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Abstract

Design of Least-Square Switching Function
for Accurate and Efficient Gradient Estimation
on Unstructured Grid

Seungpyo Seo
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The present work proposes accurate and efficient gradient estimation on unstructured
grid by designing a switching function between two Least-Square methods. Through
various test cases, it is shown that gradient by Green-Gauss theorem, one of the most
widely preferred gradient estimation on unstructured grid, is inherently inconsistent, and
gradient by Least-Square methods show higher gradient accuracy on viscous boundary
layer and general grid compared to Green-Gauss approach.

Regarding the observation, switching between two Least-Square methods, relatively

efficient compact weighted Least-Square method and accurate extended weighted Least-



Square method, is pursued. Since condition number of the Least-Square matrix can be
calculated from the geometric information of the given grid, and shows correlation with
the gradient error, it is chosen as the switching criterion. To implement on general grid,
the condition number is analyzed and formulated as the function of number of stencils and
angle between stencil vectors using trigonometric relations. Then, it is confirmed that
average condition number of extended weighted Least-Square method is suitable switching
criterion value.

The switching mechanism is demonstrated through two and three-dimensional simple
cases. Finally, comparison of gradient accuracy and computational cost of three Least -
Square methods are addressed on two-dimensional airfoil, three-dimensional wing-body

and modern fighter configuration to show the excellence of SWLSQ.

Keywords: Gradient, Gradient estimation method, Least-Square method, Switching

Function, Condition number, Green-Gauss theorem, Unstructured grid

Student Number: 2017-29318



Contents

Page
ADSTFACT. . ..o i
CONTEINTS. ..t iii
LIST OF TADIES. ... e Vi
LISt OF FIQUIES....cceieeee e et sreeresrenes vii
Chapter 1 INtrodUCHION.........ccooiiiicce et 1
L1 BaCKgroUNG. . ...t 1
1.2 Research ODJECLIVE. ... 2
Chapter 2 Numerical MethodS. . ..ceiveieieeieiiiiniiiieieiiaiersncersscntessesoscnsossssnssnes 4
2.1 GOVerning EQUAatiONS. ........o.iiriri e 4
2.2 Gradient Estimation Methods on Unstructured Grid................c.cooviiini, 7
2.2.1 Least-Square Method............coovviiiiiii i, 7
2.2.1.1 The Method of Normal Equations.................cocooiiiiiiiiiiiinn, 10
2.2.1.2 Weighting FUNCLION............coiiiii e, 12
2.2.1.3 QR FACOrization. ... ......c.oviii i 13
2.2.2 Green-Gauss TNEOTEM. ... ...iui it 15
2.2.2.1 SIMPle AVEraging......c.ooriniieiiii et 16
2.2.2.2 NOUE AVEIAGING. ... ettt ettt e et e eaeans 17
Chapter 3 Analysis on Preceding ApPProaches.............ccocviieniiiininiieisseneiens 19
SINUMEriCal TSt ... 19
B L L G T P et 19

iii 5 |



3L 2 TSt FUNCHION. .ottt e e e e e, 22

3.2 OBSEIVALION. ...ttt 24
3.2.1 Quadrilateral grid with test functions...............cooiiiiiiiiiiiie 24
3.2.2 Results by Green-Gauss type methods. ...........c.ooviviiiiiniiiiiiiiiiiiiieienein, 28
3.2.3 Results by Least-Square type methods............coovvviiiiiiiiiiii e 29

Chapter 4 Least-Square Method Switching FUNCtION....ccevieieiieeeienneneneennnn, 31

A1 MOTIVATION. ..ottt 31

4.2 SWItChing CriterioNn. . ... ..o, 32
4.2.1 Conventional Grid Quality Criterion...............coooviviiiiiiiiiiine. 32

4.2.2 Condition Number of Least-Square MatriX................cooooiiiiiiin, 34
4.2.3 Condition Number Calculation Method...................c.cooiiiiiinnn. 38
4.2.3.1 Quadratic Formula.............coooiiiiii 38
4.2.3.2Power Method. ... ... ..o 39

4.3 Switching Least-Square Method.............cooiiiiiii 41

4.3.1 Behavior of Condition Number of CWLSQ and EWLSQ................... 41
4.3.2 SWItChing Procedure. ... ..o 44

4.4 Simple DemonStration..........c.oieiiii e 46
4.4.1 Two-Dimensional Randomly Diagonalized Triangular Grid............... 46
4.4.2 Three-Dimensional Random tetrahedral Grid........................oooenei 48

(1 gT= o] (=T ST EY o] o] [ 07 1 (o] o 49

5.1 Two-Dimensional NACAQ0012 Airfoil...........coviiiiiiiiieeen, 49

5.2 Three-Dimensional Wing-Body Configuration...................ccooooiiiiiinni 51
5.2 1 TeSt FUNCHION. ...uiiii et 51

iv



5.2.2 FIOW SIMUIALION. . ..o e e 52

5.3 Three-Dimensional Modern Fighter..............oooiiiiiiii i, 55
5.3 1 TeSt FUNCHION. ...uutit e 55

5.3.2 FIow SIMUIAtIoN. ..ot 57

Chapter 6 CONCIUSION.........oiiiiiiiic e 59
] =T =TT 61
o = OO PP PP POTE R PPPPPPPRRPO 64

\
Jx_',i: 3 1



List of Tables

Page
Table 3.1 Notation of grid and test function types. ........cccooeviiiiiiiiiii i, 23
Table 5.1 Summary of information of the flow simulation over NACAQ012.............. 49
Table 5.2 Summary of information of the flow simulation over the CRM...................... 53
Table 5.3 Aerodynamic coefficients and computation time of two LSQ methods......... 53
Table 5.4 Summary of information of the flow simulation over the fighter................ 56
Table 5.5 The number and ratio of switched cells..................ooiiin, 57

Table 5.6 Aerodynamic coefficients error and computation time of two LSQ method...57

Vi



List of Figure

Page
Figure 1.1 Solution reconstruction stage in MUSCL scheme................c.ocooiiiiiianin. 1
Figure 1.2 The region where gradient degradation occurs around the aircraft.................. 3
Figure 1.3 Poor gradient accuracy around the complex geometry of the aircraft.............. 3
Figure 2.1 Stencil configuration of CWLSQ and EWLSQ............cooiiiiiiiiiiiiiiin.. 9

Figure 2.2 Schematic of the method of normal equations for Least-Square problem....... 10

Figure 2.3 Stencil configuration of GGSA and GGNA...........ccoiiiiiiiiiiiiieeeee 18
Figure 3.1 Five types of grid structure for numerical test..................cooviiiiiinninnn.n. 21
Figure 3.2 Comparison of results from quadrilateral grid.........................o 24
Figure 3.3 One-dimensional stencil configuration with non-uniform spacing............... 25
Figure 3.4 Contours of gradient error by GGSAand GGNA...........ccoviiiiiiiiiieinnnn. 28
Figure 3.5 Contours of gradient error by CWLSQ and EWLSQ.................ooooiii 30
Figure 4.1 Gradient error with respect to conventional grid quality criteria.................. 33
Figure 4.2 Comparison of two LSQ methods for condition and gradient error............... 35

Figure 4.3 Comparison of CWLSQ and EWLSQ result from U-Q and R-Q test case....... 36

