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Abstract 
 

GPS Carrier Phase / INS Integrated  

Smartphone Pedestrian Dead-Reckoning  

Using User Context Classifying Deep Learning 

 

       Seo Yeon Stella Yang 

   School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

In this research, the overall construction of the smartphone GPS / INS 

pedestrian dead reckoning system is detaily described with considering the 

smartphone sensor measurement properties. Also, the recent android GNSS API 

which can provide the raw GPS measurement is used. With carrier phase, the 

cycleslip compensated velocity determination is considered. As a result, the carrier 

phase /INS integrated pedestrian dead reckoning shows the more precise navigation 

accuracy than NMEA. Moreover, The deep learning approach is applied in the user 

context classification to change the parameters in the pedestrian dead reckoning 

system. The author compares the effect of several transformed inputs for the LSTM 

model and validate each classification performances. 

 

Main Term: GNSS, Android GNSS API, Carrier phase, Cycleslip, INS, 

Extended quaternion kalman filter, Pedestrian dead reckoning, GPS / INS 

integration, Sensor signal deep learning, User context classification, LSTM. 
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Chapter 1. Introduction 

 

1.1 Motivation and Backgrounds 

 

Smartphone becomes an essential device in this age and many users spend the 

much time with this machine. On the phone, there are many sensors which can detect 

the user’s environment. The smartphone sensor data provide the knowledge to 

analyze the user’s behaviors. The attitude and position information is one of the most 

important advice and is related to inertial sensors and GPS. To acquire accurate info, 

the smartphone sensor properties are needed to analyze deeply.  

Because of the fast changing trend about the smartphone, the newest 

hardware/software upgrade contents must be considered. Google announced the 

GNSS API in 2016. After that notice, there are many trials to use this raw GNSS 

measurement in smartphone navigation [1],[2],[3],[4]. Moreover, Xiaomi launchs 

the dual frequency phone which can receive L1, L5 band signal [5],[6]. The dual 

frequency GNSS measurement can eliminate the ionic delay error and this can lead 

to precise navigation result.  

To get the position info of the walking user, there are a lot of smartphone-based 

pedestrian dead-reckoning research is conducted so far [7],[8],[9],[10]. Many 

algorithms which can improve the performance of PDR is suggested. The zero 

velocity update and zero angular rate update method are used to enhance the 

accuracy in Zhang,W.’s work [11]. The map matching methods, wifi and magnetic 

field fingerprinting, can be integrated with PDR at an indoor environment 

[12],[13],[14]. About outdoor navigation, the main problem is GPS signal could be 

deteriorated with the city environment. To overcome the issue, Li-Ta Hsu’s work 
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shows the 3D-GNSS pedestrian smartphone positioning in urban place [15]. Also P. 

Baranski used the raster map information in the urban environment navigation [16]. 

Today, there are machine learning and deep learning approachs to detect the 

user’s behavior context with a smartphone inertial sensor data [17],[18],[19],[20].  

Also, this user context ML/DL could be implemented in smartphone dead-reckoning. 

The user walking context classification can change the mode adaptively. With this 

variable mode, the walking detection, step counting, and stride length can find the 

more suitable parameters at each mode [21],[22],[23].   

With this background, the author developed the smartphone GPS / INS 

integrated pedestrian dead reckoning system and tried to higher the performance with 

the raw GPS measurement.  
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1.2. Research Purpose and Contribution 

 

In this research, the overall construction of the smartphone GPS / INS 

pedestrian dead reckoning system is detaily described with considering the 

smartphone’s GPS, INS sensor measurement property. For this, the recent android 

GNSS API which can get the raw GNSS measurement is used and the API related 

information is given. Moreover, the carrier phase / doppler based velocity estimation 

in android environment is investigated. As a result, this raw GPS/ INS integration 

improved the position, velocity navigation accuracy. At last, the deep learning 

approach and the model comparision with the transformation methods could help the 

INS sensor data context classification study. 

 

1.3. Contents and Methods of Research 

 

This research analyzes the INS sensor noise and bias model properties with the 

experimental data from the Galaxy S8 smartphone.  After the INS sensor model is 

determined, the pedestrian dead reckoning system is developed. Also, the 

smartphone GNSS API measurement is investigated and the carrier phase-based 

velocity determination is performed. With this information, the overall GPS/ INS 

integrated pedestrian dead reckoning system is constructed and the performance of 

the navigation system is analyzed with the contrast to NMEA GPS. At last, the user 

context classification is considered for the adaptive changing parameters in PDR. 

With the LSTM model, the 3 different transformation methods, time window cutting, 

STFT, and CNN encoding is compared about the prediction performance.  
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Chapter 2. Smartphone GPS / INS 

measurements analysis 

 

In this chapter, the overall smartphone based GPS / INS pedestrian dead 

reckoning system and related experiment result will be explained. First, the 

Android smartphone environment to acquire GPS/INS measurements will be 

introduced. Secondly, GPS raw measurement properties and position, velocity 

navigation methods will be discussed. Thirdly, INS measurement properties and 

the attitude determination Kalman filter will be studied. Fourthly, the pedestrian 

dead-reckoning algorithms will be followed. Finally, I will represent developed 

smartphone GPS / INS integrated the pedestrian dead-reckoning system. 

 

2.1 Smartphone GNSS measurements 

2.1.1 Android Raw GNSS Measurements API 

 

In 2016, Google announced the Android APIs for retrieving raw GNSS 

measurements. This APIs can be accessed after Nougat (Android 7.0) version. Also, 

Google supports the opensource analysis tool which can decode the raw 

measurement and shows the several navigation-related information.   
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         Figure 2-1. Google GNSS Analysis Opensource Tools 

 

The accessibility of raw GNSS measurements depends on smartphone devices. The 

table of “Android devices that support raw GNSS measurements” from the 

webpage [25] shows the data dependency of each smartphone devices.  

With API, the raw measurement data which can be obtained is the following table. 

 

Table 2-1. List of Raw measurements 

List of raw measurement. 

Name  Data type  remark 

Raw  String  Header 

ElapsedRealtimeMillis  double   

TimeNanos   int64 Nano Second 

LeapSecond  int64   

TimeUncertaintyNanos   int64 Nano Second 

FullBiasNanos   int64 Nano Second 

BiasNanos   double Nano Second 

BiasUncertaintyNanos   double Nano Second 

DriftNanosPerSecond  double   

DriftUncertaintyNanosPerSecond  double   

HardwareClockDiscontinuityCount  double   
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Svid  double   

TimeOffsetNanos  double  Nano Second 

State  double   

ReceivedSvTimeNanos   int64 Nano Second 

ReceivedSvTimeUncertaintyNanos   int64 Nano Second 

Cn0DbHz  double   

PseudorangeRateMetersPerSecond  double   

PseudorangeRateUncertaintyMetersPerSec

ond  
double   

AccumulatedDeltaRangeState  double   

AccumulatedDeltaRangeMeters  double   

AccumulatedDeltaRangeUncertaintyMeters double   

CarrierFrequencyHz  double   

CarrierCycles int64   

CarrierPhase  double   

CarrierPhaseUncertainty  double   

MultipathIndicator  double   

SnrInDb  double   

ConstellationType   double Global Systems 

                  

In this research, we chose the “Galaxy S8” as a platform and the device has the 

following properties. 

 

Table 2-2. Supported Raw measurements in Galaxy S8  

Model Ver AGC NM ADR 

HW 

cloc

k 

L5 

Suppor

t 

Global 

systems 

Samsung 

Galaxy 

S8  
7 no yes yes yes no 

GPS 

GLONAS

S 

GALILEO 

BeiDou 

QZSS 

 (Ver: Android version, AGC: Automatic Gain Control,  

NM: Navigation Message, ADR: Accumulated Delta Range) 
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2.1.2 Raw GPS Measurements Properties 

 

For the GPS navigation, the raw GPS measurements properties need to be 

investigated. The measurement equations can be expressed as below. 

