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Abstract

GPS Carrier Phase / INS Integrated
Smartphone Pedestrian Dead-Reckoning

Using User Context Classifying Deep Learning

Seo Yeon Stella Yang
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

In this research, the overall construction of the smartphone GPS / INS
pedestrian dead reckoning system is detaily described with considering the
smartphone sensor measurement properties. Also, the recent android GNSS API
which can provide the raw GPS measurement is used. With carrier phase, the
cycleslip compensated velocity determination is considered. As a result, the carrier
phase /INS integrated pedestrian dead reckoning shows the more precise navigation
accuracy than NMEA. Moreover, The deep learning approach is applied in the user
context classification to change the parameters in the pedestrian dead reckoning
system. The author compares the effect of several transformed inputs for the LSTM

model and validate each classification performances.

Main Term: GNSS, Android GNSS API, Carrier phase, Cycleslip, INS,
Extended quaternion kalman filter, Pedestrian dead reckoning, GPS / INS
integration, Sensor signal deep learning, User context classification, LSTM.
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Chapter 1. Introduction

1.1 Motivation and Backgrounds

Smartphone becomes an essential device in this age and many users spend the
much time with this machine. On the phone, there are many sensors which can detect
the user’s environment. The smartphone sensor data provide the knowledge to
analyze the user’s behaviors. The attitude and position information is one of the most
important advice and is related to inertial sensors and GPS. To acquire accurate info,
the smartphone sensor properties are needed to analyze deeply.

Because of the fast changing trend about the smartphone, the newest
hardware/software upgrade contents must be considered. Google announced the
GNSS API in 2016. After that notice, there are many trials to use this raw GNSS
measurement in smartphone navigation [1],[2],[3],[4]. Moreover, Xiaomi launchs
the dual frequency phone which can receive L1, L5 band signal [5],[6]. The dual
frequency GNSS measurement can eliminate the ionic delay error and this can lead
to precise navigation result.

To get the position info of the walking user, there are a lot of smartphone-based
pedestrian dead-reckoning research is conducted so far [7],[8],[9].[10]. Many
algorithms which can improve the performance of PDR is suggested. The zero
velocity update and zero angular rate update method are used to enhance the
accuracy in Zhang,W.’s work [11]. The map matching methods, wifi and magnetic
field fingerprinting, can be integrated with PDR at an indoor environment
[12],[13],[14]. About outdoor navigation, the main problem is GPS signal could be

deteriorated with the city environment. To overcome the issue, Li-Ta Hsu’s work

1



shows the 3D-GNSS pedestrian smartphone positioning in urban place [15]. Also P.
Baranski used the raster map information in the urban environment navigation [16].

Today, there are machine learning and deep learning approachs to detect the
user’s behavior context with a smartphone inertial sensor data [17],[18],[19],[20].
Also, this user context ML/DL could be implemented in smartphone dead-reckoning.
The user walking context classification can change the mode adaptively. With this
variable mode, the walking detection, step counting, and stride length can find the
more suitable parameters at each mode [21],[22],[23].

With this background, the author developed the smartphone GPS / INS
integrated pedestrian dead reckoning system and tried to higher the performance with

the raw GPS measurement.



1.2. Research Purpose and Contribution

In this research, the overall construction of the smartphone GPS / INS
pedestrian dead reckoning system is detaily described with considering the
smartphone’s GPS, INS sensor measurement property. For this, the recent android
GNSS API which can get the raw GNSS measurement is used and the API related
information is given. Moreover, the carrier phase / doppler based velocity estimation
in android environment is investigated. As a result, this raw GPS/ INS integration
improved the position, velocity navigation accuracy. At last, the deep learning
approach and the model comparision with the transformation methods could help the

INS sensor data context classification study.

1.3. Contents and Methods of Research

This research analyzes the INS sensor noise and bias model properties with the
experimental data from the Galaxy S8 smartphone. After the INS sensor model is
determined, the pedestrian dead reckoning system is developed. Also, the
smartphone GNSS APl measurement is investigated and the carrier phase-based
velocity determination is performed. With this information, the overall GPS/ INS
integrated pedestrian dead reckoning system is constructed and the performance of
the navigation system is analyzed with the contrast to NMEA GPS. At last, the user
context classification is considered for the adaptive changing parameters in PDR.
With the LSTM model, the 3 different transformation methods, time window cutting,

STFT, and CNN encoding is compared about the prediction performance.



Chapter 2. Smartphone GPS/ INS
measurements analysis

In this chapter, the overall smartphone based GPS / INS pedestrian dead
reckoning system and related experiment result will be explained. First, the
Android smartphone environment to acquire GPS/INS measurements will be
introduced. Secondly, GPS raw measurement properties and position, velocity
navigation methods will be discussed. Thirdly, INS measurement properties and
the attitude determination Kalman filter will be studied. Fourthly, the pedestrian
dead-reckoning algorithms will be followed. Finally, I will represent developed

smartphone GPS / INS integrated the pedestrian dead-reckoning system.

2.1 Smartphone GNSS measurements
2.1.1 Android Raw GNSS Measurements API

In 2016, Google announced the Android APIs for retrieving raw GNSS
measurements. This APIs can be accessed after Nougat (Android 7.0) version. Also,
Google supports the opensource analysis tool which can decode the raw

measurement and shows the several navigation-related information.
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Figure 2-1. Google GNSS Analysis Opensource Tools

The accessibility of raw GNSS measurements depends on smartphone devices. The

table of “Android devices that support raw GNSS measurements” from the

webpage [25] shows the data dependency of each smartphone devices.

With API, the raw measurement data which can be obtained is the following table.

Table 2-1. List of Raw measurements

Raw String Header
ElapsedRealtimeMillis double
TimeNanos int64 Nano Second
LeapSecond int64
TimeUncertaintyNanos int64 Nano Second
FullBiasNanos int64 Nano Second
BiasNanos double Nano Second
BiasUncertaintyNanos double Nano Second
DriftNanosPerSecond double
DriftUncertaintyNanosPerSecond double
HardwareClockDiscontinuityCount double
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Svid double
TimeOffsetNanos double Nano Second
State double
ReceivedSvTimeNanos int64 Nano Second
ReceivedSvTimeUncertaintyNanos int64 Nano Second
CnODbHz double
PseudorangeRateMetersPerSecond double
PseudorangeRateUncertaintyMetersPerSec double
ond
AccumulatedDeltaRangeState double
AccumulatedDeltaRangeMeters double
AccumulatedDeltaRangeUncertaintyMeters double
CarrierFrequencyHz double
CarrierCycles int64
CarrierPhase double
CarrierPhaseUncertainty double
MultipathIndicator double
SnrinDb double
ConstellationType double Global Systems

In this research, we chose the “Galaxy S8” as a platform and the device has the
following properties.

Table 2-2. Supported Raw measurements in Galaxy S8

Ver AGC NM
GPS
GLONAS
Samsung S
Galaxy 7 no ves yes yes no GALILEO
S8 BeiDou
QZSS

(Ver: Android version, AGC: Automatic Gain Control,
NM: Navigation Message, ADR: Accumulated Delta Range)



2.1.2 Raw GPS Measurements Properties

For the GPS navigation, the raw GPS measurements properties need to be

investigated. The measurement equations can be expressed as below.

Table 2-3. GPS measurement components

Pseudorange(Code) :

p.=d +B —-b"+T +I +0R + M| +e&,

u,p

Doppler(Delta Psuedorange) :
fl=d,+B,—b' +T -1, +3R + M, +&,
Carrier Phase(Accumulated Delta-Range) :

¢ =d +B,~b +T' ~I'+0R +M' + N'A+¢&!

iu,p

di

=

: Distance between i th satellite and user
u: Receiver clock error of the user

b"_ ;i th satellite clock error
; : Troposphere delay error
’ : Ionosphere delay error

GR;{: Satellite location error

i

M, : Multipath error

i

& . .
u: Receiver noise

A : Wavelength of carrier phase

i

« : Integer ambiguity

(

2.1)

(2.2)

(2.3)

The noise level of psuedorange is meter scale, Doppler noise level is sub-

meter/sec scale and Carrier phase noise level has mm scale.