Figure 4.4 Alternative expression by using trigonometric functions and identities......... 42
Figure 4.5 Condition number calculation example of CWLSQ and EWLSQ................ 44
Figure 4.6 Overall procedure of SWLSQ.......ooiiiiiii 45
Figure 4.7 Comparison of three LSQ methods on R-Q testcase............co.evvvevininennn.n. 47
Figure 4.8 Comparison of three LSQ methods on three-dimensional test case............... 48

Vii



Figure 5.1 Comparison of three LSQ methods on two-dimensional NACA0012............ 50

Figure 5.2 Comparison of three LSQ methods onthe CRM.....................ol. 52

Figure 5.3 Pressure contour of the CRM.......... ... 53

Figure 5.4 Comparison of three Least-Square methods..................ocoooiiiiiiiinn, 55

Figure 5.5 Comparison of second-gradient error of three Least-Square methods............ 55

Figure 5.6 Comparison of second-gradient error of the two Least-Square methods. ........ 57
viii



Chapter 1

Introduction

1.1 Background

In modern compressible flow CFD code, Monotonic Upwind Scheme for Conservation
Laws (MUSCL) type schemes with second-order accurate spatial discretization are widely
used in Finite Volume Method (FVM) cell-centered frame. In the solution reconstruction
stage of MUSCL type schemes [1], as well as for calculation of viscous flux and turbulent
source term, gradient estimation plays an important role for the accuracy and robustness

of the dependent variable.
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Figure 1.1 Solution reconstruction stage in MUSCL scheme with and without a limiter



Unlike the structured grid, unstructured grid does not have an ordered cell-connectivity
that classic ways of estimating a gradient used in structured grid are not applicable. On
unstructured grid, gradient estimation by Green-Gauss theorem (GG) and Least-Square
method (LSQ) are widely preferred approaches, but no optimal solution exists in terms of
accuracy, robustness and efficiency. Mavriplis [2] indicated that gradient accuracy of non-
weighting, compact LSQ can be poor on high aspect ratio cell with surface curvature.
Diskin et al. [3] and Correa et al. [4] compared existing gradient estimation methods on
various regular and irregular meshes. Meanwhile, Shima et al. [5] tried to combine the
advantages of two gradient estimation methods, gradient by Green Gauss theorem and

gradient by Least-Square methods.

On the other hands, it was found that bad grid quality around the complex geometry of
the aircraft, especially at the small space between the control surface and the nozzle as
presented in Fig. 1.2 and Fig. 1.3, deteriorates the gradient accuracy. This gradient
accuracy degradation brings about the numerical oscillation at the region, eventually
leading to the computation failure. Full configuration of the aircraft is not presented here
for confidentiality policy.

The objective of this work to propose accurate and efficient gradient estimation method
on arbitrary unstructured grid. More specifically, we propose a switching criterion that can
be applied to conversion between CWLSQ and EWLSQ, by analyzing it qualitatively and
quantitively.

This thesis is organized in the following order. To begin with, chapter 2 introduces the

numerical methods covered in this work, including basic information of the governing



equations and existing gradient estimation methods. Next, chapter 3 outlines analysis made
on preceding gradient estimation approaches. Chapter 4 deals with process of how the
switching criterion is established, forming the Switching Least-Square method. Chapter 5
compares the SWLSQ with two LSQ methods, CWLSQ and EWLSQ, on two and three-
dimensional flow problems to show the excellence of SWLSQ. Lastly, conclusions and

necessity of future work are addressed in Chapter 6.




Chapter 2

Numerical Methods

2.1 Governing Equations

The governing equations are three-dimensional Navier-Stokes equations, which can be
written in an integral form as follows for control volume Q and surrounding control

surface S

deQ +¢ (F.—F)ds= f@dﬂ. 2.1)
atn 20 Q

W stands for a vector of the conservative variable consisting of five components

p
pu

W= F:’| (2.2)
pE

where p, u, v and w are density, x-direction velocity, y-direction velocity, z-direction
velocity respectively. Furthermore, E is total energy per unit mass of a fluid obtained from
summation of internal energy per unit mass, e, and its kinetic energy per unit ass |v|?/2,
ie,

v|? 2+ v? +w?
E = e+%=e+%. (23)

In addition, ﬁc is the vector of convective fluxes which describes the contribution of flow

quantities going through the control surface with the velocity ¥



pV
[puV + nxp]

ﬁc = [pvV +n,p (2.4)
pwV +
pHV

in which V is the velocity normal to the surface element dS, or contravariant velocity,

with definition
V=v-n=un,+vn, +wn, (2.5)

F, is the vector of viscous fluxes

0
[ Tax + My Tay + M T |
.
F, = |MaTyx + yTyy + 15Ty | (2.6)

| Ny Tzx + nysz + NyTyz |
n,0, +n,0, +n,0,

where

Ox = UTyy + VTyy + Wy, + ka,

0, = uty, +v7y, + Wiy, + k

3 (2.7)

0, = ut, +v7, +wr, + ka

are terms expressing the work of the viscous stress and of the heat conduction in the fluid
respectively. 7;; denotes a stress component of the viscous stress tensor, originated from
the friction between the fluid and the surface of an element. Under the assumption of

Newtonian fluid, z;; is thought to be proportional to the velocity gradient

_A<6u+6v+OW)+2 Jdu

e = 4\ dy 0z K ox
(2.8)

_A(6u+6v+6w>+2 v

fry = Mox dy 0z K ay’



_A(8u+6v+GW)+2 ow
tzz = 4 \x dy 0z Koz

ou Jdv
Tey = Tyx = H (@ + a)

_ _ (8u+aw>
sz - sz - lu aZ ax ’

v ow
o=t =u(5+ 5)

where A is referred to as the second viscosity coefficient, and u represents the dynamic

viscosity coefficient. Lastly, Q in Eqg. (2.1) is the source term with the components

0
Plex
6 = Pfley (2.9)
|  Plez |

lpf; U+ thJ
with pf,; accounting for the effect of body forces, such as gravitational force, and g},

denoting time rate of heat transfer.



2.2 Gradient Estimation Methods on Unstructured Grids

2.2.1 Least-Square Method

Least-Square method is a general approach to find optimal solution for overdetermined
system by minimizing the sum of the square of the residuals. Residual means the difference
between the fitted value and observed data. In overdetermined system, the number of
equations is greater than the number of unknowns so that no exact solution exists, except
for the case where one equation is linear combination of others.

As for FVM cell-centered schemes, the gradient as well as other flow quantities are
assumed to be located at centroid of each control volume, which is identical to a grid cell.
Herewith, Least-Square formulation is derived from the Taylor series approximation with
respect to the cell where the gradient is to be evaluated. Taylor series approximation of the

cell i to the neighboring cell j (or stencil) can be expressed as follows
¢; = ¢ + V- dij +0(h?) (2.10)
Vi - dij = Apy; + O(h?) (2.11)
where ¢ is flow variable at the cell-center, and cfi]- = Jj - cfl- is the distance vector from

the cell i to the stencil j. Further, 0(h?) denotes second-order truncation error, which is
usually neglected in Least-Square formulation, and h is a characteristic grid spacing.
Writing down Eg. (2.11) to all neighboring cell j, we obtain following overdetermined

system of linear equations



9
Axyy Ay Azy X7l [Adn
Axiz Ay, Az (6_(1)) _ |Adi (2.13)
2o 1 ||\ay), s
Axiy  Ayin  Dziy (6(1)) Adiy
[\Jz/;

with A(*);; = ()j — ()i, and N is the number of stencils used for estimation of gradient.