 

Table 2-3. GPS measurement components 

Pseudorange(Code) :  

                  (2.1) 

Doppler(Delta Psuedorange) : 

,

i i i i i i i i

u u u u u u u u ff d B b T I R M                           (2.2) 

Carrier Phase(Accumulated Delta-Range) : 

                  (2.3) 
 

: Distance between i th satellite and user 

: Receiver clock error of the user 

 : i th satellite clock error 

 : Troposphere delay error 

: Ionosphere delay error 

: Satellite location error 

: Multipath error 

: Receiver noise 

 : Wavelength of carrier phase 

 : Integer ambiguity 
 

 

 

The noise level of psuedorange is meter scale, Doppler noise level is sub-

meter/sec scale and Carrier phase noise level has mm scale. 
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2.1.3 Smartphone NMEA Location Provider 

Location manager API provides periodic reports on the geographical location 

of the device. There are 3 type of location providers in Android [26]. 

 

Table 2-4.  Smartphone Location Providers 

Provider Characteristics Accuracy 

GPS provider 

(GPS, AGPS) 

Name of the GPS location provider. This provider 

determines location using satellites. Depending on 

conditions, this provider may take a while to return a 

location fix.  

20ft 

Requires the permission 

android.permission.ACCESS_FINE_LOCATION. 

Network 

provider 

(AGPS, 

CellID, WiFi 

MACID) 

Name of the network location provider. This provider 

determines location based on the availability of cell 

tower and WiFi access points. Results are retrieved by 

means of a network lookup.  

200ft 

Requires either of the permissions 

android.permission.ACCESS_COARSE_LOCATION or 

android.permission.ACCESS_FINE_LOCATION. 

Passive 

Provider 

(CellID, WiFi 

MACID) 

A special location provider for receiving locations 

without actually initiating a location fix. This provider 

can be used to passively receive location updates 

when other applications or services request them 

without actually requesting the locations yourself. 

This provider will return locations generated by other 

providers.  

5300ft / 

1mile 

Requires the permission 

android.permission.ACCESS_FINE_LOCATION, 
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although if the GPS is not enabled this provider 

might only return coarse fixes. 

 

GPS provider gives the location which is determined with the triangle signal 

from remote satellites. Receiver module typically connects to the host system via 

UART but use another form of Peripheral I/O. To access the position information, 

the Android system needs to acquire permission. There are 2 types of permission 

with different location accuracy, “ACCESS_FINE_LOCATION” and 

“ACCESS_COARSE_LOCATION”. 

 

GPS hardware typically reports location information as ASCII strings in the 

NMEA standard format. Each line of data is a comma-separated list of data values 

known as a sentence. While each GPS module may choose to report different 

portions of the NMEA protocol, most devices send one or more of the following 

sentences 

 

GPGGA (Fix Information): Includes position fix, altitude, timestamp, and 
satellite metadata. 

GPGLL (Geographic Latitude/Longitude): Includes position fix and 
timestamp. 

GPRMC (Recommended Minimum Navigation): Includes position fix, 
speed, timestamp, and navigation metadata. 

 

In 2013 Google I/O, the Fuse location provider was introduced. The fused location 

provider has the battery efficient property and can combine the GPS / WIFI / CELL 

/ INS sensor information. Even more, it can achieve the approximate location at the 

indoor environment. 

 

In this research, the author uses the fix information(GPGGA) of GPS provider with 

ACCESS_FINE_LOCATION permission as NMEA location. 
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2.1.4 Pseudorange Based Position Estimation 

 

Figure 2-2. Pseudorange Standalone Positioning 

 

About the pseudo-range measurement, the distance between the user and 

satellite can be expressed with the sight unit vector(user to satellite) and ECEF 

location vectors. Also with the assumption that the other noises are small (or 

eliminated), the receiver clock error is the main error of measurement.  

 

Figure 2-3. Position determination Algorithm 
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The position determination is performed with the least square method. Also, if 

the variance of the pseudo-range is considered, the weighted least square solution 

which is more precise can be used. 

 

 (W : matrix with 1/(noise sigma))              (2.4) 

 

2.1.5 Position Determination Experiment 

 

To determine the position with the raw pseudorange data, the weighted least 

square standalone positioning method in the upper section is used. The satellite clock 

error is eliminated with the ephemerides information and the other error effects are 

assumed as small. 

Using Galaxy S8 android app, the walking data is acquired at open sky 

playground during about 30 min, 12 times experiment. For the true reference 

trajectory, the precise Trimble GEO-XR device logs the position at the same time. 

 

 

Figure 2-4. Position Determination Experiment 
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Table 2-5. The mean errors of the position determination 

Name Mean  

Error (deg) 

Mean  

Error (deg) 

Mean  

Error (m) 

Mean  

Error (m) 

NMEA 2.8095e-05 2.7539e-05 2.7805 2.5397 

Psuedorange 6.1566e-05 5.5452e-05 9.3837 5.4730 

 

The pseudorange positioning precision was lower than the NMEA API based. 

The reason would be the troposphere, ionosphere errors remain. The navigated 

position showed the noisy property than NMEA. But it was a dynamic and real-time 

situation so that the average position accuracy could be different in a static situation.  

To find the exact error reason, the processing code inside the NMEA smartphone 

GPS API is needed to be investigated more. 

 

 

2.2 Smartphone INS Measurements 

2.2.1 Android Sensor Manager API 

 

Smartphone devices have many sensors which can detect the phone user’s 

information. The INS sensor like the accelerometer, gyroscope, magnetometer, and 

barometer can give the smartphone attitude and position related information.  

 In the Android system, there is the sensor manager API [27] which can get the 

smartphone INS sensors data. In this research, the accelerometer, gyroscope, 

magnetometer sensors are used. 

After the 26 level API version (8.0), Android system supports 

“TYPE_ACCELEROMETER_UNCALIBRATED”. The former Android 

developer could get the calibrated accelerometer only but after ver 8.0 (Oreo), the 

uncalibrated one can be accessed.  

Also,“TYPE_GYROSCOPE_UNCALIBRATED”,“TYPE_MAGNETIC_FIE

LD_UNCALIBRATED” is available after API level 18. 
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The smartphone’s sensor axes are depended on hardware orientation. So that the 

axes could be different by smartphones. In this research, the Galaxy S8 smartphone 

is used and the sensor axes are the following figure. 

 

 

Figure 2-5. Galaxy S8 Smartphone Axis 

 

2.2.2 INS Measurements Properties 

 

For the navigation, the used sensor, accelerometer, gyroscope, and 

magnetometer, measurement models are needed to be analyzed. These INS sensor 

measurements have each inherent characters. The following equations illustrate the 

sensor measurements property [28]. 

 

 

Table 2-6. INS measurement equations 

Accelerometer 

specific force 

0( ) [ ( )( ( ))] ( )f b T f f

m i body r ff k S C k g a k b b k v       

Gyroscope  

angular rate 

0( ) ( ) ( ) ( )w w w

m r ww k S k w k b b k v      

Magnetometer 

magnetic field 

0( ) ( ) ( )m b w w

m i r wm k S C k h b b k v     
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: from inertial to the body frame rotation matrix 

: scale factor 

: constant bias 

: random bias 

: Gaussian noise 

 

With these measurement models, we want to know the user’s phone attitude 

information. The sensor is attached to the smartphone’s body so that the equation is 

expressed as the body frame. Also, there are some parameters, scale factor, constant 

bias and random bias, which is needed to define in the models. The scale factor is 

the parameter which scales the measured signal. The constant bias has character 

changing with each on/off time. The random bias represents the sensor’s temporal, 

time-related quantum reaction. And the sensor noise is assumed as a normal 

distribution. 

 

2.2.3 Noise level, Constant bias, Scale factor, Calibration 

 

To know the motion related states, the upper sensor property constants need to be 

calibrated. In the following chapters, we will consider this calibration method in each 

sensor types [29]. 

