades the accuracy of pose

estimation making high nonlinearity to the cost function, Eq. (3.7). Thus, ‘sia’

case shows the largest position error accumulation as shown in Fig. 3.10, hence

the worst position accuracy, 58.6 m as summarized in Table. 3.3. The motion

prior term in Eq. (3.8) holds the relative pose to stay near the previous motion

stabilizing the estimator. Therefore, both ‘constant prior’ and ‘adaptive prior’

gives a more accurate estimation than ‘sia’ case. To reflect the importance of

the prior term, we add the adaptive prior term to ‘global’ case to compare al-

gorithms with the proposed one in fairness. Second, ‘adaptive prior’ shows 14.8

m better position accuracy than ‘constant prior’. This is because we reflect

the previous motion into the prior weighting matrix and the constant veloc-

ity residual is weighted accordingly. Third, even if the constant velocity model

reduces the position error of the rover, both global and bucketed local illumi-

nation model reduce the error further. However, ‘global’ case cannot explain

partial illumination changes such as image sequence in Fig. 3.9(a,b). We verify

that the proposed algorithm is more robust to illumination changes than the

global model through experimental evidence. The proposed algorithm yields

the best position accuracy for the rover showing 4.2 m lower position RMSE

than ‘global’ case. Lastly, a frame rate of a camera plays important role in DVO

since the nonlinearity of the cost function is sensitive to how large overlapping

region of a temporal image is.
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(a)

(b)

Figure 3.8: ASRL sample images, temporally consecutive image pairs that ex-

hibit large motion, only three-quarters of the image is overlapped because of

the large motion

32



(a)

(b)

Figure 3.9: ASRL sample images, temporally consecutive image pairs that ex-

hibit partial illumination change due to the sunlight
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(a) Ground truth and estimated trajectory.

(b) xyz error versus time.

Figure 3.10: Pose estimation accuracy at ASRL dataset.
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Table 3.3: Performance comparison at ASRL dataset.

Position RMSE [m] % dt [%]

sia 58.6 33.5

constant prior 46.3 31.2

adaptive prior 31.5 18.4

global 16.2 7.01

proposed 12.0 5.25
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Chapter 4

Self-Calibrated Visual-Inertial
Odometry

In this chapter, we present a visual-inertial odometry (VIO) with an online

calibration using a stereo camera in planetary rover localization. We augment

the state vector with extrinsic (rigid body transformation) and temporal (time-

offset) parameters of a camera-IMU system in a framework of an extended

Kalman filter. This is motivated by the fact that when fusing independent sys-

tems, it is practically crucial to obtain precise extrinsic and temporal param-

eters. Unlike the conventional calibration procedures, this method estimates

both navigation and calibration states from naturally occurred visual point

features during operation. We describe mathematical formulations of the pro-

posed method, and it is evaluated through the author-collected dataset which

is recorded by the commercially available visual-inertial sensor installed on the

testing rover in the environment lack of vegetation and artificial objects. Our

experimental results showed that 3D return position error as 1.54m of total

173m traveled and 10ms of time-offset with the online calibration, while 6.52m

of return position error without the online calibration.
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4.1 State representation

4.1.1 IMU state

The error state vector of the presented algorithm consists of the 15th order

of IMU state (x̃I), the calibration states (x̃C) : cam-IMU time-offset, extrinsic

parameter and the sliding window pose/velocity (x̃S) as in Eq. (4.1).

x̃ =
[
x̃T
I x̃T

C x̃T
S

]T
(4.1)

We define the error state as the difference between the true state (x) and the

estimated state (x̂) : x̃ = x − x̂. In Eq. (4.1), the IMU-related filter state is

given as follows,

x̃I =
[
θ̃T
GB

Gp̃T
B

GṽT
B b̃T

a b̃T
g

]T
∈ R15 (4.2)

x̃S =
[
θ̃T
GBi

Gp̃T
Bi

GṽT
Bi

]T
∈ R9N (4.3)

As in Chapter 3, we denote the global frame as {G}, the camera frame as {C},

the body (IMU) frame as {B}, and the left superscript denotes the reference

frame while the right subscript means the object frame. p and v mean the

sensing platform’s position and velocity, respectively. Also, ba and ba are biases

for an accelerometer and gyroscope, respectively. The attitude error in Eq. (4.2)

and (4.3) is defined as follow with the unit quaternion q,

qGB =

 1

1/2θ̃GB

⊗ q̂GB (4.4)

where ⊗ is a quaternion multiplication.