2.1.3 Smartphone NMEA Location Provider
Location manager API provides periodic reports on the geographical location

of the device. There are 3 type of location providers in Android [26].

Table 2-4. Smartphone Location Providers

Provider Characteristics Accuracy
GPS provider | Name of the GPS location provider. This provider 20ft
(GPS, AGPS) | determines location using satellites. Depending on

conditions, this provider may take a while to return a

location fix.

Requires the permission

android.permission.ACCESS_FINE_LOCATION.

Network Name of the network location provider. This provider | 200ft

provider determines location based on the availability of cell

(AGPS, tower and WiFi access points. Results are retrieved by

CellID, WiFi means of a network lookup.

MACID) Requires either of the permissions
android.permission.ACCESS_COARSE_LOCATION or
android.permission.ACCESS_FINE_LOCATION.

Passive A special location provider for receiving locations 5300ft /

Provider without actually initiating a location fix. This provider | 1mile

(CellID, WiFi | can be used to passively receive location updates

MACID) when other applications or services request them
without actually requesting the locations yourself.

This provider will return locations generated by other
providers.

Requires the permission

android.permission. ACCESS_FINE_LOCATION,




although if the GPS is not enabled this provider

might only return coarse fixes.

GPS provider gives the location which is determined with the triangle signal
from remote satellites. Receiver module typically connects to the host system via
UART but use another form of Peripheral 1/0. To access the position information,
the Android system needs to acquire permission. There are 2 types of permission
with different location accuracy, “ACCESS_FINE_LOCATION” and
“ACCESS_COARSE_LOCATION".

GPS hardware typically reports location information as ASCII strings in the
NMEA standard format. Each line of data is a comma-separated list of data values
known as a sentence. While each GPS module may choose to report different
portions of the NMEA protocol, most devices send one or more of the following
sentences

GPGGA (Fix Information): Includes position fix, altitude, timestamp, and
satellite metadata.

GPGLL (Geographic Latitude/Longitude): Includes position fix and
timestamp.

GPRMC (Recommended Minimum Navigation): Includes position fix,
speed, timestamp, and navigation metadata.

In 2013 Google 1/0O, the Fuse location provider was introduced. The fused location
provider has the battery efficient property and can combine the GPS / WIFI / CELL
/ INS sensor information. Even more, it can achieve the approximate location at the
indoor environment.

In this research, the author uses the fix information(GPGGA) of GPS provider with
ACCESS_FINE_LOCATION permission as NMEA location.



2.1.4 Pseudorange Based Position Estimation

Distance
R =R +D
D/ =R R

d =|D/|= D&
=(R'—R)-&

Pseudorange Measurement
p'=d’+B
=(R’-R)-¢ +B
or, p’ =’1§’ —1?“\+B

Figure 2-2. Pseudorange Standalone Positioning

About the pseudo-range measurement, the distance between the user and
satellite can be expressed with the sight unit vector(user to satellite) and ECEF
location vectors. Also with the assumption that the other noises are small (or

eliminated), the receiver clock error is the main error of measurement.

Navigation solution

| Assume Position |
1 ¢ R -B=R-&-p

| For all visible satellites(j=1,2,...,m)

Calculate &/

21 R&-p

& _1|[R] | B.e-p?

5 8 Il E

T 1 R”’-e"’"fp’”
No B

H-x=Z2

| For m24, Least Square Sol,

| Determine Position

F=(H'HY"-H"-%

Figure 2-3. Position determination Algorithm
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The position determination is performed with the least square method. Also, if
the variance of the pseudo-range is considered, the weighted least square solution

which is more precise can be used.

- o -
x=(W-H")"W-z \y : matrix with 1/(noise sigma)) (2.4)

2.1.5 Position Determination Experiment

To determine the position with the raw pseudorange data, the weighted least
square standalone positioning method in the upper section is used. The satellite clock
error is eliminated with the ephemerides information and the other error effects are
assumed as small.

Using Galaxy S8 android app, the walking data is acquired at open sky
playground during about 30 min, 12 times experiment. For the true reference
trajectory, the precise Trimble GEO-XR device logs the position at the same time.

position determination
T T

126,951 T

pseudorange
1268508 [~ nmea
true

1289508

126 8504 —

126.86502 [~

12695 [~

longitude({deg)

1268488 [~

126 8486 —

A

126.8494 —

1 L L L L L L L
46308 37 464 A7 4642 37 4644 a7 4646 37 4648 A7 465 37 4652 37 4654 37 4666

latitude(deg)

126.9492
a7

Figure 2-4. Position Determination Experiment
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Table 2-5. The mean errors of the position determination

Name Mean Mean Mean Mean
Error (deg) Error (deg) Error (m) Error (m)

NMEA 2.8095e-05 2.7539e-05 2.7805 2.5397

Psuedorange 6.1566e-05 5.5452e-05 9.3837 54730

The pseudorange positioning precision was lower than the NMEA API based.
The reason would be the troposphere, ionosphere errors remain. The navigated
position showed the noisy property than NMEA. But it was a dynamic and real-time
situation so that the average position accuracy could be different in a static situation.
To find the exact error reason, the processing code inside the NMEA smartphone
GPS API is needed to be investigated more.

2.2 Smartphone INS Measurements
2.2.1 Android Sensor Manager API

Smartphone devices have many sensors which can detect the phone user’s
information. The INS sensor like the accelerometer, gyroscope, magnetometer, and
barometer can give the smartphone attitude and position related information.

In the Android system, there is the sensor manager API [27] which can get the
smartphone INS sensors data. In this research, the accelerometer, gyroscope,
magnetometer sensors are used.

After the 26 level API version (8.0), Android system supports
“TYPE _ACCELEROMETER UNCALIBRATED”. The former Android
developer could get the calibrated accelerometer only but after ver 8.0 (Oreo), the
uncalibrated one can be accessed.

Also,“TYPE_GYROSCOPE UNCALIBRATED”,“TYPE_MAGNETIC_FIE
LD _UNCALIBRATED? is available after API level 18.

12



The smartphone’s sensor axes are depended on hardware orientation. So that the
axes could be different by smartphones. In this research, the Galaxy S8 smartphone
is used and the sensor axes are the following figure.

Plus Axis +

Figure 2-5. Galaxy S8 Smartphone Axis

2.2.2 INS Measurements Properties

For the navigation, the used sensor, accelerometer,

gyroscope, and

magnetometer, measurement models are needed to be analyzed. These INS sensor

measurements have each inherent characters. The following equations illustrate the

Sensor measurements property [28].

Table 2-6. INS measurement equations

Accelerometer

specific force

,(K) =S [CP(K)(G + g (DT +by +b (K)+v,

Gyroscope

angular rate

w, (k) = S* (k)w(k) +by +b" (k) +V,,

Magnetometer

magnetic field

m_(k) =S"C (K)h+b +b" (k) +v,

13



b
G : from inertial to the body frame rotation matrix

S+ scale factor

by (k) : constant bias

b, (k): random bias

-2 0 2
v~(0,07) . Gaussian noise

With these measurement models, we want to know the user’s phone attitude
information. The sensor is attached to the smartphone’s body so that the equation is
expressed as the body frame. Also, there are some parameters, scale factor, constant
bias and random bias, which is needed to define in the models. The scale factor is
the parameter which scales the measured signal. The constant bias has character
changing with each on/off time. The random bias represents the sensor’s temporal,
time-related quantum reaction. And the sensor noise is assumed as a normal

distribution.