 

Constant bias, Noise level: The constant bias changes randomly with the 

smartphone power on/off times but when power is on state, it persists the static 

characteristic. If the power on mode is maintained and main signal becomes zero, 

the fixed constant bias and the noise level can be detected. But, making the zero 

magnetic field is not easy. Also, the magnetometer’s measurement has special 

property of distortion from the iron effect. By this reasons, the magnetometer need a 

special calibration method, ellipsoid fitting, and this calibration will be analyzed in 
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the next chapter separately. In this chapter, we will investigate the accelerometer and 

gyroscope calibration. With the assumption which the random noise is not influential, 

the mean constant bias, constant bias variance and noise sigma are founded by the 

following method.  

 

 Table 2-7. Noise sigma determination. 

Accelerometer noise level Gyroscope noise level 

𝑓𝑚 = 𝑏𝑐 + 𝑤 
𝑆𝑡𝑑(𝑓𝑚) = 𝑆𝑡𝑑(𝑤)      (∵ 𝑏𝑐 : 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐) 

𝑤~𝑁(0, 𝜎𝑤
2)  

𝜔𝑚 = 𝑏𝑐 + 𝑤 
𝑆𝑡𝑑(𝜔𝑚) = 𝑆𝑡𝑑(𝑤)      (∵ 𝑏𝑐 : 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐) 

𝑤~𝑁(0, 𝜎𝑤
2) 

 

 

Table 2-8. Mean constant bias determination. 

Accelerometer constant bias Gyroscope constant bias 
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Scale factor : 

 

If the mean constant bias is determined with the upper method, we can eliminate it. 

After that remove, scale factor can be calcurated. 

 

Table 2-9. Scale factor determination. 

Accelerometer Scale factor Gyroscope Scale factor 

  

 

 

To calculate the accelerometer scale factor, we need the known acceleration. Using 

gravity acceleration, this scale factor can be calculated. By tilting the axis to the 

gravity direction, we can make the gravity acceleration. About gyroscope, the known 

angular rate is needed. The known angle also could be used instead (integrated 

angular rate with time). The author chooses the known angular rate as a reference 

and uses the turntable which can measure the rotation rate with the encoder and speed 

controller. 
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2.2.4. Accelerometer, Gyroscope Calibration Experiment 

 

With the background of the above section, the calibration experiment is performed 

with Galaxy S8 smartphone. 

 

To measure the white noise and constant bias, the 2 poses which make the 

vertical to gravity(0 acceleration at 2 axes) is used. To know the exact gravity 

direction, a level meter measures the horizon line. 1 Hour of the experiment is 

performed.  

 

 

Figure 2-6. Gravity to Z – axis  

 

 

Figure 2-7. Gravity to Y – axis 
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Mean white noise 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. White noise experiment 1 

 

 

 

 

 

 

 

  

                             Figure 2-9. White noise experiment 2 

 

Table 2-10. White noise experiment result 

  Acc. x Acc. y Acc. z Gyro x Gyro y Gyro z 

σ_w^  
0.0094 0.0094 0.0141 0.0013 0.0015 0.0012 

0.0093 0.0094 0.0127 0.0013 0.0014 0.0012 

Average 0.00935 0.0094 0.0134 0.0013 0.00145 0.0012 
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Constant Bias Experiment 

 

The constant bias is varying with the power on/off times. So the 10 times of the 

experiment is done each 5 mins. In an accelerometer case, to eliminate the gravity 

effect, two poses is considered. 

 

Accelerometer constant bias : 

 

Figure 2-10. Acc. constant bias experiment  

 

Table 2-11. Acc. constant bias experiment result 

𝑏𝑐 Accel. x Accel. y Accel. z 

Pose 1 

experiment 

Mean 

-0.1691 -0.3070 - 

Pose 2 

experiment 

Mean 

-0.1597 - 0.2352 

Overall Mean -0.1644 -0.3070 0.2352 
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Gyro Constant bias : 

As a reason that gyro bias is not affected by gravity, 1 pose, 2 experiments are done. 

 

Figure 2-11. Gyro constant bias experiment  

 

 

Table 2-12. Gyro constant bias experiment result 

𝑏𝑐 Gyro x Gyro y Gyro z 

1 experiment 

Mean 

0.0117 -0.0145 -0.0336 

2 experiment 

Mean 

0.0120 -0.0143 -0.0344 

Overall Mean 0.01185 -0.0144 -0.034 
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Scale Factor experiment 

With the upper section background, the scale factor is calculated. 

10 time on/off experiments is done. 

 

Accelerometer Scale factor:  

The gravity acceleration is used as reference acceleration. 

 

Figure 2-12. Accel. scale factor experiment  

 

Table 2-13. Accel. scale factor experiment result 

 Sx Sy Sz S𝝈x S𝝈𝒚 S𝝈z 

Mean  

Scale 

factor 

1.0009 

 

1.0157 

 

1.00155 

 

3.5386 

e-04 

4.3278 

e-04 

0.00155 

 

Gyro Scale factor :  

The angular velocity controlled turn table is used to find the gyro scale factor. 

 

                         Figure 2-13. Gyro angular velocity controlled turn table 
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Figure 2-14. Gyro scale factor experiment  

 

Table 2-14. Gyro scale factor experiment result 

 Sx Sy Sz S𝝈x S𝝈𝒚 S𝝈z 

Mean 

Scale 

Factor 

1.0309 1.0162 1.0222 7.9584 

e-08 

8.1220 

e-08 

5.4688 

e-05 

 

2.2.5 Magnetometer Ellipse Fitting Calibration 

 

Magnetometer detects the earth magnetic field and can find the north pole 

direction. The local earth magnetic field can be predicted with the models like 

world magnetic model (WMM) and international geomagnetic reference filed 

(IGRF). But the magnetometer measurement can be influenced by the user 

environment.  

 

The distortion is caused by the nearby iron environment called iron effect. The 

iron effect can divide as 2 types, hard iron effect, soft iron effect. The hard iron 

effect comes from the constant magnetic field and results the bias shift in 

measurement. The soft iron effect appears the ellipsoidal distortion which has 

different scales in the each direction. 

To compensate this iron effect, the special calibration is needed. There are many 

methods to calibrate but the ellipse fitting calibration method is considered in this 

research. 
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The ellipse equation can be represented as follow. 

 

        (2.5)                       

 

If the ellipse is not far displaced from the sphere the j term can set as 1.  

 

         (2.6) 

 

At least 9 attitude information is given, the 9 parameters can be calculated with 

the least square method. 

 

                 (2.7) 

 

      (2.8) 

 

    (2.9) 

 

            (2.10) 

 

After finding the ellipse parameters, the rotation, offset(center to 0,0) calibration, 

and radius scale adjustment can be performed. Finally, the ellipsoid distortion can 

compensated for the spheric shape. 

 

Using MATLAB, the ellipsoid calibration algorithm is performed to the 

magnetometer data. 

 



 

 

 

 

24 
 

 
 

Figure 2-15. Ellipsoid Fitting 

 

 
 

Figure 2-16. Offset Elimination 

(Red : offset exist / Blue : offset is eliminated) 
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2.2.6 Random Bias, Allan Variance Exiperiment 

 

 

Figure 2-17. Allan variance 

 

The random bias is the error source of the sensor measurement which has statistical 

changing property with time. To know the sensor’s different noise types, Allan 

variance can be helpful.  

 

       

     

         

true 1 0

2

0

2

1 1 1 1 1

 where

:  (wideband) noise, ~ 0,

:  constant bias (null shift)

1
:  time-varying bias, , ~ 0,

meas

w

b b c

c

m t m t b t b w t

w t w t N

b

b t b t b t w t w N q
T



   

  

(2.11) 

                                 <Gauss markov process bias model> 

 

The random bias can be modeled as gauss markov process bias. In this model, the 

parameter wN , cT , cq can be found by the Allan variance investication. 