In this paper, the sliding window is defined as a previous pose/velocity of the

body frame when point features are captured. Eq. (4.3) is the sliding window-

related filter states for i-th view where N is the total number of sliding windows.
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Figure 4.1: Graphical description of sliding windows

Fig. (4.1) illustrates this in detail where the blue-colored window indicates the

current view (x̃I), while the orange windows are sliding windows (x̃C). Since we

are interested in the localization problem, we do not include feature information

in the filter state as suggested in [28].

4.1.2 Calibration parameter state

The extrinsic spatial and temporal parameters of an IMU/Cam system are

augmented in the filter state. Specifically, the calibration-related filter state is

given as below

x̃C =
[
θ̃T
CB

C p̃T
B t̃d

]T
∈ R7 (4.5)

where θ̃CB and C p̃B are the relative rotational and translational position error,

respectively as shown in Fig. 4.2(a). td in Eq. (4.5) is time-offset between an

IMU and camera that is defined as

td , ta − tb (4.6)
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(a) Spatial extrinsic parameter

(b) Temporal extrinsic parameter [25]

Figure 4.2: Extrinsic parameter description in an IMU/Cam system

In the above expression, ta and tb stand for time-delay of an IMU and camera

due to sensor’s latency, respectively [25]. In the work of Li et al. [25], it is

analytically proved that td is observable (identifiable) referenced at the time-

delay of an IMU.

4.2 State-propagation

The IMU measurements are modeled as Eq. (4.7), (4.8) with the zero-mean

white Gaussian noise process (n), and the random walk process (b).

am(t) =G RB(t)(Ga(t)−G g) + ba(t) + na(t) (4.7)

wm(t) = wt(t) + bg(t) + ng(t) (4.8)

Where Ga(t) is the true acceleration of the sensing platform, Gg is the global

gravity that is approximately
[
0 0 9.81

]T
m/s2 in the gravity-aligned ref-

erence frame. According to the sensor modeling, the continuous-time system

dynamics is given as

q̇GB(t) =
1

2
qGB(t)⊗ (wm − bg(t)) (4.9)
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GṗB(t) =G vB(t) (4.10)

Gv̇B(t) =G RB(t) (am − ba(t)) +G g (4.11)

ḃa(t) = nwa(t) (4.12)

ḃg(t) = nwg(t) (4.13)

In Eq. (4.12), (4.13), nwa and nwg are zero-mean white Gaussian noise processes.

The nominal states are computed by a numerical integration based on Eq. (4.9)

- (4.11).

The error-state system model in continuous time is as follow, while calibration-

related states are assumed to be constant over time.

˙̃xI(t) = FI(t)x̃I(t) + GI(t)nI(t) (4.14)

nI(t) =
[
nT
a nT

g nT
wa nT

wg

]T
(4.15)

The Jacobian matrices in Eq. (4.14) can be derived using Taylor series expansion

up to the 1st order.

FI(t) =



0 0 0 0 −GR̂B(t)

0 0 I3 0 0

−
[
GR̂B(t)(am − b̂a(t))

]
×

0 0 −GR̂B(t) 0

0 0 0 0 0

0 0 0 0 0


(4.16)

GI(t) =



0 −GR̂B(t) 0 0

0 0 0 0

−GR̂B(t) 0 0 0

0 0 I3 0

0 0 0 I3


(4.17)
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where [·]× is a skew-symmetric matrix operator as in Chapter 3, and I3 stands

for a 3 by 3 identity matrix. The covariance matrix (PI) of the system is

propagated through matrices in discrete time domain.

PIk+1
= ΦIkPIkΦ

T
Ik

+ Qk (4.18)

The state-transition matrix in discrete time given the sampling time is

ΦIk = Φ(tk+1, tk) (4.19)

such that

Φ̇(τ, tk) = FI(τ)Φ(τ, tk), τ ∈ [tk, tk+1] (4.20)

Also, Qk is computed as follow,

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GI(τ)QGT
I (τ)ΦT(tk+1, τ)dτ (4.21)

where Q is a power spectral density matrix which is obtained from the specifi-

cation of an IMU such that

E
[
nI(t)n

T
I (τ)

]
= Q δ(t− τ) (4.22)

where δ is Dirac delta function.

