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Abstract 

A Stochastic Progressive Damage 

Simulation Model for Fiber 

Reinforced Polymer Laminate 

 

Sungwoo Jeong 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

Fiber reinforced polymer matrix composites (FRPMC) laminate 

composites are widely used for its high strength and high stiffness-

to-weight ratio. Although FRPMC holds many advantages, it has low 

matrix strength. This thesis proposes a stochastic progressive 

damage simulation model for FRPMC laminates. Damage mechanisms 

considered in this thesis are internal damages of fiber and matrix. 

Deterministic predictions by the existing damage progressive 

analysis model of laminate composites could be very different from 

the experimental global strength and failure modes due to effects of 

material uncertainties. In polymer matrix composites, such material 
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uncertainties arise from different cure kinetics and chemically 

induced shrinkage. Therefore, uncertainties of constituents’ physical 

properties were taken into account in this study. An anisotropic 

damage model was used for damage initiation and evolution of each 

layer. Strength and fracture energy of layers were modelled as 

spatially varying random fields through the Karhunen-Loeve 

expansion method. For demonstrations of the proposed stochastic 

progressive damage analysis, a three-dimensional meso-scale finite 

element model of a multiple-layer was developed.  

 

 

Keywords : Stochastic simulation, progressive damage simulation, 

fiber-reinforced polymer matrix composites, strength, 

fracture energy 
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1. Introduction 

 

1.1. Background and Motivation 

Fiber reinforced polymer matrix composites are being widely 

used in advanced structure components in aerospace, automotive, 

sports, and many other industries due to their outstanding properties 

such as lightweight, high strength and high stiffness. However, 

composite materials have a weak point in the transverse direction 

due to low strength of the matrix. 

Continuum damage mechanics (CDM) model has a long history of 

developments and applications to laminate composite materials. 

Damage parameters were adopted instead of physical lamina damage. 

Early work on CDM models for laminate composite was focused on 

damage variable and its uses for stiffness degradation [1]. Ladeveze 

[2] proposed the damage state caused by only the shear and 

transverse moduli. Talreja proposed a damage related vector that 

represents microcrack density on various planes[3, 4]. In the 

meantime, Lene proposed a method for modeling fiber/matrix 

debonding using a scalar damage variable [5]. In those early works, 
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damage evolution was not highlighted. For modeling of the damage 

evolution, there are two different approaches: 1) empirical approach 

and 2) a formulation using free energy function.  

Allen and his coworkers proposed a CDM model that incorporates 

a set of second-order tensor-valued internal state variables 

representing locally averaged measures of specific damage states 

such as matrix cracking, fiber-matrix debonding, and interlaminar 

cracking [6, 7]. Damage material constitutive equations were 

formulated with thermodynamic constraints imposed on the internal 

state variables at the local scale. From these results, they expanded 

the Helmholtz free energy in terms of strain, temperature and the 

internal state variables for the CDM model [6, 7].  

On the other hand, Barbero and his coworkers also proposed a 

similar approach for CDM modeling coupled with the classical 

plasticity model within a consistent thermodynamic framework using 

internal state variables [8]. They also suggested a novel 

implementation method into finite element formulation considering 

geometrical nonlinearity. Their model was extended to include 

triaxial orthotropic damage  in terms of three damage eigenvalues 
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[9]. Their models have advantages of simplicity and generality in 

implementation and extensibility, respectively. 

Voyiadjis and his coworkers coupled damage progression and 

plasticity using a symmetric second-order damage tensor[10-12]. 

Eigenvectors of the damage tensor are interpreted as the principal 

direction of the damage and its corresponding eigenvalues have 

physical meaning of damage density in the normal direction to the 

eigenvectors. In their models, the damage was counted for each 

constituent, that is, fiber and matrix and homogenization was 

performed on the damaged microstructure.  

Lapczyk [13] implemented an orthotropic damage model of 

brittle fiber reinforced materials. In his model, crack band model was 

implemented to alleviate the mesh dependency of the solution. 

Commercial software use his model for fiber reinforced damage 

analysis. However, this model is only for two-dimensional material. 

Demands of three-dimensional orthotropic material model still 

increase. 

The manufacturing of composites consists of process that is 

difficult to control. Uncertainty in a manufactural process can cause 
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variabilities in material properties. Many researches have studied 

stochastic damage analyses for the reliability of laminate composites 

[14-20]. Chiachio et al.[21] reviewed reliability in composites. Most 

of researches considered material properties as random variables. 

Only few research handled material properties as spatial random 

fields: low velocity impact[17] and weakest link theory [22]. Further 

study on the 3D progressive damage analysis with material random 

field is still on demand. 

 

1.2. Objectives and Thesis Overview 

Objectives of this thesis are to implement stochastic progressive 

damage analysis (PDA) algorithm for three-dimensional FRPMC 

materials and investigate effects of stochastic variations of material 

properties on the PDA results. This thesis is organized as follow : 

Section 0 describes the material model based on CDM.  Hashin 

damage failure criterion was adopted. The damage evolution was 

based on fracture energy. Numerical implementation was presented 

including a viscous regularization technique. A stochastic progressive 

damage analysis code was implemented with ABAQUS user defined 
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subroutine UMAT. Verification of UMAT code was carried out using 

a thin single layer FE model with built-in damage material 

constitutive model. 

Section 2 illustrates random field modeling technique for spatial 

distributions of material properties considering the fiber orientation. 

A continuous covariance kernel was discretized by the Galerkin finite 

element approach. The covariance kernel was modified in order to 

account for effects of fiber orientation. 

Section 0 includes a numerical example for stochastic 

progressive damage analysis of FRPMC. Six different strengths and 

fracture energy were assumed as spatial random fields. Discussions 

on the results were included. Finally, conclusions and future works 

were described in Section 4.4. 

