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Development of an algorithm for
evaluating the impact of measurement
variability on response categorization in
oncology trials
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Abstract

Background: Radiologic assessments of baseline and post-treatment tumor burden are subject to measurement
variability, but the impact of this variability on the objective response rate (ORR) and progression rate in specific
trials has been unpredictable on a practical level. In this study, we aimed to develop an algorithm for evaluating
the quantitative impact of measurement variability on the ORR and progression rate.

Methods: First, we devised a hierarchical model for estimating the distribution of measurement variability using a
clinical trial dataset of computed tomography scans. Next, a simulation method was used to calculate the
probability representing the effect of measurement errors on categorical diagnoses in various scenarios using the
estimated distribution. Based on the probabilities derived from the simulation, we developed an algorithm to
evaluate the reliability of an ORR (or progression rate) (i.e., the variation in the assessed rate) by generating a 95%
central range of ORR (or progression rate) results if a reassessment was performed. Finally, we performed validation
using an external dataset. In the validation of the estimated distribution of measurement variability, the coverage
level was calculated as the proportion of the 95% central ranges of hypothetical second readings that covered the
actual burden sizes. In the validation of the evaluation algorithm, for 100 resampled datasets, the coverage level
was calculated as the proportion of the 95% central ranges of ORR results that covered the ORR from a real second
assessment.

Results: We built a web tool for implementing the algorithm (publicly available at http://studyanalysis2017.
pythonanywhere.com/). In the validation of the estimated distribution and the algorithm, the coverage levels were
93 and 100%, respectively.

Conclusions: The validation exercise using an external dataset demonstrated the adequacy of the statistical model
and the utility of the developed algorithm. Quantification of variation in the ORR and progression rate due to
potential measurement variability is essential and will help inform decisions made on the basis of trial data.

Keywords: RECIST, Measurement variability, Hierarchical model, Algorithm

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: hahns@snu.ac.kr
†Jeong-Hwa Yoon and Soon Ho Yoon contributed equally to this work.
3Medical Statistics Laboratory, Department of Medicine, Seoul National
University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080,
South Korea
Full list of author information is available at the end of the article

Yoon et al. BMC Medical Research Methodology           (2019) 19:90 
https://doi.org/10.1186/s12874-019-0727-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-019-0727-7&domain=pdf
http://orcid.org/0000-0002-4684-4917
http://studyanalysis2017.pythonanywhere.com/
http://studyanalysis2017.pythonanywhere.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hahns@snu.ac.kr


Background
In medicine, some diagnoses of diseases or determina-
tions of treatment response are dichotomized or catego-
rized according to changes in continuous data as
measured before and after intervention. In oncology,
treatment response after anti-cancer therapy is deter-
mined based on the percent change of the tumor burden
before and after the treatment, as measured by physi-
cians on computed tomography (CT) scans. The tumor
burden in a patient is represented by measurements of
representative lesions (so-called target lesions), followed
by the sum of the measurements. The objective response
rate (ORR) and progression rate, which are used in on-
cology trials, are imaging-based measures of outcomes
assessed using the Response Evaluation Criteria in Solid
Tumors (RECIST) response categorization according to
the percent change of the tumor burden before and after
treatment [1]. The categories include complete response,
partial response, stable disease, and progression. The
ORR and progression rate are defined as the percentage
of patients who achieve complete or partial response
and progression, respectively [2].
Radiologic measurements of the tumor burden can be

inconsistent across assessments, which may affect the
assessed percent change of the tumor burden, the re-
sponse categorization, and the resulting ORR and pro-
gression rate [3]. Indeed, it has been suggested that
reimaging the same single-tumor burden can result in
an increase or decrease of the burden size by less than
10% relative to the first measurement [4], and that when
different readers assess the same single-tumor burden
before and after treatment, the absolute difference in the
values of percent change (%) between readers can be as
much as 30% [5]. This measurement variability eventu-
ally results in variability in the response classification
and ORR [6].
Many oncology trials designate the objective response

as a primary or a secondary outcome and provide the
ORR as a measure of the outcome, but the reliability of
RECIST-based response determinations and the ORR
due to measurement variability in oncology trials re-
mains poorly understood [5]. In this study, we developed
an algorithm for quantitative evaluation of the impact of
measurement variability on the ORR and progression
rate, which is an area that has not yet been considered
in previous research.
The RECIST-based response could be considered as an

ordinal measure. Some statistical methods for assessing
the agreement of such ordinal data have been suggested in
the literature [7–10]. The response categorization is an or-
dinal dichotomization of change in tumor burden. Follow-
ing the RECIST guideline, the tumor burden is essentially
calculated by summing the measurements of the various
target lesions that can adequately represent the overall