The covariance matrix of the whole state is partitioned as

Pk =

 PIk PIAk

PAIk PAk

 (4.23)

where the subscript A includes filter states other than IMU-related states. Then,

the covariance matrix is propagated by,

Pk+1 =

 PIk+1
ΦIkPIAk

PAIkΦ
T
Ik

PAk

 (4.24)
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4.3 Measurement-update

4.3.1 Point feature measurement

To deal with the calibration parameters of a IMU/Cam system, their error

state should be modeled in the measurement model. Note that the extrinsic

parameter is observable under the point features [11], and the time-offset is

also observable up to the time referenced at an IMU [25]. These motivate us to

jointly estimate the parameters along with the navigation solution in a stereo

vision scenario which provides reliable depth information.

In order to build constraints among multiple views for point features, sliding

window poses/velocity should be augmented to the state vector. Propagating

the current IMU state up to the time-offset (td), the sliding window state is as

follow,

x̃Si =
[
θ̃T
GBi

(tn) Gp̃T
Bi

(tn) GṽT
Bi

(tn)
]T
∈ R9N (4.25)

To simplify notations, we define the actual timestamp when the image is cap-

tured as tn , t+ td where t is the nominal image timestamp. Accordingly, the

Jacobian matrix with regard to the IMU state is

x̃Si
∼=
[
I9 09×6 09×6 Jtd 09

]
x̃I(tn) (4.26)

Where Jtd is the Jacobian matrix related to the time-offset, and can be derived

using 1st order approximation,

Jtd =


GR̂B(t̂n)(wm − b̂g(t̂n))

Gv̂B(t̂n)

GR̂B(t̂n)(am − b̂a(t̂n)) +G g

 ∈ R9 (4.27)

Assuming that a stereo camera is well calibrated in advance, the point fea-
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ture measurement model is

z(t) =

1/ZLI2 02

02 1/ZRI2

CLpf [1 : 2]

CRpf [1 : 2]

+ nz (4.28)

CLpf (tn) =
[
XL YL ZL

]T
(4.29)

CRpf (tn) =
[
XR YR ZR

]T
(4.30)

with zero-mean white Gaussian noise process, nz. In this expression, {CL} and

{CR} denote the left/right camera coordinate frame. Note that in Eq. (4.29),

(4.30), the instance of time is at tn for the feature position.

4.3.2 Measurement error modeling

The linearized measurement model with a single point feature is given by,

r = z(t)− ẑ(t̂n) ∼= H(t̂n)x̃(t̂n) + nz (4.31)

where H matrix is the measurement Jacobian matrix. Specifically, this matrix

is computed from the left and right measurements,

H(t̂n) =

(
∂z

∂CLpf

∂CLpf
∂x

+
∂z

∂CRpf

∂CRpf
∂x

)
t̂n

(4.32)

The derivatives with respect to the feature point are easily derived as,

∂z

∂CLpf
=



1
ZL

0 −XL

Z2
L

0 1
ZL

− YL
Z2
L

0 0 0

0 0 0


(4.33)

43



∂z

∂CRpf
=



0 0 0

0 0 0

1
ZR

0 −XL

Z2
R

0 1
ZR

− YL
Z2
R


(4.34)

To derive derivatives of feature positions with respect to the filter state

in Eq. (4.32), the global pose is perturbed up to the 1st order Taylor series

expansion with respect to the time-offset,

GRB(tn) ∼= GRB(t̂n) +G ṘB(t̂n)t̃d (4.35)

Perturbing the above equation with respect to the current attitude estimates

yields,

GRB(tn) ∼=
(

I3 +
[
θ̃GB(t̂n)

]
×

)
GRB(t̂n)

+GRB(t̂n)
[
wm − b̃g(t̂n)

]
×
t̃d

(4.36)

Likewise,

GpB(tn) ∼= GpB(t̂n) +G vB(t̂n)t̃d (4.37)

GpB(tn) ∼= Gp̂B(t̂n) +G p̃B(t̂n) +G v̂B(t̂n)t̃d (4.38)

The linearization in Eq. (4.36), (4.38) enables us to model the time-offset in the

measurement model.