 To analyze the sensor property of Galaxy S8. 11-hour sensor data is logged. The 

Allan variance analysis result is present. 
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Gyro : 

 

Figure. 2-18 Gyro allan variance - white noise 

 

Figure. 2-19 Gyro allan variance - random walk 

 

Table 2-15. Gyro random bias parameters 

( )

([ / ],[ / ])

w ARW

s hr



 
 

cT  
 

(s) 
3/2

( )

([ / / ],[ / ]) 

cq RRW

s s s 
 

0.1242e-03 3.6016e+04 0.1665e-05 

0.1412e-03 2.0633e+04 0.1530e-05 

0.1260e-03 1.1997e+04 0.1534e-05 
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Accelerometer : 

 

Figure. 2-20 Accelerometer allan variance - white noise 

 

Figure. 2-21 Accelerometer allan variance - random walk 

 

Table 2-16. Accel. random bias parameters 

( )

([ / ],[ / ])

w ARW

s hr



 
 

cT  
 

(s) 
3/2

( )

([ / / ],[ / ])

cq RRW

s s s 
 

0.0010 5.7443e+03 0.1320e-03 

0.0010 3.9452e+03 0.1305e-03 

0.0012 6.3465e+03 0.1715e-03 
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Magnetometer : 

 

When the Galaxy S8 smartphone raw magnetometer is received, the measurement 

shows strange ticks. So the noise histogram was not gaussian distribution so the 

preprocessing process was needed before the allan variance analysis. 

 

Before preprocessing distribution 

 

After preprocessing distribution 

                              Figure. 2-22 Magnetometer Preprocessing 
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Figure 2-23. Magnetometer Allan variance - white noise 

 

Figure 2-24. Magnetometer Allan variance - random walk 

 

Table 2-17. Magnetometer random bias parameters 

( )

([ / ],[ / ])

w ARW

s hr



 
 

cT  
 

(s) 
3/2

( )

([ / / ],[ / ])

cq RRW

s s s 
 

0.0933 1.6202 e+05 0.0022 

0.0926 0.2364 e+05 0.0008 

0.1132 1.3894 e+05 0.0015 

 

The allan variance analysis shows the white noise and random walk property. With 

this sensor property, the bias is modeled. But, the magnetometer gauss markov 

process is not well implemented in kalman filter empirically. So that the random 

walk bias model is use in the filter. 
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2.3 Developed Android Smartphone App 

 

The author developed the Android app for logging the INS sensor and GPS data. 

The Android Studio is used as IDE. The Android App UI is following the figure. 

 

 

Figure 2-25. Developed Android App UI and Raw GNSS parsing 

 

This App can log the uncalibrated accelerometer, gyroscope, magnetometer 

and barometer data (which is not used) with 100hz sampling rate. To acquire the 

constant frequency, the asynchronized task coding is applied. Also the power 

saved, doze mode are blocked to avoid the logging speed change.  Also, it can log 

the NMEA GPS data and raw GNSS data as 1hz. The raw GNSS code reference 

the Google GPS logger opensource and is integrated with the developed app. The 

data is saved as .txt format in the smartphone local built-in memory. Moreover, the 

additional time-synchronizing preprocessing is needed because the raw GPS data is 

logged in separated .txt and has the different time formnat(GPS Time). The time 

synchronization is performed by the matching the smartphone system clock in each 

time data. The Galaxy S8 smartphone supports the other GNSS system 

(GLONASS, BEIDO, QZSS ) satellites data but the research only dealt the GPS 

satellites for the navigation. 
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Chapter 3. Pedestrian Dead Reckoning 

3.1 Pedestrian Dead-Reckoning System 

 

 

Figure 3-1. Pedestrian dead reckoning concept 

 

The upper section shows the GPS / INS measurement properties. In this 

section, we will investigate the INS based navigation method, pedestrian dead 

reckoning. To perform the pedestrian dead reckoning, we need the information, 

heading, step size, and step length. About heading, the direction can be derived 

from the Euler yaw angle which can be achieved from the Kalman filtering 

result. Also, the user’s step size and step length can be derived from the several 

algorithms. But the user can walk or not, the walking state needs to be 

determined. The step detection needs to conduct only in this context. In this 

section, the heading estimated quaternion extended Kalman filter will be 

constructed. Next, the walking detection method will be explained. Moreover, 

the step counting algorithm and stride length equation will be presented.  
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3.1.1 Attitude Determination Quaternion Kalman Filter 

 

The attitude representation can have many types of form. The Euler angle is 

one of the attitude representation methods and intuitively understandable. But the 

Euler angle has a discontinuity problem and can make the gimbal lock effect. The 

smartphone is usually used diverse attitudes. For this reasons, the quaternion is 

chosen as the form which can represent the user motion. The quaternion equation is 

followed. 

 

                                            1 2 3 4q q q i q j q k                 (3.1) 

                                                         1q : scalar 

                                             2 3 4q i q j q k   : vector             (3.2) 

 

The unit quaternion has unit norm size. By this unit quaternion's property, the next 

equation is given. 

  

                                                   
2 2 2 2

1 2 3 41 q q q q            (3.3) 

 

With this expression, the smartphone attitude extended Kalman filter equation can 

be derived. 

           Table 3-1. Sensor Model 

Sensor Model 

Accel   

Gyro   

Mag   

𝑓𝑘
⃗⃗  ⃗ =

𝑎
𝑆 ∗ [𝐶𝑛

𝑏(𝑞𝑘)(𝑞𝑘⃗⃗⃗⃗ )(−𝑔⃗⃗⃗⃗⃗⃗ + 𝑎𝑏𝑜𝑑𝑦𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)]+𝑎𝑏0𝑘
⃗⃗ ⃗⃗ ⃗⃗ +𝑎𝑏1𝑘

⃗⃗⃗⃗⃗⃗ +𝑎𝑣𝑘⃗⃗⃗⃗  

𝑤𝑘⃗⃗⃗⃗  ⃗ =
𝑔

𝑆 ∗ [𝑤𝑘0⃗⃗ ⃗⃗ ⃗⃗  ⃗)]+𝑔𝑏0𝑘
⃗⃗ ⃗⃗ ⃗⃗ +𝑔𝑏1𝑘

⃗⃗ ⃗⃗ ⃗⃗ +𝑔𝑣𝑘⃗⃗⃗⃗  

𝑚𝑘⃗⃗ ⃗⃗  ⃗ =
𝑚

𝑆 ∗ [𝐶𝑛
𝑏(𝑞𝑘)(𝑞𝑘⃗⃗⃗⃗ )(ℎ⃗ )]+𝑚𝑏0𝑘

⃗⃗ ⃗⃗ ⃗⃗ +𝑚𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ +𝑚𝑣𝑘⃗⃗⃗⃗  
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 Table 3-2. Bias Model 

Bias Model 

Accel   

Gyro   

Mag   

 

 

Table 3-3. Dynamic Model 

Dynamic Model 

 

 

 

                                      

 

  

 

 

 

S: scale factor ,  Cn
b(qk): dcm,    

g⃗ : gravity,   h ⃗⃗⃗⃗ : geomagnetic vector,  abodyk⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗: body acceleration ,  

wk⃗⃗ ⃗⃗  ⃗ : angular velocity, b0k
⃗⃗ ⃗⃗ ⃗⃗  :  constant bias, 

 b1k
⃗⃗ ⃗⃗ ⃗⃗ : random bias ,  vk⃗⃗⃗⃗ : measurement noise 

𝑎𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ = (1 −

1

𝜏𝑎
)
𝑎

𝑏1𝑘−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+𝑎𝑏𝑤𝑘⃗⃗⃗⃗  ⃗ 

𝑔𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ = (1 −

1

𝜏𝑔
)

𝑔

𝑏1𝑘−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+𝑔𝑏𝑤𝑘⃗⃗⃗⃗  ⃗ 

𝑚𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ = 𝑚𝑏1𝑘−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +𝑚𝑏 𝑤𝑘⃗⃗⃗⃗  ⃗ 