tumor burden in a patient. Since measurement error fun-
damentally occurs when observing lesion sizes, and mani-
fests as measurement variability of tumor burden size,
percent change, and response categorization, it is import-
ant to understand the primary behavior of measurement
variability by modeling measurements of lesion size. The
response categorization of tumor burdens of various sizes
initially determined to have shown the same response can
in fact be differently reproducible based on how or
whether the measured size of the tumor burdens is close
to the cutoff values for categorization. Such differences
should also be taken into account for measuring the un-
certainty and reproducibility of the eventual RECIST-
based response.
Bland and Altman (1986 and 1999) originally pro-

posed the limits-of-agreement (LOA) method for
assessing agreement between measurements by two
observers [11, 12]. LOAs provide a straightforward
way of evaluating measurement agreement by plotting
the measurement difference against the mean of the
two measurements. Sometimes the differences be-
tween the measurements are dependent on the size of
the measurements, with increasing measurement error
accompanying an increasing scale of the measurement
values, in which case conventional LOAs may not rep-
resent the data well. When a distribution of errors is
skewed, data are often log-transformed to approximate
normality. Euser et al. (2008) discussed a modeling
approach to calculate meaningful LOAs on log-trans-
formed data [13].
To develop an algorithm for evaluating the impact of

measurement variability on response categorization in
oncology, we initially constructed a dataset based on re-
peated evaluations before and after treatment of the se-
lected lesions in order to enable estimation of the
within-lesion component of the measurement variability.
We devised an appropriate transformation of the mea-
surements of tumor size using the dataset, with an
exploration of LOAs. We constructed a bivariate hier-
archical linear mixed-effects model to estimate the dis-
tributions of measurement errors before and after
treatment, using transformed data to account for the
measurement size-dependency of the measurement er-
rors. In the simulation step, the estimated distribution
was used to generate a hypothetical second measure-
ment of the original measurement. We then calculated
the probability that the second measurement would be
designated as a certain response. Using these probability
values, we built up an algorithm for evaluating the im-
pact of measurement variability on the ORR or progres-
sion rate at the trial level, and facilitated the
implementation of this algorithm by developing a web
tool. Finally, we performed validations to determine
whether the hypothetical second measurements
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adequately predicted the actual repeatedly read measure-
ments and whether the resulting ORR replicated the
ORR as assessed by actual third parties.
This article is organized as follows. The Methods sec-

tion first introduces the data structure and describes the
process of the development of the evaluation algorithm
by modeling and simulations, followed by the method of
validation. The Results section explains the routines of
the developed web tool for implementing the algorithm
and interprets the results of the validations. The final
section contains a discussion of the usefulness and limi-
tations of our method and the usability and potential of
the algorithm.

Methods
RECIST guideline
The RECIST guideline is a set of standardized criteria
for assessing tumor response after anti-cancer treatment
in oncology trials. The guideline mainly deals with how
to define a tumor burden, how to measure changes of
tumor burden, and how to categorize the response of
the tumor after treatment. Following the guideline, the
tumor burden is calculated by summing the measure-
ments of the various target lesions that can adequately
represent the overall tumor burden in a patient. The
percent change is then calculated as a change in the
tumor burden after treatment relative to its baseline
value as a percentage. The RECIST-based response is fi-
nally categorized based on the percent change of the
tumor burden. The categories include complete response
(− 100%), partial response (− 30% or less), stable disease
(− 30 to 20%), and progression (20% or more).

Data
In order to estimate the distribution of measurement
errors through modeling and to develop an algorithm to
evaluate the impact of measurement variability on re-
sponse categorization in oncology, we constructed a
dataset by obtaining repeated evaluations of the selected
lesions before and after treatment, thereby enabling esti-
mation of the within-lesion component of the measure-
ment variability.
De-identified chest CT scans were initially obtained from

75 patients who were enrolled in an existing phase III ran-
domized trial of chemotherapy for advanced small-cell lung
cancer (SCLC). A single radiologist chose a total of 249
measurable target lesions in the 75 patients, and the me-
dian number of measurable target lesions per patient was 3.
Each target lesion was read by six radiologists in four separ-
ate sessions, twice at baseline and twice after treatment.
Twenty-four measurements of the longest diameter

(12 at baseline and 12 at follow-up) were taken from
each lesion. Of all the target lesions, 119 were on lymph
nodes. A short-axis diameter, perpendicular to the

longest diameter, was additionally taken from those
target lymph nodes. Twenty-four measurements of the
shortest diameter (12 at baseline and 12 at follow-up)
were taken from each lymph node.
For validation of the estimated distributions of meas-

urement error and the evaluation algorithm, we used an-
other dataset of 56 target lesions from 22 patients with
refractory SCLC from a phase II trial. Each target lesion
was measured by a within-trial local reader and one ex-
ternal reader in two separate sessions, once at baseline
and once after treatment. The longest diameters and
short-axis diameters were taken from the solid lesions
and lymph nodes, respectively.