The feature position referenced at the left camera frame can be expressed

as follow,

CLpf (tn) = CLRB
BRG(tn)

(
Gpf − GpB(tn)

)
+ CLpB (4.39)
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Substituting Eq. (4.36), (4.38) into Eq. (4.39) yields,

CLp̃f (tn) ∼= CLR̂G(t̂n) Gp̃f +CL p̃B −
[
CLR̃f (t̂n)(Gp̂f −G p̂B(t̂n))

]
×
θ̃CLB

−CLR̂B

([
wm − b̂g(t̂n)

]
×

BR̂G(t̂n)(Gp̂f −G p̂B(t̂n)) +B R̂G(t̂n) Bv̂G(t̂n)

)
t̃d

+CLR̂G(t̂n)
[
Gp̂f −G p̂B(t̂n)

]
× θ̃GB(t̂n)−G R̂B(t̂n)Gp̃B(t̂n)

(4.40)

Therefore, ∂ CLpf/∂x can be obtained with the corresponding filter state in Eq.

(4.40). Since we assume that CLTCR
is known, the derivatives of the feature

position referenced at the right camera frame is compuated as follow,

∂CRpf
∂x

=CR RCL

∂CLpf
∂x

(4.41)

Using Jacobian matrices obtained in Eq. (4.40), the linearized model in Eq.

(4.31) is written as,

r ∼= HS(t̂n)x̃S(t̂n) + HC(t̂n)x̃C + Hf (t̂n)x̃f + nz (4.42)

where H matrices are the corresponding Jacobian matrices, i.e.,

HS(t̂n) =

(
∂z

∂CLpf

∂CLpf
∂xS

+
∂z

∂CRpf

∂CRpf
∂xS

)
t̂n

(4.43)

HC(t̂n) =

(
∂z

∂CLpf

∂CLpf
∂xC

+
∂z

∂CRpf

∂CRpf
∂xC

)
t̂n

(4.44)

Hf (t̂n) =

(
∂z

∂CLpf

∂CLpf
∂xf

+
∂z

∂CRpf

∂CRpf
∂xf

)
t̂n

(4.45)

To be specific, Jacobian matrices in Eq. (4.43) - (4.45) can be obtained from

Eq. (4.40),

∂CLpf
∂xS

=
[
CLR̂G(t̂n)

[
Gp̂f −G p̂B(t̂n)

]
× −GR̂B(t̂n) 03

]
(4.46)
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∂CLpf
∂xC

=

[
−
[
CLR̃f (t̂n)(Gp̂f −G p̂B(t̂n))

]
×

I3 M

]
(4.47)

M = −CLR̂B

([
wm − b̂g(t̂n)

]
×

BR̂G(t̂n)(Gp̂f −G p̂B(t̂n)) +B R̂G(t̂n) Bv̂G(t̂n)

)
(4.48)

∂CLpf
∂xf

=CL R̂G(t̂n) (4.49)

To eliminate feature information in the measurement equation, Eq. (4.42)

is projected into the left nullspace of the feature-related Jacobian matrix (Hf )

[28].

ATr ∼= ATHS(t̂n)x̃S(t̂n) + ATHC(t̂n)x̃C(t̂n) + ATnz (4.50)

In this expression, AT is the left nullspace matrix of Hf such that

ATHf = 0 (4.51)

Note that since Hf ∈ R4N×3, the left nullspace exists in general with the

dimension of AT ∈ R(4N−3)×4N where N is the number of sliding window as

mentioned before. We can rewrite Eq. (4.50) omitting the time instances for

simplicity as

ro = HSo x̃S + HCo x̃C + no (4.52)

Therefore,

Ro = Hux̃ + no (4.53)

Hu =
[
0 HSo HCo

]
(4.54)
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The Kalman gain is computed as

K = PHT
u

(
HuPHT

u + Ro

)−1
(4.55)

Ro = E(non
T
o ) (4.56)

Then, the state correction is obtained as,

∆x = Kro (4.57)

The filter state is corrected as below,

x+ = x⊕∆x (4.58)

For each of the filter state,

x+
I =



∆q⊗ qGB

GpB + ∆p

GvB + ∆v

ba + ∆ba

bg + ∆bg


(4.59)

x+
C =


∆qCB ⊗ qCB

CpB + ∆pCB

td + ∆td

 (4.60)

x+
S =


∆qi ⊗ qGB

GpBi + ∆pi

GvBi + ∆vi

 (4.61)