2. Spatial randomness of material properties 

 

Compared to ordinary materials, composites have difficulties in 

manufacturing with a uniform distribution of fiber. FRPMC laminate 

varied significantly by the amount of resins in each ply. Matrix also 

has defects such as voids. Spatial material distribution was 
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considered due to these reasons. Derivation of equations in this 

chapter is based on previous research of the author[23]. 

 

2.1. Modeling of three-dimensional random field of materials. 

For the sake of modeling spatially distributed materials, this 

paper adopted three-dimensional Karhunen-Loeve Expansion 

(KLE).  A typical ramdom field consists of two parts: the 

deterministic part and the stochastic part with a series expansion.  

The KLE decomposes a random field T is represented as 

following Eq. (1) 

𝑇(�⃗⃗� ) =  < 𝑇(�⃗⃗� ) >  +  ∑√𝜆𝒊

∞

𝒊=𝟏

𝜙𝒊(�⃗⃗� )[𝜉𝒊(ω)] (1) 

In this equation, �⃗�  is position vector; angled bracket < > 

represents mean value of variable; λi, 𝜙𝑖  are eigenvalues and 

eigenfunctions respectively; ξi is random variable which can follow 

statistical distribution; ω  is the primitive randomness; and the 

bracket [ ] represents randomly sampled set of variable. Eigenvalues 

and eigenfunctions are solution of following Fredholm integral 
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equation with analytical covariance kernel. 

∫ 𝐶(�⃗⃗� , �⃗⃗� )
𝜴𝑸

𝜙𝒊(�⃗⃗� )𝑑𝑉𝑄 =  𝜆𝒊𝜙𝒊(�⃗⃗� )  (2) 

C(�⃗⃗� , �⃗⃗� ) =  σ2exp(−
⌊x𝐏 − x𝐐 ⌋

Lx
−

⌊y𝐏 − y𝐐 ⌋

Ly
−

⌊z𝐏 − z𝐐 ⌋

Lz
) , �⃗⃗� , �⃗⃗�  ∈ Ω  (3) 

Where dVN = 𝑑𝑥𝑁𝑑𝑦𝑁𝑑𝑧𝑁 is the volume related to position vector 

N (N=P, Q); σ is the standard deviation; xN, yN, zN are coordinate of 

position vector N (N=P, Q); and Li  is correlation length in i-th 

direction. Fiber reinforced polymer have orthotropic material 

behavior. In order to consider orthotropic correlation, different 

correlation length for each direction was adopted in this thesis.  

 

2.2. Numerical implementation of KL expansion 

To apply material randomness into finite element structural 

analysis, the Galerkin finite element approach is adopted to solve Eq. 

(2). Lagrangian interpolation function was used to eigenfunctions as 

follow 
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𝜙i(�⃗� ) =  N(�⃗� )de (4) 

Where N(�⃗� ) and de are matrix form of interpolation function and 

eigenfunctions respectively. With residual integration, Eq. (2) is 

derived as follow  

[∫ ∫ 𝐶(�⃗� , �⃗� )
1

𝛺𝑄

N(�⃗� )
T
N(�⃗� )|J𝑒|

2𝑑𝑉𝑄𝑑𝑉𝑃
ΩP

] de

=  𝜆𝑖 [∫ N(�⃗� )
T
N(�⃗� )|J𝑒|𝑑𝑉𝑃

ΩP

] de 

(5) 

In the above equation, |J𝑒| is the determinant of Jacobian matrix 

for mapping from isoparametric coordinate to physical coordinate. Eq. 

(5) represents single elemental relation. By assembling all elements, 

global eigenvalue equation is derived as follow 

∑ ∑ [∫ ∫ 𝐶(�⃗� , �⃗� )
1

𝛺𝑄

N(�⃗� )
T
N(�⃗� )|J𝑒|

2𝑑𝑉𝑄𝑑𝑉𝑃
ΩP

]

𝑁𝐸𝑅𝐹

𝐸𝑄=1

𝑁𝐸𝑅𝐹

𝐸𝑃=1

D

=  δij𝜆𝑖 ∑ [∫ N(�⃗� )
T
N(�⃗� )|J𝑒|𝑑𝑉𝑃

ΩP

]

𝑁𝐸𝑅𝐹

𝐸𝑃=1

D 

(6) 

Here, 𝑁𝐸𝑅𝐹 denotes number of random field elements. Eq. (6) is 

rewritten as follow 
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BD = ΛMD (7) 

Where, 

B = ∑ ∑ [∫ ∫ 𝐶(�⃗� , �⃗� )
1

𝛺𝑄

N(�⃗� )
T
N(�⃗� )|J𝑒|

2𝑑𝑉𝑄𝑑𝑉𝑃
ΩP

]

𝑁𝐸𝑅𝐹

𝐸𝑄=1

𝑁𝐸𝑅𝐹

𝐸𝑃=1

 (8) 

M = ∑ [∫ N(�⃗� )
T
N(�⃗� )|J𝑒|𝑑𝑉𝑃

ΩP

]

𝑁𝐸𝑅𝐹

𝐸𝑃=1

 (9) 

Λ = δij𝜆𝑖 (10) 

By applying finite element, the FE based KLE random fiels is 

expressed as follow 

𝑇(�⃗� ) =  < 𝑇(�⃗� ) >  +  ∑√𝜆𝑖

𝑚

𝑖=1

𝜙𝑖(�⃗� )[𝜉𝑖(ω)] 
(11) 

 

In the above equation, m is number of eigenfunctions to consider.  

In this thesis, second order finite element is used to construct B 

matrix because of high accuracy.  

Figure 2.1 shows the reduced eigenvalues with respect to 

increasing modes. The first several eigenvalues are more significant 

among the entire modes. 
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Eigen modes are truncated for computational efficiency with 

being 95% in entire summation of eigenvalues. 