Modeling
A hierarchical linear mixed-effects model including le-
sions, readers, and the interaction effects of lesions and
readers as random effects was considered based on the
measurements obtained from the six reviewers at each
of the baseline and the post-treatment phases [14]. We
assessed the plausibility of using the square root, cube
root, and log transformation of the lesion size as possible
assumptions for the distribution of measurement errors.
LOA presentations with a Bland-Altman plot [11] were
explored at each phase (Fig. 1) (see formulas of the
LOAs on the original scale for the nth root-transformed
variables in Additional file 1). Since the LOA from the
square root transformation of the lesion size described
the data pattern appropriately, we chose the square root
transformation, considering the nonlinear lesion
size-dependency of the measurement error. We trimmed
off 5% of the outlying data with a large standardized re-
sidual based on the considered model using the trans-
formation at each phase [15].
The final model was then fitted in a bivariate form, ac-

counting for a possible correlation between the measure-
ments in the baseline and the post-treatment phases:ffiffiffiffiffiffiffiffiffiffi
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Fig. 1 Bland-Altman plot and limits of agreement for the transformation candidates. a Intra-reader plot at baseline. The differences between the
first and second measurements in relation to the average of the two measurements made by one reader of the tumor burden. b Intra-reader
plot at post-treatment. The differences between the first and second measurements in relation to the average of the two measurements made
by one reader of the tumor burden. c Inter-reader plot at baseline. The differences between the measurements in relation to the average of the
measurements made by two readers of the tumor burden. d Inter-reader plot at post-treatment. The differences between the measurements in
relation to the average of the measurements made by two readers of the tumor burden. Dotted lines: limits of agreement (LOA) from the model
using the original lesion size; solid lines: LOA from the model using the log-transformation of the lesion size; dot-dashed lines: LOA from the
model using cube root-transformation of the lesion size; dashed lines: LOA from the model using square root-transformation of the lesion size
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the intra-reader measurement error given a lesion and a
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followed a normal distribution with a mean vector of
0
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; as calcu-

lated by the variance-covariance component estimates of
random effects and residuals to represent deviation in
measurements by several readers [13]. Posterior distribu-
tions of the variance-covariance components, the param-
eters of random effects, and the residual errors were
obtained using the Markov-chain Monte Carlo method
in a Bayesian framework with non-informative priors
[17]. Modeling was performed separately for the longest-
diameter data and the shortest-diameter data. The
modeling process was run in the software R [18].

Simulation
We simulated a situation in which the baseline and
post-treatment diameters of a tumor burden observed in
the first reading were re-measured by the same reader
or another reader in order to obtain the probability that
the change would be classified as a certain tumor re-
sponse from the re-measured tumor burden sizes. In
order to facilitate the simulation, we established artificial
datasets of the observed tumor burden sizes and their
hypothetical second measurement values using the esti-
mated distributions of intra- or inter-measurement
errors. These datasets were used to calculate the prob-
ability that the second measurement would be desig-
nated as a certain tumor response. This was performed
repeatedly for various scenarios. The simulation process
was as follows:

(a) Construction of an artificial dataset of 100 tumor
burdens with the same number of target lesions:

When the tumor burden had a single target lesion
(n = 1), we let Yb1 and Yp1 be the baseline size and
post-treatment size of a lesion, respectively. The lesion
size itself became the tumor burden. If we assume that
a c percent change of the tumor burden occurred, then
Yp1 is equal to Yb1 þ cY b1 .

When there was a set of tumor burdens having two or
more target lesions (n ≥ 2), we let Ybx and Ypx be the
corresponding baseline size and post-treatment size of
the x th lesion in a tumor burden and let

Pn
x¼1Ybx andPn

x¼1Ypx therefore correspond to the baseline and post-
treatment tumor burden, respectively. If we assume that
a c percent change of the tumor burden occurred, thenPn

x¼1Ypx is equal to
Pn

x¼1Ybx þ c
Pn

x¼1Ybx . The sizes of
the lesions in each of the 100 tumor burdens at baseline
were generated from a log-normal distribution acquired
empirically from the lesion sizes in the original dataset
[19]. Because the target lesions within a tumor burden
do not change uniformly after treatment, the percent
change (cx) of the x th lesion in a tumor burden was ran-
domly determined from a normal distribution with a
mean of c and a certain variance, with the restriction
that

Pn
x¼1 cxY bx was equal to c

Pn
x¼1Ybx . The estimated

variances using tumor burdens with multiple target le-
sions from the longest-diameter data and the short-axis
diameter data were 0.17 and 0.10, respectively.