𝑞𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = exp(
1

2
𝑊𝐾)𝑞𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

𝑇𝑆

2
𝜉𝐾( 𝑔𝑏0𝑘

⃗⃗ ⃗⃗ ⃗⃗ +𝑔𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ )+𝑞𝑤𝑘⃗⃗⃗⃗  ⃗ 

𝑞𝑤𝑘⃗⃗⃗⃗  ⃗ = −
𝑇𝑆

2
𝜉𝐾+𝑔𝑣𝑘⃗⃗⃗⃗  

𝑊𝑘 = [
𝑤𝑘⃗⃗⃗⃗  ⃗ × 𝑤𝑘⃗⃗⃗⃗  ⃗

−𝑤𝑘⃗⃗⃗⃗  ⃗ 0
] ,  

𝐶𝑛
𝑏 = 

[

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞1𝑞3 + 𝑞2𝑞4) 2(𝑞2𝑞3 − 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] 

 
𝜉𝑘 = [

[𝑒 × ] + 𝑞4𝐼3

−𝑒𝑇
] 
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Table 3-4. Process Model 

Process Model 

 

 

 

Table 3-5. Measurement Model 

Measurement Model 

 

 

3 4 1 2

1 4 3 2 1

1 2 3 4

2 *

q q q q

H g q q q q

q q q q

  
 


 
   

1 3 2 4 3 1 4 2

2 2 4 1 3 4 2 3 1

3 1 4 2 1 3 2 4

2*

Aq Bq Aq Bq Aq Bq Aq Bq

H Aq Bq Aq Bq Aq Bq Aq Bq

Aq Bq Aq Bq Aq Bq Aq Bq

      
 

      
 
     

 

cos , sinA h B h    

 

With this model, the smartphone attitude is represented as the quaternion form. 

Because quaternion is not intuitively known. The extended Kalman filtering 

quaternion is transformed to Euler angle.  

𝑥𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝑥𝑘⃗⃗⃗⃗ + 𝐺𝑤𝑘⃗⃗⃗⃗  ⃗ 

[
 
 
 
 

𝑞𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑎𝑏1𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑔𝑏1𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑚𝑏1𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]

 
 
 
 

=

[
 
 
 
 
 
 
 exp(

1

2
𝑇𝑠) 0 −

𝑇𝑠

2
𝜉𝑘 0

0 (1 −
1

𝜏𝑎

) 0 0

0 0 (1 −
1

𝜏𝑏

) 0

1]
 
 
 
 
 
 
 

[
 
 
 
 

𝑞𝑘⃗⃗⃗⃗ 
𝑎𝑏1𝑘
⃗⃗⃗⃗⃗⃗ 

𝑔𝑏1𝑘
⃗⃗⃗⃗⃗⃗ 

𝑚𝑏1𝑘
⃗⃗⃗⃗⃗⃗ ]

 
 
 
 

+ [

𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

]

[
 
 
 

𝑞𝑤𝑘⃗⃗⃗⃗  ⃗
𝑎𝑤𝑘⃗⃗⃗⃗  ⃗
𝑏𝑤𝑘⃗⃗⃗⃗  ⃗
𝑚𝑤𝑘⃗⃗⃗⃗  ⃗]

 
 
 

 

𝑧𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ℎ(𝑥𝑘⃗⃗⃗⃗ ) + 𝑣𝑘⃗⃗⃗⃗  

[
𝑓𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑚𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
] = [

𝐻1

𝐻2

𝐼
0

0
0

0
I
]

[
 
 
 
 

𝛿𝑞𝑘⃗⃗⃗⃗ 

𝛿𝑎𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ 

𝛿𝑔𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ 

𝛿𝑚𝑏1𝑘
⃗⃗ ⃗⃗ ⃗⃗ ]

 
 
 
 

+ [
𝑎𝑣𝑘⃗⃗⃗⃗ 
𝑚𝑣𝑘⃗⃗⃗⃗ 

] 
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Figure 3-2. Euler Angle 

(  : roll,  : pitch,  :yaw) 

For dead reckoning, the heading information corresponds to euler yaw angle. 

But the exact walking heading could be different from the smartphone's attitude 

heading. There are many algorithms which can detect the main walking direction. 

For example, there are PCA and vertical component usage. But this research is 

conducted with the environment which the user walking direction is horizontal to 

smartphone’s heading. So we assume the heading is equal to the user’s main 

walking heading. 

 

3.1.2 Attitude Determination Simulation , Experiment 

 

Quaternion Extended Kalman Filter Simulation  

 

 The author validates the extended Kalman filter model’s performance with 

simulation. Given the experimental noise and bias information, the sensor output is 

generated. Using this measurement, the Kalman filter shows the state estimation 

ability.  
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Figure 3-3. True Euler, quaternion 

 

The true Euler is generated with the random signal (Sine waveform) and the 

quaternion is derived from the transform of Euler angle. 

 

 

                              Figure 3-4. Random bias modeling 

                                                 (Acc, Gyro, Mag) 

 

          Figure 3-5. Final + constant bias + random bias + white noise 

(Acc, Gyro, Mag) 
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The Sensor data is generated with the sensor model. With this simulated signals, 

the extended quaternion Kalman filter calculate the states(quaternion and bias). The 

result is given. 

 

Figure 3-6. The error residual of the quaternion and Euler angle 

 

Table 3-6. Converge error residual in simulation 

Quaternion q0 q1 q2 q3 

RMS residual 0.0013 0.0010 0.0017 0.0009 

Euler Roll (deg) Pitch (deg) Yaw (deg) 

RMS residual 0.1669 0.1132 0.1804 
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Quaternion Extended Kalman Filter Experiment  

 

To tune the filter parameter for real data, the experiment is done. The true attitude is 

measured compared to the other INS sensor which gives the Euler angle information.  

The pixhawk 2.4.8 board inertial sensor out is used as reference attitude. 

 

 

                     Figure 3-7. Pixhawk 2.4.8 board quaternion reference output 

 

 

  

(x axis: samples(0.01s), y axis: deg) 

Figure 3-8. Euler residual to reference sensor measurement 
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Table 3-7. Convergence error residual in experiment 

Roll  RMS residual -1.7172 deg 

Pitch RMS residual -1.7529 deg 

Yaw RMS residual 1.9553 deg 

 

 

3.1.3 Walking Detection 

For pedestrian dead reckoning, the remained work is finding the step 

information. The step needed to detect only on walking phase. To detect walking, 

the windowing standard deviation threshold method is used. the procedure of the 

algorithm is writing beneath. 

Table 3-8. Walking detection 

1. Calculate acceleration magnitude M = sqrt(ax^2+ay^2+az^2). 

2. Moving average to M. 

3. Low pass filter : cutoff frequency 3.5Hz. 

4. With the not overlapped window, standard deviation is calculated in 

each windows. 

5. Setting a threshold which can distinguish the walking phase. 

6. Detect the time epoch which is over the threshold and has minimum 

duration. 

(the walking time is defined when std value is over the threshold(+) to 

below the threshold(-) ) 

 

The window std walking detection is performed to the open data which is used 

in “Walk Detection and Step Counting on Unconstrained Smartphones - Agata 

Brajdic, Robert Harle”. After the validation to the open data set. the Galaxy S8 phone 

experiment is performed (Sec 3.1.5). The open dataset analysis result is given.  
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             Figure 3-9. Low pass filtering (x : frequency, y:FFT accM) 

 

(black circle : true walking start and end time) 
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(Minimum duration rule help to ignore the not walking signal) 

Figure 3-10. Walking detection with windowed std threshold method 

   

Performance 

There are 5 users and 5 datasets are used in each test set. 

 

Table 3-9. Walking detection performance for the open dataset 

 
Testset 1 Testset 2 Testset 3 

Overall 

Mean 

mean  

wd error 
0.75 s 0.77 s 1.61 s 

0.78 s 

(Used std threshold: 0.2) 

 

3.1.4 Step Counting, Stride Length 

Step counting and stride length algorithm based on the peak, valley detection. 