Figure 2.2 shows the first three eigenfunctions in the 3D 

domain(Ω) with different correlation length in x direction. . Figure 2.3 

illustrates the effect of correlation length and standard deviation on 

random field variable. As the Lz  increases, the fluctuation of the 

random field in z direction decreases. As σ increases, the increasing 

depth of the fluctuation can be observed. 

 

Figure 2.1 a plot of decreasing eigenvalue 
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Figure 2.2 First three modes of eigenfunctions with different correlation 

length 
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Figure 2.3 Effects of standard deviation and correlation length in one direction 

of random fields in 3D space 
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2.3. Application for fiber reinforced polymer 

Laminate composites are made of layer which have different fiber 

orientation such as 0°, 45° and 90°. For the sake of considering fiber 

orientation, rotational tensor was adopted. Coordinate system based 

on fiber direction have a relation with global coordinate system 

[R] =

[
 
 
 
 
 
 
𝜕𝑥′

𝜕𝑥

𝜕𝑥′

𝜕𝑦

𝜕𝑥′

𝜕𝑧

𝜕𝑦′

𝜕𝑥

𝜕𝑦′

𝜕𝑦

𝜕𝑦′

𝜕𝑧

𝜕𝑧′

𝜕𝑥

𝜕𝑧′

𝜕𝑦

𝜕𝑧′

𝜕𝑧 ]
 
 
 
 
 
 

 (12) 

{𝑥′} = [𝑅]{𝑥} (13) 

The relation between both coordinate system with rotational 

angle was shown in Figure 2.4. Z’ axis of material coordinate system 

aligns in XY plane of a global coordinate system. 
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Figure 2.4 Material coordinate system with fiber orientation 

Using the angle between two coordinate system, rotational 

tensor with angle can be expressed as 

[R] = [
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 −𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 −𝑐𝑜𝑠𝜙

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
] (14) 

Covariance kernel was modified with material coordinate system 

as follow 

C(�⃗⃗� , �⃗⃗� ) =  σ2exp (−
⌊x𝐏

′ − x𝐐
′ ⌋

Lx
−

⌊y𝐏
′ − y𝐐

′ ⌋

Ly
−

⌊z𝐏
′ − z𝐐

′ ⌋

Lz
) , �⃗⃗� , �⃗⃗�  ∈ Ω  (15) 

Here, the KLE can be expressed using different coordinate 

system. Figure 2.5 illustrates material spatial distribution with three 

different aligns of a fiber (45°, 90° and 0°). 



 

 15 

 

 

Figure 2.5. Spatial material properties with different orientation 

angle of a fiber (A) 45°, (B) 0° and (C) 90° 

 

  



 

 16 

3. Progressive damage analysis model of fiber-

reinforced polymer matrix composites 

 

Unidirectional lamina is considered as orthotropic material. If 

fiber aligned in x-axis, material has symmetric characteristics such 

as Ey = 𝐸𝑧, 𝜈𝑥𝑦 = 𝜈𝑥𝑧 and 𝐺𝑥𝑦 = 𝐺𝑥𝑧. 

Carbon fiber reinforced polymer matrix composites usually 

exhibit elastic-brittle behavior as observed in many literatures such 

as Matzenmiller et al.[24]. Plastic deformation is not significant in 

the elastic-brittle material. Consequently, elastic material behavior 

is assumed. 

Progressive damage analysis is already adopted in the 

commercial software; ABAQUS. However, progressive damage 

analysis in ABAQUS is limited only to two-dimensional element. In 

this thesis, three-dimensional progressive damage model was 

implemented in ABAQUS user-subroutine for material (UMAT). 

3.1. Damage initiation criteria 

Failure criterion is generally used for the prediction of the 

damage initiation. The damage initiation is followed by softening 
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behavior. In this thesis, Hashin’s failure criterion [25] was selected 

whereby criteria for both compression and tension states of matrix 

and fiber are defined. Hashin’s failure criteria equations are 

represented as follows 

𝑒𝑓𝑡 = (
𝜎11

𝐹1𝑡
)
2

+ 𝛼 (
𝜎12 + 𝜎13

𝐹𝑙𝑠
)
2

≥ 1 
(16) 

𝑒𝑓𝑐 = (
−𝜎11

𝐹1𝑐
)
2

≥ 1 (17) 

𝑒𝑚𝑦𝑡 = (
𝜎22

𝐹2𝑡
)
2

+ (
𝜎12

𝐹𝑙𝑠
)
2

+ (
𝜎23

𝐹𝑡𝑠
)
2

≥ 1 (18) 

𝑒𝑚𝑦𝑐 =
1

4
(
−𝜎22

𝐹𝑙𝑠
)
2

+ (
𝐹2𝑐

2

4𝐹𝑙𝑠
2 − 1)

𝜎22

𝐹2𝑐
+ (

𝜎12

𝐹𝑡𝑠
)
2

≥ 1 (19) 

where 𝑒𝑚(m=ft,fc,mt,mc) is the material state related to the 

damage state; 𝐹1𝑡, 𝐹1𝑐 , 𝐹2𝑡, 𝐹2𝑐 , 𝐹𝑙𝑠, 𝐹𝑡𝑠 are axial tensile strength, axial 

compressive strength, transverse tensile strength, transverse 

compressive strength, longitudinal shear strength and transverse 

shear strength, respectively; and 𝛼  is the coefficient to consider 

shear effects on the axial damage. This coefficient was taken as 1 by 

Hou [26] and Hashin [25]. It was considered as 0 by Guo [27]. In 

this thesis, the coefficient 𝛼 = 0.06 is adopted following literature 
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Chao [28]. Eq. (18) and (19) were based on Davila and Camanho 

model [29]. Delamination is damage related to inter-lamina damage. 