2.2.3 Noise level, Constant bias, Scale factor, Calibration

To know the motion related states, the upper sensor property constants need to be
calibrated. In the following chapters, we will consider this calibration method in each

sensor types [29].

Constant bias, Noise level: The constant bias changes randomly with the
smartphone power on/off times but when power is on state, it persists the static
characteristic. If the power on mode is maintained and main signal becomes zero,
the fixed constant bias and the noise level can be detected. But, making the zero
magnetic field is not easy. Also, the magnetometer’s measurement has special
property of distortion from the iron effect. By this reasons, the magnetometer need a

special calibration method, ellipsoid fitting, and this calibration will be analyzed in

14



the next chapter separately. In this chapter, we will investigate the accelerometer and

gyroscope calibration. With the assumption which the random noise is not influential,

the mean constant bias, constant bias variance and noise sigma are founded by the

following method.

Table 2-7. Noise sigma determination.

Accelerometer noise level

Gyroscope noise level

fm =b.+w
Std(fy,) = Std(w)
w~N(0,02)

(> b. : deterministic)

Std(w,,) = Std(w)

Wy = b, +w
(> b. : deterministic)

w~N(0,02)

Table 2-8. Mean constant bias determination.

Accelerometer constant bias

Gyroscope constant bias

fm(1) = b (1) +w(1)

fmn() = b (n) + w(n)

D Fl®) = nbe + ) w(i)

5oL, Tw)
n n

(1) = b (1) +w(1)

Wy (n) = b(n) + w(n)

Z w,, (i) = nb, +Zw(i}

Son)_, | Iwd
n

n

b= b,
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Scale factor :

If the mean constant bias is determined with the upper method, we can eliminate it.

After that remove, scale factor can be calcurated.

Table 2-9. Scale factor determination.

Accelerometer Scale factor

Gyroscope Scale factor

- Constant bias elimination
2 fn=Sf+w, w~N(0,0;),
-S=const, f=g

fm(1) =5f(1) +w(1)

fm(@) = Sf(n) + wn)

Y Fu® =nSf+ ) wd

- Constant bias elimination
2w, =So +w, w~N(0,62),
S5 = const
w, (1) =Sw(1) + w(l)

W, (n) = Sa-)(n) + w(n)

z w,, (i) = Z Sw(i) + z w(i)

< 2fm@® o Xwr r_Lom@® o Zwir
S==F =5+=%; ST Tewm CTEE0

To calculate the accelerometer scale factor, we need the known acceleration. Using
gravity acceleration, this scale factor can be calculated. By tilting the axis to the
gravity direction, we can make the gravity acceleration. About gyroscope, the known
angular rate is needed. The known angle also could be used instead (integrated
angular rate with time). The author chooses the known angular rate as a reference
and uses the turntable which can measure the rotation rate with the encoder and speed

controller.

16



2.2.4. Accelerometer, Gyroscope Calibration Experiment

With the background of the above section, the calibration experiment is performed

with Galaxy S8 smartphone.

To measure the white noise and constant bias, the 2 poses which make the
vertical to gravity(O acceleration at 2 axes) is used. To know the exact gravity
direction, a level meter measures the horizon line. 1 Hour of the experiment is
performed.

Figure 2-7. Gravity to Y — axis

17



Mean white noise
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Figure 2-9. White noise experiment 2

Table 2-10. White noise experiment result

Acc. x Acc. y Acc. z Gyro x Gyroy Gyro z

0.0094 0.0094 0.0141 0.0013 0.0015 0.0012

o-W 0.0093 0.0094 0.0127 0.0013 0.0014 0.0012

Average | 0.00935 0.0094 0.0134 0.0013 0.00145 0.0012

18




Constant Bias Experiment

The constant bias is varying with the power on/off times. So the 10 times of the

experiment is done each 5 mins. In an accelerometer case, to eliminate the gravity

effect, two poses is considered.

Accelerometer constant bias :

g accoiast

zg accbias2

blasm)

5 &
on off frids.

Vg ace bias2

y-g ace bias3

blas(m)

T
4 10

onofftrials

Figure 2-10. Acc. constant bias experiment

4 H

5 8
on off trials

121t
|

2

5 6
onoff trials

Table 2-11. Acc. constant bias experiment result

b, Accel. x Accel. y Accel. z
Pose 1
experiment —-0.1691 —-0.3070 -
Mean
Pose 2
experiment —0.1597 - 0.2352
Mean
Overall Mean —0.1644 —0.3070 0.2352
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Gyro Constant bias :

As a reason that gyro bias is not affected by gravity, 1 pose, 2 experiments are done.

00121

XW gyro bias1

20183

xw gyro bias2

00332

Xw gyrobias3
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3 _— [E 00145 AN, = \
Soos 5 f {5 oo \
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00115 \ / \
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~ .
. 0147 \\ .
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00111
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Figure 2-11. Gyro constant bias experiment

Table 2-12. Gyro constant bias experiment result

b

Gyro x

Gyroy

Gyro z

1 experiment
Mean

0.0117

—0.0145

—0.0336

2 experiment
Mean

0.0120

—0.0143

—0.0344

Overall Mean

0.01185

—0.0144

—0.034
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Scale Factor experiment
With the upper section background, the scale factor is calculated.

10 time on/off experiments is done.

Accelerometer Scale factor:
The gravity acceleration is used as reference acceleration.

g acc scals factor

zgace scale factor

x gacescale factor

10018

10168

. /\\ 1:2 ’
/ " [N 100 A\
o 4 1018 | / \\\\ 1 ”F’ \\
£ V A .“A g o / AN _ |gee / \
: \\ ;/ HES | Lo \ / \\
. \ / o AN Y :
\\ / 10152 Joose — \
Figure 2-12. Accel. scale factor experiment
Table 2-13. Accel. scale factor experiment result
Sx Sy Sz Sax Say Soz
Mean 1.0009 | 1.0157 | 1.00155 | 3.5386 4.3278 0.00155
SC ale e—04 e—04
factor

Gyro Scale factor :
The angular velocity controlled turn table is used to find the gyro scale factor.

21



Figure 2-14. Gyro scale factor experiment

Table 2-14. Gyro scale factor experiment result

Sx Sy Sz Sox Soy Soz
Mean 1.0309 1.0162 1.0222 7.9584 8.1220 5.4688
Scale e—08 e—08 e—05b
Factor

2.2.5 Magnetometer Ellipse Fitting Calibration

Magnetometer detects the earth magnetic field and can find the north pole
direction. The local earth magnetic field can be predicted with the models like
world magnetic model (WMM) and international geomagnetic reference filed
(IGRF). But the magnetometer measurement can be influenced by the user

environment.

The distortion is caused by the nearby iron environment called iron effect. The
iron effect can divide as 2 types, hard iron effect, soft iron effect. The hard iron
effect comes from the constant magnetic field and results the bias shift in
measurement. The soft iron effect appears the ellipsoidal distortion which has
different scales in the each direction.

To compensate this iron effect, the special calibration is needed. There are many
methods to calibrate but the ellipse fitting calibration method is considered in this

research.

22



The ellipse equation can be represented as follow.