(b) Generation of hypothetical second assessments in
the baseline and post-treatment phases:

We generated measurement errors ðϵbx ; ϵpxÞ of the xth

lesion in a burden in the two phases together using the
distribution estimated in the previous modeling step.
We squared the sum of the square root of the first
measurement value produced at (a) and the error at each
phase to generate the hypothetical second measurement

values of the xth lesions, ðð ffiffiffiffiffiffiffi
Ybx

p þ ϵbxÞ
2
; ð ffiffiffiffiffiffiffi

Ypx

p þ ϵpxÞ
2Þ

¼ ðY 0
bx ;Y

0
px
Þ . For all lesions in a tumor burden, the

above procedure was performed to produce the hypo-
thetical second assessments of the burden,

Pn
x¼1Ybx

0

and
Pn

x¼1Ypx
0.

(c) Calculation of the probability of designating a
certain tumor response at the second assessment
for a given first assessment:

We estimated the probabilities as proportions that
the simulated percent changes would be designated as
an objective response (i.e., complete or partial

response), P½
Pn

x¼1
Ypx

0−
Pn

x¼1
Ybx

0Pn

x¼1
Ybx

0 ≤−0:3�; or progression ;

P½
Pn

x¼1
Ypx

0−
Pn

x¼1
Ybx

0Pn

x¼1
Ybx

0 ≥0:2�.

(d) Producing medians of the probability:

The above process from (a) to (c) was iterated 100
times, using randomly extracted values from the
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posterior distributions of the variance-covariance com-
ponent parameters to produce the medians of the esti-
mated probabilities for specific designations.

(e) Performing the above simulation processes for
different scenarios:

A series of simulation processes was performed for
various scenarios, assuming the following factors: differ-
ent numbers of target lesions (1 ≤ n ≤ 5) and different
constitutions of the solid lesions (long-axis diameter, up
to 5) and lymph nodes (short-axis diameter, up to 2) in
the tumor burden; various baseline sizes of the lesion
diameter when a single target lesion (n = 1) was consid-
ered (the ranges of the long- and short-axis diameters
were 10–150 mm and 10–80 mm, respectively, and the
intervals were 1 mm); different percent changes, −
1.0 ≤ c ≤ 1.0 (the interval was 0.01); and within-reader
variability or between-reader variability. The distribu-
tion of the measurement error was set according to
whether a single reader or multiple readers reassessed
the lesion size and whether the target lesion was a
solid lesion or lymph node. The resulting probability
curves from the simulations are exemplified in Fig. 2
for five specific scenarios, with each curve represent-
ing the probability for each categorization depending
on the scale of percent change measured upon the sec-
ond assessment.
The above simulation processes were conducted in R

software [18].

Evaluation algorithm
A diagram of the algorithm is shown in Fig. 3. The algo-
rithm to evaluate the impact of measurement variability
on the ORR at the level of a trial features the probabil-
ities calculated in the simulation step. For the trial data
of each patient, the probability that the patient’s tumor
burden with a reported percent change would be desig-
nated as a complete or partial response in a hypothetical
reassessment can be obtained (step (a) in Fig. 3). The
event that a complete or partial response was declared
at the second assessment was a random variable from a
Bernoulli distribution with the respective probability.
From the given data, we generated dichotomous random
numbers (1 or 0) using the corresponding probabilities
to form a set of events for determinations of complete
or partial response at the time of reassessment (step (b)
in Fig. 3). The proportion of the events in the set then
provided a possible ORR resulting from a reassessment
of the given dataset. By repeating the trial 1000 times, a
range of simulated results was produced, with a 95%
central range of ORRs determined in the reassessment.
The reliability of the progression rate can be assessed in

the same way. However, if patients experience unequivocal

radiologic progression, symptomatic progression, or death,
a definitive probability of 1 is assigned for progression at
the second assessment, as such cases are not affected by
measurement variability.
This algorithm was implemented on a website using

the Python programming language (Python Software
Foundation, https://www.python.org/) [20].