In this mode, delamination is not considered. 

3.2. Damage evolution process 

Material stiffness is degraded with damage variable after failure 

was initiated. The crack band model with a characteristic element 

length was implemented by Lapczky et al. [13]. The dissipated 

energy of elements can be written as follow 

𝐺𝐼 =
1

2
𝜎𝐼,𝑒𝑞

𝑜 휀𝐼,𝑒𝑞
𝑜 𝑙𝑐 (20) 

In this equation 𝐺𝐼 is the dissipated energy of each mode; 𝜎𝐼,𝑒𝑞
𝑜  

and 휀𝐼,𝑒𝑞
𝑜  are the equivalent stress and strain when the damage is 

initiated; subscript I represents each four damage mode (I=ft, fc, mt, 

mc); superscript o depicts the damage onset; and 𝒍𝒄  is the 

characteristic length.  A typical characteristic length of a first order 

element is a line across the element. 

The evolution of damage variable of each mode dI is expressed 

as follows.  
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𝑑𝐼 =
𝛿𝐼,𝑒𝑞

𝑓
(𝛿𝐼,𝑒𝑞 − 𝛿𝐼,𝑒𝑞

𝑜 )

𝛿𝐼,𝑒𝑞(𝛿𝐼,𝑒𝑞
𝑓

− 𝛿𝐼,𝑒𝑞
𝑜 )

, 𝛿𝐼,𝑒𝑞
𝑜 ≤ 𝛿𝐼,𝑒𝑞 ≤ 𝛿𝐼,𝑒𝑞

𝑓
 (21) 

where 𝛿𝐼,𝑒𝑞
𝑓

 is the equivalent displacement; and the superscript ‘f’ 

means the fully damaged state. Equivalent stress and displacement 

were calculated as summarized in Table 3.1. The damage variable 

has a value between 0 and 1. 𝛿𝐼,𝑒𝑞
𝑜  is calculated using equations in 

Table 3.1.  

Fully damaged equivalent displacement was assumed as follows 

𝛿𝐼,𝑒𝑞
𝑓

=
2𝐺𝐼

𝜎𝐼,𝑒𝑞
𝑜  (22) 

In Eq. (22), 𝜎𝐼,𝑒𝑞
𝑜  is the equivalent stress when the damage onset 

is calculated as Table 3.1. The relation of Eq. (22) was depicted in 

Figure 3.1. The fracture energy GI  plays an important role in 

predicting the ultimate failure. Maimi et al. [30] studied how the 

fracture energy is obtained using the tests. However, it is not always 

easy to measure the fracture energy by experiments.  Generally, the 

fracture energy was assumed for the sake of the numerical 

computation [13]. 
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Table 3.1 Equivalent displacement and stress with characteristic length 

Failure 

modes 

Equivalence displacement Equivalence stress 

Fiber 

tension 

𝜹𝒇𝒕,𝒆𝒒

= 𝑳𝑪√< 𝜺𝟏𝟏 >𝟐+ 𝜶(𝜺𝟏𝟐
𝟐 + 𝜺𝟏𝟑

𝟐 ) 

𝝈𝒇𝒕,𝒆𝒒

=
𝑳𝑪(< 𝝈𝟏𝟏 >< 𝜺𝟏𝟏 > +𝜶𝝈𝟏𝟐𝜺𝟏𝟐 + 𝜶𝝈𝟏𝟐𝜺𝟏𝟐)

𝜹𝒇𝒕,𝒆𝒒

 

Fiber 

compressi

on 

𝜹𝒇𝒄,𝒆𝒒 = 𝑳𝑪 < −𝜺𝟏𝟏 >  
𝝈𝒇𝒄,𝒆𝒒 =

𝑳𝑪(< −𝝈𝟏𝟏 >< −𝜺𝟏𝟏 >)

𝜹𝒇𝒄,𝒆𝒒

 

Matrix 

tension 

𝜹𝒎𝒕,𝒆𝒒

= 𝑳𝑪√< 𝜺𝟐𝟐 >𝟐+ 𝜺𝟏𝟐
𝟐 + 𝜺𝟐𝟑

𝟐  

𝝈𝒎𝒕,𝒆𝒒

=
𝑳𝑪(< 𝝈𝟐𝟐 >< 𝜺𝟐𝟐 > +𝝈𝟏𝟐𝜺𝟏𝟐 + 𝝈𝟐𝟑𝜺𝟐𝟑)

𝜹𝒎𝒕,𝒆𝒒

 

Matrix 

compressi

on 

𝜹𝒎𝒄,𝒆𝒒

= 𝑳𝑪√< −𝜺𝟐𝟐 >𝟐+ 𝜺𝟏𝟐
𝟐  

𝝈𝒎𝒄,𝒆𝒒

=
𝑳𝑪(< −𝝈𝟐𝟐 >< −𝜺𝟐𝟐 > +𝝈𝟏𝟐𝜺𝟏𝟐)

𝜹𝒎𝒄,𝒆𝒒
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Figure 3.1 Equivalent displacement and stress relation with the fracture energy 

 

3.3. Damage material constitutive law 

FRPMC is considered as an orthotropic material that has the 

constitutive law as follows 

𝛔𝒊𝒋 = 𝑪𝒊𝒋𝒌𝒍𝜺𝒌𝒍 (23) 

The damage variables play an important role in material softening 

behavior after failure is initiated. Effect of damage variables in 

Continuum Damage Mechanics (CDM) model were firstly studied by 

Kachanov [1]. Here, the concept of the stiffness degradation was 

based on Matzenmiller et al. [24] and Murakami et al. [31]. This 

model illustrates the relation between nominal stress σ and effective 
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stress σ̂ with the damage operator M. 