In abbreviation, Eq. (2.13) is expressed as

A% = b. (2.14)
On the other hand, choices of stencil for the Least-Square method have been studied by
many researchers [3,6,7,8]. In this paper, two types of scope of stencil will be mainly dealt
with, compact stencil and extended stencil. When we use neighboring cells, who are
sharing a cell face with the target cell, where the gradient is estimated, these neighboring
stencils are called compact stencil, leading to Compact stencil Weighted Least-Square
method (CWLSQ). Extended stencil, covering larger range than compact stencil, means
neighboring cells who are sharing a node with the target cell, also referred to as Extended
stencil Weighted Least-Square method (EWLSQ). Fig. 2.1 illustrates the stencil

configuration of Least-Square method using compact and extended stencil.
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Figure 2.1 Stencil configuration of CWLSQ and EWLSQ



2.2.1.1 The Method of Normal Equations

A generally adopted approach to solve Least-Square problem is the method of normal

equations. In mathematical sense, overdetermined system, where no solution x exists

satisfying Eq. (2.14), implies b is not in the column space of A as described in Fig. 2.2.

X : Least-Square solution

AX*: Projection of b on Cc(4)

b: Solution difference

|ax" - Bb|: Residual to be minimized
C(4) : Column space of A

Figure 2.2 Schematic of the method of normal equations for Least-Square problem
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oF

The optimal Least-Square solution X* that minimizes the residual is the projection of the

b to the column space of A, €(4). Meanwhile, from the relation of C(A) to the null

space

c(At =N(T) (2.15)

, and since AX* — b is an element of orthogonal complement of column space of A

(A% - b) € C(A)*Y, (2.16)

following normal equation can be derived

AT(A%* —b) = 0. (2.17)

Expanding and rearranging the normal equation, we obtain

ATAR* = ATh = 0 (2.18)
ATAR* = ATD (2.19)

, or in matrix form

- N N N : - N B
2
J J J <_) J
N N N " N
2 ¢
j j j j

N N N ( ) N
ZijAzj szjAzj Z(Azj)2 \oz)/,] zAzjmpij
L7 7 - L7 -

J

*

Finally, taking the inverse of (ATA), X* is expressed as follows

%* = (ATA)"1ATb. (2.21)

11



2.2.1.2 Weighting Function

Least-Square method without proper weighting function may present bad gradient
accuracy at a cell with high aspect ratio on surface curvature [2]. After weighting function
is applied to each stencil, Eq. (2.20) can be cast into the following form

- N N N 7 r N E
2
7 j j (ﬁ) J

N

N N M N
2 a¢
J J : J

4

J

*

N N N <6¢) N
z WJAXJAZ] Z W]Ay]AZ] Z W] (AZ])Z [\Jz i Z WJAZ]A(pU
5 ] ] Ny |

J

or in abbreviation
A% = b. (2.23)
A typical treatment of weighting function is taking inverse square of distance between two
points, the target cell and the stencil
- 2

w; = 1/|dj] (2.24)
where jij is same as in Eq. (2.11). In this study, this approach will be used as the basic
weighting function. Meanwhile, alternative choices of weighting function have been

analyzed by other research [5,10].

12



2.2.1.3 QR Factorization

To solve the linear system of equations Eq. (2.23), a matrix inversion is essential.
However, it is known that a cell with highly stretched cell is prone to become an ill-
conditioned system, which subsequently brings about another remedy, QR Factorization
[11,12].

Following is the description of QR factorization procedure explained in the reference
[13]. By using the Gram-Schmidt process, the Least-Square the matrix A = [d,, d,, ds]
from Eq. (2.23) can be decomposed into orthogonal matrix Q = [g;, G2, qs] and upper

triangular matrix R, whose component is denoted as r;;,

(QR)X* = b (2.25)
where
> 1 -
q1 = - ai,
S 1 (.> EVIR )
G, =—\a,——a, |,
T\t oy (2.26)

(2.27)

Ng
1 Ax;iA
T2 =—— XijBYij»
7114
Jj=1

13



Ng

T2 = Z(A}’ij)z - 7"122r

j=1

Nga
1
r3z =— AxijAzi]-,
711 4=
j=1

Na Ny
1 12
T3 = — ZAyUAZU - —Z AxijAZij B
722\ 4 T11 4
Jj=1 Jj=1

Na
2
33 = Z(Azij) — (s + 1)
=1

Here, weighting function wy; is set to unity for convenience. Since Q is an orthogonal

matrix, transpose of Q is same as inverse of Q, i.e.
Q" =¢Q7! (2.28)
Therefore, substituting the above relation to solve the Eq. (2.25) for x*,

%* = R™1QTh. (2.29)

14



2.2.2 Green-Gauss Theorem

The gradient estimation by Green-Gauss theorem, or divergence theorem, is derived
from the relation that volume integral of first derivative of the flow variable V¢ is equal

to the surface integral of the flow variable ¢ at the given location

va vwv:#A PpRdA (2.30)

where ¥V and A denote the control volume and the surrounding surface respectively.
Furthermore, dV and dA are infinitesimally small volume and surface element respectively
with unit normal vector 7 pointing outward of the cell. As for cell-centered FVM,
assuming constant flow variable within the control volume, Eq. (2.30) can be rewritten as

follows

Ve = # PpRdA (2.31)
A

with V indicating the volume of the grid cell. In the same context, surface integral on the
right-hand side of Eq. (2.31) can be approximated by sum of the flow variable crossing the

faces of the surrounding surface, called spatial discretization,

N
k=1

In the above Eq. (2.32), N refers to the number of faces of the control volume, and ¢, is
the average flow variable assumed to be placed at the midpoint of the k-th face. In addition,

n, and A, are unit normal vector and face area of the k-th face respectively. Denoting a

15



specific cell using a subscript i and dividing both sides of the Eq. (2.32) by V, we can

express the gradient by the Green-Gauss theorem as follows

N
1 T -
V¢)i = VZ (;bknkAk. (233)
k=1

To estimate the gradient by using Eq. (2.33), one should identify ¢_>f, an average flow

quantity at the midpoint of the k-th face. However, an exact value of ¢, cannot be
obtained directly, and thus an approximation for ¢, is inevitable. In the following sub-

chapters, two ways of approximating the cell-interface value are dealt with.

2.2.2.1 Simple Averaging

A common way to interpolate the cell-interface value is simply taking the mean value
from the left and right quantity of the face, because it is straightforward and requires little

effort for implementation

- 1
b =51+, (2:34

where ¢; and ¢, are values from the left and right side of the interface respectively.

For these reasons, gradient by Green-Gauss theorem with simple averaging (GGSA) is
usually taken as the basic approach in other research where there is no relevant statement
about the approximation of cell-interface value. Despite of advantages regarding simplicity,

basically, this approach is not linear-exact, indicating that this method alone cannot restore

16



the gradient value of the given function even if the function used is linear. More details

will be handled in next chapters.