O(x,y,2) =ax’ +by* +cz* + 2dvy + 2exz + 2 fyz + gx+ hy +hkz + j =0
(2.5)

If the ellipse is not far displaced from the sphere the j term can set as 1.
O(x,y,z)=ax’ +by’ +cz* +2dxy +2exz+2 fyz+ gx+hy +kz +1=0 (2.6)

At least 9 attitude information is given, the 9 parameters can be calculated with
the least square method.

u= (MTM_)_]MT)/' (27)

u= [a,b,c,d,e,f,g,h,k]T (28)

2 2 2

o0 i 2y 2%z 2yzoxo oy g
Vo5 2%y, 2%z, 23,7, X%, ¥, 5

xﬂf yn Zi 2xnyn 2xnzn zyn Zn xn yn Zn (2 9)

T
y=[-L-1-1-1L-1-1L-1L=1-11" 10

After finding the ellipse parameters, the rotation, offset(center to 0,0) calibration,
and radius scale adjustment can be performed. Finally, the ellipsoid distortion can

compensated for the spheric shape.

Using MATLAB, the ellipsoid calibration algorithm is performed to the

magnetometer data.
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ellipsoid fitting

20
60 x(uT)
20
y(nT)

Figure 2-15. Ellipsoid Fitting

offset elimination

y (1 T)

Figure 2-16. Offset Elimination
(Red : offset exist / Blue : offset is eliminated)
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2.2.6 Random Bias, Allan Variance Exiperiment

Flicker
14{3/@ | Noise | | T

Figure 2-17. Allan variance

The random bias is the error source of the sensor measurement which has statistical
changing property with time. To know the sensor’s different noise types, Allan

variance can be helpful.

Mpeas (1) = My (t)+b, () +by +w(t) where

w(t): (wideband) noise, w(t)~ N (0,07)

b, : constant bias (null shift) (2.11)
b, (t): time-varying bias, b, (t) = —_I_ibl(t)+wbl (t).w, ~N(0,q7)

<Gauss markov process bias model>
The random bias can be modeled as gauss markov process bias. In this model, the

parameter N, , T , g, can be found by the Allan variance investication.

To analyze the sensor property of Galaxy S8. 11-hour sensor data is logged. The

Allan variance analysis result is present.
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Gyro :
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Figure. 2-18 Gyro allan variance - white noise
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Figure. 2-19 Gyro allan variance - random walk

Table 2-15. Gyro random bias parameters

o, (ARW) T, g, (RRW)
([°//s1.[°/</hr]) s) ([°/ s 1s],[°/ %)
0.1242e-03 3.6016e+04 0.1665e-05
0.1412e-03 2.0633e+04 0.1530e-05
0.1260e-03 1.1997e+04 0.1534e-05
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Accelerometer :
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Figure. 2-20 Accelerometer allan variance - white noise
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Figure. 2-21 Accelerometer allan variance - random walk

Table 2-16. Accel. random bias parameters

o, (ARW) T, q.(RRW)
([°//s1.[°/+/hr]) ) ([°/ s /s],[°/ %)
0.0010 5.7443e+03 0.1320e-03
0.0010 3.9452e+03 0.1305e-03
0.0012 6.3465e+03 0.1715e-03
27



Magnetometer :

When the Galaxy S8 smartphone raw magnetometer is received, the measurement

shows strange ticks. So the noise histogram was not gaussian distribution so the

preprocessing process was needed before the allan variance analysis.
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Figure 2-23. Magnetometer Allan variance - white noise
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Figure 2-24. Magnetometer Allan variance - random walk

Table 2-17. Magnetometer random bias parameters

., (ARW) T, q.(RRW)
([°//s1.[°/</hr]) ) ([°/ s 1s],[°/s¥2])
0.0933 1.6202 e+05 0.0022
0.0926 0.2364 e+05 0.0008
0.1132 1.3894 e+05 0.0015

The allan variance analysis shows the white noise and random walk property. With
this sensor property, the bias is modeled. But, the magnetometer gauss markov
process is not well implemented in kalman filter empirically. So that the random
walk bias model is use in the filter.
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2.3 Developed Android Smartphone App

The author developed the Android app for logging the INS sensor and GPS data.
The Android Studio is used as IDE. The Android App Ul is following the figure.
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e s i Raw pr error |
L RE : RO, g Frequency -

Drift while
Clock
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! Clock drift prr error

* While
B T discontinuous

Figure 2-25. Developed Android App Ul and Raw GNSS parsing

This App can log the uncalibrated accelerometer, gyroscope, magnetometer
and barometer data (which is not used) with 100hz sampling rate. To acquire the
constant frequency, the asynchronized task coding is applied. Also the power
saved, doze mode are blocked to avoid the logging speed change. Also, it can log
the NMEA GPS data and raw GNSS data as 1hz. The raw GNSS code reference
the Google GPS logger opensource and is integrated with the developed app. The
data is saved as .txt format in the smartphone local built-in memory. Moreover, the
additional time-synchronizing preprocessing is needed because the raw GPS data is
logged in separated .txt and has the different time formnat(GPS Time). The time
synchronization is performed by the matching the smartphone system clock in each
time data. The Galaxy S8 smartphone supports the other GNSS system
(GLONASS, BEIDO, QZSS) satellites data but the research only dealt the GPS
satellites for the navigation.
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Chapter 3. Pedestrian Dead Reckoning
3.1 Pedestrian Dead-Reckoning System

Final Position

Start Positon

Figure 3-1. Pedestrian dead reckoning concept

The upper section shows the GPS / INS measurement properties. In this
section, we will investigate the INS based navigation method, pedestrian dead
reckoning. To perform the pedestrian dead reckoning, we need the information,
heading, step size, and step length. About heading, the direction can be derived
from the Euler yaw angle which can be achieved from the Kalman filtering
result. Also, the user’s step size and step length can be derived from the several
algorithms. But the user can walk or not, the walking state needs to be
determined. The step detection needs to conduct only in this context. In this
section, the heading estimated quaternion extended Kalman filter will be
constructed. Next, the walking detection method will be explained. Moreover,

the step counting algorithm and stride length equation will be presented.
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3.1.1 Attitude Determination Quaternion Kalman Filter

The attitude representation can have many types of form. The Euler angle is
one of the attitude representation methods and intuitively understandable. But the
Euler angle has a discontinuity problem and can make the gimbal lock effect. The
smartphone is usually used diverse attitudes. For this reasons, the quaternion is
chosen as the form which can represent the user motion. The quaternion equation is

followed.

q:q1+q2i+q3j+q4k (3.1)
q, : scalar
Q.1 +0;]J +0,K : vector (3.2)

The unit quaternion has unit norm size. By this unit quaternion's property, the next

equation is given.

1=+ +q2+q2 (33

With this expression, the smartphone attitude extended Kalman filter equation can
be derived.
Table 3-1. Sensor Model

Sensor Model
Accel — a . -
fi = S*[CHa) @) (=G + Twoayr) ]+ box+ by +vy
Gyro Wi = 7 S [Wig)]+9bor+9byy +977
Ma — m — s\ T 7 7 —
J My = " S * [CE(qi) @) (W)]+box + ™+

32



g: gravity, T geomagnetic vector, apoqyk: body acceleration,

S:scale factor, C2(qy): dem,

R . T .
wy, : angular velocity, by : constant bias,
b;: random bias, vi: measurement noise

Table 3-2. Bias Model

Bias Model
Accel . 1\®
“byy = (1 —T—) b1+ Wy
a
Gyro . 1\9
Ibyy = (1 - T—> biy—1+9°Wy
a
Mag
Mhig = Mhyg_g M0 Wy

Table 3-3. Dynamic Model

Dynamic Model

qr+1 = exp(i W) qies1 — 751(( Ibok+9byj)+Twy

e TS —
Wi = —— Skt
w. = [WeXx Wi ¢ =[[€><]'|'CI413]
w0l k —eT
ch =
P—q; P-qz *+qs ? 2(q192 + 4394) 2(q195 — 9294)

q1
[ 2(q19; — 9394) -q *+q; P—q;s *+q P 2(9293 + 4194)
2(q193 + 4294) 2(9293 — 9:94) -q *—q; *+q; *+q, ?
33
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Table 3-4. Process Model