The covariance matrix of the system is updated as follow,

P+ = (I−KHu)P(I−KHu)T + KRoK
T (4.62)

This concludes the filter update procedure.
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4.4 Experimental results

4.4.1 Hardware setup

The testing rover in Fig. 4.3(b) consists of Pioneer3-AT (rover platform), Xsens

MTi-300 (IMU), ZED stereo camera, and the onboard computer for the purpose

of data recording. While IMU outputs its data at 200Hz, the stereo camera gives

1280x720 grey images at 15Hz. The visual-inertial sensor suite is shown in Fig.

4.2(b). As shown in Fig. 4.3(a), all sensors are integrated into ROS (Robot

Operating System) which is robotics middleware. Although both sensors are

timestamped under the ROS environment, the nature of the separate system

motivates us to estimate the spatial and temporal extrinsic parameters. The

initial guess of the extrinsic parameter was computed using Kalibr toolbox [9].

Also, a human pilot drove the testing rover returning to the starting point to

quantify return position error. The typical environment of the site is shown in

Fig. 4.4 which lacks artificial object and vegetation.

The rover platform (Pioneer 3-AT) in Fig. 4.5 is a four-wheel-drive rover,

and it provides space for mounting sensors or equipments on its upper deck.

Each motor is equipped with an optical encoder that measures the angular dis-

placement of the motor using two signals with a phase difference of 90 degrees

so that the speed of the rover can be measured. In addition, a user control

panel is provided on the upper deck to confirm the current state of the rover

and the connection state with the navigation computer. The rover has a mi-

crocontroller (MCU) as an onboard processor. Low-level tasks such as motor

drive and measurement data processing are performed by the MCU’s firmware,

Advanced Robot Control and Operations Software (ARCOS), while high-level

tasks such as command transfer from the user to the rover are performed in the

navigation computer.
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(a) Testing rover system architecture
(b) Testing rover

Figure 4.3: Rover field testing hardware setup

Figure 4.4: A typical image in the testing area
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Figure 4.5: Rover platform : Pioneer 3-AT

Figure 4.6: Feature tracking strategy using stereo images
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4.4.2 Vision front-end design

We describe details of the vision front-end implementation in this section. Fea-

tures are provided to the estimator when either tracking fails or the number of

tracks exceeds a user-defined maximum sliding window. To obtain reliable sets

of feature tracks, we design a stereo feature tracker shown in Fig. 4.6 as similar

to [39]. Assuming that the feature correspondence at tk−1 is obtained, features

on the left image are tracked to the next time step tk, then 8-point RANSAC

eliminates outlier sets. Survived inliers on the left image are kept tracked to the

right image. Again, 8-point RANSAC detects outliers between temporal right

images at tk−1 and tk . In the only case when the feature is successfully tracked

both the temporal and static tracking, the feature is fed to the estimator. In

contrast to a monocular case, the stereo features give scale information due to

the baseline. Specifically, we triangulate feature points from the farthest two-

view; for instance, the oldest frame in the left and the latest frame in the right

before the multi-view triangulation. This strategy enables us to compute the

feature depth, even the sensors are in static.

4.4.3 Rover field testing

To test the presented VIO, the testing rover traveled the total distance of 173m

for 224 seconds commanded by the human pilot. The testing site mainly con-

sisted of soil with small rocks where typical images are shown in Fig .4.4. To

compute an initial attitude with respect to the navigation frame (NED-frame),

outputs of the accelerometer at the first 2 seconds were used. Also, the testing

rover started from the static state; the initial velocity was set to zero.

To quantify the performance of the algorithm, we compare return position

errors among three cases: “full calibration (td + CTB)”, “partial calibration
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(only td)” and “no calibration”. Table. 4.1 shows 3D return position of 3 cases

in the Cartesian coordinate in which the starting point was
[
0 0 0

]T
m. As

expected the full calibration yields the best performance (2-norm) that is 76.4%

error decrease when compared to the no calibration. It is interesting to note that

the z-axis position of the partial calibration drifted up to -4.07m. We argue that

this is due to the inaccurate extrinsic parameter that is computed beforehand.