Validation of the evaluation algorithm using a real
dataset
In order to validate the estimated distribution of meas-
urement error from modeling, for each tumor burden in
the validation dataset, we calculated the 95% central
range of hypothetical results of the second readings. The
coverage level was calculated as the proportion of the
95% central ranges that covered the actual burden sizes
measured by the second radiologist. For the validation
dataset, we produced the 95% central range of simulated
ORRs that we could expect from a reassessment using
the evaluation tool. We repeated this process using 100
re-sampled datasets drawn by random sampling with re-
placement from the original dataset, and the coverage
level was calculated as the proportion of the 95% central
ranges that covered the actually observed ORRs from
the second reading. We considered that a coverage level
close to 95% was indicative of validity [21].

Simulation studies
To investigate the impact of different characteristics of
data on the reproducibility of trial results, we generated
sets of 50 solid tumor burdens at baseline and
post-treatment with different characteristics. For simpli-
city, we only considered single target lesions (i.e., that
the tumor burden was the lesion size). Simulation fac-
tors were considered for different observed ORR results,
different sizes of tumor burden at baseline, and different
patterns of the resulting percent change after treatment.
We plotted the 95% confidence interval (CI) of the ob-
served ORR and the 95% central range of ORRs ob-
tained from re-assessment by a different observer for
each combination of characteristics.
We conducted another series of simulations with simi-

larly created datasets with different characteristics, but
in which the true ORR was assumed to be known, and
generated trial datasets that each had an observed ORR
as an estimate from the known ORR. For each simulated
trial dataset, we calculated the point estimate of the
ORR based on the generated data as an observation, and
plotted its 95% CI and the 95% central range of the
ORRs under the assumption that another radiologist
would reassess the tumor responses. We analyzed the
coverage pattern.
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Results
Demonstration of the web tool
An algorithm for calculating the 95% central range of
expected ORRs (or progression rates) in a repeated
trial was developed, and it is available online as a web
tool (http://studyanalysis2017.pythonanywhere.com/).
For usage of the tool, a dataset containing the patient
ID, organ information (solid organ or lymph node), le-
sion size at baseline, and lesion size at post-treatment
should be uploaded, and further information about the
dataset should be added, including the study name,
treatment name, and the number of enrolled patients
with unequivocal radiologic progression, symptomatic

progression, or death. On the webpage, the uploaded
data are confirmed and processed, yielding the num-
ber of solid organ tumors, the number of lymph
nodes, the percent change (%), the tumor burden at
baseline (mm), and the tumor burden at post-treat-
ment (mm). According to whether the same or an-
other radiologist were to reassess the tumor response,
the probability of being diagnosed with a complete or
partial response (or progression) upon a reassessment
of each patient is presented (Fig. 4(a)). Finally, the 95%
central range of the ORRs and 95% central range of
the progression rates determined in the reassessment
are shown (Fig. 4(b)).

a b

c

e

d

Fig. 2 Simulated probability curves of the designation of complete or partial response or progression according to the percent change at the
first reading. a Simulated probability function when the tumor burden of a 30-mm single target lesion is re-measured by another reader on the
long axis. b Simulated probability function when the tumor burden of a 120-mm single target lesion is re-measured by another reader on the
long axis c. Simulated probability function when a tumor burden consisting of four target lesions is re-measured by another reader on the long
axis. d Simulated probability function when the tumor burden of a 30-mm single target lesion is re-measured by the same reader on the long
axis. e Simulated probability function when the tumor burden of a 30-mm single target lesion is re-measured by another reader on the short axis
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Validation results of the estimated distributions of
measurement errors and the evaluation algorithm
In the validation of the estimated distribution of measure-
ment errors, the actual second measurement value was
located within the 95% central range of the hypothetical
second readings in 19 of 22 and 20 of 20 burdens at base-
line and post-treatment, respectively (Fig. 5(a)). Therefore,
the coverage level was 93%. Concerning the results of the
validation of the evaluation algorithm, for the 100
resampled datasets, the ORR resulting from a real second
assessment lay in the 95% central range of simulated ORRs
in all datasets (Fig. 5(b)). The coverage level was 100%.