With the peak and valley magnitudes, the step information can be inferred. The 

algorithm is given in following table 
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Table 3-10. Peak /Valley Detection Algorithm 

 

1. Calculate acceleration magnitude M = sqrt(ax^2+ay^2+az^2) 

2. Moving Average to M 

3. The step counting algorithm is applied in only walking detected 

phase. 

4. With comparison between previous and current M value, save the 

maximum and minimum value continuously. 

The maximum/minimum mode is alternatively changed because 

the step signal has peak and valley pair. the last max/ min value is 

saved at each mode.  

 

maximum mode : if max<x1 , save x1, continue 

                         if  x1<max, not save, mode change as min 

minimum mode: if min> x2, save x2, continue 

                         if x2<min, not save, mode change as max 

 

5. condition1: The peak must be higher than mean M value 

6. condition2: With walking frequency considered, the peak and 

valley time interval is longer than the minimum time threshold 

peak time: t1 , valley time : t2 , (t1-t2) > threshold 

 
7. condition3: 1 valley must appear between peaks at least. If there 

are many valleys between peaks, the lower is chosen. Also, if there is two 

peak which has not one valley between them, the higher is chosen.  
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 With this algorithm, the performance is analyzed with the same dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Figure 3-11. Peak/ Valley detection method 
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Table 3-11. Peak / Valley detection performance for the open dataset 

 

 

Stride Length is related with the peak and valley acceleration magnitude. In the 

“Smartphone-based Pedestrian Dead Reckoning as an Indoor Positioning System - 

Azkario Rizky Pratama” research [8], the author said the stride can be derived from 

the following equation. 

 

Figure 3-12. Step length method comparison 

 

Table 3-12. Step length algorithms. 

1. Static   

 

2. Weinberg  

3. Scarlet  

 With 21 walking dataset (21 users) 

Step error mean 5.1 step 
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4. Kims  

5. Linear  

  

 

The Weiberg method and Scarlet method shows a good result in this paper. With 

this background, our research used Weiberg method to determine the stride length. 

 

     *Stepsize K peak valley       (3.4) 

(The constant K is the tuned value and this is experimentally chosen.) 

 

3.1.5 Pedestrian Dead Reckoning Experiment 

To choose the fine threshold, the pedestrian dead reckoning experiment is 

conducted and the following figure gives the experiment environment. 

 

 

 

Figure 3-13. Pedestrian dead reckoning fitting experiment 



 

 

 

 

46 
 

 

Table 3-13. PDR experiment settings. 

 Length (cm) Heading (deg) Step number 

Track line 1 951 325 17 

Track line 2 956 415 18 

Track line 3 943 145 17 

Track line 4 943 235 17 

Times Each 3 turns, 5 times experiment is done 

Place Seoul National University President Grace 

 

 

 

 

Figure 3-14. PDR fitting experiment 
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Table 3-14. The error of step counting. 

WD threshold 0.2 

Error type inbound outbound rms 

Test1 -6.1908 6.3454 8.865106 

Test2 -0.6657 8.7298 8.755145 

Test3 -0.4706 9.8074 9.818684 

Test4 -0.4325 10.3372 10.34624 

Test5 -0.4112 10.7994 10.80723 

Mean -1.63416 9.20384 9.718481 

WD threshold 0.3 

Error type inbound outbound rms 

Test1 -13.6318 3.9617 14.19581 

Test2 -1.7537 5.6785 5.943133 

Test3 -1.0302 6.5199 6.600788 

Test4 -0.9459 6.8652 6.930058 

Test5 -0.8351 7.208 7.256215 

Mean -3.63934 6.04666 8.185201 

WD threshold 0.5 

Error type inbound outbound rms 

Test1 -26.3452 1.9159 26.41477 

Test2 -8.5462 3.1794 9.118449 

Test3 -5.4796 3.8276 6.684051 

Test4 -4.8706 4.1268 6.383825 

Test5 -4.3186 4.4669 6.213172 

Mean -9.91204 3.50332 10.96285 

 (inbound : step error within wd phase, outbound : step error outside wd phase) 

Upper table shows that the std threshold 0.3 is the best result. (8step/207step = 3% 

error) 
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Figure 3-15. Step length error 

 

Figure 3-16. heading 

 

Figure 3-17. pedestrian dead reckoning trajectory. (not use the saved gain) 
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To tune the suitable stride length parameter, the comparison between real step size 

and detected step size is conducted. The result was about 0.05 mean error of stride 

length has the K : 0.6417 value. Also, the heading shows a bias about 10 deg at 

start time and the bias becomes smaller as the kalman filter converge. Considering 

this effect, the converging kalman gain is saved and used as initial state. This 

helped the heading bias converge fast.  

 

 

 

 

Figure 3-18. pedestrian dead reckoning trajectories. (use the saved gain) 
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Chapter 4. Carrier phase / INS integrated Pedestrian 

Dead Reckoning  

In this chapter, the carrier phase measurement is investigated and the android 

enviroment cycle slip compensation will be suggested. To choose an appropriate 

threshold in the slip detection, the simulation is performed with considering miss 

detection and false alarm scheme. After cycle slip elimination, the carrier phase 

based velocity determination method will be introduced. Finally, the gps/ ins 

integrated pedestrian dead reckoning is conducted and the performance will be 

analized. 

  

4.1 Carrier phase Cycleslip Compensation & Velocity 

Determination 

 

4.1.1 Carrier phase Cycleslip Compensation 

 

When the GPS receiver lock losses some cycles of the carrier and relocked, the 

Integer Ambiguity component  of carrier phase measurement is jumped. This 

is called as ‘Cycle slip’ effect. This discontinuity becomes the main error in the 

carrier-based navigation. The cycle slip comes from 3 causes. when the sight 

between user and satellites is blocked some object like a tree, tunnel, and loof etc, 

the cycle slip error could appear. Also, low SNR can loose the cycle. The receiver’s 

intenal problem also contributed to the cycle slip effect. 

 To eliminate this error, the relation between Doppler and Carrier phase needs to be 

explained. 

 

 ,

i i i i i i i i i

u u u u u u u u ud B b T I R M N             (m)    (4.1) 

,

i i i i i i i i

u u u u u u u u ff d B b T I R M         (m/s)          (4.2) 
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Except for the Ambiguity term, the other components are almost same. But the 

dimension (meter, meter/sec) and the noise levels are different. So that the time 

differenced carrier phase has a similar value with Doppler when the cycle slip does 

not occur. 

               
i i

u uf        (if = 0)                  (4.3) 

For this reason, the cycle slip can be detected with below equation. 

 

 (4.4) 

 

With the TDCP(Time Differenced Carrier Phase) minus Doppler 

parameter(
i i

u uf  ), the cycle slip can be detected with the setting threshold.  

 

4.1.2 Android Environment Cycle slip Detection  

 

The GNSS measurement API supports some constant which can give the 

information of the receiver like cycle slip, multipath and lock/sync state. The 

following table shows the carrier phase cycle slip related constant. 

 

Table 4-1. Accumulated Delta Range(carrier) related constant in API. 

Constants 

int 

ADR_STATE_CYCLE_SLIP 

The state of the getAccumulatedDeltaRangeMeters() has a cycle slip 

detected. 

int ADR_STATE_HALF_CYCLE_REPORTED 
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Reports whether the flag ADR_STATE_HALF_CYCLE_RESOLVED has 

been reported by the GNSS hardware. 

int 

ADR_STATE_HALF_CYCLE_RESOLVED 

Reports whether the value getAccumulatedDeltaRangeMeters() has 

resolved the half cycle ambiguity. 

int 

ADR_STATE_RESET 

The state of the getAccumulatedDeltaRangeMeters() has detected a 

reset. 

int 

ADR_STATE_UNKNOWN 

The state of the value getAccumulatedDeltaRangeMeters() is invalid or 

unknown. 

int 
ADR_STATE_VALID 

The state of the getAccumulatedDeltaRangeMeters() is valid. 

  

The ADR_STATE_CYCLE_SLIP parameter is investigated. 