Also, Fig. 4.7 plots the entire estimated 2D trajectories of all cases. It is clearly

seen in Fig. 4.7 that the no calibration largely drifts after the first 180 deg

turning when compared the others.

Fig. 4.8 plots the estimated time-offset with its 3-sigma envelopes in the

full calibration scenario. After quick convergence at the beginning, it converges

to -10.3ms. Even though we do not have the true value of the time-offset, it is

clearly seen that the uncertainty converges as time goes; that is a consistent

result with the observability analysis of Li et al. [25]. Remind that the sampling

time of images is 66.7ms (15Hz), thus the time-offset is not negligible.

Fig. 4.9 and 4.10 show 3 standard deviations for the IMU-Cam extrinsic pa-

rameter for each axis in the full calibration. We set the initial standard deviation

as 1deg and 5mm respectively to cover the calibration uncertainty. Although

we do not have the true value, the standard deviations are decreased as the

filter is updated that is consistent results to the observability analysis in [11].

Table 4.1: 3D return position error for 3 cases

No Calibration Partial Calibration Full Calibration

xyz Return

position [m]

-0.8229;

3.3352;

-5.5402

0.3627;

0.1956;

-4.0725

-1.1922;

0.5711;

-0.7856

2-norm [m] 6.52 4.09 1.54
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Figure 4.7: Estimated 2D trajectory with the online calibration
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Figure 4.8: Estimated IMU-Cam time-offset with 3-sigma envelope
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Figure 4.9: IMU-Cam relative attitude 3-sigma envelopes
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Figure 4.10: IMU-Cam relative position 3-sigma envelopes
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Chapter 5

Conclusions

5.1 Conclusion and summary

In this paper, we have posed the problems about a localization task of a rover

using an IMU and cameras. First, the Lambertian surface assumption is vio-

lated due to brightness changes of an image in a framework of the direct visual

odometry. Second, the extrinsic calibration parameters would cause a big chal-

lenge when fusing measurements from an IMU and camera.

To improve the localization performance of a rover, we have proposed the

bucketed local illumination model and the adaptive prior weight in patch-based

DVO framework. The proposed illumination model does not require depths for

all pixels in the image while accounting for both global and local illumination

changes. A further advantage of the proposed model is that it does not ex-

ploit artificial planar patches but small patches that are assumed to be planar

patches in smooth surfaces. Furthermore, the adaptive prior weight reflects the

fact that a fast-moving-object gives more confidence to the constant velocity

model than a slow-moving-object statistically. Finally, we have evaluated our

algorithm in the MAV and the planetary rover dataset where the camera’s au-

tomatic exposure and the strong outdoor sunlight induce partial and sudden

illumination changes. Our experimental result reports that the proposed algo-

rithm is robust to illumination changes and large motions showing much better
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pose/position accuracy than the global illumination model.

In the case of the calibration issue in a visual-inertial system, we have pre-

sented the online calibration stereo VIO using naturally occurring point features

in which the state vector is augmented by the time-offset and extrinsic param-

eters. To evaluate the presented VIO, the testing rover with the commercially

available visual-inertial sensor recorded the dataset. Our experimental results

have shown that when fusing independent sensors their extrinsic calibration is

important; the online calibration method reduced the rover’s return position

error by 76.4% with respect to the no calibration method. Moreover, we exper-

imentally showed that the time-offset and extrinsic parameter were observable

under point features that is consistent with the observability analysis.

5.2 Future works

The proposed localization method can be further improved on the two aspects.

• Photometric measurement model

The proposed bucketed illumination model is tested through a framework

of direct visual odometry. However, it can be combined with a pipeline

of the self-calibrated VIO. It is known that the photometric error model

conveys more information than the reprojection model, but the former one

is sensitive to illumination changes. It is expected that our proposed model

would yield more robust localization results in an outdoor environment.

• Initialization

In this study, we assume that reasonable initial conditions of the fil-

ter state are accessible. To be specific, we begin our algorithm from a

static condition. However, in a real-world setting, this assumption can
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be violated, or even worse, the filter would be failed due to a rapid mo-

tion or a huge occlusion in images. This motivates a robust initialization

procedure— initial biases of an IMU, velocity, and gravity direction should

be recovered using a constraint formulated by a sequence of images. This

enables that the algorithm is bootstrapped even under a non-static con-

dition by initializing its state vector.
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Appendix A

Derivation of Photometric Error
Jacobian

In this appendix, Jacobian matrices of the photometric error are derived. Define

the following variables,

g =
[
X

′
Y

′
Z

′
]T

(A.1)

which is a warped 3D feature position.