2.2.2.2 Node Averaging

Another way of interpolating the cell-interface value is averaging the quantities of nodes
consisting the face. The gradient by Green-Gauss theorem with node averaging (GGNA)
are taken into two steps: flow quantities encompassing a node are averaged to obtain the
node value, with or without inverse distance weighting, and the calculated node values are

averaged to interpolate the cell-interface value.

N 3 /ld
Stepl: b, = Z"Ll/lf' (2.35)
Step2: br (1 + Py + -+ ) (2.36)

~ number o f nodes
Here ¢, indicates the node value, and c_ij refers to a distance from the node to adjacent

cell-center. Although GGNA often gives more accurate gradient estimation than GGSA,
this methodology also is not free from linear-exactness problem; further explanation of
this property will be dealt in next chapter together with GGSA. Stencil topology of GGSA

and GGNA are illustrated in Fig 2.3.

17
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Chapter 3

Analysis on Preceding Approaches

3.1 Numerical Test

In this chapter, the existing gradient estimation methods, dealt with in previous chapter,

are going to be analyzed on various grid types together with two test functions.

3.1.1 Grid Type

For numerical test, five types of grids are examined: quadrilateral grid, uniformly
diagonalized triangular grid, randomly diagonalized triangular grid, mixed grid around a
circular cylinder and unstructured NACA0012 airfoil grid. Basically, triangular and mixed
grids are variants of the quadrilateral grid in a sense that they were obtained by
manipulation of the grid around the cylinder. Meanwhile, all grid types include cells with
high aspect ratio near the wall, which are usually observed at viscous boundary layer. Since
these cells are known to degrade gradient accuracy estimated by Least-Square methods,
this region has been the major concern of some work [8,14]. Fig. 3.1 illustrates five grid
structures where as for the triangular and mixed grids, only magnified grid images are

posted for brevity

19
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(c) uniformly diagonalized
triangular grid (magnified)
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(f) Unstructured NACAO0012 grid

Figure 3.1 Five types of grid structure for numerical test
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3.1.2 Test Function

Evaluating the gradient accuracy necessitates the test function which can easily provide
exact gradient value at the point where gradient estimation is performed. Two kinds of test

functions are introduced: a quadratic function

¢p=1r2=x%+y? (3.1)

and a linear function

¢ =x+2y+0.5. (3.2)

Accordingly, exact gradient value in X, y and z directions can be obtained conveniently for

the quadratic function

— =2y, (3.3

and for the linear function

— =2 (3.4)

22



When the numerical test is conducted in three-dimensional case with more complex grid

configuration, following test functions are considered

p=r>=x>+y2+22 (3.5)
¢=x+2y+3z+0.5. (3.6)

with exact gradient values calculated in the same manner as the two-dimensional situation.
Herewith, aforementioned grid and test function types are denoted in a combined manner
for simplicity, referring to the Table 3.1. For example, if the CWLSQ is examined on

randomly diagonalized triangular grid with quadratic test function, this test case will be

called R-Q.
Figure 3.1 Notation of grid and test function types
Type Notation
Quadrilateral grid Q
Uniformly diagonalized triangular grid U
Grid Randomly diagonalized triangular grid R
Mixed grid M
Unstructured NACA0012 grid N
Test Function Que_;ldratlc fun(_:tlon Q
Linear function L
Meanwhile, gradient errors are evaluated at each grid cell
Gradient error at the cell | = ¢; = | 2iexact VPiestimated 1) (3.7)

V¢i,exact
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3.2 Observation

3.2.1 Quadrilateral grid with test functions

As for both Q-Q and Q-L test cases, all gradient estimation methods present good
gradient accuracy, having less than 1% of error as depicted in Fig. 3.2. In fact, good
gradient accuracy from GGSA and GGNA was pointed out by existing studies [2,6,15] that
GG type methods show its strength in viscous boundary layer grid. Surprisingly enough,
however, one should note that LSQ types methods with inverse distance weighting function

give even more accurate gradient compared to GG type methods.

Quadrilateral grid (near wall)

Gradient_Error[%)]

o
Coordinatex

¢ =x+2y+ 0.5
GGSA | GGNA | CWLSQ | EWLSQ

Figure 3.2 Comparison of results from quadrilateral grid

Moreover, as for Q-L test case, CWLSQ and EWLSQ are superior in terms of gradient
accuracy, showing almost 0(1071%) magnitude of error, while GGSA and GGNA cannot

reduce the gradient error under certain level due to their deficiency of linear-exactness. In
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other words, two GG type methods are not able to reproduce the gradient value of the test
function even if the function is linear. One-dimensional grid with non-uniform spacing is

just enough to demonstrate this property [6], as shown in Fig. 3.3.

i-1/2 i+1/2
[ 2 L [
i-1/2 i i+1/2
Ax;_q Ax; Ax;4q ® : Target cel

@ : Stencil cell

Figure 3.3 One-dimensional stencil configuration with non-uniform spacing

First, consider GGSA to estimate the gradient at the cell i

1o
Vicesa = VZ PN (3.8)
k=1
bir12 — bi-1/2
= Ax, : (3.9
Cell-interface face values with simple averaging are
Pis1 + ¢
¢i+1/2 = %'
(3.10)
i+ b
bi—1p = le
Inserting the Eq. (3.10) to Eq. (3.9), it leads to
i1 — dic
Vbicesa = l+12Axl- = (3.11)

where ¢;,1, ¢;_1 are obtained from Taylor series expansion with respect to ¢;, i.e,
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Axi+1 + Axi) n Vzd)i (Axi+1 + Axi

2
3
2 2! 2 ) + O

bran = i+ i
(3.12)

Axi + Axi_1> n Vzd)i (Axi + Axi_l

2
3
2 2! 2 ) tom)

bir = b= i

Substituting the Eqg. (3.12) to Eq. (3.11) and rearranging the equation, we obtain

1 Mgy + A%y Axipg = Dxiq | Dby — Axy
Vo =v-(— ‘—) V2, 0(h?
bicesa b; 2+ 4hx, + V4o, 8 + 1647, +0(h*)

Axjyq + DXy

1
= Vit Ve (_E T ax,
L

)+0m) (3.13)

Obviously, the leading error term in Eq. (3.13) is zeroth order, implying that gradient by
GGSA is inherently inconsistent method. Provided that Ax;_; = Ax; = Ax;,4, Which

means a regular and uniform grid, GGSA can yield a second-order accurate gradient

Voicesa = Vi + 0(h?). (3.14)
However, this condition is far from the practical grid configuration encountered in actual

CFD problem.