Process Model

e, T o]
. fewgn) 0 =Za o] .
[ Tt ] 1 ‘[qk1 I 0 0 o] W]
| D | 0o (1-=) o oft Bl o 1 o 0| W
| b1k I ¢ 1 ” 9byi g 8 (I) (I)l Wy
i _ - — mo
L mbyrd | 0 o (1 T,,) Ol mp,, Wi

[ u

Table 3-5. Measurement Model

Measurement Model

Zirr = hG&) + 7%

5 dr |
fier 1 I 5 blk Uk
Micr1 H, 89Dy "
e
g -4 G -q
H,=29% q, s 0 G
4 -4 O Q,

Ag, +Bg, —Ad,—-Bq, —Ad;+Bg, Ag,—Bd,
H,=2*Ag,+Bq, Aq+Bag, -Aq,+Bg, —Adg;+Bq,

AQ3 - Bq1 AqA - qu Aq1 + BQ3 qu + Bq4
A=hcose,B=hsing

With this model, the smartphone attitude is represented as the quaternion form.
Because quaternion is not intuitively known. The extended Kalman filtering

quaternion is transformed to Euler angle.
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X N

Figure 3-2. Euler Angle
(¢ :roll, 8: pitch, y :yaw)

For dead reckoning, the heading information corresponds to euler yaw angle.
But the exact walking heading could be different from the smartphone's attitude
heading. There are many algorithms which can detect the main walking direction.
For example, there are PCA and vertical component usage. But this research is
conducted with the environment which the user walking direction is horizontal to
smartphone’s heading. So we assume the heading is equal to the user’s main

walking heading.
3.1.2 Attitude Determination Simulation , Experiment
Quaternion Extended Kalman Filter Simulation
The author validates the extended Kalman filter model’s performance with
simulation. Given the experimental noise and bias information, the sensor output is

generated. Using this measurement, the Kalman filter shows the state estimation

ability.
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Figure 3-3. True Euler, quaternion

The true Euler is generated with the random signal (Sine waveform) and the

quaternion is derived from the transform of Euler angle.
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Figure 3-4. Random bias modeling
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The Sensor data is generated with the sensor model. With this simulated signals,
the extended quaternion Kalman filter calculate the states(quaternion and bias). The

result is given.

quaternion residual euler 2 residual
0.05 81
ql roll
0.04 F 92| 51 pitch |
q3 yaw
94 | 4- ]

. . . . . . J . 4
3 4 5 8 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
10% 104

Figure 3-6. The error residual of the quaternion and Euler angle

Table 3-6. Converge error residual in simulation

Quaternion go gl g2 g3
RMS residual | 0.0013 0.0010 0.0017 0.0009
Euler Roll (deg) Pitch (deg) Yaw (deg)
RMS residual | 0.1669 0.1132 0.1804
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Quaternion Extended Kalman Filter Experiment

To tune the filter parameter for real data, the experiment is done. The true attitude is

measured compared to the other INS sensor which gives the Euler angle information.

The pixhawk 2.4.8 board inertial sensor out is used as reference attitude.

300 degree residual not abs not 360

250

200 -

150 -

100 -

50 -

-50

100 . . . . . . .
0 05 1 15 2 25 3 35 4 45
x10%

(x axis: samples(0.01s), y axis: deg)
Figure 3-8. Euler residual to reference sensor measurement
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Table 3-7. Convergence error residual in experiment

Roll RMS residual -1.7172 deg
Pitch RMS residual -1.7529 deg
Yaw RMS residual 1.9553 deg

3.1.3 Walking Detection
For pedestrian dead reckoning, the remained work is finding the step

information. The step needed to detect only on walking phase. To detect walking,
the windowing standard deviation threshold method is used. the procedure of the
algorithm is writing beneath.

Table 3-8. Walking detection

Calculate acceleration magnitude M = sqrt(ax"2+ay”~2+az"2).
Moving average to M.

Low pass filter : cutoff frequency 3.5Hz.

M w0 np e

With the not overlapped window, standard deviation is calculated in

each windows.

o

Setting a threshold which can distinguish the walking phase.

6. Detect the time epoch which is over the threshold and has minimum
duration.

(the walking time is defined when std value is over the threshold(+) to
below the threshold(-) )

The window std walking detection is performed to the open data which is used
in “Walk Detection and Step Counting on Unconstrained Smartphones - Agata
Brajdic, Robert Harle”. After the validation to the open data set. the Galaxy S8 phone

experiment is performed (Sec 3.1.5). The open dataset analysis result is given.
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Figure 3-9. Low pass filtering (x : frequency, y:FFT accM)

(black circle : true walking start and end time)
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Figure 3-10. Walking detection with windowed std threshold method

Performance

There are 5 users and 5 datasets are used in each test set.

Table 3-9. Walking detection performance for the open dataset

Overall
Testset 1 Testset 2 Testset 3
Mean
mean 0.78 s
0.75 s 0.77 s 1.61 s
wd error

(Used std threshold: 0.2)

3.1.4 Step Counting, Stride Length
Step counting and stride length algorithm based on the peak, valley detection.
With the peak and valley magnitudes, the step information can be inferred. The

algorithm is given in following table
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Table 3-10. Peak /Valley Detection Algorithm

=

Calculate acceleration magnitude M = sgrt(ax”2+ay”2+az"2)

Moving Average to M

3. The step counting algorithm is applied in only walking detected
phase.

4. With comparison between previous and current M value, save the

maximum and minimum value continuously.

The maximum/minimum mode is alternatively changed because

the step signal has peak and valley pair. the last max/ min value is

saved at each mode.

N

maximum mode : if max<x1, save x1, continue

if x1<max, not save, mode change as min
minimum mode: if min> X2, save x2, continue

if x2<min, not save, mode change as max

5. conditionl: The peak must be higher than mean M value
condition2: With walking frequency considered, the peak and
valley time interval is longer than the minimum time threshold
peak time: t1, valley time : t2, (t1-t2) > threshold

S

16 1‘7 15 Wé 2IO 2‘1
7. condition3: 1 valley must appear between peaks at least. If there

are many valleys between peaks, the lower is chosen. Also, if there is two
peak which has not one valley between them, the higher is chosen.

42




With this algorithm, the performance is analyzed with the same dataset.

step detection

O std

o

0 10 20 30 40 50 60 70

Figure 3-11. Peak/ Valley detection method
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Table 3-11. Peak / Valley detection performance for the open dataset

With 21 walking dataset (21 users)

Step error mean 5.1 step

Stride Length is related with the peak and valley acceleration magnitude. In the

“Smartphone-based Pedestrian Dead Reckoning as an Indoor Positioning System -

Azkario Rizky Pratama” research [8], the author said the stride can be derived from

the following equation.

4
3.5
3
E 2.5
5 2
pm
= 1.5
== Scarlet Method
1 —8— Waberg Method
0.5 Kim Method
== Static Method
0
0 10 20 30 a0

Travelled Distance (m)

Figure 3-12. Step length method comparison

Table 3-12. Step length algorithms.

1. Static
step _size = height - k
2. WEInberg srep size=k -4 Aoy — 4
3. Scarlet S
Z| a; |
k=1 —a..
step _size=k-
Aoy — Ain
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4. Kims

N
Z| a |

k=1

N

3

step _size=k-

5. Linear
L= O, ¢ -ﬁ‘e+|3_§-l o var+iys o,

The Weiberg method and Scarlet method shows a good result in this paper. With

this background, our research used Weiberg method to determine the stride length.

Stepsize =K *«/ peak —valley  (3.4)

(The constant K is the tuned value and this is experimentally chosen.)

3.1.5 Pedestrian Dead Reckoning Experiment
To choose the fine threshold, the pedestrian dead reckoning experiment is

conducted and the following figure gives the experiment environment.