�̂� = 𝐌𝝈 (24) 

𝐌 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝟏

𝒅𝒇

𝟏

𝒅𝒎

𝟏
𝟏

𝒅𝒇𝒅𝒎

𝟏

𝒅𝒇

𝟏

𝒅𝒎]
 
 
 
 
 
 
 
 
 
 
 
 

 (25) 

The term damage variables 𝑑𝑓 and 𝑑𝑚 used in Eq. (25) have the 

following relation 

𝒅𝒇 = (𝟏 − 𝒅𝒇𝒕)(𝟏 − 𝒅𝒇𝒄)  (26) 

𝐝𝐦 = (𝟏 − 𝒅𝒎𝒕)(𝟏 − 𝒅𝒎𝒄) (27) 

The damage variable corresponding to shear is assumed 

depending on other variables. 

𝑑𝑠 = 𝑑𝑓𝑑𝑚 (28) 

The present CDM model is the same as that of previous 

researches [32-34]. The damaged compliance matrix S(d) can be 
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expressed in Table 3.2. Engineering constants such as 

E1, 𝐸2, 𝐸3, 𝐺12, 𝐺13, 𝐺23, 𝜈12, 𝜈13, 𝜈23 denote undamaged constants. 

 

3.4. Viscous regularization technique 

Prediction of softening behavior due to tangent stiffness 

degradation often has a convergence issue in the implicit analysis. To 

avoid the convergence problem, a viscous regularization technique 

was adopted. Tangent stiffness matrix of such material behavior is 

positive definite using this approach. 
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 𝐒
(𝐝

) 

𝐂
(𝐝

) 

 

[           
𝟏

𝒅
𝒇
𝑬

𝟏
−

𝝂
𝟐
𝟏

𝑬
𝟐
𝟐

−
𝝂
𝟑
𝟏

𝑬
𝟑
𝟑

𝟏

𝒅
𝒎

𝑬
𝟐
𝟐

−
𝝂
𝟑
𝟐

𝑬
𝟑
𝟑

𝟏

𝑬
𝟑
𝟑

𝒔
𝒚
𝒎

𝟏

𝒅
𝒇
𝒅

𝒎
𝑮

𝟏
𝟐

𝟏

𝒅
𝒇
𝑮

𝟏
𝟑

𝟏

𝒅
𝒎

𝑮
𝟐
𝟑 ]            

 
 

 
𝟏𝚫

[       𝒅
𝒇 𝑬

𝟏
𝟏 (𝟏

−
𝒅

𝒎
𝝂

𝟐
𝟑 𝝂

𝟑
𝟐 )

𝒅
𝒇 𝒅

𝒎
𝑬

𝟏
𝟏 (𝝂

𝟐
𝟏
+

𝝂
𝟐
𝟑 𝝂

𝟑
𝟏 )

𝒅
𝒇 𝑬

𝟏
𝟏 (𝝂

𝟑
𝟏
+

𝝂
𝟐
𝟏 𝝂

𝟑
𝟐 )

𝒅
𝒎
𝑬

𝟐
𝟐 (𝟏

−
𝒅

𝒇 𝝂
𝟏
𝟑 𝝂

𝟑
𝟏 )

𝒅
𝒎

𝑬
𝟐
𝟐 (𝝂

𝟑
𝟐
+

𝒅
𝒇 𝝂

𝟏
𝟐 𝝂

𝟑
𝟏 )

𝑬
𝟑
𝟑 (𝟏

−
𝒅

𝒎
𝒅

𝒇 𝝂
𝟏
𝟐 𝝂

𝟐
𝟏 )

𝒔
𝒚
𝒎

𝚫
𝒅

𝒇 𝒅
𝒎
𝑮

𝟏
𝟐

𝚫
𝒅

𝒇 𝑮
𝟏
𝟑

𝚫
𝒅

𝒎
𝑮

𝟐
𝟑 ]        

𝚫
=

𝟏
−

𝐝
𝐟 𝒅

𝒎
𝝂

𝟏
𝟐 𝝂

𝟐
𝟏
−

𝒅
𝒎

𝝂
𝟐
𝟑 𝝂

𝟑
𝟐
−

𝒅
𝒇 𝝂

𝟏
𝟑 𝝂

𝟑
𝟏
−

𝟐
𝒅

𝒇 𝒅
𝒎
𝛎

𝟐
𝟏 𝝂

𝟑
𝟐 𝝂

𝟏
𝟑  
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This regularization scheme is the Duvaut and Lions [35] model. 

A damage variable with viscous regularization is defined as follows 

𝒅𝑰
�̇� =

𝟏

𝜼𝑰

(𝒅𝑰 − 𝒅𝑰
𝒗) (29) 

In this equation, the super script 𝑣 denotes viscous regularized 

variable, I is each damage mode and 𝜂 denotes a viscosity coefficient 

with respect to relaxation time.  

The value of the viscosity coefficient is usually small for time 

increment. This relation between the viscosity coefficient and time 

increment helps to alleviate the convergence problem. 

 

3.5. Numerical implementation 

User-defined material model (UMAT) was implemented to use 

finite element solver in commercial software ABAQUS/standard. The 

user-subroutine UMAT has been written in FORTRAN.  

Twenty seven state variables are defined in the UMAT: one 

material state variable, four value for failure criterion calculation, five 

damage variable, five viscous damage variable and four equivalent 
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displacements of current step, damage onset and ultimate damaged 

state respectively. Twenty two state variables were used for 

calculations. Five state variables of viscous damage variable is listed 

in Table 3.3. 

Strain, state variable array and characteristic length of the 

element were passed into UMAT. The first part of UMAT subroutine 

is the failure criteria.  

It is followed by calculations of the equivalent displacements. If 

previous failure criterion value is 0 and the current value equal to 1, 

this state implies damage initiation. When the failure criterion was 

firstly satisfied, the equivalent displacement and stress were 

calculated once and stored as the state variables for the sake of 

computational efficiency. 