 

Figure 4-1. ADR_STATE_CYCLE_SLIP parameter in GNSS API 

 

The result shows the cycle slip parameter is turned on either cycle slip or not.   

For this reason, the ADR_STATE_CYCLE_SLIP parameter is not sufficient for 

detecting cycle slip. The author found this parameter is related with the accumulated 

deltarange uncertainty meters. When the signal quality(SNR) becomes lower then 

the uncertainty sigma value goes up.  
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Figure 4-2. ADR uncertainty meters relation with cycle slip parameter. 

 

From this analysis, we can understand the cycle slip parameter represents the 

low SNR situation. the high carrier uncertainty region has high probability of the 

cycle slip appearance but the cycle slip could be occurs or not. 

 

Figure 4-3. (TDCP – doppler) vs cycle slip parameter. 

 

By this reason the TDCP – doppler is used as the parameter to catch the cycle 

slip. The time derivated carrier phase has the following relation. 

 

 

 

 

 

 

 

: Integrated 
Doppler (m) 
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Table 4-2. TDCP – doppler parameter equation. 

 

,

i i i i i i i i i

u u u u u u u u ud B b T I R M N            , (m) 

2

, ~ (0, )i

u N    

,

i i i i i i i i

u u u u u u u u ff d B b T I R M         , (m/sec) 

2

, ~ (0, )i

u f fN   

 

( ( 1) ( )) /i i i

u u ut t t     

,

i i i i i i i i i

u u u u u u u u ud B b T I R M N             (m/sec) 

2

, ~ (0, )i

u N    

  

, ,

i i i i i

u u u u u ff N          

 

 

 

With this background, the time differenced carrier minus doppler parameter can 

detected the cycle slips. The parameter’s sigma could be estimated with the TDCP 

and doppler sigma value. 

 

                             real ∶  𝜎𝛿𝛷 =  0.1694 (
𝑚

𝑠𝑒𝑐
)                         (4.5)                                   

 

                real ∶  𝜎𝑓 =  0.2047 (
𝑚

𝑠𝑒𝑐
)                       (4.6) 

                                                                                                 (4.7) 

 

real ∶  𝜎𝛿𝛷𝑓 =  0.2658 (
𝑚

𝑠𝑒𝑐
)                   (4.8) 

                                                                                                   

With this result, the author used the TDCP-doppler parameter sigma value as 0.2658. 

 

 

 

 

𝛿  : Time difference operator in 1 epoch 

2 2

f f    

2

, , ~ N(0, )i i i

f u u f f      
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4.1.3 False Alarm & Miss Detection Analysis 

To set the appropriate cycle slip threshold the simulation is performed. The false 

alarm and miss detection scheme is applied. 

The false alarm means the cycle slip is detected in the wrong epoch. On the 

other hand, miss detection is the threshold don’t catch the cycle slip. The FA(False 

alarm) and MD(Miss detection) have contradicting property. So that the user need to 

design the probability which is considered the priority between them. 

 

 

Figure 4-4. False alarm, Miss detection 

 

 

Figure 4-5. The probability for each thresholds 
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In this research, the each FA / MD is samely important. Also, the upper 1 cycle 

detection threshold 0.095 (0.3622 prob MD/FA) is used. 

 

4.1.4 Doppler, Carrier Based Velocity Estimation 

 

With the raw measurement Doppler and Carrier, the more precise velocity can 

be estimated than pseudo-range based [30]. 

 

The Doppler shift effect is occurred from the relative motion between user and 

satellite. This effect can be described as following equation. 

          (4.9) 

(*(dot product), , are respectively frequency of the transmitted and received 

signal. ) 

                                                        (4.10) 

: user-satellite line of sight vector 

If satellite clock error is eliminated with the ephemeris information, the remained 

main error is receiver clock error. If the receiver clock drift rate relative to satellite 

clock  considered, the drift rate in receiver frequency can be expressed. 

                                                                             (4.11) 

Scaling the Doppler shift with the carrier wavelength, the Doppler 

frequency(Pseudorange rate) equation is given. 

                                                     (4.12) 
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Figure 4-6. Receiver Motion 

 

The satellites velocities can be calculated from the ephemerides. After the 

removement, the under equation can be derived. 

 

              (4.13) 

The right hand ,  terms can be solved with the least square method. 

                                  (4.14) 

                                                                        (4.15) 

With the upper section condition, 
i i

u uf  (cycle slip is eliminated), the same 

method can be applied to the time differenced carrier phase. The carrier phase has 

the small noise property compare to Doppler. So that the result velocity is expected 

to have more accurate result. 
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4.1.5 Cycle slip Compensation & Velocity Determination 

Experiment 

To determine the velocity, the Doppler and carrier phase measurement can be 

used. But the carrier phase is needed to eliminate the cycle slip. With the choosing 

threshold in upper section, the cycle slip compensation is performed. 

 

  

  

                            Figure 4-7. Cycle slip effect in carrier phase 

 

The upper threshold parameter(TDCP-doppler) is removed the integer multiple 

of the carrier phase wavelength (
i

uN  ).  
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                                  Figure 4-8. Cycle slip compensation 

 

Overall parameter becomes with in 1 lamda.This effect can be checked in the 

velocity determination result also. 
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Figure 4-9. Velocity before the cycle slip compensation (North) 

 

 

Figure 4-10. Velocity before the cycle slip compensation (East) 
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Figure 4-11. Velocity after the cycle slip compensation (North) 

 

Figure 4-12. Velocity after the cycle slip compensation (East) 

 

The result shows the cycle slip compensation contributed to the velocity error. 

Finally, the velocity determination accuracy is analyzed. The doppler based velocity 

also calcurated for the comparison. 
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Figure 4-13. Velocity Determination Experiment (North) 

 

Figure 4-14. Velocity Determination Experiment (East). 
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Table 4-3. The mean velocity errors of the velocity determination 

Name North Vel. Mean  

Error (m/sec) 

East Vel. Mean  

Error (m/sec) 

Total Mean  

Error (m/sec) 

WLS 

doppler 

0.1950 0.1692 0.1821 

Not WLS 

doppler 

0.2048 0.1906 0.1977 

carrier 0.1878 0.1674 0.17766 

NMEA 0.1816 0.2427 0.21215 

 

The raw measurement supports the doppler and carrier signal uncertainty. But 

when we use TDCP, the sigma value is not known (it could be approximated but the 

result was not good). For this reason, the weighted least square could apply to 

doppler only. The result shows the carrier phase velocity navigation is most accurate  

 

4.2 Raw GPS / INS Integrated Pedestrian Dead Reckoning 

4.2.1 GPS / INS Integration 

 

 

Figure 4-15. INS error property 
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The INS error is not bounded because the error is accumulated. This bias error 

is modeled in the extended Kalman filter but it is hard to make the exact model. 

About the stride detection case, the acceleration magnitude M is not kalman filtered. 

So that the accumulated drift error can deteriorate the step spot detection. To avoid 

this INS divergence the GPS/INS integration is used. The GPS gives the absolute 

position compared to the relative position from the INS. The integration can fix the 

error. 

 

Figure 4-16. GPS / INS Integration 

 

But when GPS goes out, the INS error starts to diverge again. The GPS / INS 

integration is a well-known method in the navigation field. In this research, the 

carrier phase based velocity and gps position are used as a measurement to improve 

the performance. 
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4.2.2 Position Determination Extended Kalman Filter 

 

To integrate the INS based pedestrian dead reckoning position and the GPS 

navigated position, the extended Kalman filter is used again. 

The filter equation is like below. 

 

Table 4-4. Position extended kalman filter equation 

Process Model 
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The GPS and INS sampling rate is different so that the interpolation is conducted to 

synchronized the measurement update. The figure shows the interpolation, time 

update, and measurement update. 
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Figure 4-17. GPS data interpolation to step time 

 

4.2.3 Raw GPS / INS Integrated Pedestrian Dead Reckoning 

Experiment 

 

With the designed position filter, the author calculates the position, velocity, heading 

error and stride error as states. To judge the performance, the accurate Trimble GEO-

XR data is used as a true trajectory. ( The experimental data is same with 4.1.5 but 

the INS data is integrated. 