Likewise, applying the same procedure above to GGNA, it leads to

Vo [Ax;(Axipq + Dx;)  Axi(Ax; + Axi_q)
Voicona =

2 Ax?, | + Ax? Ax? + Ax? |

V2 [Ax;(Axpyq + Ax)?*  Axy(Ax; + Ax;_q)? +0(h?)
8 Ax? | + Ax? Ax? + Ax}
Vo, [Ax;(Axiyq + Ax)  Axi(Ax; + Axi_y)
v, + —2[+ 0. 3.15
$i [ Ax?, | + Ax? Ax? + Ax? @ (319

Even for this case, unless Ax;_; = Ax; = Ax;, is satisfied, same conclusion as GGSA

is attained. Therefore, these two GG type methods should not be preferred in actual flow
26



problem where irregular and mixed grids are dominant, especially when accurate gradient

value itself is important, such as turbulence modeling.
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3.2.2 Results by Green-Gauss type methods

As for all other grid and test function combination, such as U-Q, U-L, R-Q, etc., GG type
methods exhibit large gradient error due to the fact demonstrated in earlier chapter. Even
though GGNA show better accuracy than GGSA on mixed and unstructured NACA0012

grid, still the level of gradient accuracy is not satisfactory.

b =x+y2=r2

Randomly
diagonalized
triangular grid

Gradient_Error[%]

Mixed
(quadrilateral +
triangular) grid

Unstructured
NACAO0012 grid
(trailing edge)

Figure 3.4 Contours of gradient error on triangular and mixed grid by GGSA and GGNA
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3.2.3 Results by Least-Square type methods

Regarding the U-Q and R-Q test cases estimated by CWLSQ, cells with high gradient
error exist, though accounting for less than 10% of entire cells. On the other hands,
EWLSQ can successfully estimate the gradient, showing less than 1% of error for these
cases. Comparison of gradient error by CWLSQ and EWLSQ for R-Q test case can be
found in Fig. (3.5). Result of U-Q test case is line with that of R-Q and is omitted here.
Except for the U-Q and R-Q case, both CWLSQ and EWLSQ show similar level of
gradient accuracy.

EWLSQ, whose gradient accuracy is better than other methods investigated, usually
require more than two to dozens of times more stencil than CWLSQ, and thus inevitably
consumes more computational cost than the counterpart. However, as pointed out in M-Q
and N-Q test cases, CWLSQ can yield comparable level of gradient accuracy in certain
instances.

To sum up, at the viscous boundary layer, LSQ type methods can give even more
accurate result than GG type methods, which turn out to be inherently inconsistent.  Other
grid, test function combination also showed that GG type methods are not suitable for
general grid type, so one should refrain from applying them to actual flow simulation,
especially where correct gradient value is crucial. Meanwhile, EWLSQ can provide
accurate gradient for all test cases, and CWLSQ is comparable to EWLSQ except for U-Q
and R-Q test cases. Therefore, by taking advantage of the merits of two LSQ approaches,
which are relatively good gradient accuracy of EWLSQ and relatively low computational
cost of CWLSQ with fair accuracy, and by switching between them depending on certain

criterion, we can come up with an accurate and efficient gradient estimation method that
29



can be implemented on general unstructured grid.

Randomly
diagonalized
triangular grid

o “om " os
CoordinateX

d=x2+y2=r2

Mixed
(quadrilateral +
triangular) grid

Unstructured
NACA0012 grid
(trailing edge)

H

£ coordinatey £
3 g

b

0we 15096 151191502
CoorginateX

151004

106 150958 131 15
CoordinateX

102 151004

Gradient_Error[%]

CWLSQ EWLSQ

Figure 3.5 Contours of gradient error on triangular and mixed grid by GGSA and GGNA
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Chapter 4

Least-Square Method Switching Function

4.1 Motivation

From the observation made in earlier chapter, we can think of an accurate and efficient
gradient estimation method by switching between two LSQ methods. In other words, if the
gradient error of a cell goes over the threshold, this cell adopts the EWLSQ for estimating
the gradient, whose gradient accuracy was shown to be best among the candidates.
Otherwise, the cell chooses CWLSQ as the gradient estimation method, who yields fair
gradient accuracy and claims less computational cost compared to EWLSQ. However, to
implement this idea on universal unstructured grid, we need to determine a consistent
switching criterion which is solely dependent on grid information. In next sub-chapters, a
consistent criterion for switching procedure will be discussed, resulting in the Switching
Weighted Least-Square method (SWLSQ), followed by demonstration of SWLSQ around

simple geometry.
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4.2 Switching Criterion

4.2.1 Conventional Grid Quality Criterion
Conventionally, quality of the grid has been judged by parameters such as the aspect
ratio, skewness and area (or volume) ratio. The aspect ratio of a grid cell is defined by the

ratio of maximum to minimum length, and the skewness (or equiangle skewness) is defined

by

ma

(Qmax - Qe) (Qe - Qmin) ]

X , 4.1
180-0) ' 0 @

with Q4 the largest, Q,,in the smallest angle of a cell in degrees and Q,,,;, angle for

equilateral element in degrees. Meanwhile, the area ratio is calculated as follows

max|[Size (i) /minSize(j), maxSize(j) /Size(i) | (4.2)

where Size(i) denotes the area or volume of the cell, and minSize(j) stands for minimum
area or volume of the adjacent cell j. MaxSize(j) denotes the maximum in the same range

as minSize(j).

Firstly, as a basic approach, these grid quality criteria are considered to find the
correlation between the gradient error and them. Facts that these criteria are just function
of geometric information of given grid and requires little effort are advantages of trying
them as a switching criterion. Fig. 4.1 exhibits graphs of the gradient error versus
conventional grid quality criteria estimated by CWLSQ on randomly diagonalized

triangular grid. Clearly, however, none of the criteria shows direct proportionality
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regarding the gradient error. For example, when it comes to the grid skewness, the gradient
error stays low even if the skewness increases, before it reaches about 0.9. However, the

error suddenly soars around 0.9.

Another radical disadvantage of taking conventional grid quality criteria as the
switching threshold is that these criteria are basically confined to inspection of the target
cell itself. For instance, think about a situation where a good quality cell encompassed by
bad quality cells, and take the skewness of the cell as the switching criterion. Although the
grid quality of the surrounding cells is bad, requiring extended stencil, since quality of the
target cells is good, the target cell definitely adopts compact stencil, resulting in poor
gradient accuracy. This is because gradient by Least-Square methods are affected stencil
topology around the cell rather than the grid quality of the cell itself. Therefore, we need

to set a criterion that can include the stencil information around the cell.

ERROR - ASPECT_RATIO ERROR - SKEWNESS ERROR - AREA_RATIO

100 100 100

= g0 '.lll'l = g0 = g0

2 60 l." 2 60 g 60

& ' & &

= 40 H < 4 € 4

g att g v g ¥

5 2 i 5 20 5 20

5 0 | N S P P G 0 L G 0 P

0 100 200 300 400 500 0 02 04 06 08 1 1.095 1.1 1.105 111

Aspect Ratio Skewness Area Ratio

Figure 4.1 Gradient error with respect to conventional grid quality criteria
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4.2.2 Condition Number of Least-Square Matrix

In linear algebra, condition number of the system measures how sensitive the output

value is to the small change in the input. With respect to the Least-Square problem as in

chapter 2

N

N N
2
Z w;Ax;Ay; Z w;(4y;) Z w;Ay;Az;
j j

J
N

J

, or shortly

A% = b,

r N N N E
j j j

N N
L j j |

N
J

— N -
j

N
L ]

(4.3)

(4.4)

the condition number of Least-Square matrix A can be interpreted as how sensitive the

gradient X* is to the perturbation in the right-hand side of the Eq. (4.4) b. In other words,

the greater the perturbation, the larger the error becomes.