Finally, UMAT requires updates of the stress and tangent 

stiffness for the modified stress and construct the stiffness matrix at 

every material integral point. Accurate tangent stiffness plays an 

important role in the implicit analysis. Analytical derivation of the 

tangent stiffness can be expressed as follows 
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𝛛𝛔

𝝏𝜺
= 𝑪(𝒅𝑰) + 𝜺 ∶ ∑

𝝏𝑪(𝒅𝑰
𝒗)

𝝏𝒅𝑰
𝒗

𝝏𝒅𝑰
𝒗

𝝏𝒅𝑰

𝝏𝒅𝑰

𝝏𝜺
𝑰

 (30) 

The tangent stiffness consists of damaged constitutive tensor 

and viscous damage variables. The partial derivative term in the Eq. 

(30) can be calculated easily. However, Eq. (29) only shows the 

regularization regime. The equation was modified to a computational 

form in order to implement Eq. (30). The computational form of the 

viscous regularization have a relation as follows 

𝒅𝑰
𝒗|𝒕𝟎+𝚫𝐭 =

𝚫𝐭

𝜼𝑰 + 𝚫𝐭
𝒅𝑰|𝒕𝟎+𝚫𝐭 +

𝜼𝑰

𝜼𝑰 + 𝚫𝐭
𝒅𝑰

𝒗|𝒕𝟎 

Where, 
𝚫𝒕

𝜼
> 𝟏 

(31) 

Consequently, the partial derivative of the viscous damage 

variable with respect to damage variable can be calculated by Eq. 

(32). 

𝝏𝒅𝑰
𝒗

𝝏𝒅𝑰
=

𝜟𝒕

𝜼𝑰 + 𝜟𝒕
 (32) 

A flow chart of UMAT is depicted in Figure 3.2. 

To verify the UMAT, a simple cantilever beam FE model was 
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generated. Progressive damage analysis was carried out under 

unidirectional displacement loading. Boundary conditions and 

required material properties are listed in Figure 3.3. The stress-

strain curve illustrates reasonable results under uniaxial loading. 

Figure 3.4 illustrates how UMAT works in the FE model.  

Figure 3.2 flow chart of user-define material (UMAT) 
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Figure 3.3 Verification finite element model and material properties 
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Figure 3.4 Stress-strain curve with the viscous damage variable 

 

Table 3.3 State variables related to damage variables 

State variable 11 12 13 14 15 

Damage variable 𝑑𝑠
𝑣 dft

v  dfc
v  dmt

v  dmc
v  
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3.6. Verification of UMAT 

ABAQUS user subroutine (UMAT) was implemented in the 

previous section. A thin single layer model was generated for the 

sake of verification in Figure 3.5. Glass fiber-reinforced 

polymer(GFRP) was used in the FE model and  material properties 

for UMAT are listed from Table 3.4 to Table 3.6 [13]. Two-

dimensional square S4 element was adopted for the built-in material 

model. Three-dimensional hexagonal element C3D8 was used in 

UMAT. The orientation of fiber was aligned in x axis. The quarter 

model using symmetric condition was generated for progressive 

damage analysis. The displacement boundary condition was applied  

The fiber tension and compression damage variable were not 

shown in this model. The state variable 14 and 15 that represent 

matrix tension and compression damage variable respectively at time 

t=0.875 and t=1 were shown in Figure 2.6 and Figure 2.7. The 

results of progressive damage analysis with UMAT have similar 

results of built-in material. The damage variable has upper limit 

value as 1. The contour of each variable has more than 1 due to 

extrapolation because UMAT was calculated at the integration point.   
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Figure 3.5. FE model of thin single layer for verification of UMAT 

Table 3.4. Orthotropic properties of fiber reinforced epoxy. [13] 

𝐄𝟏𝟏 

(MPa) 

𝐄𝟐𝟐=𝟑𝟑 

(MPa) 
𝐯𝟏𝟐=𝟏𝟑 𝐯𝟐𝟑 

𝐆𝟏𝟐=𝟏𝟑 

(MPa) 

𝐆𝟐𝟑 

(MPa) 

55000 9500 0.33 0.2 5500 3000 

 

Table 3.5. Strength of fiber reinforced epoxy. [13] 

𝐅𝟏𝐭 

(MPa) 

𝐅𝟏𝐜 

(MPa) 

𝐅𝟐𝐭 

(MPa) 

𝐅𝟐𝐜 

(MPa) 

𝐅𝐥𝐬 

(MPa) 

𝐅𝐭𝐬 

(MPa) 

2500 2000 50 150 50 50 

 

Table 3.6. Fracture energies for fiber reinforced epoxy [13] 

𝑮𝒇𝒕 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒇𝒄 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒎𝒕 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒎𝒄 

(𝑱/𝒎𝒎𝟐) 

12.5 12.5 1 1 
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Figure 3.6. Matrix tension damage contour at A) time t =0.875 and B) t=1 
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Figure 3.7 Matrix compression damage contour at A) time t =0.875 and B) t=1 
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Figure 3.8. Damage variable of matrix tension at A) FE model, B) element 

which have minimum value and C) maximum value  
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3.7. Stochastic damage material model 

KL expansion was combined with progressive damage model for the sake of 

considering spatial material defects. This thesis utilized ABAQUS for these 

computational stochastic progressive damage model.  

The governing equation for mechanical problems was given in Eq. 

σij,xj
+ 𝑏𝑖 = 0 (33) 

where bi represents body force. 