 

 

 

 

 

 

 

 

Figure 4-18. The experiment in Seoul National 

University Open sky Playground 
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Figure 4-19. GPS / INS integrated pedestrian dead reckoning experiment 

 

 Performance 

 

Figure 4-20. Position residual 
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Figure 4-21. Velocity residual 

 

Table 4-5. GPS carrier / INS integrated pedestrian dead reckoning performance. 

 Position 

residual N 

(deg) 

Position 

residual E 

(deg) 

Velocity 

residual N 

(m/sec) 

Velocity 

residual E 

(m/sec) 

NMEA 2.5042e-05 2.6971e-05 0.16 0.21 

Mean 2.60065e-05 0.18555 

Filter 2.4049e-05 2.627e-05 0.18 0.14 

Mean 2.51595e-05 0.15845 

 

The carrier based velocity and INS pedestrian dead reckoning information improved 

the position and velocity accuracy than only NMEA.  

 

 

 

 

 

 

 

 



 

 

 

 

69 
 

Chapter 5. User Context Classification Deep learning 

for Adaptive PDR  

 

5.1 Smartphone Location / Walking Context 

Classification 

 

The user walking context can affect the INS pedestrian navigation. For example, 

the texting context can produce the shaking of the phone. If the choosen threshold is 

lower, the step can be detected by this action. Also, the walking signal can be 

different by the phone’s location and the hand moving. If the user walks swinging 

the hand, the signal will have a different period. Moreover, the smartphone location 

can contribute to changing of the signal for example, it is placed inside the backpack 

and pocket.  

For these reasons, the determination of the walking context is very important for 

the pedestrian dead reckoning and the changeable threshold, parameters, and  

algorithms is needed to apply.   

   A deep learning approach could be used to classify user context. About the time 

series model, the performance is influenced by the input transformation(or encoding). 

The author study about the comparsion of several different transformations effect for 

a single deep learning model and same data set. 

 

5.1.1. Smartphone Location / Walking Context Dataset 

 

The various users and walking mode data set are hard to make so that the author 

used the open data set which is introduced from “Walking Detection Step Counting 

An Unconstrained Smartphone” experiment [22]. That paper only uses that data for 

checking the walking detection and step counting performance but the mode context 

classification is considered in this research.  
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There was 7 class in the data. And the dataset was liked below. 

 

 

                    Figure 5-1. Walking context and phone location classes 

 

Table 5-1. Used dataset information 

class Handh

eld 

Handhe

ld using 

Shirt 

Pocke

t 

Trouser

s front 

pocket 

Trous

ers 

back 

pocket 

Backpack ,H

andbag 

original 

class 

1 2 3 4 5 6 7 

dataset 

number 

27 27 24 25 21 21 6 

User 

infor 

mation 

27 participants were asked to walk a route at three different 

walk paces: starting with normal, followed by fast, and 

ending with slow. 

                                          

Because the 7 class( dataset was small, two class(6,7) merged as 1 class. The training 

and test dataset divided 6:4 
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5.1.2. Deep Learning Models 

 

 

 

 

                                             Figure 5-2. Model diagrams 

 

Table 5-2. Model information 

Num 1 2 3 

Model Window Cutting 

Batch + LSTM 

CNN + LSTM  STFT + LSTM 

 

Input 300 samples 300 samples, 300 samples, 
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10 batch 10 batch 

 

10 batch 

 

Transform   

conv2d (3x3) 

pooling (3x3) 

 

conv2d (3x3) 

pooling (3x3) 

 

conv2d (5x5) 

pooling (3x3) 

20 windows STFT 

 16 cell 1 layer 

LSTM 

16 cell 1 layer  

LSTM 

16 cell 1 layer  

LSTM 

Loss, 

Regularizer, 

Optimizer 

Loss: soft max cross entropy 

Regularizer : L2 regularizer 

Optimizer : Adams optimizer 

                                           

 

5.1.3. Comparison of Input Transformations 

With these models, the author trained the training data. The results is given. 

 

                                    Figure 5-3. Model 1. Train Result 
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                                     Figure 5-4. Model 2. Train Result 

 

 

                                   Figure 5-5. Model3. Train Result 
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Figure 5-6. Training Result 

 

Table 5-3. Training Result 

 Model 1 Model 2 Model 3 

Loss 0.2 0.1 0.001 

Accuracy 

(1=100%) 

0.85 0.95 1 

 

Because of the small datasetset, the loss is pertubated. But the trend shows the 

classifying model can be trained. If there is more data, the smoother graph can be 

achieved.  

The Model 3 shows the best training performance. The STFT transform had most 

fast training speed and converges 1 at 100000 iterations. The CNN encoding gave  

0.95 accuracy and just time cutting input results in 0.85 accuracy. It shows the 

frequency domain analysis is more suitable than time domain in the sensor signal 

pattern learning. This could be an overfitting model to the training set but we just 

compare the training performance of each model in this research. 
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                                                  Figure 5-7. Test Result 

 

Table 5-4. Test Result 

 Model 1 Model 2 Model 3 

Accuracy 

(1=100%) 

0.5 0.6 0.65 

 

The test set performance result shows the same rank (STFT > CNN > Time 

cutting). The STFT transform input format shows the best performance. But the 

model’s accuracy is constrained because of overfitting. If we find a more suitable 

model structure, we can get the high accuracy. With this comparison of several 

models structure performance in the PDR user context classification, we can find 

the different input feature can influence the result accuracy. This research is 

performed with Cambridge open data set for comparing the performance of input 

feature difference. To apply this model for Galaxy S8, we need to get a training 

data which is acquired from S8. With transfer learning, we could get the proper 

model for S8 and finally the adaptive PDR parameter control for the different user 

context could be performed. 
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Chapter 6. Conclusion & Future work 

 

In this research, the GPS / INS smartphone based pedestrian dead-

reckoning was described in detail. The GPS raw carrier phase measurement was 

used to velocity determination. By performing the cycle slip compensation, the 

author got the more accurate velocity. Also, GPS/ INS integrated pedestrian 

navigation showed the improved performance in the position, velocity 

determination than NMEA.  

Moreover, the deep learning scheme was considered in a user walking 

context classification. The models showed the different performance by 

transformation method. The STFT gave the best performance and the CNN 

encoded time-cutting showed the more suitable performance than just time-

cutting. 

For future research, the INS pedestrian dead-reckoning accuracy needed 

to be improved for a better result. Moreover, the amount and diversity of dataset 

will be helpful for the enhancement of the deep learning model accuracy.  
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초      록 

본 논문에서는 스마트폰 Galaxy S8 환경에서 GPS / INS 결합 보행자 

항법을 수행하였으며, 스마트폰 센서의 특성을 자세히 분석하였다. 이에 최근 

공개된 Android GNSS API 를 사용하여 GPS 원시데이터를 항법에 이용하면서, 

Cycle slip 을 보정한 Carrier phase 를 이용한 속도 결정법을 사용하였다. 이로 

인해 기존의 NMEA GPS 를 사용한 방식의 스마트폰 보행자 항법보다 정밀한 

위치, 속도 항법이 가능하였고, 성능을 향상 시켰다. 또한 사용자 상황 분석이 

가능한 분류 딥러닝 기법을 사용하여 각 보행 상황에 따른 분류감지가 

가능하였음 보였으며, LSTM 의 입력부분을 변화한 몇가지 딥러닝 모델의 

성능을 비교하였다. 이를 통해서 사용자의 보행 상황에 따른 적응적 보행자 

항법 파라메터 결정이 가능함의 가능성을 보였다. 

 

주요어 : GNSS, 안드로이드 GNSS API, 반송파, 사이클 슬립, 관성센서, 확장 

쿼터니안 칼만필터, 보행자 항법, GPS / INS 결합항법, 센서 데이터 딥러닝, 

사용자 상황인지, LSTM. 
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