Simulation studies
For the trial data with a smaller lesion size at baseline,
the 95% central ranges of the re-assessed ORRs tended
to be wider ((a) versus (b) and (c) versus (d) in Fig. 6).
For the trial data where the occurred percent changes of
tumor burdens were distributed closely around the re-
sponse cutoff value of − 30%, the 95% central ranges of
the re-assessed ORRs tended to be wider, and did not
coincide with the 95% CI in many cases apart from when
the observed ORRs were close to 50% ((a) versus (c) and
(b) versus (d) in Fig. 6). High reproducibility was ob-
served when the baseline lesion size was large and the

occurred percent changes were distributed largely away
from the cutoff value (Fig. 6 (d)).
The second set of simulation studies also showed a

similar pattern (Additional file 2: Figure S1, Additional file 3:
Figure S2, and Additional file 4: Figure S3). The 95% CIs
tended to coincide well with the 95% central ranges of the
re-assessed results of ORRs when the assumed true ORR
was 50%, regardless of the baseline burden sizes and per-
cent changes. When the assumed ORRs were smaller or
greater than 50% by a difference of 30%, the tendency for
overlap depended on the distribution of percent changes,
and in particular how closely they were aggregated to the
cutoff. When the percent changes were distributed closely
to − 30%, the degree of overlap was small, indicating that
the data were very vulnerable to measurement variability in
assessing tumor response. When every other condition was
fixed, larger baseline burden sizes resulted in larger overlap.
Whether the 95% central range covered a point estimate of
ORR also demonstrated a similar pattern.

Discussion
In oncology, treatment response is determined based on
radiologic assessments of the tumor burden, which are
subject to measurement variability. It has not been pos-
sible to assess the degree to which the resulting ORRs

a

b

Fig. 3 Evaluation algorithm
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and progression rate in specific trials are robust against
measurement variability. In this study, we developed an
algorithm for quantifying the impact of measurement
variability on the ORR and progression rate from a
specific trial, as well as a web tool for implementing the
algorithm. We presented the sequence of steps used to
develop the algorithm, including a method of modeling
measurement error, a method of calculating the prob-
ability representing the effect of measurement error on
determination of treatment response, and the process of
applying the final algorithm to evaluate the impact of
measurement variability on the results from a trial.
Our hierarchical linear mixed model was constructed

with the goal of estimating the variance components
capturing measurement variability as the remaining

variation after accounting for other specific sources of
variation. Although the data structure suggested that
lesions were nested with patients, because the variation
among the patient-specific measurements was in fact
part of the variation of the lesion-specific measurements,
it was unnecessary to separate these in the model be-
cause this nesting did not influence the remaining varia-
tions. The estimated distributions of intra-reader and
inter-reader measurement errors did not change de-
pending on whether or not the patient effect was added
to the model.
Square root-transformed data were used as the re-

sponse variable in our model to approximate normality
and to account for the measurement size-dependency of
measurement errors. Furthermore, we assumed that the

Fig. 4 Snapshots of the web tool (response to 1st reviewer’s 5th comment). a The probability plots of diagnosis as complete or partial response
(left) and progression (right) when re-assessed according to patient ID. Each bar represents one patient. b The distribution plots of the simulated
objective response rates (left) and progression rates (right) determined in the reassessment. For each distribution, the median and the 95%
central range are presented
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inherent characteristics of a lesion would have a similar
effect on measurement errors at baseline and at post-
treatment. We thus used a bivariate mixed-effects model
to account for the correlation between measurement
errors before and after treatment.
There was a small proportion of outlying data ob-

served in LOAs presented with a Bland-Altman plot. By
examining detailed images of the outlying data, it was
judged that those outlying results originated solely from
misperceptions of the boundaries of target lesions due to
abutting non-malignant pathology such as atelectasis or

the misunderstanding of target lesions, and such cases
exceeded the range of measurement error, which rarely
occurs in oncology practice. For this reason, we decided
to trim off the outlying 5% of the data.
Our primary interest was to investigate the degree to

which the original conclusion of a specific clinical trial
would be stable against measurement variability if the
data of the given trial were reassessed. We used a frame-
work focusing on early-phase clinical trials that draw
conclusions based on the ORR and the percentage of
patients who achieve complete or partial response.

a

b

Fig. 5 Interval plots of results of the validation and actual measurements. a Tumor burden size per patient at baseline (above) and post-
treatment (below). The intervals indicate the 95% central ranges of the simulated burden sizes. The stars indicate the tumor burden sizes re-
measured by the second radiologist. b ORR per resampling. The intervals indicate the 95% central ranges of the objective response rates (ORRs)
from the simulation. The circles and stars indicate the ORRs measured by the first radiologist and the second radiologist, respectively
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Complete response was therefore dealt with as part of
the definition of ORR rather than by evaluating it separ-
ately. The results from the simulation step demonstrated
that for extreme negative values of c (with c = − 1
defined as a complete response) the probability of desig-
nating a complete or partial response at the second as-
sessment was almost 1, as seen in Fig. 2. That is, in such
cases, measurement variability may have a minimal ef-
fect on the response determination. The evaluation algo-
rithm took this into account in the calculation.
In the simulation process to obtain the probability of

a complete or partial response, the probability distri-
bution was considered through an iterative procedure
by using randomly extracted values from the posterior
distributions of the variance-covariance component
parameters. Since the posterior distributions were lep-
tokurtic and the variance of those probabilities
obtained from the iterative processes was very small,
we determined that use of a fixed probability by the
median value would be sufficient for ensuring simpli-
city of the evaluation algorithm.