Using the hook’s law and KL expansion, the governing equation can be 

expressed as following Eq. (34), (35) 

C(dv, ω) (34) 

(𝐶(𝑑𝑣 , 𝜔)𝜖𝑖𝑗),𝑥𝑗
+ 𝑏𝑖 = 0 

(35) 

Eq. (35) represents governing equation with spatial material 

constitutive mode. Figure 3.9 illustrate Eq.(35) under the domain. 
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Figure 3.9 Macroscale and microscale domain with spatial material different 
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4. Numerical examples 

 

4.1. A progressive damage analysis 

The FE model of open hole model was generated. This model has 

50mm length, 20mm height and 1 mm thickness as Figure 4.1 

 

 

Figure 4.1 Quarter FE model 

Quarter FE model was generated using symmetric boundary 

condition. Symmetric layup [0/90/0/90] was adopted through-

thickness. Each ply has thickness 0.125mm. The detailed layup was 
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shown as following Figure 4.2 

 

Figure 4.2 Through-thickness layup of laminate 

 

Material properties which have same value from Table 3.4 to 

Table 3.6 were used.  

Progressive damage analysis without material spatial distribution 

was conducted as following Figure 4.3.  

Fiber related damage variables were not show under this loading 

condition. Each ply has different damage contour. In the 90° layer, 

matrix tension damage is more dominant due to fiber aligned in y axis.  
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4.2. Effects of spatial strength 

The rotational tensor with angle θ = 90°, ϕ = 0° and θ = 90°,ϕ =

90°  was used for fiber orientation of 0°  and 90°  respectively. 

Because Hashin failure criterion includes material strength and 

material strength is generally defines by experiments. Strength was 

considered as random field variable. Non-uniform strength 

distribution affects when the failure onset. Orientation angle and 

correlation length were listed in Table 4.1. 

Table 4.1 Orientation angle and correlation length for kl expansion 

 𝜽 𝝓 𝑳𝒄𝒙 𝑳𝒄𝒚 = 𝑳𝒄𝒛 

0°layer 90 0 50 5 

90°layer 90 90 50 5 

Generally, correlation length was hard to define. Correlation 

length was assumed as same length of RVE. Ten times of model’s 

characteristic length was assumed for the fiber direction. Same 

length was used for transverse direction. 
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Figure 4.4 descending eigenvalue with truncation 

In above Figure 4.4, truncated eigenmodes were adopted for 

computational efficiency instead of total eigenmodes. 97% value of 

total summation of the eigenvalue was used in this simulation. 

Six different strength were modeled with following Table 4.2. 

Table 4.2 Statistical parameter of six strength 

 𝐅𝟏𝐭 

(MPa) 

𝐅𝟏𝐜 

(MPa) 

𝐅𝟐𝐭 

(MPa) 

𝐅𝟐𝐜 

(MPa) 

𝐅𝐥𝐬 

(MPa) 

𝐅𝐭𝐬 

(MPa) 

mean 2500 2000 50 150 50 50 

cov 0.1 0.1 0.1 0.1 0.1 0.1 

Due to lack of experimental data, coefficient of variance was 

assumed as 0.1.  

Strength related to each damage mode can be expressed as 



 

 43 

follow 

𝐹𝑁(�⃗� ) =  < 𝑇(�⃗� ) >  +  ∑ √𝜆𝑖

𝑚=200

𝑖=1

𝜙𝑖(�⃗� )[𝜉𝑖] (36) 

where N is F1t, 𝐹1𝑐 , 𝐹2𝑡 , 𝐹2𝑐 , 𝐹𝑙𝑠 and 𝐹𝑡𝑠 

Ten different samples were generated with KL expansion. Spatial 

distribution of fiber tension strength was shown in Figure 4.5. The 

second layer of each orientation has a similar spatial material contour 

to the first layer. 

Progressive damage analysis of 1 reference model and 10 

randomly sampled model were carried out. From Figure 4.6 to Figure 

4.9, the results of stochastic FE analysis were shown 
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Using the kl expansion method, the damaged pattern with 

different spatial location were obtained according to the above figures.  

Elemental averaged stress-strain curve were calculated in the 

region depicted in Figure 4.10 

 

Figure 4.10 Section of FE model for stress-strain curve 

Averaged stress and strain were calculated as follow 

σ′ =
∑σV

∑𝑉
, ϵ′ =

∑𝜖𝑉

∑𝑉
 (37) 

where ′ indicates averaged value; and V indicates elemental volume. 

Both stress-strain curves were given in Figure 4.11 and Figure 

4.12.  

The initiation of damage varied significantly in σ22 − 𝜖11. 

Each sample have similar σ11 − 𝜖11 curve. Fiber damage did not 

occur under this loading.  
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Figure 4.11 𝛔𝟏𝟏 − 𝝐𝟏𝟏 curve of stochastic strength 

 
Figure 4.12 𝛔𝟐𝟐 − 𝝐𝟏𝟏 curve of stochastic strength 
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4.3. Effects of spatial fracture energy 

A spatial fracture energy can cause spatially different ultimate 

damage state. The concept of the stochastic fracture energy is given 

in Figure 4.13.  

 

Figure 4.13 a stochastic fracture energy 

To investigate effect of fracture energy, four different fracture 

energy were modeled as random field variable as listed in  

Table 4.3 a statistical parameter of fracture energy 

 𝑮𝒇𝒕 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒇𝒄 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒎𝒕 

(𝑱/𝒎𝒎𝟐) 

𝑮𝒎𝒄 

(𝑱/𝒎𝒎𝟐) 

mean 12.5 12.5 1 1 

cov 0.1 0.1 0.1 0.1 
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The strength was assumed to be deterministic. Each fracture 

energy was assumed to follow the normal distribution. Orientation 

angle and correlation length have same value as listed in Table 4.1. 

To consider the effects of spatial fracture energy volume 

averaged stress and stress was adopted. The results of reference 

model and each sample was shown in Figure 4.14. 