To observe correlation of the condition number and gradient error more intuitively,

CWLSQ and EWLSQ are compared on U-Q and R-Q test cases, where major gradient

accuracy gap was observed. Fig. 4.2 shows that the gradient error of CWLSQ continuously

rises as the condition number increases on both grid types, while data of EWLSQ, low

condition number and low gradient error, are clustered around 0 on the graph. The rationale

for low and high condition number of each LSQ methods will be covered in next sub-

chapter.
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Figure 4.2 Comparison of two LSQ methods concerning the condition number and gradient error

AR = Z wiAX) Ay (4.5)
=1

where 7] = [ij, Ay;, Azj] is the vector from the target cell to the stencil. One should be

reminded that the right-hand side of the Eq. (4.5) originally includes the second-order
truncation error term 0 (h?)

j=1
, but this term is ignored during the Least-Square formulation. As a result, Least-Square
method approximation has potential of impairing the gradient accuracy by nature,

especially on ill-conditioned system. In other words, high condition number of the Least-
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Square system indicates that the truncation error omitted will seriously damage the

gradient accuracy.

In the same context, despite the high condition number of the Least-Square matrix, if

the 0(h?) is sufficiently low, then the gradient error will be not be amplified, having

accurate gradient. U-L and R-L test cases illustrated in Fig. 4.3 supports this argument.

Even though the condition number by CWLSQ can be extremely high in both grid types,

very low truncation error, bounded below 4.5E719, hardly affects the gradient value,

producing as low gradient error as EWLSQ.

4.56-10
4E-10 -
3.5E-10
3E-10

; 25610 4 o ‘e
Diagonalized g xod o 3 agaiasiy
triangular grid ill I“Iiill
5E-11
Lt
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Condition Number
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. . 0 1E-10
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Condition Number
e: Compact stencil e: Extended stencil Test function: ¢ = x + 2y + 0.5

Figure 4.3 Comparison of CWLSQ and EWLSQ result from U-Q and R-Q test cases
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Therefore, when Least-Square method with compact stencil shows unacceptable
gradient accuracy, we should expand the stencil scope by adopting EWLSQ, and the

condition number can be used as a criterion.

Another merit of usage of condition number is that the A is only comprised of distance
information from the target cell to neighboring cells which are purely geometric property,
just as conventional grid quality parameters. Accordingly, one can pre-compute the
condition number of the grid once and decide the range of the Least-Square method before

the actual computation.
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4.2.3 Condition Number Calculation Method

4.2.3.1 Quadratic Formula

As stated in previous sub-chapter, basic concept of the condition number is how much
the output value changes with respect to the perturbation in the input. More precisely,
following the notation in Eq. (4.4), the condition number k(4) can be defined as maximum

% i

ratio of the relative error in X* to the relative error in b

_ 1A= ell/||A D]

k(4) =
llell/| o]

(4.7)

with e and ||[A~te]| standing for relative error in b and error in the solution ||A~1b||

respectively. The Eqg. (4.7) is also same as

. <||A-1e||> 15]] 49)
lell ) \[a-23]] '

for nonzero b and e. The maximum value of Eqg. (4.8) is obtained by product of two terms

as follows
_ |A-e|| ]|
k(A) = max ‘max | ——= (4.9)
e=o \ llell ) %0 \ || A-1p]
= e (Ml (1A (4.10)
e+0 el b=0 \ ||X*|| '
= lIA7H- Al (4.11)
where ||-]| denotes the L-2 norm of a vector or matrix.

Least-Square matrix A is a normal matrix, satisfying the condition below
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AAT = ATA, (4.11)
with superscript T denoting the transpose of a real matrix, or conjugate transpose for a
complex matrix. Therefore, the condition number can be also acquired from the maximum
to minimum eigenvalue A ratio as

Mmax (14—) |

KA = o @]

(4.12)

As for a two-dimensional case, two eigenvalues of the A can be readily obtained from
the quadratic formula applied to the characteristic polynomial, i.e, det(4 — Al), because

the eigenvalues are roots of the characteristic polynomial.

4.2.3.2 Power Method

As for a three-dimensional case, where A isa 3 x 3 matrix, calculating the condition
number from the roots of the characteristic polynomial is limited since, general solution
for the cubic equation is more complex and contains imaginary values. Fortunately,
however, we can get the maximum and minimum eigenvalues of the system in an iterative

manner by applying so called Power Method.

Given a diagonalizable A, and Z, which approximates the dominant eigenvector or

simply a random vector, Power Method is performed as
71 = AZ° (4.13)
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2Tl+1 — AZ’TL
where the superscript over the Z denotes the iteration step. One should be careful that
equal sign in Eq. (4.13) stands for the insertion of the right-hand side value to the left-hand
side value, commonly used concept in computer science. After enough iterations, z™
becomes the greatest eigenvalue of A. Applying the same procedures as in Eq. (4.13) to
A~ instead of A, one gets the reciprocal of the minimum eigenvalue of A. Another point
to keep in mind is that the calculated maximum and minimum eigenvalues are the greatest

and the smallest eigenvalues in absolute value.
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4.3 Switching Least-Square Method

4.3.1 Behavior of Condition Number of CWLSQ and EWLSQ

From the earlier sub-chapters, we can understand why the condition number of the Least-
Square matrix is an appropriate candidate for the switching criterion and how to calculate
the condition number in two and three-dimensional situations. Remaining questions is then,
for a given grid, why EWLSQ presents low condition number, thus leading to low gradient
error, and CWLSQ causes ill-conditioned system. This phenomenon can be explained by
expressing stencil configuration between the target cell and neighboring cells with

trigonometric functions.

Consider a two-dimensional case where A isa 2 X 2 matrix

Z W]Ax Z w;Ax;Ay;

i-= =[* 2 (@14

Z w]Ax]ij Z w; ij

Then the characteristic polynomial can be written as

(@—=N)(d—-2)—bc=0 (4.15)

, and from the quadratic formula, k(4) is obtained as follows

Amax]  (a+d)++/(a—d)?+4bc

k(A) = =
) [Arnin (a+d)—+/(a—d)?+4bc

(4.16)

Introducing trigonometric functions and identities, alternative expression for components
of A can be obtained as described in Fig. 4.4
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= Z cosZBj

j=1

Figure 4.4 Alternative expression of components using trigonometric functions and identities

Applying the same process to terms a + d and 4bc in Eq. (4.16)

a+d= Z Wj(ij2 + ijz)
j=1 (4.17)

=N,

4bc =4 Z w;Ax;Ay; Z w;Ax;Ay;
= 42 cos@ sin@; Z cos@ smH- (4.18)

1 1
= 425517129]-25517129]-
j:l ]=1
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Collecting all alternative expressions, the condition number is derived as

_(a+d+(@a—d)?+4bc N+ /N+p

k(4) =
(@a+d)—+(a—d)?+4bc N—,/N+p

(4.19)

where N is the number of stencils, and p is function of angles of stencil vectors. Stencil
vector is a vector originating from the centroid of the target cell to that of neighboring cell.