Π−1(xi) =
[
X Y Z

]T
(A.2)

which is a 3D feature position before warping. These positions are related by

the rigid body transformation matrix T ∈ SE(3) such that,

g = RΠ−1(xi) + t (A.3)

T =

R t

0 1

 =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 (A.4)

Also, define a vectorized transformation matrix as below,

T∗ ,
[
r11 r21 r31 r12 r22 · · · t1 t2 t3

]T
∈ R12 (A.5)
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The first derivative in Eq. (3.18) is an image gradient at the warped image

point,

∂I2

∂Π

∣∣∣∣
Πk

= OI2(Πk) (A.6)

The second derivative in Eq. (3.18) is derived as below,

∂Π

∂g

∣∣∣∣
gk

=

fuZ′ 0 −fuX
′

Z′2

0 fv
Z′ −fvY

′

Z′2

 (A.7)

where fu and fv are vertical and horizontal focal length, respectively. According

to Eq. A.3, the warped feature position can be written as below,

g =


r11X + r12Y + r13Z + t1

r21X + r22Y + r23Z + t2

r31X + r32Y + r33Z + t3

 (A.8)

The third derivative in Eq. (3.18) is,

∂g

∂T∗

∣∣∣∣
Tk

=
[
XI3 Y I3 ZI3 I3

]
(A.9)

Note that the denominator of Eq. (A.9) is not T but T∗ to avoid tensor nota-

tions.
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Lastly, the fourth derivative in Eq. (3.18) is,

∂T∗

∂ξ
=



0 r31 −r21 0 0 0

−r31 0 r11 0 0 0

r21 −r11 0 0 0 0

0 r32 −r22 0 0 0

−r32 0 r12 0 0 0

r22 −r12 0 0 0 0

0 r33 −r23 0 0 0

−r33 0 r13 0 0 0

0 t1 −t2 1 0 0

−t1 0 −t3 0 1 0

t2 t3 0 0 0 1



(A.10)
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국문초록

본 논문에서는 로버 항법 시스템을 위해 관성측정장치와 스테레오 카메라를 사

용하여 빛 변화에 강건한 직접 방식 영상 오도메트리와 자가 보정 영상관성 항법

알고리즘을 제안한다. 기존 대부분의 영상기반 항법 알고리즘들은 램버션 표면 가

정을위배하는야외의강한햇빛혹은일정하지않은카메라의노출시간으로인해

영상의 밝기 변화에 취약하였다. 한편, 영상 오도메트리의 오차 누적을 줄이기 위

해 관성측정장치를 사용할 수 있지만, 영상관성 시스템에 대한 외부 교정 변수는

공간 및 시간적으로 영상 및 관성 좌표계를 연결하기 때문에 사전에 정확하게 계

산되어야 한다. 본 논문은 로버 항법을 위해 지역 및 전역적인 빛 변화를 설명하는

직접 방식 영상 오도메트리의 버킷 밝기 모델을 제안한다. 또한, 본 연구에서는

스트레오 카메라에서 측정된 특징점을 이용하여 관성측정장치와 카메라간의 시

간 오프셋과 상대 위치 및 자세를 추정하는 자가 보정 영상관성 항법 알고리즘을

제시한다. 특히, 제안하는 영상관성 알고리즘은 확장 칼만 필터에 기반하며 교정

파라미터를 필터의 상태변수에 확장하였다. 제안한 직접방식 영상 오도메트리는

달 유사환경에서 촬영된 오픈소스 데이터셋을 통해 그 성능을 검증하였다. 또한

상용 센서 및 로버 플랫폼을 이용하여 테스트 로버를 설계하였고, 이를 통해 영상

관성 시스템을 자가 보정 할 경우 그렇지 않은 경우 보다 회기 위치 오차(return

position error)가 76.4% 감소됨을 확인하였다.

주요어: 로버 항법, 직접 방식 영상 오도메트리, 영상관성 항법, 자가 보정

학번: 2017-25371
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