 

Figure 4.14 𝛔𝟏𝟏 − 𝝐𝟏𝟏 curve of stochastic fracture energy 

Figure 4.14 shows stress-strain relation that have similar 

results compared to spatial strength. 
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Figure 4.15 𝛔𝟐𝟐 − 𝝐𝟏𝟏 curve of stochastic fracture energy 

Figure 4.15 illustrates that damage onset was not varied and the 

slope of stress-strain curve after damage slightly changed. 
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4.4. Effects of spatial fracture energy with cohesive elements 

Delamination is important damage mode in lamina structure. 

Cohesive layer was generated between two layers. COH3D8 element 

was used for cohesive layer. The detailed layer is given in Figure 

4.16 

 

Figure 4.16 Laminate layup with cohesive layer 

The thickness of a cohesive layer is 0.001 which is 1% of each 

layer. COH3D8 elements was used for adhesive region. The material 

properties of cohesive elements from lapczyk [13] was shown in  

Table 4.4 Material properties of the cohesive element [13] 

𝐄𝟏𝟏(𝐌𝐏𝐚) 𝛎 𝐭𝐧
𝐟 (𝐌𝐏𝐚) 𝐭𝐬

𝐟(𝐌𝐏𝐚) 𝐆𝐧(N/mm) 𝐆𝐬(𝐍/𝐦𝐦) 

2000 0.33 50 50 4.0 4.0 

Where tn
f  and 𝑡𝑠

𝑓
 are the peak strength; and Gn and Gs are fracture 
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energies of cohesive element.  

The stochastic progressive damage model of reference model 

and ten different samples was carried out. The material distribution 

is same to the distribution of previous section 4.3. To investigate the 

effects of the cohesive elements, volume averaged stress-strain 

curve was given in Figure 4.17 and Figure 4.18 

 

Figure 4.17 𝛔𝟏𝟏 − 𝝐𝟏𝟏  curve of stochastic fracture energy with cohesive 

element 

Above figure illustrates the effects of cohesive elements. The 

slope of the figure was changed due to the cohesive elements. After 

the damage onset of adhesive, the slope was changed because of the 
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spatial fracture energy. 

 

Figure 4.18 𝛔𝟐𝟐 − 𝝐𝟏𝟏  curve of stochastic fracture energy with cohesive 

element 

In this figure, two slope changes can be observed. The one is the 

change due to the cohesive element and the other is the change due 

to progressive damage of layer. Also, the spatial fracture energy do 

not affect the damage onset with cohesive layers.  
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5. Conclusion and future works 

 

5.1. Conclusion 

In this thesis, a stochastic progressive damage analysis model 

was developed to considering effects of spatial randomness of 

material. A progressive damage analysis model was based on 

continuum damage mechanics. This model considered four different 

damage modes: fiber tension, fiber compression, matrix tension, and 

matrix compression. Shear damage was depended on these four 

modes. The characteristic length was used to alleviate mesh 

dependency. Viscous regularization model was adopted to avoid 

convergence problem. Commercial software ABAQUS have the only 

two-dimensional material model. In order to apply three-

dimensional progressive damage analysis, user-subroutine for 

stochastic progressive damage analysis was implemented. UMAT 

was verified compared to a two-dimensional built-in material 

Three-dimensional Karhunen-Loeve expansion was derived 

considering fiber orientation and different correlation length. 

Strength plays important role in failure criterion. Six different 
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strength were modeled as random field variable. Four different 

fracture energy were also modeled as the random field. 

The stress-strain curve illustrates the same properties before 

damage onset. After the damage initiation, each model has a different 

yielding point in case of spatial strength. Slight change can be 

obtained when spatially distributed fracture energy was used. 

Different damage pattern of each FE model can be obtained. Thin 

cohesive layer was generated inter layer region.  

Composites material generally have a high standard deviation of 

the experimental results. This stochastic progressive damage 

analysis could improve the reliability of composite manufacturing. 

However, this model considered only intra lamina damage not inter 

lamina damage model. 

 

5.2. Future works 

In this thesis, some properties such as coefficient of variance and 

correlation length were assumed. The proposed progressive damage 

model with material spatial randomness need experimental validation, 
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which is another topic for further research. 

Zero-thickness cohesive elements generally used for 

delamination. Material properties related cohesive elements also can 

be modeled as random field variable. 

Micro scale structure was not considered in this thesis, 

Micromechanics have many uncertainties such as volume fraction and 

undulation of fiber. Their bridging to macro properties should also be 

considered for further research. 
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국문초록 

섬유강화 폴리머 라미네이트의 

확률적 손상해석 모델 

 

정 숭 우 

기계항공공학부 

서울대학교 대학원 
 

섬유강화 폴리머 라미네이트 복합재료는 고 강도, 질량대비 높은 

강성과 같은 장점으로 인해서 많이 사용된다. 이러한 많은 장점에도 

FRP는 기지의 강도에 의한 약점을 가지고 있다. 본 논문에서는 

섬유강화 폴리머 라미네이트의 확률적 손상해석 모델이 제안하였다. 

손상 메커니즘은 라미나 내부의 섬유와 기지의 손상에 관하여 

진행하였다. 현재의 결정론적 손상 예측 시뮬레이션 모델은 실험을 통한 

결과와의 상관관계가 좋지 않다. 따라서 본 논문에서는 재료 구성물질의 

물리적 불확실성을 고려하였다. 이방성 손상 모델은 각 레이어의 손상 

시작 및 이후의 손상에 관하여 사용되었다. 각 층의 강도 및 파단 

에너지는 Karhunen-Loeve 방법을 통해 공간적으로 변화화하는 

무작위 분포로 모델링 되었다. 확률적 손상 시뮬레이션 모델의 설명을 

위하여 3차원 라미네이트 구조 유한요소 모델에 적용되었다. 
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