For example, p for four stencil vectors are expressed as

p = 2[cos 2(6; — 0,) + cos 2(6; — 03) + cos2(6; — 6,)
(4.20)
+c0s2(0, — 603) + cos2(0, — 0,) + cos2(6; — 0,)]
According to the new definition of the condition number, since EWLSQ takes about two
to dozens of times more stencils encompassing the target cell, having greater N, k(4)
easily is mitigated, keeping low condition number. In contrast, CWLSQ is prone to cause
high k(A), leading to greater gradient error. This can be confirmed by an example of
condition number calculation in Fig. 4.5. For the R-Q test case, EWLSQ takes about four

times more stencils than CWLSQ. Although stencil configuration suggests that EWLSQ

has greater p, larger N of EWLSQ successfully prevents k(A4) from being amplified.
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triangular grid

v+ s N I N YT
k(A) = N+yN+p CWLSQ 3 2.9995 14434 68
N—-\N+p EWLSQ 14 9.9952 6 0.14

Figure 4.5 Condition number calculation example of CWLSQ and EWLSQ

4.3.2 Switching Procedure

From the observation made in chapter 4.3.1, we can expect that EWLSQ consistently
outperforms the CWLSQ by having overall lower condition number and gradient error
regardless of types of the grid. Therefore, the maximum or average condition number of
EWLSQ can be a good candidate for switching criterion value. However, choosing the
maximum condition number of EWLSQ may have little merit in grids around simple
geometry, but this criterion is vulnerable to a condition number overshoot witnessed
around a practical and complex geometry, which will be discussed in later chapter. For
simples demonstrations, however, both max and average condition number of EWSLQ are

examined as the switching criterion. On the other hand, setting fixed value as switching
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criterion cannot properly handle the condition number gap between different dimensions
or geometry complexity. Thus, average condition number of EWLSQ is utilized as

switching criterion, defining a Switching Weighted Least-Square method (SWLSQ).

Fig. 4.6 describes the overall process of SWLSQ. Firstly, compute the condition number
of CWLSQ (C k(A)) and EWLSQ (E k(A)) for a given grid. Next, calculate the average
condition of number of EWLSQ (Avg E k(A)) to set the criterion. Basically, CWLSQ is
adopted as an initial gradient estimation method. With respect to a particular grid cell, if
the C k(A) is greater than switching criterion, then, this cell will be switched to EWLSQ.

Otherwise, the cell remains using the compact stencil.

yes
CWLSQ — EWLS
Compute k(A) Set Criterion ‘
_CWLSQ (C k(A)) Criterion (T) =

Figure 4.6 Overall procedure of SWLSQ
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4.4 Simple Demonstration

4.4.1 Two-Dimensional Randomly Diagonalized Triangular Grid

Consistent switching criterion defined in earlier chapter is applied to R-Q test case to
demonstrate its usefulness. The results from three LSQ methods are summarized in Fig.
4.7 where Max E k(A), maximum condition number of EWLSQ, is applied as switching
criterion. The maximum condition number and average condition number of EWLSQ are
7 and 3.6 respectively. When average condition number is applied as the switching
criterion, about 5% of more cells are converted compared to the case where the maximum
condition number is used. Seeing from the Fig. 4.7, where Max E k(A) sufficiently works
well, it may give an impression that using average Avg E k(A) unnecessarily change more
cells required. However, drawback of using Max E k(A) as the switching criterion will be
revealed in next chapter.

When CWLSQ is applied on R-Q test case, maximum gradient error obviously goes
beyond the acceptable accuracy level, but this can be successfully controlled by using

SWLSQ, showing about 1.28% of maximum error.
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Figure 4.7 Comparison of three LSQ methods on R-Q test case
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4.4.2 Three-Dimensional Random tetrahedral Grid

For three-dimensional simple demonstration case, random tetrahedral grid around a
sphere together with quadratic test function are employed. As the two-dimensional test
case, Max E k(A) is applied as the switching criterion for this simple case. Although Avg
E k(A) condition number changes about 5% more cells from CWLSQ to EWLSQ), just like
the R-Q test case, but this figure is not important compared to the stability issue of Max E
k(A). When CWLSQ alone is applied, the gradient accuracy is totally collapsed, showing
over 400% of error. However, SWLSQ can cure this phenomenon giving about 4% of

maximum error, which is similar to that of EWLSQ.
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Figure 4.8 Comparison of three LSQ methods on three-dimensional test case
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Chapter 5

Application

5.1 Two-Dimensional NACAQ0012 Airfoil

In this chapter, the switching criterion established is applied to more practical and/or
complex geometry. For the first test case, SWLSQ is applied to two-dimensional
NACAO0012 Airfoil, which is usually considered as a typical demonstration case. A
summary of numerical schemes and information of the flow simulation are listed in Table
5.1. Since the overall grid quality around NACAO0012 is good, about less than 1% of cells
were switched from compact stencil to extended stencil, meaning that most cell virtually
employ CWLSQ for gradient estimation.

Table 5.1 Summary of information of the flow simulation over NACA0012

Simulation Information Value
Mach Number 0.5
Angle of Attack 1.25
Reynolds Number 1.1 x 107
Flow Type Turbulent Flow
Turbulence model Menter’s k-w SST
Convective flux RoeM [16]
Time Integration Method Implicit Euler
Linear Algebra Method LU-SGS

As can be seen from the pressure coefficient over the NACAQ0012 in Fig. 5.1, all three LSQ
methods produces almost same result, and only one pressure contour around the airfoil is

posted in Fig. 5.1 for brevity. Nevertheless, one should note that SWLSQ costs about 18%
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less computation time compared to EWLSQ, showing SWLSQ is working well in simple

demonstration problem.
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Figure 5.1 Comparison of three LSQ methods on two-dimensional NACA0012
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5.2 Three-Dimensional Wing-Body Configuration

5.2.1 Test Function

Three-Dimensional wing-body configuration, or common research model (CRM), is
used to verify the usefulness of the SWLSQ. As like the airfoil test case, SWLSQ is
compared with other two LSQ methods, CWLSQ and EWLSQ. However, different from
the earlier application, firstly, three LSQ methods are compared using quadratic test

function to check the gradient accuracy.

We mention here that when Max E k(A) is applied as the switching criterion, it fails to
compute flow quantities during the computation. This is because even if EWLSQ is used
for gradient estimation, there are cells that presents abnormally high condition number,
usually found near the boundary cells due to unusual stencil distribution. These cells make
switching criterion too high that only few cells are switched to EWLSQ, about 2.5% in this
case. As a result, cells with high condition number and gradient error still linger, spoiling
the entire flow simulation. Therefore, Avg E k(A) is implemented as the switching criterion

from now on for stability issue.

As for CRM, when CWLSQ is used, cells with poor gradient accuracy and high
condition number are found near the trailing edge of the wing as illustrated in Fig 5.2.
Maximum gradient error soars over 260% which is unacceptable amount of figure in real
application. When SWLSQ with Avg E k(A) as the switching criterion is applied, about 22%
of cells are switched from CWLSQ to EWLSQ, reducing the maximum gradient error from
about 270% to 9.6%. This can be confirmed in the error and condition number contour
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near the trailing edge in Fig 5.2. High gradient error region observed in CWLSQ are

effectively cured when SWLSQ is utilized.