PDR
experiment O
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Table 3-13. PDR experiment settings.

Length (cm)

Heading (deg)

Step number

Track line 1 951 325 17
Track line 2 956 415 18
Track line 3 943 145 17
Track line 4 943 235 17
Times Each 3 turns, 5 times experiment is done
Place Seoul National University President Grace

46

Figure 3-14. PDR fitting experiment



Table 3-14. The error of step counting.

WD threshold 0.2
Error type inbound outbound rms
Testl -6.1908 6.3454 8.865106
Test2 -0.6657 8.7298 8.755145
Test3 -0.4706 9.8074 9.818684
Test4 -0.4325 10.3372 10.34624
Test5 -0.4112 10.7994 10.80723
Mean -1.63416 9.20384 9.718481
WD threshold 03
Error type inbound outbound rms
Testl -13.6318 3.9617 14.19581
Test2 -1.7537 5.6785 5.943133
Test3 -1.0302 6.5199 6.600788
Test4 -0.9459 6.8652 6.930058
Test5 -0.8351 7.208 7.256215
Mean -3.63934 6.04666 8.185201
WD threshold 0.5
Error type inbound outbound rms
Testl -26.3452 1.9159 26.41477
Test2 -8.5462 3.1794 9.118449
Test3 -5.4796 3.8276 6.684051
Test4 -4.8706 4.1268 6.383825
Test5 -4.3186 4.4669 6.213172
Mean -9.91204 3.50332 10.96285

(inbound : step error within wd phase, outbound : step error outside wd phase)
Upper table shows that the std threshold 0.3 is the best result. (8step/207step = 3%

error)
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To tune the suitable stride length parameter, the comparison between real step size
and detected step size is conducted. The result was about 0.05 mean error of stride
length has the K : 0.6417 value. Also, the heading shows a bias about 10 deg at
start time and the bias becomes smaller as the kalman filter converge. Considering
this effect, the converging kalman gain is saved and used as initial state. This

helped the heading bias converge fast.

track
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Figure 3-18. pedestrian dead reckoning trajectories. (use the saved gain)
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Chapter 4. Carrier phase / INS integrated Pedestrian
Dead Reckoning

In this chapter, the carrier phase measurement is investigated and the android
enviroment cycle slip compensation will be suggested. To choose an appropriate
threshold in the slip detection, the simulation is performed with considering miss
detection and false alarm scheme. After cycle slip elimination, the carrier phase
based velocity determination method will be introduced. Finally, the gps/ ins
integrated pedestrian dead reckoning is conducted and the performance will be

analized.

4.1 Carrier phase Cycleslip Compensation & Velocity
Determination

4.1.1 Carrier phase Cycleslip Compensation

When the GPS receiver lock losses some cycles of the carrier and relocked, the

i

Integer Ambiguity component N of carrier phase measurement is jumped. This

is called as ‘Cycle slip’ effect. This discontinuity becomes the main error in the
carrier-based navigation. The cycle slip comes from 3 causes. when the sight
between user and satellites is blocked some object like a tree, tunnel, and loof etc,
the cycle slip error could appear. Also, low SNR can loose the cycle. The receiver’s
intenal problem also contributed to the cycle slip effect.

To eliminate this error, the relation between Doppler and Carrier phase needs to be

explained.

g =d,+B,—b' +T -1, + R + M) +N{A+&, m) (1)

fl=d+B,—b' +T) —I! +R +M! +&l , ms) (42
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Except for the Ambiguity term, the other components are almost same. But the
dimension (meter, meter/sec) and the noise levels are different. So that the time
differenced carrier phase has a similar value with Doppler when the cycle slip does

not occur.
i i i
fo =og, it Nt=o) (43)
For this reason, the cycle slip can be detected with below equation.

64, = (@, (t+D) =, (1) / At = f+ N, A

6, = f, = N,A (4.4)

With the TDCP(Time Differenced Carrier Phase) minus Doppler

parameter( 5¢ui — fui ), the cycle slip can be detected with the setting threshold.

4.1.2 Android Environment Cycle slip Detection

The GNSS measurement APl supports some constant which can give the
information of the receiver like cycle slip, multipath and lock/sync state. The

following table shows the carrier phase cycle slip related constant.

Table 4-1. Accumulated Delta Range(carrier) related constant in API.

Constants

ADR_STATE_CYCLE_SLIP

int The state of the getAccumulatedDeltaRangeMeters () has a cycle slip
detected.

int ADR_STATE_HALF_CYCLE_REPORTED
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Reports whether the flag ADR_STATE_HALF_CYCLE_RESOLVED has
been reported by the GNSS hardware.
ADR_STATE_HALF_CYCLE_RESOLVED

int Reports whether the value getAccumulatedDeltaRangeMeters () has

resolved the half cycle ambiguity.
ADR_STATE_RESET
int | The state of the getAccumulatedDeltaRangeMeters () has detected a

reset.
ADR_STATE_UNKNOWN

int The state of the value getAccumulatedDeltaRangeMeters () is invalid or

unknown.
ADR_STATE_VALID
The state of the getAccumulatedDeltaRangeMeters () is valid.

int

The ADR_STATE_CYCLE_SLIP parameter is investigated.
,sn© Cycle Sli]; is not checked 1: O Cycle shipis checked

ol 20 Line : Doppler
100 Dot : TDCP

400 L L
5 0 1 1 1100 150 1200 1040 1060 1080 1100 120 1140 1160

Blue : valid data,

Figure 4-1. ADR_STATE_CYCLE_SLIP parameter in GNSS API

The result shows the cycle slip parameter is turned on either cycle slip or not.
For this reason, the ADR_STATE_CYCLE_SLIP parameter is not sufficient for
detecting cycle slip. The author found this parameter is related with the accumulated
deltarange uncertainty meters. When the signal quality(SNR) becomes lower then
the uncertainty sigma value goes up.
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Figure 4-2. ADR uncertainty meters relation with cycle slip parameter.

From this analysis, we can understand the cycle slip parameter represents the

low SNR situation. the high carrier uncertainty region has high probability of the

cycle slip appearance but the cycle slip could be occurs or not.
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Figure 4-3. (TDCP — doppler) vs cycle slip parameter.

By this reason the TDCP — doppler is used as the parameter to catch the cycle

slip. The time derivated carrier phase has the following relation.
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Table 4-2. TDCP — doppler parameter equation.

g =di+B,—b' +T/— 1, +0R + M + N;A+ &} ,, (m)
&4~ N(0,07)

fl=dl+B,—b' +T, I} +R + M| +&  , (misec)
&+ ~N(0,0?)

5, = (A, (t+D) -4, (1) / At
54 =d! +B, —b' +T/ —I! +&R! +M! +5le1+56‘:]’¢ (m/sec)
d,,~ N(0,05,)

o — f| z5N;/1+5g;,¢ —&,

8ig¢f = 5&‘LY¢ —€Lijyf ~ N(O,G&ﬂz) 8 : Time difference operator in 1 epoch

With this background, the time differenced carrier minus doppler parameter can
detected the cycle slips. The parameter’s sigma could be estimated with the TDCP
and doppler sigma value.

real : g5 = 0.1694 (%) (4.5)
real : gr = 0.2047 (S%) (4.6)
Ospt = ,fa&f +o,’ (4.7)
real : gsep = 0.2658 () (4.8)

With this result, the author used the TDCP-doppler parameter sigma value as 0.2658.
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4.1.3 False Alarm & Miss Detection Analysis
To set the appropriate cycle slip threshold the simulation is performed. The false

alarm and miss detection scheme is applied.