The 95% central range of the ORR can be used as an
interpretable indicator of the robustness of the originally
reported ORR against measurement variability. A narrow
95% central range indicates a high reproducibility of the
ORR despite measurement variability, as manifested by
close agreement between the results of categorization
assessed by the same reader (performing a repeat reading)
or different readers, accounting for measurement variabil-
ity. However, the 95% central range of the re-assessed ORRs
should be interpreted differently from the 95% CI of the
observed ORR. The 95% CI deals with the uncertainty
against sampling errors in the estimation of the ORR, while
the 95% central range of the ORR deals with the reproduci-
bility of the observed ORR against measurement variability
in a given sample. These two measures shed light on differ-
ent aspects of uncertainty of an observed result from a
given clinical trial. It is therefore advised that researchers
should more carefully consider the robustness of their usual
inferences based on the CI when considering potential reas-
sessments of the same tumor burdens by themselves or by
other observers. We also demonstrated that the 95% central

a b

c d

Fig. 6 95% confidence intervals and 95% central ranges depending on the different observed results and the characteristics of the trial data. a
When the baseline lesion size is 30 mm and the distribution of percent change is −30 ± N(0, 52) (b) When the baseline lesion size is 100 mm and
the distribution of percent change is −30±N (0, 52) (c) When the baseline lesion size is 30 mm and the distribution of percent change is −30 ±
N(20, 52) (d) When the baseline lesion size is 100 mm and the distribution of percent change is −30 ± N(20, 52). Gray lines: the observed objective
response rate (ORR) and 95% confidence interval; Black lines: median and 95% central range from the tool
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range of reproduced ORRs could be different from the 95%
CI of the originally observed ORR depending on different
characteristics of the data in terms of the baseline tumor
burden and percent changes through simulation studies.
When drawing a conclusion based on a RECIST-based

response from clinical trial data, the observed ORR is
typically presented as a point estimate with a 95% cen-
tral interval and a waterfall plot. Those presentations do
not suggest any information on the composition of
tumor burdens with a specific post-treatment percent
change, or in other words, the degree to which the ob-
served ORR is robust against measurement variability.
Thus, it is impossible for clinical trialists to explore this
aspect of robustness, unless a repeated evaluation of
tumor responses in the particular trial dataset is actually
undertaken, such as a blinded independent central re-
view, which is only applied in phase 2 or 3 trials to a
limited extent in practice due to considerable require-
ments in terms of time and resources. The algorithmic
tool presented herein can be considered a pragmatic,
practical alternative to reassessment exercises by the ori-
ginal reader or another reader.
Simulation studies have provided some useful insights

into how the 95% central range can be practically inter-
preted. A 95% central range of reassessed ORRs can be a
useful tool for evaluating the robustness of an observed
ORR against measurement variability by assessing the
degree to which the 95% central range overlaps the 95%
CI of the observed ORR. When the trial dataset primar-
ily consisted of tumor burdens with tumor responses
susceptible to measurement variability (i.e., tumor re-
sponses with post-treatment percent changes close to
the cutoff of − 30%, with smaller tumor burdens), the
95% central range was wider, suggesting that the ORR
could be just 50% (i.e., only a half chance of response),
regardless of the 95% confidence interval of the observed
ORR. When the trial dataset primarily consisted of
tumor burdens with tumor responses insensitive to
measurement variability (i.e., tumor responses with
post-treatment percent changes further from − 30%, with
larger tumor burdens), the 95% central range was nar-
rower and coincided closely with the 95% CI. If the 95%
CI and the 95% central range of the observed ORR rarely
overlap and are apart from each other, clinical trialists
can conclude that the observed ORR is unlikely to be re-
producible if the trial data are repeatedly assessed. If the
95% CI of the observed ORR entirely covers the 95%
central range of re-assessed ORRs, clinical trialists may
conclude that the observed ORR is likely to be highly re-
producible even if repeatedly assessed, and the impact of
measurement variability is negligible.
This study has several limitations. First, since the algo-

rithm was developed based on data composed of CT
image measurements from a specific oncology trial of