Error
countour

- Number of elements: 1,277,952

k(4)
- Test function: ¢ = x* + y? + 72 contour
CWLSQ SWLSQ EWLSQ
| cwisq | swisq | EwisQ |
Number of switched cell 285612 Avg k(A) 778171 1247 1247
switched / total cell ratio [%)] 223 Max Error [%] 261.87 9.6 7.8

Figure 5.2 Comparison of three LSQ methods on the CRM

5.2.2 Flow Simulation

Three LSQ methods are employed to conduct the flow simulation over the CRM.
Information about the numerical schemes and other inputs are listed in Table 5.2. As
expected from the high gradient error of CWLSQ, observed in earlier chapter, CWLSQ
fails to compute this test case. In contrast, SWLSQ successfully computes this case, saving
about 10% computation time compared to EWLSQ. Even though lift and drag coefficients
calculated from SWLSQ show little deviation from that of EWSLQ, the error is 0.12% for
C; and 0.35% for Cp. Pressure contour of both SWLSQ and EWLSQ over the CRM are
almost same that only one of them is posted as in Fig 5.3.
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Table 5.2 Summary of information of the flow simulation over the CRM

Simulation Information Value
Mach Number 0.85
Angle of Attack 2.3
Reynolds Number 5.1 x 10

Flow Type

Turbulent Flow

Turbulence model

Menter’s k-w SST

Convective flux

AUSMPWH+ [17]

Time Integration Method

Implicit Euler

Linear Algebra Method

GMRES

Table 5.3 Aerodynamic coefficients and computation time of two LSQ methods

LSQ Method SWLSQ EWLSQ Error [%]
C, 05042 0.5036 0.12
Cp 0.0288 0.0287 0.35
Computation Time [sec] 37810 41613 -

Figure 5.3 Pressure contour of the CRM
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5.3 Modern Fighter

5.3.1 Test Function

To present the gradient accuracy and computational efficiency of the SWLSQ on more
pragmatic and complex geometry, a modern fighter configuration is adopted. SWLSQ is
compared with other two Least-Square methods, CWLSQ and EWLSQ.

Test function examined on previous chapters, ¢ = x? + y? + z?2, is utilized again for
consistent application. At each cell, the estimated gradient by SWLSQ is compared with
exact gradient value, which can be obtained from known test function. Fig 5.4 illustrates
the first-gradient error and condition number of each Least-Square method at the region
where poor gradient accuracy triggered the numerical oscillation, mentioned in
introduction of this work. Unfortunately, however, no sensible difference between three
Least-Square methods exist in Fig 5.4(a) regarding the first-gradient error, showing less
than 1% error in all cases. Only minor condition number overestimation is observed in case

of CWLSQ in Fig 5.4(b).
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(b) Condition number
Figure 5.4 Comparison of three Least-Square methods

However, in contrast with the first-gradient, contour of the second-gradient of Least-
Square methods in Fig 5.5 present distinct difference, characterized by cells with large
error by CWLSQ. Although it is obvious that these cells with bad gradient accuracy are
attributed to numerical oscillation, switching criterion proposed in previous chapter cannot
help CWLSQ to be switched to EWLSQ effectively, supported by the fact that red cells
are still left in the contour of SWLSQ. This suggests that further research is required to
figure out the connection between the second-gradient and the condition number of the

Least-Square matrix for appropriate switching mechanism.

Second_Gradient_xx_Error{%)

SWLSQ EWLSQ

Figure 5.5 Comparison of second-gradient error of three Least-Square methods
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5.3.2 Flow Simulation

In order to analyze the effect of second-gradient accuracy on each Least-Square method,
actual flow simulation over the fighter is conducted. The numerical schemes and basic

information of the flow simulation are summarized in Table 5.4.

Table 5.4 Summary of information of the flow simulation over the fighter

Simulation Information Value
Mach Number 0.95
Angle of Attack 17.0
Reynolds Number 3.5 x 10°
Flow Type Turbulent Flow
Turbulence model Menter’s k-w SST
Convective flux RoeM
Time Integration Method Implicit Euler
Linear Algebra Method GMRES

As expected from the result of previous sub-chapter, CWLSQ, which exhibits large
second-gradient error, fails to compute this case. Convergence history of calculated lift
coefficient and drag coefficient of SLWSQ and EWLSQ are plotted in Fig 5.6, showing
that SWLSQ gives almost same result as EWLSQ. Meanwhile, the number and ratio of
switched cell among the total number of cells are listed in Table 5.5. In addition, the error
of lift and drag coefficients of SWLSQ and computation time are shown in Table 5.6.
Specific aerodynamic coefficient values, as well as the full configuration of the modern
fighter, are omitted here for confidentiality policy. One should note that SWLSQ
successfully computes this case and saves almost 32% of computation time compared to

EWLSQ, compromising only less than 1% of accuracy of aerodynamic coefficients.
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Table 5.5 The number and ratio of switched cells

Criterion Value 4.62126
Number of Switched / Total Cell 4619304 / 68687966
Ratio of Switched / Total Cell [%] 6.7

Table 5.6 Lift and drag coefficient error of SWLSQ and comparison of computation time

Pseudo_lteration

LSQ Method SWLSQ EWLSQ
C,, Error [%] 0.64 -
Cp Error [%] 0.60 -
Computation Time [hr] 68.18 99.59
i EWLSQ 3 EWLSQ
swLsQ L swLsa
T
3 oI

|

|
U

-

1 1 J

Pseudo_lteration

Figure 5.6 Comparison of second-gradient error of the two Least-Square methods
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Chapter 6

Conclusion

A switching Least-Square method exploiting the merits of two LSQ methods is proposed

for accurate and efficient gradient estimation on general unstructured grid.

To begin with, two preceding gradient estimation categories are investigated, gradient
by Green-Gauss theorem and gradient by Least-Square methods. It was found that Green-
Gauss methods using simple averaging and node averaging for cell-interface value are
inherently inconsistent. Meanwhile, Least-Square methods using proper inverse distance
weighting function yield even more accurate gradient at viscous boundary layer grid than
GG type methods. Therefore, GG type methods are not applied in further research. As for
comparison of CWLSQ and EWLSQ, considering the fair gradient accuracy of CWLSQ
and computational cost of EWLSQ, switching between two LSQ methods can lead to

accurate and efficient gradient estimation method.

For consistent switching criterion that can be implemented on general unstructured grid,
condition number of the Least-Square matrix is considered. This is because the condition
number shows strong correlation with the gradient error, and it can be easily computed
from the given grid in advance. By using the trigonometric functions, it is shown that LSQ
method with extended stencil tends to have lower condition number, thus leading to lower

gradient error because of greater number of stencils. Even though maximum condition
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number of the EWLSQ seems to be a good candidate for switching criterion value, it
exhibits a stability problem, caused by condition number overshoot at a region near the
boundary of the grid. Therefore, eventually, average condition number of the EWLSQ is

selected as the switching criterion.

Lastly, SWLSQ is applied to simple and complex grid to verify its excellence. In terms
of gradient accuracy, SWLSQ produces similar level of accuracy compared to EWLSQ,

saving about 10 to 30% computation time depending on the flow problem.

During the application of SWLSQ on complex grid around the modern fighter, it was
found that the accuracy of the first-gradient is not a sufficient condition for the accurate
estimation of the second-gradient. Therefore, future research is needed to understand the
characteristics of second-gradient and to find proper methodologies that can estimate

second-gradient.
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