The false alarm means the cycle slip is detected in the wrong epoch. On the
other hand, miss detection is the threshold don’t catch the cycle slip. The FA(False
alarm) and MD(Miss detection) have contradicting property. So that the user need to

design the probability which is considered the priority between them.

o = 0.2658 \\ o = 0.2658

\

\
\

e

—— Sy
Threshold

No Cycle Slip S / © N\ +1Cyele Slip
: Mean =0 \ / \\ : Mean = 1A
\
/ \ /

Miss False
Detection Alarm

Figure 4-4. False alarm, Miss detection

1 Cycle 2 Cycle
Miss False ?)‘“-‘»‘ ) '\-l"'w
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Hia AU Thireshold 0,095 - " Threshold0.1903
MD prob : FA prob MD prob : FA prob
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\ f \
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- =0.1897:0.5690=1:3 =0.1296:0.3888=1:3

Figure 4-5. The probability for each thresholds
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In this research, the each FA / MD is samely important. Also, the upper 1 cycle
detection threshold 0.095 (0.3622 prob MD/FA) is used.

4.1.4 Doppler, Carrier Based Velocity Estimation

With the raw measurement Doppler and Carrier, the more precise velocity can
be estimated than pseudo-range based [30].

The Doppler shift effect is occurred from the relative motion between user and
satellite. This effect can be described as following equation.

—-r

u

D= w1 __fl{(v,- -v,)* ”r T }
C " 4.9

(*(dot product), o ,ffﬁ' are respectively frequency of the transmitted and received

signal. )

f

(at,a‘ aa )
I - ” (4.10)

: user-satellite line of sight vector
If satellite clock error is eliminated with the ephemeris information, the remained

main error is receiver clock error. If the receiver clock drift rate relative to satellite
clock L considered, the drift rate in receiver frequency can be expressed.
Jr = 1(1+2,) (4.11)

Scaling the Doppler shift with the carrier wavelength, the Doppler

frequency(Pseudorange rate) equation is given.

i (1 —p ¥ 5 i
fi =, =v,)*a;+cbt, +¢, (4.12)
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Figure 4-6. Receiver Motion

The satellites velocities can be calculated from the ephemerides. After the
removement, the under equation can be derived.

i % ., % > P % i
[ =v.*a, =-v, ar.+c5tu+su!f— v, ar.+B"+5u!f (4.13)

The right hand Y ,B « terms can be solved with the least square method.

f i.: -V * a; aﬁx arv ai: 1 Vm
P zxj - v_,' * a_,' — a.l—’f a.f)" a!Z 1 Vuy
. : : Vi
by * a, a, a. 1
_fu Vi 4 zx B = B u ( 4.1 4)
Hx=z
- T -l T o

With the upper section condition, fui = 5¢J (cycle slip is eliminated), the same
method can be applied to the time differenced carrier phase. The carrier phase has
the small noise property compare to Doppler. So that the result velocity is expected
to have more accurate result.
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4.15 Cycle slip Compensation & Velocity Determination
Experiment
To determine the velocity, the Doppler and carrier phase measurement can be

used. But the carrier phase is needed to eliminate the cycle slip. With the choosing
threshold in upper section, the cycle slip compensation is performed.

TDCP-doppler (before)

TDCP-doppler (before)
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Figure 4-7. Cycle slip effect in carrier phase

The upper threshold parameter(TDCP-doppler) is removed the integer multiple

of the carrier phase wavelength ( NJ/I).
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TDCP-doppler (after)
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Figure 4-8. Cycle slip compensation
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Overall parameter becomes with in 1 lamda.This effect can be checked in the
velocity determination result also.
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Figure 4-9. Velocity before the cycle slip compensation (North)
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Figure 4-10. Velocity before the cycle slip compensation (East)
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Figure 4-12. Velocity after the cycle slip compensation (East)

The result shows the cycle slip compensation contributed to the velocity error.
Finally, the velocity determination accuracy is analyzed. The doppler based velocity
also calcurated for the comparison.
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Table 4-3. The mean velocity errors of the velocity determination

Name North Vel. Mean East Vel. Mean Total Mean
Error (m/sec) Error (m/sec) Error (m/sec)

WLS 0.1950 0.1692 0.1821

doppler

Not WLS 0.2048 0.1906 0.1977

doppler

carrier 0.1878 0.1674 0.17766

NMEA 0.1816 0.2427 0.21215

The raw measurement supports the doppler and carrier signal uncertainty. But
when we use TDCP, the sigma value is not known (it could be approximated but the
result was not good). For this reason, the weighted least square could apply to

doppler only. The result shows the carrier phase velocity navigation is most accurate

4.2 Raw GPS/ INS Integrated Pedestrian Dead Reckoning
4.2.1 GPS / INS Integration
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Figure 4-15. INS error property
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The INS error is not bounded because the error is accumulated. This bias error
is modeled in the extended Kalman filter but it is hard to make the exact model.
About the stride detection case, the acceleration magnitude M is not kalman filtered.
So that the accumulated drift error can deteriorate the step spot detection. To avoid
this INS divergence the GPS/INS integration is used. The GPS gives the absolute
position compared to the relative position from the INS. The integration can fix the

error.

Integration of GPS and INS - Satellite outage
lllustration of how GPS, INS and an i d GPS/INS igation system handles a satellite outage.
GPS and INS has complementary properties which makes an integration between them suitable.

Position error (m)
20

4 ' Sateliite |
e 00 @ INs outage |
1 / (1) :
A i®

NS ¢GPS |
10 ; ! Time (s)
1. GPS 2.INS 3. INS+GPS-system is 4. The position error
+ limited error +insensitive to jamming robust and have high grows during the
- sensitiv 10 j i + high meast accuracy. During the satellite outage but
_ S rate time before the satellite  slower than for the
:::; measy n +small errors for short  outage the system stand alone INS (2).
periods of time estimates sensor errors
- unlimited error growth 0 be able to compensate 5. The GPS/INS system
for them. recovers quickly after
the outage.

Figure 4-16. GPS / INS Integration

But when GPS goes out, the INS error starts to diverge again. The GPS / INS
integration is a well-known method in the navigation field. In this research, the
carrier phase based velocity and gps position are used as a measurement to improve

the performance.
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4.2.2 Position Determination Extended Kalman Filter

To integrate the INS based pedestrian dead reckoning position and the GPS
navigated position, the extended Kalman filter is used again.

The filter equation is like below.

Table 4-4. Position extended kalman filter equation
Process Model

V
=g +-NAL
¢k ¢k—1 R
V
= + LAt
A= i Rcos ¢
Vy, = Wcos(l//k_1 + Ay, )+ W
VEk = WSln(wk{L +AWk—l) +W:(/El

Ay, =Ay, +b At+w
AS, =AS, | +b At + W,

Measurement Model

P =0 + Yk
Aok = A +V i

Vink = Ve TV
Vinek = Vex T Vi

Yk =V TAY, Vi

The GPS and INS sampling rate is different so that the interpolation is conducted to
synchronized the measurement update. The figure shows the interpolation, time

update, and measurement update.
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Figure 4-17. GPS data interpolation to step time

4.2.3 Raw GPS / INS Integrated Pedestrian Dead Reckoning
Experiment

With the designed position filter, the author calculates the position, velocity, heading
error and stride error as states. To judge the performance, the accurate Trimble GEO-
XR data is used as a true trajectory. ( The experimental data is same with 4.1.5 but
the INS data is integrated.

Figure 4-18. The experiment in Seoul National
University Open sky Playground
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Figure 4-19. GPS / INS integrated pedestrian dead reckoning experiment
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Figure 4-21. Velocity residual

Table 4-5. GPS carrier / INS integrated pedestrian dead reckoning performance.