advanced SCLC, validation using external data was es-
sential. The algorithm worked properly in an external
dataset of images obtained from patients with refractory
SCLC. However, further research should be undertaken
to examine the generalizability of the algorithm by using
clinical trial data on different types of cancer. Second,
the characteristics of a lesion (i.e., border irregularity
and conglomeration) may affect estimations of the distri-
bution of the measurement error. We were unable to
perform a subgroup analysis according to these two fac-
tors due to a lack of data. However, as shown in the val-
idation results for the distribution of measurement
errors, the simulated second burden size was adequate
for replicating the actual second size. Third, we included
long-axis diameters for lymph nodes in the dataset for
developing a long-axis diameter model. However, the
RECIST guideline (version 1.1) recommends measuring
the short-axis diameter for lymph nodes. Nevertheless,
the procedure is still acceptable, as the long-axis diam-
eter of lymph nodes was used for representing the tumor
burden in the previous RECIST guideline (version 1.0)
[22], and the reason for changing the measurement axis
for lymph nodes is that normal lymph nodes can have a
measurable size without metastasis and the short-axis
diameter is more predictive of metastasis [23]. Finally, in
the simulation, when the tumor burden was from a sin-
gle lesion, various baseline sizes from 10mm to 150 mm
were considered in order to investigate the pattern of
the simulated probability curve according to baseline
size. When the tumor burden was composed of multiple
lesions, we generated lesion sizes for a range of fixed
numbers of lesions in a tumor burden, based on an em-
pirical distribution of lesion sizes. This enabled us to
account for the number of lesions within a tumor bur-
den, which is closely related to the burden size, but the
burden size itself was not considered. Thus, our proced-
ure could be considered to be a rough assessment of the
baseline burden size with multiple lesions, but this issue
should be further investigated.

Conclusions
Our validation exercise demonstrated the adequacy of
the statistical modeling approach and the utility of the
developed algorithm. The web-based tool can be used
for the future evaluation of trial results to predict the
impact of measurement variability on the results. Quan-
tification of the variation in the ORR or progression rate
due to potential measurement variability is essential, and
will help inform decisions made on the basis of clinical
trial data. Although there are some issues remaining for
further elaboration, the demonstration of the process
and the findings of this study should provide an import-
ant basis for future research in relation to measurement
variability, particularly in oncology.
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Additional file 1: Formulas of the LOAs on the original scale for the
nth root-transformed variables. (DOCX 18 kb)

Additional file 2: Figure S1. Observed objective response rates (ORR)
with 95% confidence intervals and 95% central ranges from the
evaluation tool depending characteristics of simulated data sets in which
the true ORR is 20%. (a) when the assumed distributions of baseline
tumor burden size and percent change are LN(3.55, 0.532) and − 30±N(0,
52), respectively. (b) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 52),
respectively. (c) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(0, 202),
respectively. (d) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 202),
respectively. (e) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(0, 52),
respectively. (f) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(20, 52),
respectively. (g) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(20, 52),
respectively. Dashed line: true ORR; Gray lines: The observed ORR and
95% confidence interval; Black lines: median and 95% central range from
the tool. (PDF 334 kb)

Additional file 3: Figure S2. Observed objective response rates (ORR)
with 95% confidence intervals and 95% central ranges from the
evaluation tool depending characteristics of simulated data sets in which
the true ORR is 50%. (a) when the assumed distributions of baseline
tumor burden size and percent change are LN(3.55, 0.532) and − 30±N(0,
52), respectively. (b) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 52),
respectively. (c) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(0, 202),
respectively. (d) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 202),
respectively. (e) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(0, 52),
respectively. (f) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(20, 52),
respectively. (g) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(20, 52),
respectively. Dashed line: true ORR; Gray lines: the observed ORR and
95% confidence interval; Black lines: median and 95% central range from
the tool. (PDF 323 kb)

Additional file 4: Figure S3. Observed objective response rates (ORR)
with 95% confidence intervals and 95% central ranges from the
evaluation tool depending characteristics of simulated data sets in which
the true ORR is 80%. (a) when the assumed distributions of baseline
tumor burden size and percent change are LN(3.55, 0.532) and − 30±N(0,
52), respectively. (b) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 52),
respectively. (c) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(0, 202),
respectively. (d) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 1.222) and − 30±N(0, 202),
respectively. (e) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(0, 52),
respectively. (f) when the assumed distributions of baseline tumor
burden size and percent change are LN(3.55, 0.532) and − 30±N(20, 52),
respectively. (g) when the assumed distributions of baseline tumor
burden size and percent change are LN(4.25, 0.532) and − 30±N(20, 52),
respectively. Dashed line: true ORR; Gray lines: the observed ORR and
95% confidence interval; Black lines: median and 95% central range from
the tool. (PDF 329 kb)
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