Position Position Velocity Velocity
residual N residual E residual N residual E
(deg) (deg) (m/sec) (m/sec)
NMEA 2.5042e-05 2.6971e-05 0.16 0.21
Mean 2.60065e-05 0.18555
Filter 2.4049e-05 |  2.627e-05 0.18 | 0.14
Mean 2.51595e-05 0.15845

The carrier based velocity and INS pedestrian dead reckoning information improved

the position and velocity accuracy than only NMEA.
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Chapter 5. User Context Classification Deep learning
for Adaptive PDR

5.1 Smartphone Location / Walking Context
Classification

The user walking context can affect the INS pedestrian navigation. For example,
the texting context can produce the shaking of the phone. If the choosen threshold is
lower, the step can be detected by this action. Also, the walking signal can be
different by the phone’s location and the hand moving. If the user walks swinging
the hand, the signal will have a different period. Moreover, the smartphone location
can contribute to changing of the signal for example, it is placed inside the backpack
and pocket.

For these reasons, the determination of the walking context is very important for
the pedestrian dead reckoning and the changeable threshold, parameters, and
algorithms is needed to apply.

A deep learning approach could be used to classify user context. About the time
series model, the performance is influenced by the input transformation(or encoding).
The author study about the comparsion of several different transformations effect for

a single deep learning model and same data set.

5.1.1. Smartphone Location / Walking Context Dataset

The various users and walking mode data set are hard to make so that the author
used the open data set which is introduced from “Walking Detection Step Counting
An Unconstrained Smartphone” experiment [22]. That paper only uses that data for
checking the walking detection and step counting performance but the mode context

classification is considered in this research.
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There was 7 class in the data. And the dataset was liked below.

UNIVERSITY OF
CAMBRIDGE

Walking Detection and
Step Counting on
Unconstrained
Smartphone :

Agata Brajdic

Open Dataset Class

Figure 5-1. Walking context and phone location classes

Table 5-1. Used dataset information

class Handh | Handhe | Shirt | Trouser | Trous | Backpack ,H
eld Id using | Pocke |sfront |ers andbag
t pocket | back
pocket
original |1 2 3 4 5 6 7
class
dataset | 27 27 24 25 21 21 |6
number

User 27 participants were asked to walk a route at three different
infor walk paces: starting with normal, followed by fast, and
mation | ending with slow.

Because the 7 class( dataset was small, two class(6,7) merged as 1 class. The training
and test dataset divided 6:4
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5.1.2. Deep Learning Models

300 time samples,
10 batch

(Time Domain)

[T 17T

| B MMWMMMWWW.W\'W,W
300 sémples,! = [ -

16 rnn cell

LSTM

10 batch (Freq Domain) 16 rnn cell
- | |
e ‘ "’”’””’M"'WWWW.MM"~ LSTM
b ( |:> Y 20l windov:.'
STFT time series
300 time series,
10 batch 3 Layers 16 cell
N o
ne g W
H - s W i | CNN £=) LSTM
3%3 || 3x3 33 || 3x3 5X5 || 3x3
conv || pool I::> conv || pool [> conv || pool
Figure 5-2. Model diagrams
Table 5-2. Model information
Num 1 2 3
Model Window Cutting | CNN + LSTM STFT + LSTM
Batch + LSTM
Input 300 samples 300 samples, 300 samples,
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10 batch 10 batch 10 batch

Transform 20 windows STFT
conv2d (3x3)
pooling (3x3)
conv2d (3x3)
pooling (3x3)
conv2d (5x5)
pooling (3x3)
16 cell 1 layer 16 cell 1 layer 16 cell 1 layer
LSTM LSTM LSTM
Loss, Loss: soft max cross entropy
Regularizer, Regularizer : L2 regularizer
Optimizer Optimizer : Adams optimizer

5.1.3. Comparison of Input Transformations
With these models, the author trained the training data. The results is given.

accuracy accuracy
tag: accuracy/accuracy tag: accuracy/accuracy

loss_| loss_|
tag: loss_l/loss_| tag: loss_l/loss_|

160 160

0.400

0.000 40.00k 80.00k 120.0k 160.0k 0.000 40.00k 80.00k 120.0k 160.0k

Figure 5-3. Model 1. Train Result

72



accuracy accuracy

tag: accuracy/accuracy tag: accuracy/accuracy
100 100
0.800 0200 |
0.600 0.600
0.400 0.400
0200 0200 |
0.00 T 0.00 T
0000 4000k 8000k 1200k 160.0k 0000 40.00k 80.00k 1200k 160.0k
loss_| loss_|
tag: loss_l/loss_| tag: loss_l/loss_|
160 160
120 120
0.800 0300
0400 0.400
000 000 i
0000 40.00k 8000k 120.0k 160.0k 0000 40.00k 80.00k 1200k 160.0k
Figure 5-4. Model 2. Train Result
accuracy accuracy
tag: accuracy/accuracy tag: accuracy/accuracy
100 1.00
0.800 - 0.800 -
0.600 | 0.600 -{
0.400 { 0.400
0.200 0.200 -
0.00 { 0.00 |
0000 40.00k 80.00k 120.0k 160.0k 0.000 40.00k 80.00k 120.0k 160.0k
loss_| loss_|
tag: loss_l/loss_| tag: loss_l/loss_|
160 - 160
120 120
0.800 0.800
0.400 | 0.400 |
0.00 | L 0.00 |
0000 40.00k 80.00k 120.0k 160.0k 0000 40.00k 80.00k 120.0k 160.0k

Figure 5-5. Model3. Train Result
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accuracy
tag: accuracy/accuracy

loss_|
tag: loss_l/loss_|

Figure 5-6. Training Result

Table 5-3. Training Result

Model 1 Model 2 Model 3
Loss 0.2 0.1 0.001
Accuracy 0.85 0.95 1
(1=100%)

Because of the small datasetset, the loss is pertubated. But the trend shows the
classifying model can be trained. If there is more data, the smoother graph can be
achieved.

The Model 3 shows the best training performance. The STFT transform had most
fast training speed and converges 1 at 100000 iterations. The CNN encoding gave
0.95 accuracy and just time cutting input results in 0.85 accuracy. It shows the
frequency domain analysis is more suitable than time domain in the sensor signal
pattern learning. This could be an overfitting model to the training set but we just

compare the training performance of each model in this research.
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accuracy
tag: accuracy/accuracy

0.000 4000k 80.00k 1200k  160.0k

L

Figure 5-7. Test Result

Table 5-4. Test Result

Model 1 Model 2 Model 3

Accuracy 0.5 0.6 0.65
(1=100%)

The test set performance result shows the same rank (STFT > CNN > Time
cutting). The STFT transform input format shows the best performance. But the
model’s accuracy is constrained because of overfitting. If we find a more suitable
model structure, we can get the high accuracy. With this comparison of several
models structure performance in the PDR user context classification, we can find
the different input feature can influence the result accuracy. This research is
performed with Cambridge open data set for comparing the performance of input
feature difference. To apply this model for Galaxy S8, we need to get a training
data which is acquired from S8. With transfer learning, we could get the proper
model for S8 and finally the adaptive PDR parameter control for the different user

context could be performed.
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Chapter 6. Conclusion & Future work

In this research, the GPS / INS smartphone based pedestrian dead-
reckoning was described in detail. The GPS raw carrier phase measurement was
used to velocity determination. By performing the cycle slip compensation, the
author got the more accurate velocity. Also, GPS/ INS integrated pedestrian
navigation showed the improved performance in the position, velocity
determination than NMEA.

Moreover, the deep learning scheme was considered in a user walking
context classification. The models showed the different performance by
transformation method. The STFT gave the best performance and the CNN
encoded time-cutting showed the more suitable performance than just time-
cutting.

For future research, the INS pedestrian dead-reckoning accuracy needed
to be improved for a better result. Moreover, the amount and diversity of dataset

will be helpful for the enhancement of the deep learning model accuracy.
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